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Abstract

Information Driven Vehicle: CACC Interference Handling and HEV Powertrain Control

Hadi Kazemi

Information obtainable from Intelligent Transportation Systems (ITS) provides the 
possibility of improving the safety and efficiency of vehicles at different levels. In particular, 
such information has the potential to be utilized for prediction of driving conditions and 
traffic flow, which allows us to improve the performance of the control systems in different 
vehicular applications, such as Hybrid Electric Vehicles (HEVs) powertrain control and 
Cooperative Adaptive Cruise Control (CACC). In the first part of this work, we study the 
design of an MPC controller for a Cooperative Adaptive Cruise Control (CACC) system, 
which is an automated application that provides the drivers with extra benefits, such as 
traffic throughput maximization and collision avoidance. CACC systems must be designed in 
a way that are sufficiently robust against all special maneuvers such as interfering vehicles 
cutting-into the CACC platoons or hard braking by leading cars. To address this problem, we 
first propose a Neural- Network (NN)-based cut-in detection and trajectory prediction 
scheme. Then, the predicted trajectory of each vehicle in the adjacent lanes is used to 
estimate the probability of that vehicle cutting-into the CACC platoon. To consider the 
calculated probability in control system decisions, a Stochastic Model Predictive Controller 
(SMPC) needs to be designed which incorporates this cut-in probability, and enhances the 
reaction against the detected dangerous cut-in maneuver. However, in this work, we 
propose an alternative way of solving this problem. We convert the SMPC problem into 
modeling the CACC as a Stochastic Hybrid System (SHS) while we still use a deterministic 
MPC controller running in the only state of the SHS model. Finally, we find the conditions 
under which the designed deterministic controller is stable and feasible for the proposed 
SHS model of the CACC platoon. In the second part of this work, we propose to improve the 
performance of one of the most promising realtime powertrain control strategies, called 
Adaptive Equivalent Consumption Minimization Strategy (AECMS), using predicted driving 
conditions. In this part, two different real-time powertrain control strategies are proposed 
for HEVs. The first proposed method, including three different variations, introduces an 
adjustment factor for the cost of using electrical energy (equivalent factor) in AECMS. The 
factor is proportional to the predicted energy requirements of the vehicle, regenerative 
braking energy, and the cost of battery 



charging and discharging in a finite time window. Simulation results using detailed vehicle 
power train models illustrate that the proposed control strategies improve the performance  
and Internal Combustion Engine (ICE). This is important because there is no other prior 
work addressing this problem using a controller which can adjust its decision to the driving 
of AECMS in terms of fuel economy by 4%. Finally, we integrate the recent development in 
reinforcement learning to design a novel multi-level power distribution control. The 
proposed controller reacts in two levels, namely high-level and low-level control. The high-
level control decision estimates the most probable driving profile matched to the current 
(and near future) state of the vehicle. Then, the corresponding low-level controller of the 
selected profile is utilized to distribute the requested power between Electric Motor 
(EM)pattern. We proposed to use two reinforcement learning agents in two levels of 
abstraction. The first agent, selects the most optimal low-level controller (second agent) 
based on the overall pattern of the drive cycle in the near past and future, i.e., urban, highway 
and harsh. Then, the selected agent by the high-level controller (first agent) decides how to 
distribute the demanded power between the EM and ICE. We found that by carefully 
designing a training scheme, it is possible to effectively improve the performance of this 
data-driven controller. Simulation results show up to 6% improvement in fuel economy 
compared to the AECMS.
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1

Chapter 1

Introduction

1.1 Problem Definition

The advent of vehicular communication networks [1] provides situational awareness of various

degrees [2, 3, 4] and a new possibility of using traffic and road information for safety enhance-

ment, traffic management, emissions reduction, and fuel efficiency. Information is usually obtained

from Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication networks and

can include data from various sensors such as Global Positioning Systems (GPS) or other onboard

vehicle sensors. A combination of such communicated data and information from maps (Geograph-

ical Information Systems (GIS)) provides vehicles with a degree of real-time awareness of their

surroundings and upcoming driving conditions.

The Intelligent Transportation Systems (ITSs) are promising solutions, improving the efficiency

and safety of vehicles, by the integration of information, telecommunication, and cyber technologies

into transportation systems. This integration provides the vehicles with a real-time comprehensive

awareness of their surroundings and situations. While safety-related applications, such as collision

avoidance and collision warnings, which stop the vehicle in an imminent accident scenario or warn

the driver in a non-imminent situation, were the primary goals of ITS, they can effectively advance

the performance of other efficiency-related applications, such as fuel efficiency and traffic manage-

ment systems. Such ITS applications generally are developed on top of connected and automated

vehicle (CAV) systems connected through wireless communication technologies.

Cooperative vehicle safety (CVS) systems are examples of ITSs that employ communication
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amongst vehicles for the sake of safety and efficiency improvement in the transportation system.

CVS systems are designed to broadcast necessary information through a shared channel and specify

required mechanisms to predict the state, e.g., speed, of other vehicles. Each vehicle transmits its

state information within a limited neighborhood around it. Forward collision warning (FCW) and

forward collision avoidance (FCA) are two common examples of CVS applications. FCW (FCA)

is designed to warn the drivers (stop the vehicle) to avoid a rear-end collision. Even though CVS

has been mostly explored for the situation in that a human user has control over the vehicle, it

could be extended to many automated driving applications, such as Cooperative Adaptive Cruise

Control (CACC).

Drivers are the most important and influential entities of non-autonomous vehicles in ground

Intelligent Transportation System (ITS). A revolutionary age of modern driving has been initiated

by the advent of safety and comfort driving applications that aim at assisting drivers in vehicle

control. Forward collision warning [5, 6, 7, 8], lane keep assistance [9, 10, 11], automatic braking

[12], adaptive cruise control [13, 14], efficiency [15, 16], and pedestrian safety [17, 18, 19] systems

are amongst the most important automated driving applications. The first generation of safety

applications was designed by virtue of local sensors such as radars and cameras. Local sensors

provide a mediocre level of safety due to their limited sensing range and data processing complexity.

Moreover, they noticeably underperform in the presence of occluding obstacles. In order to handle

these issues, some other sources of information are required to provide more accurate situational

awareness within a broader neighboring area. Vehicle-to-Vehicle (V2V) communication has been

proposed to remove this barrier through its omnidirectional and non-line of sight connectivity

capabilities. Consequently, the performance of safety applications is expected to be substantially

improved by V2V communications. Currently, the most promising technology under consideration

for V2V communication is the Dedicated Short Range Communication (DSRC) [20] technology.

In contrast, in automated driving applications, such as cooperative collision avoidance (CCA),

and platooning, the control system dictates the optimal motion of the vehicle, in terms of safety

and efficiency, based on the information about the current situation of the host vehicle and its

neighboring vehicles and the road. Adaptive Cruise Control (ACC) is one of the earliest applications

of ITS, which improves the safety and ease of driving. Similar to the ACC, Cooperative Adaptive

Cruise Control (CACC), which utilizes V2x communication technology, is a more powerful CCA
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system to prevent collision and maximize traffic throughput simultaneously. It takes proper action

by means of the steering, engine, brakes, etc. Consequently, a comprehensive understanding of

the vehicle surroundings and possible scenarios, and the likeliness of every single scenario, in the

near future is necessary to design such a controller. In the CACC and platooning, which both

are car-following scenarios, the control system design is confronted with similar challenges. In car

platooning the primary objective is to keep vehicles in a very close and reasonable distance from

each other (gap control) to maximize the number of vehicles on the road. Similarly, in CACC

the goal is defined as keeping a safe distance while providing a comfortable ride for passengers.

Extensive research has been carried out in the recent past in the area of platooning and CACC

which can be categorized as follows:

• Interaction of driver and CACC control unit, such as turning the CACC on [21].

• The impact of CACC on traffic in terms of congestion and safety [22].

• CACC application design [23].

• CACC communication requirements [24].

• Platoon string stability [25].

A CACC system should be designed in a way to be completely robust to any unexpected event

such as other vehicle maneuvers including cutting-into and cutting-out of the CACC platoons.

Detecting of an unanticipated maneuver of a remote vehicle and determining an appropriate reaction

to it are two of the most demanding tasks in the normal driving situations with and without CACC.

Despite the comprehensive technical and theoretical investigation of CACC systems by researchers

in the recent past, still, a universal framework for reaction to unexpected maneuvers of remote

vehicles, such as cutting into a stable CACC platoon, needs more attention before reaching a

complete CACC design.

Unsignaled lane change is one of the most critical situations among unexpected remote vehicle

maneuvers to be addressed in CACC design as it can significantly affect the level of safety and

platooning performance in this application. In this work, we specifically focus on a cut-in maneuver

by a remote vehicle, due to its imminent threat to the safety and stability of the whole CACC
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platoon. A vehicle in a stable CACC platoon needs to apply a hard brake in the case of a remote

vehicle joining the platoon unexpectedly. The action of a hard brake increases the possibility of

platoon deformation, or in the worst case, a crash. Consequently, predicting a possible upcoming

cut-in maneuver by the neighboring vehicles, and having an estimation of their near future behavior

can prevent the necessity of hard brakes and their consequences. In addition, a full CACC system

needs to keep the platoon formation robust against entering and leaving vehicles. The performance

of such CACC design in these detracting driving scenarios is highly dependent on the accuracy of

vehicle trajectory prediction. Therefore, the prediction of a possible lane change is a crucial part

of any platooning system design.

In the case of dealing with lane change scenarios, cut-out maneuvers are usually safe for CACC

and can be handled without any risk. The CACC system only needs to speeds up the vehicle behind

the departing vehicle to sync their distance to the new leader by filling the cut-out gap. However,

in contrast, addressing a cut-in maneuver needs a mechanism for precise tracking of the remote

vehicle joining the platoon. The new vehicle cannot only deform the platoon but can increase the

risk of an accident. Thus, it is well-desired to first predict the probability of any remote vehicles in

the adjacent lanes to show a cut-in intention beforehand, and then, the CACC system needs to take

actions based on how probable a cut-in is to happen in front of the host vehicle. The action should

not over-react to possible cut-in maneuvers with low probability to keep the comfort-drive goal of

the CACC. At the same time, the controller should react fast to highly possible cut-in scenarios to

avoid any possible crash.

In addition to incorporating the probability of a cut-in in CACC decision, the controller should

consider how harsh is the upcoming cut-in. In other words, when a remote vehicle enters the CACC

platoon smoothly, the controller should open up enough space for the entering vehicle as smooth

as possible by reducing the speed of the host vehicle. However, in case of a harsh agile cut-in,

the controller needs to make a brake as harsh as necessary to prevent an accident. Therefore,

in this work, we address the problem of CACC system design, robust to interfering vehicles. We

design a new MPC controller for CACC and prove the stability and feasibility of the controller.

We demonstrate the effectiveness of this approach to control of CACC through several simulation

studies. Then we propose an approach to consider an interfering vehicle in this problem.

ITS can also be used in efficiency related applications, such as power distribution management
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in Hybrid electric vehicles (HEVs). HEVs have great impacts on fuel economy and are promising

alternative means of transportation. In comparison with the conventional ICE powered vehicles,

they are able to improve the fuel efficiency employing an engine smaller in size, and capturing the

regenerative braking energy to recharge the batteries. Depending on the capacity of the batteries,

which usually can range between 10 to 70 miles of driving, HEVs can exploit cheaper grid electricity

to take over from fossil fuel. HEV power distribution control has been vastly studied, in the

past decade, as an optimization problem. Fuzzy logic and other rule-based control techniques

are investigated in HEV power distribution management, by splitting the driving conditions into

multiple scenarios [26]. Their main advantage is their ease of implementation, while they neglect

detailed vehicle dynamics. Others approached this problem as an Optimal control design [27], based

on the current operation, which has a low computational complexity for real-time implementation.

Sliding mode control has also been investigated for the sake of robustness to the parameter and

model variations or other external disturbances [28]. To find the global optimal solutions of the

problem, one may use dynamic programming (DP) techniques. However, DP-based solutions need

prior knowledge of the entire driving condition. Such dependency of a priori information makes DP

approaches inappropriate for real-world implementation. As an alternatives adaptive equivalent

consumption minimization strategy (AECMS) algorithm was proposed in [29] which changes the

relative cost of using electrical energy compared to fossil fuel based on the current and history of

the SOC.

A method based on mixed fuzzy classification and pattern learning was proposed in [30] which

relies on learning about the driving conditions from the driving history information or optimization

using the standard driving cycles. However, in real scenarios, the actual driving cycle can be com-

pletely dissimilar to the standard driving cycles, which results in a non-optimal power distribution

between EM and ICE for different drivers or trips.

The recent developments in the area of Connected and Automated Vehicles (CAVs), such as

GIS, GPS, vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications, enables

ITS to come up with new and better solutions to vehicle driving profile prediction. The road

conditions, traffic lights, and speed limits can be actively utilized to have a precise prediction of

the driving conditions in the near future (a short time prediction). This opens a new set of power

distribution strategies which make use of limited information about the near future of the driving
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conditions to improve the performance of real-time methods which only consider the instantaneous

optimization of the powertrain components. To this end, we propose a sub-optimal strategy and

a learning-based model-free controller based on Reinforcement Learning (RL) to improve the fuel

economy of an HEV incorporating the information of the upcoming driving conditions.

