51 research outputs found

    Paving the way to electrified road transport - Publicly funded research, development and demonstration projects on electric and plug-in vehicles in Europe

    Get PDF
    The electrification of road transport or electro-mobility is seen by many as a potential game-changing technology that could have a significant influence on the future cost and environmental performance of personal individual mobility as well as short distance goods transport. While there is currently a great momentum vis-Ă -vis electro-mobility, it is yet unclear, if its deployment is economically viable in the medium to long term. Electromobility, in its early phase of deployment, still faces significant hurdles that need to be overcome in order to reach a greater market presence. Further progress is needed to overcome some of these hurdles. The importance of regulatory and financial support to emerging environmentally friendly transport technologies has been stressed in multiple occasions. The aim of our study was to collect the information on all on-going or recently concluded research, development and demonstration projects on electric and plug-in hybrid electric vehicles, which received EU or national public funding with a budget >1mln Euro, in order to assess which of the electric drive vehicles (EDV) challenges are addressed by these projects and to identify potential gaps in the research, development, and demonstration (R, D & D) landscape in Europe. The data on R, D & D projects on electric and plug-in vehicles, which receive public funding, has been collected by means of (i) on-line research, (ii) validation of an inventory of projects at member state level through national contacts and (iii) validation of specific project information through distribution of project information templates among project coordinators. The type of information which was gathered for the database included: EDV component(s) targeted for R&D, location and scope of demo projects, short project descriptions, project budget and amount of public co-funding received, funding organisation, project coordinator,number and type of partners (i.e. utilities, OEMs, services, research institutions, local authorities), start and duration of the project. The validation process permitted the identification of additional projects which were not accounted for in the original online search. Statistical elaboration of the collected data was conducted. More than 320 R, D & D projects funded by the EU and Member states are listed and analyzed. Their total budgets add up to approximately 1.9 billion Euros. Collected data allowed also the development of an interactive emobility visualization tool, called EV-Radar, which portrays in an interactive way R&D and demonstration efforts for EDVs in Europe. It can be accessed under http://iet.jrc.ec.europa.eu/ev-radar.JRC.F.6-Energy systems evaluatio

    Research and innovation in transport electrification in Europe: An assessment based on the Transport Research and Innovation Monitoring and Information System (TRIMIS)

    Get PDF
    Electrification has a major role to play in decarbonising transport and in reducing its fossil fuel dependency. For transport electrification to be cost-efficient and ready for future needs, adequate research and innovation (R&I) in this field is necessary. This report provides a comprehensive analysis of R&I in transport electrification. The assessment follows the methodology developed by the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). The report critically assesses research by thematic area and technologies, highlighting recent developments and future needs.JRC.C.4-Sustainable Transpor

    An adaptive power split strategy with a load disturbance compensator for fuel cell/supercapacitor powertrains

    Get PDF
    Electric vehicles powered by fuel cell and supercapacitor hybrid power sources are of great interest. However, the power allocation between each power source is challenging and the DC bus voltage fluctuation is relatively significant in cascaded PI control schemes. This paper develops a power control strategy with an adjustable cut-off frequency, using an artificial potential field, to adaptively split the load current between the fuel cell and the supercapacitor under various load conditions. The adaptive cut-off frequency is calculated by cutting the load frequency spectrum with an allocation ratio that changes with the supercapacitor state of charge. Therefore, the relatively lower frequency portion of the load current is provided by the fuel cell and the supercapacitor handles the higher frequency portion. To enhance the control performance of the DC bus voltage regulation against the load disturbance, a load disturbance compensator is introduced to suppress the DC bus voltage fluctuation when the load variation occurs, which is implemented by a feed-forward controller that can compensate the load current variation in advance. The effectiveness of the proposed strategy is validated by extensive experiments

    Achieving a technical transition from internal combustion engine vehicles to battery electric vehicles in the automotive sector in Europe: challenges and strategies

    Get PDF
    The European Union (EU) aims to reduce overall carbon dioxide emissions at least 80% by 2050. For road transport, this involves at least a 95% reduction target for 2050, compared to 1990 levels. Most commentators believe that achieving this target requires a transition from internal combustion engine vehicles (ICEVs) to battery electric vehicles (BEVs). However, such transition demands fundamental changes in the whole automotive value chain. This research argues that the required changes in the automotive value chain might be achieved by i) an industrial structure enabling the mass production of BEVs ii) understanding and supporting the development of newcomers that are in the majority of micro, small and medium sized enterprises (SMEs) in emerging BEV sector and iii) use of target instruments by governments to accelerate the development of BEV value chain and industrial structure. Based on this strategy, three stage study was performed. This involved i) exploring the present BEV industry structure and compatible future structure ii) exploring the approach of SMEs to emerging BEV sector to understand and support these actors and iii) developing and trialling a novel framework enabling the pre-implementation analysis of putative policy measures. In each stage of the research, different methodologies were used. This included an analysis of supply chain for BEVs in North-West Europe (NWE); semi-structured in-depth interviews with SMEs throughout NWE and development and application of an “adaptive neuro-fuzzy inference system” (ANFIS) based framework. This study contributes to the body of knowledge by investigating the implications of BEVs on the supply chains and exploring what competences and capacities might be needed for mass production of BEVs in Europe. Secondly, this research proposed that economic growth and emission reduction targets established in the existing economic strategy of the EU (Europe 2020 strategy) might be achieved, and a significant contribution to achieve the 2050 emission reduction target might be made by supporting SME development. Support areas for SMEs were also identified. Lastly, to support national governments in making informed decisions, an ANFIS framework providing an ex-ante impact of various innovation decisions was offered