1.2 Contributions and Dissertation Structure

1.2.1 Chapter 2

Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy

of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise

Control (CACC), which is an automated application, provides drivers with extra benefits such as

traffic throughput maximization and collision avoidance. CACC systems must be designed in a

way that is sufficiently robust against all special maneuvers such as cutting into the CACC pla-

toons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural-

Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part

of this dissertation. Next, a probabilistic framework is developed in which the cut-in probability

is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific

Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in proba-

bility to enhance its reaction against the detected dangerous cut-in maneuver. The overall system

is implemented, and its performance is evaluated using realistic driving scenarios from Safety Pilot

Model Deployment (SPMD). Specifically, our contributions in this work are listed as follows:

• A learning-based driver behavior modeling sub-system is proposed to accomplish an accurate

lane change prediction.

• A probabilistic framework is designed which employs the results of the lane-change monitoring

block and translates it to a cut-in probability value.

• A new Model Predictive Controller (MPC) is developed and its stability is proved. As a

future work we are going to design a Stochastic Model Predictive Controller (MPC) which

takes the cut-in probability as its input. This SMPC controller is in charge of adjusting the

dynamic parameters (mainly velocity and spacing error) of the vulnerable vehicles inside the
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platoon. More specifically, it minimizes the spacing error (deviations from a predefined safe

distance) between the vehicle and its immediate vehicle ahead, while keeping their velocity

difference as close as possible to zero. Concurrently, it responds appropriately to a cut-in

maneuver.

• The overall system architecture is designed and represented as a Time-Triggered Stochas-

tic Impulsive System (TTSIS) model [31], originated from the emerging stochastic hybrid

systems (SHS) methodology [32, 33, 31].

The Matlab codes of this chapter are listed in Appendix 6.

1.2.2 Chapter 3

Information obtainable from Intelligent Transportation Systems (ITS) provides the possibility

of improving the safety and efficiency of vehicles at different levels. In particular, such information

also has the potential to be utilized for prediction of driving conditions and traffic flow, which

allows Hybrid Electric Vehicles (HEVs) to run their powertrain components in corresponding op-

timum operating regions. This dissertation proposes to improve the performance of one of the

most promising realtime powertrain control strategies, called Adaptive Equivalent Consumption

Minimization Strategy (AECMS), using predicted driving conditions. In this dissertation, three

real-time powertrain control strategies are proposed for HEVs, each of which introduces an ad-

justment factor for the cost of using electrical energy (equivalent factor) in AECMS. These factors

are proportional to the predicted energy requirements of the vehicle, regenerative braking energy,

and the cost of battery charging and discharging in a finite time window. Simulation results us-

ing detailed vehicle powertrain models illustrate that the proposed control strategies improve the

performance of AECMS in terms of fuel economy, the number of engine on/off events, and charge

sustainability of the battery. Specifically, our contributions in this work are listed as follows:

• A framework is proposed to utilize the information about the predicted near future driving

conditions in order to make smarter and more efficient power distribution in HEVs.

• The proposed method had low computational complexity compared to the global optimization

techniques, and therefore, can be adopted for real-time implementation.
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The Matlab codes of this chapter are listed in Appendix 6.

1.2.3 Chapter 4

An energy management strategy (EMS) plays a critical role in the efficiency of HEVs. However,

the driver-specific and general variation of driving conditions affect the optimality of traditional

EMSs. Majority of the EMSs are designed to track a set of pre-specified rules that are not adap-

tive to the variable driving conditions. Consequently, we found it beneficial to design an EMS

framework, which we refer to as drive cycle aware EMS, that can adapt its rules to the current

driving condition. This adaptation could be to a general pre-defined driving patterns, such as ur-

ban, highway, or harsh driving conditions, or drive-specific driving habits. To this end, we propose

a deep Q-Network (DQN) based EMS such that it can switch between multiple policies based on

the overall driving conditions in the past and near future. Similar to our proposed PECMS, the

EMS output action is the ratio of demanded power distribution between the electric motor and

the internal combustion engine. The effectiveness of the proposed method is studied with a set

of simulation experiments. Experimental results validate the superiority of drive cyle aware EMS

compared to our proposed PECMS. In summary, our contributions in this work are listed as follows:

• Unlike the previous adoption of reinforcement learning for HEV powertrain control, which

assume that there is a single optimal policy for all the drive-cycles, we propose a new archi-

tecture which employs two different policies for different levels of control. This modification

lets the proposed framework learn a different policy for each driving condition pattern.

• The proposed framework can converge to the optimal power management policy by learning

a deep reinforcement learning (DRL) agent in an offline fashion. The proposed method then

is considerably faster than the previous methods proposed in the literature.

• Unlike the global optimization policies, the proposed method does not rely on a priori knowl-

edge of the driving condition. It is also a data-driven model which does not require any

detailed and accurate HEV modeling.

The Matlab codes of this chapter are listed in Appendix 6.
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Chapter 2

Stochastic MPC Design for

Cooperative Adaptive Cruise Control

to Handle Interfering Vehicle

2.1 Introduction

Adaptive Cruise Control (ACC) is one of the most demanding automated driving applications.

In comparison with its predecessor, i.e. conventional cruise control which had been solely designed

to provide a fluctuation-free driver-specified velocity, ACC is also responsible for sustaining a certain

level of safety by continuously tracking the vehicle longitudinal distance from its immediate leader

and keeping this distance within a safe range. One step ahead in cruise technology would result in

Cooperative Adaptive Cruise Control (CACC), which also leverages the V2V communication (see

Figure 2.1). This makes it more powerful to simultaneously preclude collision and maximize traffic

throughput compared to ACC [34]. However, many CACC challenges still exist which need to be

addressed. For instance, the CACC application should be robust against other vehicles’ maneuvers

such as unforeseen lane changes [34]. Detection and appropriate reaction to these unexpected

vehicle maneuvers are among the most challenging tasks, even in the normal driving situations and

without CACC imposed constraints. These challenging tasks reveal the criticality and complexity

of a well-behaved CACC design for these scenarios. Even though different theoretical and technical

aspects of CACC have been investigated by researchers [35], handling interfering vehicles needs

more elaborations.
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Figure 2.1: The terminal constraint set Ω.

In this work, we specifically concentrate on cut-in maneuvers due to their imminent threat, as a

vehicle in a stable CACC platoon has to perform a hard brake reaction when another vehicle makes

a sudden lane change just in front of it. This hard brake reaction is extremely dangerous and can

result in a severe crash [36, 37]. Thus, it is well-desired to predict cut-in intention of other drivers

in advance. Moreover, cutting into the platoon deforms the platoon structure which should be

compensated by a proper CACC design. Therefore, a meticulous CACC system should be able to

both prevent possible crashes and maintain the normal platoon formation against entering vehicles

from adjacent lanes.

Based on the above discussion, the performance of CACC in these critical driving scenarios

is extremely reliant on the accuracy of modeling other drivers behavior in the sense of detecting

their lane change intentions and predicting cut-in path. This fact requires the introduction of a

”lane-change monitoring block”, which performs the aforementioned functions, as an inseparable

and essential part of our CACC system. Specifically, our contributions in this work [?] are listed

as follows:

• A learning-based driver behavior modeling sub-system is proposed to accomplish an accurate

lane change prediction.

• A probabilistic framework is designed which employs the results of the lane-change monitoring
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block and translates it to a cut-in probability value.

• A new Model Predictive Controller (MPC) is developed and its stability is proved. As a

future work we are going to design a Stochastic Model Predictive Controller (MPC) which

takes the cut-in probability as its input. This SMPC controller is in charge of adjusting the

dynamic parameters (mainly velocity and spacing error) of the vulnerable vehicles inside the

platoon. More specifically, it minimizes the spacing error (deviations from a predefined safe

distance) between the vehicle and its immediate vehicle ahead, while keeping their velocity

difference as close as possible to zero. Concurrently, it responds appropriately to a cut-in

maneuver.

• The overall system architecture is designed and represented as a Time-Triggered Stochas-

tic Impulsive System (TTSIS) model [31], originated from the emerging stochastic hybrid

systems (SHS) methodology [32, 33, 31].

To the best of our knowledge, this is the first cut-in resistant CACC-SMPC design based on a

real-time cut-in probability calculation in the literature.

The rest of this chapter is organized as follows. Section 2.2 is devoted to related works on

proposed driver behavior modeling methods in the literature. The overall system description is

explained in section 2.5 in which sections 2.5.1, 2.5.2 state the details of our learning-based cut-

in monitoring block, proposed cut-in probability calculation approach based on that, respectively.

The overall system performance is evaluated in section 2.6.

2.2 Related Work

The driver is the main source of system stochasticity in most of the ground ITS frameworks.

Each maneuver of a vehicle is an immediate and direct consequence of its driver’s intention, which

is applied by a specific set of mechanisms, such as steering wheel, pedals, and handles [38]. The uti-

lization of these tools can be directly measured through Controller Area Network (CAN). However,

it is not possible to deterministically assign a maneuver to a specific pattern of these parameters

as different maneuvers may have partially similar sections [39]. Therefore, a reliable approach is

required to discriminate different driving maneuvers based on measured patterns of their param-
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eters. The output of this stage could then be utilized to design an application-specific controller.

This controller would obviously perform smarter compared to the controller which only acts based

on the previous measurements without any predictive vision of driving scenario. The prevailing

methods in the literature for driver behavior modeling, and some of the important proposed designs

for adaptive cruise controller are mentioned in this section.

One of the important research mainstreams in driver behavior modeling is based on utilizing

classification methods, such as Support Vector Machine (SVM) and Neural Network (NN), to

differentiate between distinguishable driver behaviors. The main idea behind another major class

of driver behavior modeling schemes in the literature, such as Hidden Markov Models (HMMs)

and Dynamic Bayesian Networks (DBNs), is developing a probabilistic causal framework which

tries to find the next most likely driving maneuvers using available data sequences from the driving

history and then chain these predicted consecutive maneuvers to construct the most probable future

scenario.

Authors in [40] developed a hierarchical classifier for observed scenes of the host vehicle from

remote vehicle’s lane change. These scenes were then assigned to the nodes of the hierarchy in

the model to specify a pattern from the top nodes to the leaves. However, their overall scheme is

not generalizable to other contexts, such as potential maneuver alternatives, since it is remarkably

specialized.

SVM-based methods are proposed to classify lateral actions of drivers based on detection of

preparatory behaviors, vehicle dynamics, and the environmental data prior to and during the

maneuvers such as lane change [41]. A Relevance Vector Machine (RVM), was employed in [42] to

distinguish between lane change and lane keeping maneuvers. In [43], feed forward artificial neural

networks are used to predict the trajectory of the vehicle based on its movements history. The

goal was to study the possibility of accurate movement prediction for a lane changing vehicle by

an autonomous driving vehicle.

An Object-Oriented Bayesian Network (OOBN) is utilized to recognize special highway driving

maneuvers, such as lane change [44]. This approach models different driving maneuvers as vehicle-

lane and vehicle-vehicle relations on four hierarchical levels which can tolerate uncertainties in

both the model and the measurements. A finite set of driving behaviors are classified and future

trajectories of the vehicle are predicted based on currently understood situational context using a
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DBN-based model [45].

Hidden Markov model (HMM) technique has been widely utilized to associate the observable

time series of the vehicle to the unobserved driver intentions sequence during his maneuvers [46,

47, 39, 48, 49, 38, 50, 51]. Some pioneer works in driver behavior modeling, [46, 47], proposed

a decomposition of driver behaviors into small scale and large scale categories. Time sequence

of unobserved large scale driver actions are assumed to have Markovian property and HMM is

suggested as an acceptable method to model this sequence. This modeling approach accuracy was

validated by its results of the lane change maneuver prediction. Sensory collected information was

used as the observation set in the designed HMM predictor.

Using the data from V2V communication, two HMMs were utilized to discriminate different

types of driver lane change intent, namely dangerous and normal [39, 48]. A trajectory prediction

stage and an MPC controller were mounted on top of the lane change prediction algorithm to

manage reformation of a new CACC string after cut-in.

A controller for a CACC string which takes into account both V2V and non-V2V equipped

vehicles was designed in [34]. This controller tries to handle cut-in and cut-out scenarios with a

smooth reaction to the new condition of the host vehicles lane. No prediction is performed in this

work to detect the cut-in or cut-out scenarios in advance. Another CACC design based on switched

sampled-data model is presented in [35] which investigates the stability problem in the presence of

sensor failures.

2.3 Model Predictive Control (MPC)

Model Predictive Control (MPC) is an optimal control strategy based on numerical optimiza-

tion. This controller exploit the predicted future plant responses using the model of system to find

the optimal future control inputs and optimize it at periodic intervals. In general, predictive con-

trol strategies are among the most popular advanced control techniques as computational methods

for improving the performance of control system in various applications in the industry. Among

them, MPC is the on with a logical theoretical ground whose optimality, stability, and robustness

characteristics are well understood.

Even the design of an MPC control system is comparatively straightforward and it is easy to
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implement, MPC algorithms are able to control large scale systems with a large number of control

variables. Moreover, it provides a systematic approach of enforcing the physical and performance

related constraints on system inputs and states. Satisfying the constraints is a critical part of

all control design applications to meet the limitations of system actuators and states or physical,

economic, or safety restraint. Taking these constraints into account, convert the MPC design

problem into a real-time constrained optimization problem to determine the optimal control inputs

to the system in the control horizon.

The predictive control feedback law can be computed by minimizing a performance-related cost

over the prediction horizon. To this end, it predicts the future response of the closed-loop system

using a dynamic model of the system. In this work, we use state-space representation of a discrete-

time linear systems of our CACC system to design our MPC controller. Such system is generally

defined as

x(k + 1) = Ax(k) +Bu(k) (2.1)

where x(k) and u(k) are the state and input vectors at the kth sampling time step. Then, to predict

the sequence of system states having a predicted input sequence, we can simulate the model over the

prediction horizon. For the sake of notational convenience, these predicted sequences are denoted

by vectors u, x defined as

u(k) =


u(k|k)

...

u(k +N − 1|k)

 x(k) =


x(k + 1|k)

...

x(k +N |k)

 , (2.2)

where u(k+ i|k) and x(k+ i|k) represent input and state vectors at time k+ i that are predicted

at time k. The predicted state vector x(k + i|k) is derived as:

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k), i = 0, 1, . . . (2.3)
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with the initial condition defined

x(k|k) = x(k) (2.4)

To find the predictive control feedback law a predicted performance cost needs to be minimized,

which is a function in terms of the predicted sequences u, x. In this dissertation we employ a

quadratic cost, in which the predicted cost has the following general form:

J [k] =
N−1∑
i=0

[xT [k + i|k]Qx[k + i|k] + uT [k + i|k]Ru[k + i|k]] (2.5)

whereQ, R are positive definite matrices (note that theQmay be positive semi-definite). Obviously,

the predicted cost J(k) is a function of control input u(k), and therefore, the optimal input sequence

for the optimization problem of minimizing J(k), denoted by u∗(k), is defined as:

u∗(k) = arg min
u
J(k) (2.6)

Note that in the case of input and state constraints, they should be included in the optimization.

In this dissertation we use receding horizon implementation of MPC, in which despite calculation

of the predicted input sequence over the entire control horizon, we only input to the system the first

element of optimal predicted input sequence u∗(k). Then, this process is repeated by minimizing

the predicted cost at the every next sampling time steps k = 0, 1, . . . . This optimization technique

is also known as an online optimization. Since we use the same prediction horizon length for the

optimization at future time steps, this approach is called a receding horizon strategy.

The receding horizon approach helps in two ways. First, since the state predictions x depends

on the current state measurement x(k), the optimal input sequence u∗ also depends on x(k),

which introduces feedback into the MPC law. This feedback provide a degree of robustness to

the uncertainty and modeling errors. Second, by shifting the prediction horizon over the future

inputs which are optimized, in fact we compensate the effect of having a finite horizon in our

implementation. Note that, it can be shown under the perfectly designed cost and constraints, a

receding horizon implementation of MPC have a closed-loop system performance of at least as good

as that of the optimal prediction.
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When we are dealing with linear systems, similar to our system, the relation between state

predictions x(k) and control input u(k) is linear. Therefore, a quadratic predicted cost, similar to

what we defined in 2.5, can be written as a sole quadratic function of the control input sequence

u(k). Thus, we can rewrite the predicted cost J(k) as a function of u in the following form

J(k) = uT (k)Hu(k) + 2fTu(k) + g (2.7)

where H is a constant positive definite (it also can be positive semidefinite) matrix, and f , g are

vector and scalar terms, respectively, depending on the state variable vector x(k). Then, the linear

input and state constraints enforce linear constraints on u(k) which can be expressed as

Acu(k) ≤ bc (2.8)

where Ac is a constant matrix, and bc is a vector which may be a function of x(k), depending on

the form of constraints. Consequently, the MPC optimization problem form the minimization of a

quadratic objective cost, subject to a set of linear constraints, over u:

min
u

uTHu + 2fTu, s.t. Acu(k) ≤ bc (2.9)

This type of optimization problem is known as quadratic programming (QP). Given a positive

definite matrix H and linear constraints, it is easy to show that this optimization problem is

convex, which implies that both the objective function and the constraints are convex with respect

to the optimization variable u. Such a convex quadratic programming can be solved efficiently

employing well-known specialized algorithms.

However, when we are dealing with a nonlinear model, solving the MPC optimization problem

is more difficult compared to the linear model case. The main reason is that due to the nonlin-

ear dependency between the state variables x(k) and control input sequence u(k), the predicted

quadratic cost in equation 2.5, which can be denoted by J(u(k), x(k)), and the problem constraints,

g(u(k), x(k)) ≤ 0, are, in general, nonconvex functions of control input u(k). That means the op-

timization problem is a nonconvex nonlinear programming (NLP) problem under this condition.

Consequently, one cannot guarantees that the solution converges to a global minimum of the pre-
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dicted cost. Moreover, finding a local solution also is quite more complex, computationally, than

QP problems of similar size.

The online optimization of MPC is usually solved periodically at discrete time steps t = kT, k =

0, 1, . . . . For each time step k, the optimal control law u = u∗(k|k) is applied to the system until

the solution of the optimization at the next time step t = (k+ 1)T becomes available. Clearly, the

control time step T needs to be at least as large as the time which is required to to solve the online

optimization. Ideally, T has to be very much larger than the computational time when we do not

explicitly incorporate the computation delay in our predictions. Note that, this constraint on the

control time step, does not apply to the sampling interval of our discretized state-space model,

which is generally selected based on other considerations, such as the bandwidth of the system or

frequency of disturbance signals.

Practically, it is feasible to employ a sampling interval, Tsamp, which is smaller than the control

time step T , i.e., Tsamp = T/m. This enable us to apply the previously computed optimal control

input sequence at the current time. In this dissertation we assume a discrete-time prediction model

with Tsamp = T/m.

2.3.1 Quadratic Programming

A general quadratic programming problem is formulated as a quadratic objective function

subjects to a set of linear equality and inequality constraints:

min
x

1

2
xTQx+ qT s.t. Ax = a, Bx ≤ b (2.10)

The objective function needs to be selected carefully such that the vector q contains all of the linear

terms and the matrix Q contains all of the quadratic terms. In other words, Q is the Hessian matrix

of the objective function and q represent its gradient.

The matrix equation Ax = a contains all of the linear equality constraints, and Bx ≤ b

represents the linear inequality constraints. Then, we can write down the following Lagrangian to

solve the QP problem:

L(x, λ, µ) =
1

2
xTQx+ qT + λT (Ax− a) + µT (Bx− b) = 0 (2.11)
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when our objective function is convex, then any local minimum is also the sole global minimum

of the object. Note that a function is convex of its Hessian matrix, Q, is positive definite or

equivalently, all its eigenvalues are positive. The solutions of this Lagrangian can be tested for

optimality by checking if they satisfy the Karush-Kuhn-Tucker (KKT) conditions just as is done

for other nonlinear problems:

Condition 1: sum of gradients is zero:

OL(x∗, λ∗, µ∗) =
1

2
xTQx+ qT + λ∗T (Ax− a) + µ∗T (Bx− b) (2.12)

Condition 2: all constraints satisfied:

Ax∗ − a = 0, Bx∗ ≤ 0 (2.13)

Condition 3: complementary conditions:

µTBx− b = 0 xT , λT , µT ≥ 0 (2.14)

Since the quadratic programming problems are a special form of nonlinear problems, they can

be solved following the same approaches as in other nonlinear programming problems. For an

unconstrained quadratic programming problem, it is most easy to find the solution; simply we

derive the derivative (gradient) of the objective function and set it to be equal to zero. Then,

we find the solutions to this equation. However, when we have a set of constraint to enforce in

our optimization problem, we need a more practical approach to solve the constrained nonlinear

problem. Conjugate gradient method is a common technique when the objective function is strictly

convex and the problem has only equality constraints. However, when we deal with inequality

constraints (Bx ≤ b) as well, the active set and interior point methods are two possible approaches

to find the solution. In addition, when the state variable vector x can takes values inside a range,

i.e., xL ≤ x ≤ xU , trust-region methods are among the most frequently used techniques.
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2.4 Hybrid Systems

This section reviews Hybrid Systems, in deterministic and stochastic forms, which is necessary

to understand the rest of this chapter. A hybrid system (HS) is a dynamical system with both

continuous and discrete behaviors. In other word, it has both continuous flow, expressed by a

differential equation, and discrete jumps, described by a state machine or automaton.

A HS is useful in modeling various technological systems, in which continuous physical processes

are incorporated with embedded control systems and logic decision making. To show how this type

of systems evolve, it is required to combine the dynamics of the continuous parts with the dynamics

of the discrete parts using mathematical models. These mathematical models basically comprise

some form of differential or difference equations to model the continuous dynamics and discrete-

event models for the discrete events.

Most of the different models which have been proposed in literature for hybrid systems share

the same model ingredients. In general, every model of a hybrid system has to define at least the

following elements:

• χ ∈ Rn is the continuous state space.

• Q is the discrete state space, for example Q = 0, 1, . . . , q.

• f is a set of vector fields describing the continuous dynamics for all qinQ.

• Init is a set of initial values (q0, x0) of the hybrid state.

• δ is the discrete state transition function.

• G is a set of guards determining when a discrete transition occurs.

However, since in most practical systems, uncertainty is inherent, stochastic hybrid system

(SHS) models are required to model such systems. In stochastic hybrid systems, at least one

of the continuous or discrete components of the state are stochastic processes. The stochastic

continuous-state of a SHS is determined by a stochastic differential equation, while the probabilistic

discrete-state is evolved by a transition or reset map. Theses transitions are triggered by stochastic

events similar to the transitions between states in a continuous-time Markov chains. However, the

transitions occur with a rate that may depend on the continuous-state.



Hadi Kazemi Chapter 4. SMPC for Handling Interfering Vehicle 20

Figure 2.2: Graphical representation of a stochastic hybrid system.

One of the important classes of SHS is known as linear time-triggered SHS (TTSHS), where

the continuous state evolves according to a linear dynamical system. Then, some stochastic events

are triggered at random discrete times, where the intervals between these random events are inde-

pendent random variables, and follow a general class of probability distributions.

2.5 System Description

In our framework, which is schematically depicted in Fig. 2.3, the vehicle inside the platoon,

which is directly affected by the cut-in suspicious vehicle, is referred to as the host vehicle (see

2.4). The immediate vehicle in front of the host vehicle is known as the preceding vehicle, and the

first vehicle of the platoon is the leading vehicle or leader. The dangerous area in front of the host

vehicle is referred to as the bad-set. This area and its dimensions will be discussed in details later.

Although, detection of cut-in by the vehicle itself is beneficial to some applications such as lane

keep assist system (LKAS) and blind spot warning (BSW), CACC and platooning need the lane

change maneuver to be detected remotely by the host vehicle. The remote lane change detection is

required because the host vehicle should react in a timely manner to avoid hazardous situations.

V2V communication periodically provides the parameters of the cut-in suspicious vehicles via

broadcasting basic safety messages (BSM) [20, 52]. In our model, we assume that the host vehicle,

which is in a stable condition in the platoon, periodically receives the BSMs of its surrounding

vehicles and continuously traces them prior to any probable cut-in maneuver. From BSM part one

of the SAE J2735 standard, [52], we utilize the following parameters for our behavior modeling:

latitude, longitude, elevation, speed, heading, steering wheel angle, 4-way acceleration set, and the
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Figure 2.3: The overall schematic of the proposed framework.

Figure 2.4: Host vehicle, cut-in suspicious vehicle and bad-set

vehicle size. The latitude, longitude, and elevation represent the location of the vehicles center

of gravity in the WGS-84 coordinate system. The 4-way acceleration set consists of acceleration

values in 3 orthogonal directions plus yaw rate, which are calculated based on the assumption that

the front of the vehicle is toward the positive longitudinal axis, right side of it is the positive lateral

axis, and clockwise rotation as the positive yaw rate.

In CACC platooning, a safe longitudinal gap must be continuously kept between every two

consecutive vehicles. The deviation from the safe gap, which is known as spacing error, should

remain as small as possible to reduce the risk of collision and take the advantages of platoon

formation, such as lower fuel consumption and higher traffic throughput [53]. As mentioned, we

define bad-set as the dangerous area in front of the vehicle in which the safe gap is violated. In other

words, our bad-set is a rectangle aligned to the road surface in front of the host vehicle, while its

longitudinal dimension, Lbs, depends on the platoon speed and is equal to the desired longitudinal

safe gap and its lateral dimension, Wbs, is the lane width. The front bumper of the host vehicle
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is always located at the center of the bad-set rear lateral edge. These definitions are illustrated in

Fig. 2.4.

The goal of our lane-change monitoring block is tracking and predicting the trajectory of all

of the vehicles in the adjacent lanes of the host vehicle. The model should not only predict the

immediate kinematics of the vehicles, but also the high-level driving maneuvers. Therefore, the

position of neighboring vehicles should be predicted for multiple future steps based on their current

and previous communicated information. The number of required prediction steps is determined

by the duration of a complete high-level maneuver and denoted by Sm. This multi-step prediction

is then used to determine the probability of unsafe lane change which is passed to the SMPC for

better estimation of the required inter-vehicle spacing gap.