    Intelligent Transportation Systems, Hybrid Electric Vehicles, Powertrain Control, Cooperative Adaptive Cruise Control, Model Predictive Control

    Get PDF
    Information obtainable from Intelligent Transportation Systems (ITS) provides the possibility of improving the safety and efficiency of vehicles at different levels. In particular, such information has the potential to be utilized for prediction of driving conditions and traffic flow, which allows us to improve the performance of the control systems in different vehicular applications, such as Hybrid Electric Vehicles (HEVs) powertrain control and Cooperative Adaptive Cruise Control (CACC). In the first part of this work, we study the design of an MPC controller for a Cooperative Adaptive Cruise Control (CACC) system, which is an automated application that provides the drivers with extra benefits, such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as interfering vehicles cutting-into the CACC platoons or hard braking by leading cars. To address this problem, we first propose a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme. Then, the predicted trajectory of each vehicle in the adjacent lanes is used to estimate the probability of that vehicle cutting-into the CACC platoon. To consider the calculated probability in control system decisions, a Stochastic Model Predictive Controller (SMPC) needs to be designed which incorporates this cut-in probability, and enhances the reaction against the detected dangerous cut-in maneuver. However, in this work, we propose an alternative way of solving this problem. We convert the SMPC problem into modeling the CACC as a Stochastic Hybrid System (SHS) while we still use a deterministic MPC controller running in the only state of the SHS model. Finally, we find the conditions under which the designed deterministic controller is stable and feasible for the proposed SHS model of the CACC platoon. In the second part of this work, we propose to improve the performance of one of the most promising realtime powertrain control strategies, called Adaptive Equivalent Consumption Minimization Strategy (AECMS), using predicted driving conditions. In this part, two different real-time powertrain control strategies are proposed for HEVs. The first proposed method, including three different variations, introduces an adjustment factor for the cost of using electrical energy (equivalent factor) in AECMS. The factor is proportional to the predicted energy requirements of the vehicle, regenerative braking energy, and the cost of battery charging and discharging in a finite time window. Simulation results using detailed vehicle powertrain models illustrate that the proposed control strategies improve the performance of AECMS in terms of fuel economy by 4\%. Finally, we integrate the recent development in reinforcement learning to design a novel multi-level power distribution control. The proposed controller reacts in two levels, namely high-level and low-level control. The high-level control decision estimates the most probable driving profile matched to the current (and near future) state of the vehicle. Then, the corresponding low-level controller of the selected profile is utilized to distribute the requested power between Electric Motor (EM) and Internal Combustion Engine (ICE). This is important because there is no other prior work addressing this problem using a controller which can adjust its decision to the driving pattern. We proposed to use two reinforcement learning agents in two levels of abstraction. The first agent, selects the most optimal low-level controller (second agent) based on the overall pattern of the drive cycle in the near past and future, i.e., urban, highway and harsh. Then, the selected agent by the high-level controller (first agent) decides how to distribute the demanded power between the EM and ICE. We found that by carefully designing a training scheme, it is possible to effectively improve the performance of this data-driven controller. Simulation results show up to 6\% improvement in fuel economy compared to the AECMS

    Biorefarmeries: Milking ethanol from algae for the mobility of tomorrow

    Get PDF
    The idea of this project is to fully exploit microalgae to the best of its potential, possibly proposing a sort of fourth generation fuel based on a continuous milking of macro- and microorganisms (as cows in a milk farm), which produce fuel by photosynthetic reactions. This project proposes a new transportation concept supported by a new socio-economic approach, in which biofuel production is based on biorefarmeries delivering fourth generation fuels which also have decarbonization capabilities, potential negative CO2 emissions plus positive impacts on mobility, the automotive Industry, health and environment and the econom

    Trends in electric vehicles research

    Get PDF
    Electrification of vehicles has been recognised as a key part of meeting global climate change targets and a key aspect of sustainable transport. Here, an integrative and bird\u27s-eye view of scholarly research on Electric Vehicles (EV) is provided with a focus on an objective and quantitative determination of research trends. The analyses suggest that areas of EV research linked to (i) charging infrastructure, (ii) EV adoption, (iii) thermal management systems and (iv) routing problem have been the distinct trending topics in recent years. While hybrid EV proves to have been a dominant keyword, its frequency of use has either flattened out in recent years or is notably on the decline across major subfields of EV research. The findings provide objective indications about the directions to which EV research is currently headed. A secondary outcome is the determination of references that have been most instrumental in developing each major stream of EV research

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries
    • …
    corecore