2.5.1 Lane Change Monitoring Block Design

Each lane change maneuver consists of four separate phases: Intention phase, Preparation

phase, Transition phase, and the Completion phase [54, 55]. It is worth mentioning that some

more complicated maneuvers, such as overtaking, have also been investigated in the literature. For

instance two-phase and five-phase overtake modeling frameworks are proposed in [56] and [57],

respectively. The lateral acceleration and lateral speed in a lane change maneuver are bounded by

the comfortable lateral acceleration threshold and the maximum tolerable lateral speed, respectively

[58]. To safeguard a smooth transition of the vehicle between lanes, the acceleration is bounded

by -0.2g and 0.2g [59]. Our model is designed to not only predict the immediate kinematics of

the vehicles in the transition phase but also the complete four-phase lane change maneuvers. The

trajectory of each remote vehicle is modeled as a time series. In our model, we separate the learning

of lateral and longitudinal behaviors of the driver as they are influenced by different control inputs.

Artificial neural networks (ANNs) are one of the most famous tools for description and pre-

diction of nonlinear systems [60, 61]. Neural networks with hidden units can principally predict

any well-behaved function. In the case of time series, in order to handle the dependency of the

prediction to a finite set of past values and time varying nature of the input signals, neural network

topologies need to be equipped with a short term memory mechanism which is called the feedback

delay. In this work, we used feedback delay- based ANNs, namely nonlinear autoregressive (NAR),

nonlinear autoregressive exogenous (NARX) and recurrent neural networks (RNN) toward driver



Hadi Kazemi Chapter 4. SMPC for Handling Interfering Vehicle 23

behavior and lane change prediction.

NARX is a neural network with feedback delay that can be trained and used to predict a time

series from its past values and an exogenous one, compared to NAR which does not rely on any

external inputs. We use the NAR model to predict the future pattern of different system inputs,

i.e. steering wheel angle, yaw rate, heading, speed, and longitudinal acceleration, based on their

currently available values. A NARX model is employed to predict the longitudinal trajectory of the

vehicle during the lane change using some of the previously estimated sequences of input signals

as the exogenous input. The exogenous inputs in our framework are yaw rate, heading, speed, and

longitudinal acceleration.

Finally, an RNN is adopted to model the lateral trajectory of the vehicle based on the predicted

input signals. RNNs can use their internal memory to process arbitrary sequences of inputs. The

input signals to our lateral position prediction RNN are steering wheel angle, yaw rate, and heading.

Using the internal memory, the RNN can distinguish between different maneuvers with partially

similar input signals. For example, a steering due to the road curvature might look partially

similar to the one from lane change maneuver, but the RNN can learn to distinguish between these

two maneuvers by looking at a longer history of the signals or other input signals, such as road

curvature. In the former case, the RNN should also be trained on other maneuvers which share the

same input signal patterns in a portion of their lifetime.

All of the ANN models (see Figure 2.5) are batch trained and the training phase is offline due

to the low computational cost of batch training and insufficient accessible data for online training.

In order to use the full capability of neural networks, the input signals for all ANNs are normalized

to [-1, 1] range. Then, the input signals are differenced to remove the linearity and improve the

nonlinearity prediction process. The resulting time series is known as integrated time series. The

value of predicted location can be reconstructed by adding the first actual value to the estimated

difference in the series.

To mitigate the effect of noise, small variations of input signals, based on the nature of the

signal, are filtered to smooth the time series and mitigate the effect of noise. Variation smaller than

3 degrees, 0.1 rad, 0.1 m/s, and 0.1 m/s2 are removed from steering wheel angle, heading, speed,

and longitudinal acceleration, respectively. The resulting input signals during one maneuver are

shown in Fig. 2.6.
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Figure 2.5: Layer structure of (a) NAR (b) NARX (c) RNN

All of our ANNs have a hidden layer with 20 nodes and 15 step short term memory, which

means that they are using the past information of 1.5 seconds for future prediction. The required

prediction steps are also set to 10 steps for all of the ANNs, Sm = 10, which means that the we

are predicting the behavior of the driver for 1 second in the future, since the driver can change

his decision and behavior beyond this time [62]. As mentioned before, the NAR is used to model

the patterns of input signals to the system. The NARX and RNN are used to model and predict

the longitudinal and lateral position of the vehicle, respectively. The longitudinal position of the

vehicle is modeled based on the predicted values of heading, speed, and longitudinal acceleration as

external inputs. On the other hand, the RNN should not only predict the future lateral position of

the vehicle, but should also distinguish between different lateral maneuvers. Therefore, the lateral
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Figure 2.6: Smoothed, Normalized, and Integrated input signals of a single lane change maneuver

model is also trained with some road curve data to be able to differentiate between different lateral

movements.

2.5.2 Cut-in Probability Calculation

The results of the proposed cut-in prediction scheme is now applied to find a single value

between 0 and 1 which represents the overall cut-in probability. This probability, which is denoted

by Pc from now on, will be fed to our SMPC as its input. SMPC design details are discussed in the

following subsection. At each prediction cycle we have Sm predicted future values for each of the

longitudinal and lateral relative positions of the suspicious cut-in vehicle. In our implementation,

each of these 2 × Sm predicted values comes with a specific 90 percent confidence level. Hence,

we have Sm rectangular areas, each of them determines the predicted area for the position of the

cut-in vehicle in the corresponding upcoming time step with 90 percent accuracy. We take the most

conservative approach to define the cut-in probability, Pc as follows:

• Each of these Sm rectangles, (A in Fig. 2.7), is intersected with the host vehicle’s bad-set at

that moment and its intersection area, (A1 in Fig. 2.7), is calculated.

• The resultant intersection area, (A1), is normalized by dividing it by the corresponding
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Figure 2.7: Procedure of cut-in probability (Pc) calculation

predicted area value, (A), to calculate the probability value of being inside the bad-set for

each of these predictions.

• The maximum value amongst these Sm probabilities is selected as the Pc value for that

prediction cycle.

For more clarification, this procedure for the ith step prediction, (1 ≤ i ≤ Sm), is depicted in Fig.

2.7. In this dissertation, one second ahead prediction is targeted which is equivalent to Sm = 10,

due to the DSRC baseline information broadcasting frequency (10 Hz). It is worth mentioning that

this frequency could be easily supported by most of the currently available commercial GPSs like

what is used in this work’s dataset [63].

2.5.3 CACC Model Predictive Controller Design

Considering a CACC platoon of vehicles, the spacing error of the ith following vehicle is defined

as follows [59]:

δi = xi−1 − xi − hvi − Li − d0 (2.15)

for all i ∈ {1, 2, . . . , n}, where xi and vi are longitudinal position and velocity of the ith following

vehicle, respectively (x0 stands for the longitudinal position of the lead vehicle); h headway which

introduces a speed dependent spacing policy in addition to d0 which is a constant minimum desired

distance between each vehicle and its preceding vehicle in the platoon, and Li is the length of the
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ith vehicle. Based on these definitions, longitudinal dimension of the bad-set, Lbs, for ith vehicle

could be represented as:

Lbs = hvi + d0 (2.16)

Then, the dynamics of the ith following vehicle in the platoon is modeled as follows [59]:

δ̇i = vi−1 − vi − hv̇i (2.17)

∆v̇i = ai−1 − ai

ȧi = fi(vi, ai) + gi(vi)ci

where ci is the control input of the vehicle, i.e. engine/brake, with ci ≥ 0 represents the engine

throttle input and the ci < 0 is the brake input. Moreover, fi and gi are given by

fi(vi, ai) = − 1

τi
(v̇i +

σAicdi
2mi

v2
i +

dmi
mi

)− σAicdiviai
mi

gi(vi) =
1

τimi

where mi is the vehicle mass, σ is the air specific mass, Ai is the cross-sectional area, dmi is the

mechanical drag, cdi is the drag coefficient, τi is the engine time constant, and
σAicdi

2mi
is the air

resistance. We adopt the following control law from [59]:

ci = uimi + σAicdiv
2
i /2 + dmi + τiσAicdiviai (2.18)

where ui is the control input that we need to design. Then we can rewrite the system as:

δ̇i = vi−1 − vi − hv̇i (2.19)

∆v̇i = ai−1 − ai (2.20)

ȧi = −ai
ζi

+
ui
ζi

(2.21)

where ζi is the engine time constant, ai is the acceleration of the ith vehicle, and ui is an input

signal which comes from an MPC controller. However, due to the communication delay each

vehicle receives the delayed version of its preceding vehicle’s acceleration value. Denoting the
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communicated acceleration of ith vehicle at receivers by āi(t), the state space equation of a vehicle

in a CACC system could be represented as follows

ẋi(t) = Aixi(t) +Biui(t) +Giāi−1(t) (2.22)

with state vector x = [δi ∆vi ai]
T , and

Ai =


0 1 −h
0 0 −1

0 0 − 1
ζi

 Bi =


0

0

− 1
ζi

 Gi =


0

1

0

 (2.23)

However, delay of the communication network is not considered in this work, so āi−1(t) = ai−1(t).

An MPC controller with three primary objectives is required to control the platoon system

described by (2.22). The controller must compute the input signal ui to minimize the spacing

error, keep the velocity of the host vehicle as close as possible to its preceding vehicle velocity, and

finally, respond appropriately to a cut-in vehicle based on our prediction of the driver behavior.

To this end, the system dynamics (2.22) is discretized and an optimal control problem, which

satisfies the aforementioned control goals, is defined. The continuous time dynamics of the system

is discretized using the Euler forward method with a time step Ts:

ẋi[k + 1] = Aki xi[k] +Bk
i ui[k] +Gki āi−1[k] (2.24)

where

Aki =


1 Ts −hTs
0 1 −Ts
0 0 1− Ts

ζi

 Bk
i =


0

0

−Ts
ζi

 Gki =


0

Ts

0

 (2.25)

Hereinafter, for simplicity of notation, we use A,B,G, x, and u instead of Aki , B
k
i , G

k
i , xi, and ui,

respectively. The cost function of the optimal control problem is defined based on the primary
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objectives of the controller:

J [k] =
N−1∑
i=0

cδδ
2[k + i] + cv∆v

2[k + i] + cu∆u2[k + i] (2.26)

=
N−1∑
i=0

[xT [k + i|k]Qx[k + i|k] + uT [k + i|k]Ru[k + i|k]]

where N is the control horizon, cδ, cv, and cu are weighting coefficients reflecting the relative

importance of each term and

∆u[k + n] = u[k + n]− u[k + n− 1] (2.27)

which is added to the cost function as an extra term to bound the jerk and prevent fast variations

of the input signal. This constraint could be interpreted as comfort ride. The MPC law finds

the optimal input sequence u∗[k] which minimizes the predicted cost function (2.26) at each time

instant:

u∗[k] = arg min
u
J [k] (2.28)

subject to

xmin ≤ x[k + i|k] ≤ xmax
umin ≤ u[k + i|k] ≤ umax

i = 1, . . . , N − 1

To solve this MPC problem, the future values of the preceding vehicle’s acceleration are required.

These values are obtained from the aforementioned NAR neural network.

Conventional MPC Design

In this section, MPC design problem without incorporating the calculated cut-in probability,

Pc, is investigated. We referred to this MPC design as conventional design in this dissertation. The

values of ai−1[k] could be considered as a measured disturbance when its model is available to the

MPC controller. Then, the system equations could be rewritten in the standard form as

x̄[k + 1] = Āx̄[k] + B̄u[k] (2.29)
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where x̄[k] =
[
x[k], z[k]

]T
is the augmented state vector and the measured disturbance state vector

z[k] =
[
z0, z1, . . . zN−1

]
is defined as

z0[k + 1] = z1[k]

z1[k + 1] = z2[k]
...

zN−2[k + 1] = zN−1[k]

zN−1[k + 1] = zN−1[k]



z0[0] = ai−1[0]

z1[0] = ai−1[1]

...

zN−2[0] = ai−1[N − 2]

zN−1[0] = ai−1[N − 1]

In the receding horizon implementation of the MPC problem (2.28), only the first element of

the optimal input sequence u∗[k] is selected as the input to the system and the whole process is

repeated at each time step. However, designing a receding horizon controller based on a finite-

horizon cost function does not guarantee the stability and optimality of the closed loop system [64].

This problem can be avoided by defining an infinite prediction horizon for the cost function:

J [k] =

∞∑
i=0

[xT [k + i|k]Qx[k + i|k] + uT [k + i|k]Ru[k + i|k]] (2.30)

However, to have finite number of variables in the MPC optimization problem, a dual-mode pre-

diction approach can be utilized in which the predicted input sequence is defined as

u[k + i|k] =

u∗[k + i|k] i = 0, 1, ..., N − 1

Kx[k + i|k] i = N,N + 1, ...
(2.31)

Then, by choosing a terminal weighting matrix, denoted by Q̄, in a way that xT [k+N |k]Q̄x[k+N |k]

is equal to the cost over the second mode of the predicted input sequence, the infinite cost J can

be rewritten as (see Appendix A)

J [k] =
N−1∑
i=0

[xT [k + i|k]Qx[k + i|k] (2.32)

+ uT [k + i|k]Ru[k + i|k]] + xT [k +N |k]Q̄x[k +N |k]

Theorem 1 (Stability) The state variables of system (2.29), x[k], asymptotically converge to

zero, i.e. the system is asymptotically stable, under the control law (2.31) if predicted cost J [k] is
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an infinite cost, (A,Q12) is observable, and the tail ũ[k] is feasible for all k > 0 where

ũ[k + 1] =
[
u∗[k + 1|k], . . . ,Kx∗[k +N |k]

]
(2.33)

Proof: see Appendix 6.

Therefore, selecting Q and Q̄ which satisfy the first two conditions, the stability and convergence

of the closed loop system rely on the assumption that tail ũ[k] is feasible for all k > 0. To this

end, a set of extra constraints on the state vector should be satisfied at each time instant k. These

extra constraints that are introduced to enforce the feasibility of the tail are known as the terminal

constraints since they apply to the second mode of the dual mode prediction approach.

Theorem 2 (Recursive feasibility) The MPC optimization (2.28) with the cost function J [k]

defined in (2.32) is guaranteed to be feasible at all time k > 0 if a new constraint x[k + N |k] ∈ Ω

is met, provided it is feasible at k = 0, and terminal constraint set Ω (see Figure 2.8) satisfies

• The following constraints are satisfied for all points in Ω, ( i.e. x[k +N |k] ∈ Ω)umin ≤ Kx[k +N |k] ≤ umax

xmin ≤ x[k +N |k] ≤ xmax

(2.34)

• Ω is invariant in the second mode of (2.31) which means

x[k +N |k] ∈ Ω ⇒ (A+BK)x[k +N |k] ∈ Ω (2.35)

It is shown that the largest possible Ω is derived by

Ω = {x : umin ≤ K(A+BK)ix ≤ umax, (2.36)

xmin ≤ (A+BK)ix ≤ xmax, i = 0, 1, . . . }

To show that Ω is invariant over the infinite horizon of the second mode of (2.31), constraint

satisfaction should be checked over a long enough finite horizon (Nc). Here, Nc is the smallest
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Figure 2.8: The terminal constraint set Ω.

number which satisfies the following equationsu = minxK(A+BK)Nc+1x

u = maxxK(A+BK)Nc+1x
(2.37)

such that umin ≤ K(A+BK)ix ≤ umax i = 0, . . . , Nc

umin ≤ u ≤ umax
(2.38)

The algorithm of finding Nc is summarized in Figure 2.9. Having Nc found, adding the following

constraints to the MPC problem guarantees the feasibility of the controller:

umin ≤ K(A+BK)ix[k +N |k] ≤ umax, (2.39)

xmin ≤ (A+BK)ix[k +N |k] ≤ xmax,

i = 0, 1, . . . , Nc

So far, we have designed an MPC controller for a CACC platoon and found the conditions to

guarantee the stability and feasibility of the system. However, our main goal is to handle a possible

cut-in scenario. Figure 2.10 shows how the designed controller react to a possible cut-in. We claim

that if we expect a cut-in to happen in advance, then the controller can do better than Figure 2.10.
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Figure 2.9: Algorithm for computing the mode 2 constraint checking horizon Nc.

MPC design: Incorporating cut-in probability

The designed MPC controller in the previous section satisfies our first two primary goals,

namely spacing error and velocity error minimization. However, the controller should be able to

react appropriately if a cut-in suspicious vehicle enters the platoon unexpectedly and pushes the

host vehicle to decelerate to reestablish the safe distance.

Heretofore, the probability of the suspicious vehicle’s cut-in trajectory intersection with the

host vehicle’s bad-set has been determined. Based on this, we propose a new stochastic definition

for the spacing error:

δi =
xi−1 − xi
2− e−αPc

− hvi − Li − d0 (2.40)

where Pc is the probability of the cut-in vehicle being in the bad- set of the host vehicle, and is a

constant control parameter which adjusts the reaction sensitivity of the MPC controller to the cut-

in probability. Clearly, when the probability is one, assuming α has been set to a sufficiently large
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(b) Spacing error in a harsh 3-sec cut-in maneuver
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(c) Velocity in an average 5.5-sec cut-in maneuver
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(d) Velocity in a harsh 3-sec cut-in maneuver
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(e) acceleration in an average 5.5-sec cut-in maneu-
ver
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(f) acceleration in a harsh 3-sec cut-in maneuver

Figure 2.10: Spacing error, velocity, and acceleration of the designed conventional MPC
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Figure 2.11: The factor goes to 0.5 when the cut-in probability, Pc, goes to one. Consequently,
the controller underestimate the distance to the preceding vehicle and doubles the distance which
provides enough space for the suspicious vehicle to joint the platoon.

number, the controller starts doubling the distance from its current preceding vehicle by halving

the enumerator of the first term in the proposed equation for spacing error, (2.40). Consequently,

the cut-in vehicle has enough safe gap to enter the CACC platoon. On the contrary, when the

probability is zero, the suspicious vehicle is not expected to cut in or it has the safe distance from

the host vehicle for its maneuver. This zero probability sets the denominator of (2.40) to one, which

means the host vehicle keeps the normal safe distance, hvi + d0, from its preceding vehicle.

Although the stability and feasibility of the controller is already guaranteed for the MPC

design with deterministic spacing error, it should be proved under the new circumstances due

to the stochastic spacing error definition. However, in this work, we reformulate the stochastic

MPC problem into a stochastic hybrid system and a robust MPC design. To this end, a Time-

Triggered Stochastic Impulsive System (TTSIS) SHS model, [31], incorporating the probability of

an upcoming cut, is utilized as shown in Fig. (2.12).

In this model, p ∈ [0, 1] is a random variable which represents the cut-in probability, G(p) is a

guard condition that must be hold for the discrete transition (time trigger), and R(x, p) is a reset

function which describes the changes in the continuous states after the transition. The stochastic

nature of our system comes from the dependency of the guard on the random variable p.

Proposition 1 The TTSIS of Fig (2.12) is stable under the designed MPC controller if the fol-
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Figure 2.12: A hybrid model for the system incorporating the cut in probability

Figure 2.13: Region of attraction of MPC.

lowing condition is satisfied:

• There is a finite invariant region SR in which

x[k] ∈ SR → R(x[k], p) ∈ SR

∀p ∈ [0, 1]. xmin ≤ x[k] ≤ xmax
(2.41)

The region SR is a subset of the region of attraction for the MPC law, denoted by SΩ (SR ⊂ SΩ).

Here, SΩ is defined as the set of all initial states from which a sequence of inputs exists that forces

the state predictions to reach the terminal constraint set Ω in the first mode of control law (2.31),
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i.e.

SΩ =


x[0] : ∃u[0], x[N |0] ∈ Ω,

s.t.

xmin ≤ x[i|0] ≤ xmax, ∀i ≤ N

umin ≤ u[i|0] ≤ umax, ∀i ≤ N − 1

(2.42)

Figure 2.13 shows the region of attractions for different values of control horizon N for a to

example. Here, the x1 represents the terminal constraint set, and xi represent SΩ for N = i. This

plot is for a system with A = [2, 1; 0, 2], B = [1, 0; 0, 1], Q = [1e − 5, 0; 0, 1e − 5], R = [1, 0; 0, 1],

xmin = [−5;−5], xmax = [5; 5], umin = [−1.5;−1.5], and umax = [1.5; 1.5].

Note that since our system has 13 state variables, its region of attraction cannot be visualized.

Therefore, to guarantee the stability of the system over a larger set of conditions, the constraints

on the system states should be relieved as much as the safety is not violated. To this end, we set

the constraint on the spacing error to [δmin, δmax] ∈ (−hvi − Li − d0 + δs,+∞) for the case of no

cut-in detected, where δs is the minimum desired safe gap between the vehicles. Clearly, after each

discrete transition, the value of spacing error can only jump with a value between −hvi − Li − d0

and hvi + Li + d0. However, for the case of a positive cut-in probability, we should choose a more

conservative constraint, [δmin, δmax] ∈ (−hvi−Li−d0 +(xi−1−xrv)+δs,+∞) to assure the collision

avoidance where xrv is the position of the cut-in suspicious vehicle. Finally, if the is no constraint

found which can guarantee the feasibility, the driving situation is considered as an unsafe or a

harsh maneuver and the controller temporarily is overwritten with ui set to the maximum possible

deceleration (usually up to −10m/s2 [65], to prevent the collision) or the maximum pre-defined

acceleration of the vehicle till the feasibility of the controller can be guaranteed again.

2.6 Evaluation

In this section overall performance of the proposed MPC control design is evaluated using real-

istic driving scenarios from Safety Pilot Model Deployment (SPMD) dataset [63]. The practicality

of our cut-in trajectory prediction method is also shown by its performance comparison versus the

kinematic-based trajectory prediction as a ground truth.

A general cut-in maneuver duration is between 3.5-6.5 seconds for urban scenarios with the

mean of 5 seconds and 3.5-8.5 seconds for highway scenarios with the mean of 5.8 seconds [66].
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For the sake of comparison fairness, two types of cut-in maneuvers, i.e. the harshest type with

3.5 seconds duration, and the average class with 5.5 seconds duration, have been selected. In both

cases, the platoon velocity is assumed 27 m/s or 60 mph.

2.6.1 Conventional MPC Performance Evaluation

In this section overall performance of the proposed system framework is evaluated using realistic

driving scenarios from Safety Pilot Model Deployment (SPMD) dataset [63]. First, the practicality

of our cut-in trajectory prediction method is shown by its performance comparison versus the

kinematic-based trajectory prediction as a ground truth. Next, noticeable better behavior of the

proposed SMPC controller versus the conventional MPC is discussed.

2.6.2 Cut-in Trajectory Prediction Performance Evaluation

To evaluate the performance of our method, we extracted 90 lane change maneuvers from

the BSMs generated by participating vehicles in SPMD dataset in Ann Arbor, Michigan. BSM

broadcast rate had been set to 10Hz in this dataset. Therefore, we have all of the time series

recorded in this rate. The signals from all 90 maneuvers are concatenated to create a long univariate

time series for each input signal. Finally, a 70-15-15 percent training, cross-validation, and testing

data selection is used for ANNs training and performance evaluation.

Combination of the longitudinal and lateral predictions, for one second ahead of a cut-in sce-

nario from SPMD dataset, is depicted in Figure 2.15, for more clarification. In this figure, prediction

errors are shown with consecutive rectangles on the predicted path. The performance of the pre-

diction methods, i.e. vehicle kinematics model and our model (trained RNN and NARX), are

compared using their 90 percentile accurate predictions for each of the 10 prediction steps.

The performance of two trajectory prediction methods, vehicle kinematic model, and our trained

RNN, for a lane changing vehicle in terms of lateral confidence levels at each time step ahead,

averaged on all 90 scenarios, are shown in Fig. 2.14(a). The classic car model could be represented

by kinematic-based differential equations as follows:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i =
vi
Li

tanφi (2.43)
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(a) (b)

Figure 2.14: Comparison of 90-percentile conf. interval of the Kinematic and RNN models for
different prediction steps. (a) Lateral and (b) Longitudinal predictions

where xi, yi, and vi are longitudinal position, lateral position, and velocity of the ith vehicle, respec-

tively. Also, φi denotes the steering angle, θi stands for the angel between the vehicle’s instantaneous

heading and the road direction, and Li = 5 is the length of the vehicle [67].

Fig. 2.14(b) shows the same comparison for the longitudinal position prediction.

2.6.3 Designed SMPC Performance Evaluation

In this section, superiority of designed SMPC versus conventional MPC is investigated. To

this end, reactions of these two different designs to real cut-in maneuvers should be compared. A

general cut-in maneuver duration is between 3.5-6.5 seconds for urban scenarios with the mean of

5 seconds and 3.5-8.5 seconds for highway scenarios with the mean of 5.8 seconds [66]. For the

sake of comparison fairness, two types of cut-in maneuvers, i.e. the harshest type with 3.5 seconds

duration, and the average class with 5.5 seconds duration, have been selected and the outputs of

two aforementioned controllers are compared in each case. In both cases, the platoon velocity is

assumed 27 m/s or 60 mph.

Cut-in probabilities, calculated based on the discussed method in section 2.5.2, for average and

harsh maneuvers are depicted in Fig. 2.16. As mentioned before, these probabilities are fed into

our SMPC controller at each prediction cycle. The vertical dashed lines in both figures stand for

the moments at which the cut-in vehicles cross the road line between two adjacent lanes. It is

clear that our cut-in detection starts around 1.25 seconds and 2 seconds ahead of this moment for
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Figure 2.15: Joint perspective of longitudinal and lateral predictions

harsh and average maneuvers, respectively, which provides a noticeable extra reaction time for the

controller.

Fig. 2.17, illustrates the changes in spacing error, velocity and acceleration of the host vehicle

produced by two different controllers in response to the average cut-in maneuver. It is noteworthy

that our controller starts its reaction to compensate the situation notably sooner than the con-

ventional one which results in a noticeable smoother reaction. In addition, it highly increases the

reaction safety as a consequence of its considerable lower maximum spacing error which is evident

by comparing the spacing error in Figs. 2.17(a) and 2.17(b). For instance, as it is clear in Fig.

2.17(a), the worst SMPC spacing error reaches 10 meters, while its counterpart in conventional

MPC system is around 17 meters. Moreover, the spacing error of the SMPC controller is around

6 meters when the suspicious vehicle entered the CACC lane while in conventional MPC it is on

its maximum value of 17 meters. Finally, the SMPC cut-in detection starts around 2 seconds from

the beginning of the scenario, which gives the controller about 2 seconds additional reaction time

in comparison with the conventional system.

The same plots for harsh maneuver, which are depicted in Figs. 2.17(b), 2.17(d), and 2.17(f),

demonstrate the dominance of the proposed SMPC performance in terms of sooner and safer

reaction.
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Figure 2.16: Cut-in Probability, Pc, for the proposed SMPC controller (a) an average 5.5-sec
maneuver and (b) a harsh 3-sec maneuver

2.7 Conclusion

In this dissertation, a probabilistic framework for handling cut-in maneuvers into a CACC

platoon is proposed and its better performance compared to the conventional controller design is

demonstrated. At the first step of the designed procedure, a cut-in maneuver of an interfering

vehicle is detected and its trajectory is predicted using a novel three-layer neural network-based

approach. The high accuracy of this method is demonstrated by comparing its results against the

state of the art Kinematic-based deterministic models. Afterwards, the output of this phase is

utilized to calculate the probability of cut-in predicted trajectory overlap with the host vehicles

bad-set area. This probability, which is referred to as cut-in probability, specifies the severity level

of the dangerous situation caused by a sudden cut-in into the stable CACC platoon. Obviously,

higher values of this probability need more urgent reactions from the host vehicles controller to

prevent the possible collision with a smooth and safe reaction. This goal is achieved by giving this

probability to a new stochastic MPC controller, designed based on the emerging SHS concept. The

overall performance of the designed system is evaluated and its effectiveness for better regulation

of the host vehicles reaction to dangerous cut-in situations is discussed using realistic cut-in driving

scenarios from SPMD dataset.
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(a) Spacing error in an average 5.5-sec cut-in maneu-
ver
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(b) Spacing error in a harsh 3-sec cut-in maneuver
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(c) Velocity in an average 5.5-sec cut-in maneuver
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(d) Velocity in a harsh 3-sec cut-in maneuver
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(e) acceleration in an average 5.5-sec cut-in maneu-
ver
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Figure 2.17: Comparison of spacing error, velocity, and acceleration of the proposed SMPC (Blue)
and the conventional MPC (Red)
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Chapter 3

Predictive ECMS for Hybrid Electric

Vehicle Powertrain Control

3.1 Introduction

Smart control of powertrain have been studied in different levels to enhance the efficiency and

safety of vehicles [68, 69, 70, 71, 72, 73, 70, 74]. Intelligent transportation system (ITS), however,

improves the efficiency and safety of vehicles by providing a new level of understanding, known

as situational awareness. The benefits of the ITS for conventional vehicles, in terms of the fuel

consumption, is limited due to the strict constraints enforced by the driver’s power demand and

the Internal Combustion Engine (ICE) as the sole source of motive power. However, Hybrid Elec-

tric Vehicles (HEVs) have an extra degree of freedom which provides them more flexibility to fully

exploit situational awareness for the improvement of their fuel economy. This flexibility comes from

an additional source of power, i.e. Electric Motors (EM), which provides the supervisory controller

with the opportunity of power distribution between ICE and EM for a better fuel economy. In

other words, the Internal Combustion Engine (ICE) has a greater chance of operating at its opti-

mum region when the EM can provide the rest or store its excessive energy in an energy storage

system (battery). In addition, the kinetic energy of the vehicle can be harnessed through the re-

generative braking. However, the improvements come at the expense of a complicated powertrain

and corresponding controller which dictates operation points of powertrain components (such as

EM, ICE, and transmission system). Consequently, research interests have been largely directed

toward the study of the powertrain management strategies, with special attention being paid to
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the power distribution between ICE and EM as one of the most critical decisions impacting HEVs

performance.

In general, power distribution strategies can be categorized based on the level of prior knowledge

of the drive cycle. First, real-time power distribution strategies only utilize real-time data [75,

76] and many of them are adaptive versions of Equivalent Consumption Minimization Strategy

(AECMS) [29, 77, 78]. Real-time power distribution strategies distribute the driver’s power demand

(through acceleration and brake pedals) between the ICE and the EM based on the most efficient

operating points of the powertrain components and the minimization of their total losses. Xu,

et al. [79], designed three different cruising strategies which improved the efficiency by adding a

new degree of freedom (velocity) to the optimization problem. However, the decisions made by

the real-time strategies might not be the most efficient and feasible power distribution due to the

system global constraints, such as the constraint on the battery State Of Charge (SOC), which are

supposed to be satisfied at the very end of the drive cycle instead of at every single moment.

On the contrary, globally optimized power distribution strategies, such as Dynamic Program-

ming (DP) based methods [80, 81, 82] and Equivalent Consumption Minimization Strategy (ECMS)

[83], consider the entirety of the drive cycle to be known in advance. To reduce the computational

complexity of this group of strategies, Zhang, et al. [84] found a sub-optimal solution of the opti-

mization problem by utilizing a method called Power-weighted Efficiency Analysis for Rapid Sizing

(PEARS). Even though the proposed approach is much faster than DP, this category of strategies

still features two drawbacks making it inapplicable for effective real-time control of hybrid vehicle

powertrains. First, despite the rich literature on vehicle velocity and trajectory predictions based

on live traffic data and driving history [85, 86], an accurate prediction of the whole drive cycle is

not practical due to its varying nature and unexpected events. Second, even in the presence of an

accurate prediction, these strategies are not suitable to run on a supervisory controller in real-time

due to the computational complexity of their optimization techniques.

The third class of power distribution strategies, which is also the main concern of this work,

emerged to address the aforementioned drawbacks of the first two approaches. They employ a

short-term prediction of the drive cycle [87, 88, 89] to make their decisions towards the control of

powertrain components. Compared to the real-time strategies, accessing the short-term prediction

of the drive cycle gives an extra degree of freedom to the controller to adjust the soft constraints
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locally, e.g. level of SOC, based on its pre-knowledge of the future driving conditions with the aim

of efficiency improvement, and still satisfies them globally (at the end of the drive cycle).

Sun, et al. [90] developed a neural network based predictor to forecast the feature velocity of

the vehicle based on the driving history. The prediction was used for equivalent factor adaptation

for an AECMS controller and more than three percent reduction in fuel consumption was reported.

In [91], a new framework, called stochastic model predictive control with learning (SMPCL), is

proposed which solves Model predictive control (MPC) problem utilizing quadratic programming

with efficiency and SOC regularization included in the cost function. In addition, a Markov Chain

Based model of the driver is used to improve the prediction of the drive cycle over the MPC horizon.

However, each drive cycle needed to run twice before measuring the fuel economy, so the controller

could learn the pattern of the drive cycle.

Utilizing a short-term prediction of the drive cycle can significantly reduce the computational

cost of the last group of strategies; however, employing the same optimization techniques as the

globally optimized strategies, increases the computational complexity to a level which is higher

than the real-time computing power of the embedded systems. Therefore, in this work, despite the

previous aformentioned works, three low-computational-cost, real-time predictive AECMS-based

strategies are proposed which update the equivalent factor (cost of using electrical energy) accord-

ing to the short-term prediction of the vehicle’s future velocity. These methods are not built upon

the global optimization techniques, and, therefore, they do not require a heavy computational load

for the supervisory controller to run them in real-time. Each of the strategies introduces an adjust-

ment factor, according to the prediction of the drive cycle in a finite time horizon, which updates

the equivalent factor of AECMS for the sake of fuel economy improvement and battery charge sus-

tainability. The first two methods adjust the equivalent factor regarding the energy requirements

of the vehicle in the prediction horizon. However, the first method utilizes a fixed prediction time

window, and the second one uses a variable time window. The variable-time window is utilized

to address the lack of ability in the fixed-time window strategy to adjust the equivalent factor in

the presence of consecutive acceleration and deceleration in the prediction window. Finally, the

third control strategy, which is an extension of our previous work [92], incorporates the calculated

sub-optimal cost of battery charging and discharging over the prediction horizon in addition to the

energy requirements of the vehicle in the other two methods. All of the three proposed methods
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are applicable to any parallel or series-parallel HEV in which there is a real-time power distribution

between an EM and an ICE. However, for HEVs that have more than one EM operational at a

time, these methods may need more consideration and modification.

Despite the common trend in the literature toward using simplified and idealized models of

HEVs for simulation and validation of powertrain management strategies, in this work a high-

fidelity model of a hybridized Chevrolet Camaro is used for validation purposes. This approach is

mostly used in the literature to address the impact of incorporating details in powertrain dynamics

on fuel economy [93, 94, 95]. The simulation results verify the effectiveness of the proposed methods

on fuel economy improvement in comparison with a non-predictive AECMS. The rest of this chapter

is structured as follows: the system is described generally and powertrain components are modeled

in Section 3.2; the power distribution optimization problem, ECMS, and AECMS are introduced in

Section 3.3; the proposed predictive ECMS strategies are formulated in Section 3.4; the simulation

results are shown and discussed in Section 3.5; and finally, the chapter is concluded in Section 3.6.

3.2 System description and modeling

3.2.1 Hybrid Electric Vehicles (HEVs)

Hybrid electric vehicles incorporate multiple sources of energy to fulfill the requested propulsion

by the driver. Since, in HEVs, there are a wide range of possible configurations of powertrain com-

ponents, different vehicle architectures evolved by integrating the elements of the hybrid propulsion

system. Weight consideration, cost, targeted customers satisfaction, and type of the application

are among the most important factors of selecting a specific HEV configuration. Studying different

techniques for designing hybrid vehicle powertrains is beyond the scope of this dissertation. This

section aims to familiarize the reader with common terminology in the literature of HEVs and also

different HEV configurations.

The propulsion system of a hybrid electric vehicle generally comprises an ICE, one or more

electrical energy storage modules (e.g. batteries, super-capacitors), electric machines (EMs), a fuel

tank, power converters, a transmission and various driveline linkages. These modules can be mixed

up in different ways and orders to reach different objectives. The resulting configurations can be

categorized under one of the following general divisions (see Figure):
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• Series Hybrids: In this configuration , the tractive power is exclusively supplied directly

by one or more EMs. The ICE, then, is responsible for running an electric generator in its

efficient operating region to charge the electrical energy storage system (EESS). The series

hybrid architectures are mostly deployed in heavy-duty vehicles, e.g., trucks. Other vehicles

with wheel hub motors can also benefit from operating with this configuration.

• Parallel Hybrids: In this category of HEVs, the tractive power is provided by an optimal

combination of the ICE and the EMs. In addition, a dedicated generator can be employed to

maintain the level of SOC at its desired reference value. Parallel-hybrid vehicles are of two

sub-categories according to the location of the EMs with respect to the ICE and transmission:

– Pre-transmission parallel hybrid: In this class of HEVs, the EM is attached to the

ICE prior to the transmission. This category includes dual-mode hybrids and mild-

hybrids with integrated starter-generators.

– Post-transmission parallel hybrid: Here, the EM is connected to either the driven

axle (after the final drive) or the non-driven axle, which is referred to as a through-the-

road hybrid.

• Power-split Hybrids: This class of HEVs employs electric-variable transmissions (EVTs).

The EVT is a hybrid transmission which combines all functionalities of fixed and continuously

variable transmissions into one single unit. An EVT is a single- or multiple-stage structure

of planetary gears that enables the power provided by an ICE and two EMs to be distributed

Figure 3.1: Different configurations of HEVs.
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Table 3.1: Vehicle parameters

Component Description
Engine GM 2.4L I4 LEA E85, Peak Power: 136 kW

Electric Motor Parker GVM 210-200S, Peak Power: 148 kW
ESS A123 Systems 7x15s2p, Power Output: 40 kW - 118 kW peak

Transmission GM 8L45, 8 Speed Automatic
Inverter Rinehart PM150DX

in a continuously variable fashion. IT can acts in a way to deliver a portion of the generated

power to the road, while the excess power is stored in the battery.

3.2.2 High-Fidelity Model - Validation

In this work, a post-transmission parallel HEV is selected for development and validation of

the control strategy. The powertrain architecture of the studied HEV is shown in Figure 3.2.

For the purpose of assessment, a high-fidelity model of the hybridized Chevrolet Camaro is used,

which is developed by the West Virginia University EcoCAR 3 (an Advanced Vehicle Technology

Competition (AVTC) series) team. The components of this vehicle are listed in Table 3.1. The

model is created mostly based on Simulink and Simscape [96] where the required data regarding

each component is provided to the team by the corresponding company. In addition to the high-

fidelity model, a simplified and idealized version of the model is also developed to run inside the

supervisory controller due to its limited computational capacity.

Figure 3.2: Post-transmission hybrid electric vehicle
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3.2.3 Idealized Model - Controller

According to the level of detail utilized in modeling the powertrain components, a forward-

facing quasi-static method is considered for the modeling of a post-transmission parallel HEV. In

this approach, knowing the total required traction force, Ftrac, the speed and acceleration of the

vehicle are calculated by the vehicles longitudinal dynamic model:

m
dv

dx
=Ftrac −m.g.Cr cos(α(t))− 1

2
ρ.Cd.Ad.v(t)2 (3.1)

−m.g. sin(α(t))

where m (kg) is the vehicle’s mass, v (m/s) is the vehicle’s speed, g (m/s2) is the gravitational

constant, Cr is the road friction constant, ρ (kg/m3) is the air density, Cd is the aerodynamic drag

coefficient, Ad (m2) is the cross-sectional area of the vehicle, and α is the angle of the road slope.

The wheel tractive force Ftrac is the product of the road surface adhesion coefficient and the normal

force acting on the wheel. To calculate the normal forces which act on each wheel, the dynamic

weight transfer is modeled for the front and rear wheels in terms of the vehicle pitch and lever arms

to the vehicle center of mass. Then we can calculate the road load torque for each wheel from the

wheel diameter and tractive force:

Troad = 0.3048.Ftrac.Rw (3.2)

where Rw is the wheel diameter. The torques acting on a wheel include the road load torque,

halfshaft torque, bearing friction torque, and the braking torque.

The fuel consumption of the ICE in the model is given by a static map:

ṁfuel(t) = f1(TICE , ωICE) (3.3)

where ṁfuel (g/s) is the fuel rate, TICE (Nm) is the crankshaft torque, and ωICE (rad/s) is the

engine angular velocity. Then, the power consumed by the ICE is calculated as follows

Pfuel(t) = ṁfuel(t)×Qfuel (3.4)
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where Qfuel (J/g) is the fuel energy density constant. Similarly, the battery terminal power Pe

(watt) is given by two static maps f1(Tem, ωem) and f2(Tem, ωem) for the motoring and generating

modes of the EM, respectively. Here, Tem (Nm) represents the motor shaft torque, and ωem (rad/s)

is the motor shaft angular velocity.

The battery is modeled as a resistive Thevenin equivalent circuit including a voltage source (Voc)

and a resistance (Rbat) which are nonlinear functions of the battery State Of Charge (SOC), indi-

cated by ζ(t), and is calculated as follows

ζ(t) = ζ0 −
∫ t

0 Ibatdx

Qbat
(3.5)

where Ibat (A) is the battery current, that is positive when the battery is discharging, and it

is negative when the battery is charging, and Qbat (Ah) is the battery capacity. Taking time

derivatives from the both sides of (3.5), the rate of change of SOC derived as a function of battery

current:

ζ̇(t) = − Ibat
Qbat

(3.6)

Finally, power at the terminals of the battery is found by:

Pe = Voc.Ibat −Rbat.Ibat2 (3.7)

The power demanded by the accessories is only considered in the high fidelity model, but it is

neglected in the simplified model for ease of calculation.

3.3 Optimal Power Management

3.3.1 Problem Statement

The total fuel consumption, emissions, or a combination of both can be considered as a per-

formance measure for comparison of different power distribution strategies. In other words, the

problem of designing a power distribution strategy can be formulated as an optimization problem

with the aim of minimizing the performance measure subject to the local and global constraints

such as satisfying demanded power, battery SOC sustaining, and the components power output

limitations. In this work, the performance measure, which is also the cost function of the optimiza-
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tion problem, is defined as the total fuel consumption over the whole drive cycle, or equivalently

the integral of the fuel consumption rate, defined in Equation (3.8), over the drive cycle’s time

interval [t0, tf ]:

J =

∫ tf

t0

ṁfuel(u(t), t)dx (3.8)

where ṁfuel (g/s) is the fuel rate of the ICE, and u(t) represents the amount of torque which is

provided by the EM and is considered as the control input variable in the optimization problem.

Hence, the optimal torque generated by the EM at each time instant, u∗(t), can be found by

minimization of the cost function:

u∗(t) = arg min
u
J(u(t), t) (3.9)

The cost function is subject to a set of constraints which impose operational limitations on the

powertrain components such as engine output power, electric motor output power, minimum and

maximum permissible values of the battery state of charge, and the drivers power demand satis-

faction:

0 < PICE < PICE,max ∀t ∈ [t0, tf ] (3.10)

Pem,min < Pem < Pem,max ∀t ∈ [t0, tf ] (3.11)

ζmin < ζ(t) < ζmax ∀t ∈ [t0, tf ] (3.12)

Pdem = Pem + PICE ∀t ∈ [t0, tf ] (3.13)

where max and min indicate maximum and minimum permissible values, respectively, PICE is the

output power of the internal combustion engine, Pem is the output power of the EM, ζ(t) is the

SOC of the battery, and Pdem is the power demand requested by the driver. In addition to the

local constraints, the optimization problem is subject to a global constraint which is the charge

sustainability of the battery,

ζ(t0) = ζ(tf ) (3.14)

that indicates the SOC at the end of the drive cycle should be equal to its initial value.
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3.3.2 Equivalent Consumption Minimization Strategy (ECMS)

Equivalent Consumption Minimization Strategy (ECMS) [83] offers an equivalent factor be-

tween electrical (battery) and chemical (fuel) energy consumption. This factor, denoted by s(t),

basically represents the virtual fuel energy consumption equivalent to the stored energy in the bat-

tery by ICE. To find the globally optimal solution of the problem (3.9) subject to (3.10)-(3.14), a

Hamiltonian function H is defined as

H(ζ, u, λ, t) = ṁfuel

(
u(t), t

)
+ λ(t).ζ̇(u, ζ) (3.15)

where λ is the co-state. Substituting Equation (3.6) in (3.15), the Hamiltonian function can be

rewritten as:

H(ζ, u, λ, t) = Pfuel + s(t).Pe (3.16)

where equivalent factor s(t) is defined as

s(t) = −λ(t)
Qthv

Voc,max.Qbat
(3.17)

where Qthv is the fuel lower heating value. The Hamiltonian function (3.16) is the summation of

the fuel power Pfuel, and the battery power Pe transformed into an equivalent fuel power
(
s(t)Pe

)
which is consumed or saved by the engine when the battery is charged or discharged, respectively.

The equivalent factor plays a crucial role in the power distribution between the ICE and the EM

using ECMS. The optimal value of the equivalent factor (sopt) can be calculated when the drive

cycle is known a priori as the Hamiltonian is a convex function according to the shape of the fuel

curve demonstrated by [75]. However, in the real world having an accurate estimation of the whole

drive cycle is impractical due to its stochastic varying nature. Therefore, the powertrain controller

does not have enough information to derive sopt. To overcome this issue with ECMS, an extension

of it known as Adaptive ECMS (AECMS) emerged in the literature in which the equivalent factor

is updated in real-time based on the main objectives of the control strategy.
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3.3.3 Adaptive ECMS (AECMS)

For charge sustainability as one of the most critical goals of the control strategy, the equivalent

factor can be updated so that it weights the electrochemical battery power according to the devi-

ation of SOC from its reference value. In other words, when (ζ(t)− ζ(t0)) is considerably positive,

s(t) has a small value, and therefore the electrochemical energy becomes less expensive than the fuel

energy. On the contrary, when (ζ(t)− ζ(t0)) is negative, s(t) would be a large value to penalize the

electrochemical energy consumption. This idea is the basis of the majority of AECMS strategies

in which the equivalent factor is updated based on the deviation of SOC from its reference value

[97] and information about the driving condition history [98].

Chasse et al. [78] has suggested to use a PI controller to update the equivalent factor at each

time instance:

s(t) = s0 +KP (ζref − ζ(t)) +KI

∫ t

0
(ζref − ζ(τ))dτ (3.18)

where s0 is the initial value of equivalent factor, KP and KI are proportional and integral gains of

the PI controller, respectively, and ζref is the reference value of the SOC. Using (3.18) to update

the equivalent factor, when the deviation of SOC from its reference value (ζref − ζ(t)) is negative,

s(t) decreases, and consequently the supervisory controller would prefer to discharge the battery by

raising the proportion of electric power applied to meet the driver’s power demand. On the contrary,

positive SOC deviation leads to s(t) increase, and accordingly the proportion of electric power in

vehicle propulsion decreases. This adaptation law updates s(t) only by taking the instantaneous

value of SOC at each time instant into account.

3.4 Proposed Framework: Predictive ECMS (PECMS)

In this work, a predictive power distribution framework is proposed with the primary focus

on reducing the computational complexity of the algorithm. In this scheme, a speed prediction

block provides a short-term prediction of the drive cycle using the information acquired through

the vehicular communication network. Design of the prediction block is beyond the scope of this

work. However, several methods have been proposed in the literature for short-term and long-term

predictions of traffic flow and a vehicle’s speed profile and trajectory [99, 100, 101, 102, 103, 104].
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Therefore, for the rest of this work, we assume that up to one minute ahead of the drive cycle is

available to the controller at each time instant as the output of the velocity predictor. The proposed

control strategies get the predicted speed profile and the driver’s instantaneous power demand and

decide how to distribute the requested power between the ICE and EM based on the minimization

of the total loss, not only at each time instant but also over the prediction horizon. In the following,

three different Predictive extensions of the AECMS (PECMS) are proposed.

3.4.1 Predictive ECMS: Method I

One of the key factors which directly affects the equivalent factor is the constraint on the SOC

level. Moreover, the energy requirements of the vehicles in a near-future time window ([t, t + th])

determine how the SOC level is going to change in this window. In other words, a low or negative

value reveals an upcoming regenerative braking, while its large value is interpreted as a forthcoming

high demand of power, which might not be satisfied by the ICE, exclusively. Therefore, near future

perspective of the energy requirements represents the average variation in the cost of using the EM

in the upcoming seconds. This gives the opportunity to modify the equivalent factor in advance

with the aim of improvements in fuel economy and charge sustainability.

In AECMS, variations of the equivalent factor are directly related to the energy requirements

of the vehicle as the EM should come to the ICE’s aid in high power demand situations, or save its

excessive generated power during low demands. Therefore, the lack of information about the future

requirements causes an unnecessary fluctuation in equivalent factors, which is a reason for excessive

engine ON/OFF cycles and transient losses. Hence, considering the average energy requirements

of the vehicle in the near future can decrease the unnecessary fluctuations and its corresponding

losses. On this ground, we proposed a new definition for the equivalent as follows

sI(t) = s(t) + δs(Ereq) (3.19)

where s(t) is defined in Equation (3.18), and δs is the modification factor that is a function of the

energy requirements of the vehicle in the prediction horizon (Ereq = Ereq[t, t+ th]) and defined as

δs(Ereq) =

mpEreq if Ereq > 0

mnEreq otherwise
(3.20)
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in which mp and mn are variable factors that determine the extent to which required energy affects

the equivalent factor for its positive and negative values respectively. These factors are defined as

a function of the SOC deviation from its limits to guarantee that the SOC level will not overstep

its pre-defined boundaries

mp = (SOCmax − SOC)
δsmax

Emaxp

(3.21)

mn = (SOC − SOCmin)
δsmin

Eminn

where SOCmin and SOCmax are the minimum and the maximum permissible values of SOC re-

spectively, δsmax and δsmin are maximum and minimum possible variations of the equivalent factor

in a period of time with the length of the prediction horizon, and Emaxp and Eminn are the possible

most positive and negative values of the energy requirements of the vehicle in the same period

of time, respectively. With these definitions, mp and mn go to zero when the SOC approaches

its boundaries, and as a consequence the future energy requirements will not affect the equivalent

factor and it is left to be determined by the PI controller exclusively. However, when the level of

SOC is not close to its boundaries, the modification factor is proportional to the required energy

of the vehicle in the prediction horizon.

In fact, in AECMS the equivalent factor fluctuates around its optimal value (ECMS). Therefore,

when the level of SOC is too low, the equivalent factor goes far beyond the optimal value to force

the controller to discharge the battery despite the total loss. However, with the new definition of

the equivalent factor (3.19), the controller still gives more weight to the efficiency of powertrain

when the SOC level is too low if there is an upcoming regenerative braking opportunity. The same

argument applies to the situation in which the SOC level is too high. Besides, the new formulation

of the equivalent factor can also improve the fuel economy by decreasing the number of engine ON

and OFF cycles. This decrease is a direct result of the fact that the modification factor decreases the

cost of using the electrical energy when there is an upcoming regenerative braking and prevents the

control strategy from shutting the EM down even if the SOC level is low. Similarly, the controller

would not turn the EM on when there is an approaching high acceleration demand even if the level

of SOC is high enough.
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3.4.2 Predictive ECMS: Method II

Despite the improvements in fuel economy associated with Method I (Section 3.4.1), this method

can fail in the case of subsequent regenerative braking and high power demand on account of near

zero value for the integration of the energy requirements over the prediction horizon. To overcome

this downside, a new method with a dynamic time horizon is developed. The definition of the

equivalent factor in this method is the same as the Method I and is expressed by Equations (3.19)-

(3.21). However, the modification factor is calculated over a dynamic time window. The length of

the time window at each time instance is defined as the time to the next minimum of the vehicle’s

drive cycle (as long as the time window has a length of less than the prediction horizon), which

is the last moment of the upcoming regenerative braking. Furthermore, to eliminate the small

changes, a minimum drop in the velocity is considered when the algorithm is looking for the next

minimum of the drive cycle. Finally, when the next minimum of the drive cycle is closer in time

than a threshold, the algorithm neglects it to prevent a very short time window and looks for the

next minimum of the drive cycle.

3.4.3 Predictive ECMS: Method III

So far, the proposed methods (I and II) take only the future energy requirements of the vehicle

into account to adjust the equivalent factor. However, further improvement of the efficiency is

expected, considering either it is more beneficial to charge or discharge the battery in the prediction

horizon and to what extent. To this end, the equivalent factors update law should be not only a

function of the energy requirements, Ereq, but also the cost of charging, sn, and discharging, sp, of

the battery in the near future. Therefore, we proposed a new formulation for equivalent factor’s

update law as follows:

sI(t) = s(t) + δs(Ereg, sn, sp) (3.22)

where s(t) is defined in Equation (3.18), and δs is a modification factor that is a function of the

energy compensated through the regenerative braking (Ereg = Ereg[t, t+th]) and the cost of battery

charging (sn) and discharging (sp) over the prediction horizon th. Based on a method proposed

in [105], we are able to calculate sn and sp in a specific time interval. However, due to the short
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Figure 3.3: Schematic of the Method III

prediction horizon in our work, their proposed approach needs more consideration for possible

special cases. To find Ereg, sn and sp in the prediction time horizon, the model of vehicle is run

on the prediction time horizon for different constant values of torque distribution u = τm
τd

among

the parallel paths where τm and τd are the torque of the EM and the requested torque by the

driver, respectively. Torque distribution varies in a feasible range from a minimum value (umin)

to a maximum value (umax) which are determined by the constraints of the problem. Then, for

each u, the fuel energy use over the prediction horizon is plotted against the electrical energy use

(depicted in Figure 3.3). It is shown in [105] that this plot is rather linear. Hence, the slope of the

fitted line on the points with negative u gives the cost of battery charging (sn), and the slope of

the fitted line on the positive values of u gives the cost of using electrical energy (sp) on that time

interval. Now, the instantaneous value of the equivalent factor s0 derives using the probability of

charging and discharging the battery in the prediction horizon

s0 = p(t)sp + (1− p(t))sn (3.23)

in which the probability factor p(t) is the possibility that electrical energy consumption (Ee) is

greater than zero at the end of the prediction horizon and is estimated as

p(t) =
E+
e (t)

E+
e (t)− E−e (t)

(3.24)
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where E+
e (t) and E−e (t) are the maximum positive and negative values of electrical energy use over

the prediction horizon, i.e. from time t to t + th . In addition, the electrical energy use of the

vehicle when the ICE solely provides the propulsion power, (u = 0) gives the possible regenerative

braking energy Ereg over the prediction horizon.

Since in this work we apply the approach on a short horizon [t, t+ th], both sn and sp can get

very large positive or negative values in the case that over the entire (or most) of the prediction

horizon. The vehicle is braking, and, therefore, all points are placed exactly (or nearly) on each

other. This situation can be detected as it happens simultaneously for both sn and sp. In other

cases, a small value of sn can be interpreted that in the near future the vehicle can benefit more

by consuming fuel and recharging the battery. In addition, a large Ereg shows the possibility of

a considerable amount of regenerative braking energy in the prediction horizon. Consequently, we

defined sI as follows

sI =


s+meEreg +ms(sn − sthld) if sn < snthld

sp > spthld
s+ αs0

1 + α
+meEreg otherwise

(3.25)

where α is a weighting factor, me < 0 and ms < 0 are adjustment factors, snthld is an upper threshold

for sn, and spthld is a lower threshold for sp. These thresholds and adjustment factors are selected

by running the vehicle model with an AECMS controller on a long drive cycle (different than the

drive cycles on the simulation section) which includes different driving conditions, namely highway

and urban, and finding the maximum and minimum value of s(t). Then, the best values of the

adjustment factors are found while the threshold was set to the maximum and the minimum of

s(t). Therefore, using the new proposed evaluation for s(t), the cost of electromechanical energy

starts decreasing when there is a possible regenerative braking in the prediction time horizon,

even when the SOC is below its target value, and the PI controller tries to increase the cost of

electromechanical energy. On the other hand, the cost of electromechanical energy increases when

sn has a very small value which means it is more beneficial to charge the battery. Finally, the cost

of electromechanical energy is adjusted when sn > snthld using s0 which represents the real cost of

electromechanical energy over the prediction horizon.
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3.5 Simulation results

Figure 3.4: Drive Cycles

To investigate the effectiveness of the proposed methods on the fuel economy and charge sus-

tainability, a hybridized Chevrolet Camaro was simulated for three dynamometer driving sched-

ules, developed by the US EPA for the determination of fuel economy in urban (UDDS), highway

(HWFET), and aggressive, high speed and/or high acceleration (US06) tests, as well as a real-world

scenario from the Model Deployment (MD) dataset [106]. The velocity profiles of these scenarios

are illustrated in Figure 3.4. During the simulation, next th seconds of the drive cycle ([ti, ti + th])

are considered to be available as the prediction of the driving conditions. The simulation was run

for four different time windows including 5, 15, 30, and 60 seconds. In all cases, the PI controller

has a proportional gain Pp = 5 and an integral gain PI = 0.01. Also, to take the final value of SOC

into account, the equivalent fuel economy is calculated by consideration of the electrical energy use

FuelE = FuelC − α∆SOC

α =
FuelC

∆SOCE −∆SOC

where FuelC is the real fuel consumption, FuelE is the equivalent fuel consumption considering

the electrical energy use, ∆SOCE is the change on SOC level using EM exclusively, and ∆SOC is
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Figure 3.5: SOC for a UDDS drive cycle for AECMS and
IECMS, 15s Time Window

the variation in SOC level when both EM and ICE are utilized.

Figure 3.5 illustrates the SOC profiles of AECMS and our proposed predictive versions (15

seconds prediction time window) for UDDS Drive cycle. Moreover, Figure 3.6 demonstrates their

corresponding equivalent factors. In all three proposed PECMSs, the equivalent factor starts de-

creasing early before each regenerative braking.

The detailed simulation results of the proposed methods are listed in Table 3.2 for the sake

of comparison. Among all controllers, method III provides the best average fuel economy. The

underlying argument in its favor is that the controller has a realization of whether and to what

extent it is beneficial to charge or discharge the battery over the prediction horizon. The poor

performances of all the three methods, for a short time window, is due to the lack of enough

information. Increasing the window size can improve their performance. However, the effectiveness

of the first method decreases when the time window exceeds 15s. These results confirm that the

integration of the energy requirements over a long horizon can eliminate the effect of its fluctuations

and reduce the effectivness of the first method. However, the degradation in method III, is a
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Figure 3.6: Equivalent factor s(t) for a UDDS drive cycle,
15s Time Window

consequence of the fact that a simplified version of the vehicle’s model is utilized inside the controller

instead of the high fidelity model. This simplification is associated with an error in the calculation

of the optimal equivalent factor. Thus, increasing the prediction window can result in a propagation

of error in this calculation, and, therefore, the performance starts to degrade.
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Strategy MPG # ON/OFF Final SOC Window Improvement

UDDS

AECMS 54.77 24 30.53 - -

Method I 54.97 23 30.23 60 s 0.3 %

55.59 23 30.36 30 s 1.5 %

55.40 22 30.4 15 s 1.1 %

55.15 24 30.42 5 s 0.7 %

Method II 55.33 21 30.27 60 s 1 %

55.64 21 30.41 30 s 1.6 %

55.60 22 30.43 15 s 1.5 %

55.12 22 30.5 5 s 0.6 %

Method III 55.47 20 30.38 60 s 1.3 %

55.75 20 30.53 30 s 1.8 %

55.87 20 30.6 15 s 2 %

55.61 21 30.62 5 s 1.5 %

HWFET

AECMS 39.77 21 31.05 - -

Method I 39.86 21 31.03 60 s 0.2 %

39.98 20 30.99 30 s 0.5 %

40.06 19 30.93 15 s 0.7 %

39.95 21 30.91 5 s 0.5 %

Method II 39.86 20 31.01 60 s 0.2 %

40.31 17 31 30 s 1.4 %

39.95 19 30.95 15 s 0.5 %

40.05 21 30.89 5 s 0.7 %

Method III 40.1 19 31.25 60 s 0.8 %

40.93 17 31.23 30 s 2.9 %

41.40 16 31.15 15 s 4.1 %

40.91 19 31.02 5 s 2.9 %

US06

AECMS 24.99 20 30.52 - -

Method I 25.29 18 30.39 60 s 1.2 %
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25.27 18 30.21 30 s 1.1 %

25.35 17 30.63 15 s 1.4 %

25.21 18 30.73 5 s 0.8 %

Method II 25.32 17 30.25 60 s 1.3 %

25.43 17 30.12 30 s 1.8 %

25.41 16 30.42 15 s 1.7 %

25.2 18 30.7 5 s 0.8 %

Method III 25.8 17 30.22 60 s 3.2 %

25.92 14 30.35 30 s 3.7 %

25.87 15 30.25 15 s 3.5 %

25.76 18 30.46 5 s 3.1 %

Model Deployment

AECMS 54.77 15 30.53 - -

Method I 30.23 14 54.85 60 s 0.3 %

55.59 13 30.36 30 s 1.5 %

55.40 12 30.4 15 s 1.1 %

55.15 13 30.42 5 s 0.7 %

Method II 55.33 12 30.27 60 s 1 %

55.64 12 30.41 30 s 1.6 %

55.60 12 30.43 15 s 1.5 %

55.12 14 30.5 5 s 0.6 %

Method III 55.47 12 30.38 60 s 1.3 %

55.75 11 30.53 30 s 1.8 %

55.87 11 30.6 15 s 2 %

55.61 13 30.62 5 s 1.5 %

Table 3.2: Fuel Economy, Final SOC, and Number of Engine

ON/OFF for an UDDS drive cycle

3.6 Conclusion

Incorporating information collected through vehicular communication networks and local sen-

sory data leads to an accurate prediction of driving conditions in a short time window. This
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information enables the supervisory controller to make smarter decisions in terms of power distri-

bution between ICE and EM. In this work, a framework is proposed which utilizes the predicted

driving conditions and energy requirements of the vehicle to find the most optimal combination

of EM and ICE power outputs which minimize the fuel consumption while sustaining the state of

charge of the battery ESS. All three proposed methods are developed on top of AECMS, which

is one of the most promising approaches for real-time fuel consumption minimization and charge

sustainability in HEVs. The equivalent factor plays the most crucial role in this approach and has

a critical impact on its performance. Therefore, in the proposed predictive schemes the equiva-

lent factor was updated in accordance with the predicted driving conditions in the near future to

decrease the total loss of ICE and EM. A comparison between the results of proposed predictive

methods (PECMS) and real-time AECMS verified the effectiveness of PECMS regarding the fuel

economy and the number of engine ON/OFF cycles. However, further investigation is required to

study the impact of prediction uncertainty on the effectiveness of the proposed methods.
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Chapter 4

Reinforcement Learning for

Drive-Cycle Aware Power

Distribution Control of HEVs

4.1 Introduction

The main goal of artificial intelligence (AI) is to approach complicated tasks with raw sensory

inputs. In recent years, deep learning techniques have quickly become the state of the art in most of

the AI realted applications, specially in computer vision [107, 108, 109, 110, 111, 112, 113, 114, 115].

In recent past, a significant advance has been made by integration of Reinforcement Learning (RL)

and deep learning based raw data processing, which resulted in the advent of Deep Q Network

(DQN) [116]. It is shown that DQNs are able to reach (or even surpass) human performance

on different applications and tasks. To this end, a neural network is employed as a function

approximator to estimate the action-value function. For a while, DQNs were developing to deal

with low-dimensional discrete action spaces. However, many applications of interest, especially

control systems, have high-dimensional continuous action spaces. Consequently, a large body of

research seeks to design continuous DQNs. For example Lillicrap et al., [117] proposed a DQN

framework which is based on an iterative optimization of action-value function by finding the

optimal action.

To adapt deep reinforcement learning techniques to continuous domains, one can discretize

the action space. However, this approach suffers from the curse of dimensionality, in which the
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degree of freedom exponentially increases the possible actions. This condition gets worse, in the

case of dealing with the tasks that need delicate control inputs, as they need accordingly finer

discretization. Such an enormous action space is hard to be explored, and therefore, training the

network gets intractable. To overcome this problem, one can use a model-free actor-critic to learn

policies directly in continuous action spaces [118].

Prior to DQN, it was a well-known fact that estimating a value function by means of a non-

linear function approximator is a challenging unstable problem. However, DQNs can, in a stable

way, learn a value function employing such function approximators due to two novelties: first, an

off-policy training scheme is employed to train the network with samples selected from a replay

buffer. This modification can minimize correlations between samples; second, a target Q network

is trained simultaneously with the network to give consistent targets during temporal difference

backups.

Reinforcement learning algorithms are generally employed to solve each task independently

and from scratch. However, one may consider the setting in which agents solve a set of related

tasks, with the aim of learning more efficiently. One challenge is that sharing information between

multiple different tasks fails to converge, due to the fact that different tasks may have distinct

optimal policies. Consequently, it could be suboptimal to learn a unique common policy for all the

tasks.

In this work, we make use of the same ideas to design a control strategy for the power-train of

a HEV, while a short-term prediction of the drive cycle is available to the controller. In fact, this

approach is a data-driven alternative to the PECMS which we have proposed in Section 3.4. Our

work is a model-free framework based on deep deterministic policy gradient (DDPG) algorithm and

can outperform the PECMS, and requires only an actor-critic architecture which is able to learn with

very few iterations. Note that the PECMS has full access to the underlying simulated dynamics.

Our framework is a multi-level deep reinforcement learning module running at different control

levels. The controller takes decisions over two levels of abstractions: first, a top-level control element

(meta-controller) estimate the most optimum drive-cycle pattern based on the newly available

information about the near future driving condition; then, a lower-level element (controller) takes

action based on both the chosen drive-cycle pattern and current state of the system. Our model

utilizes stochastic gradient descent (SGD) at different temporal scales to maximize the expected
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future rewards both in intrinsic (controller) and extrinsic (meta-controller) levels.

In summary, our contributions in this work are listed as follows:

• Unlike the previous adoption of reinforcement learning for HEV powertrain control, which

assumes that there is a single optimal policy for all the drive-cycles, we propose a new archi-

tecture which employs two different policies for different levels of control. This modification

lets the proposed framework learn a different policy for each driving condition pattern.

• The proposed framework can converge to the optimal power management policy by learning

a DRL agent in an offline fashion. The proposed method then is considerably faster than the

previous methods proposed in the literature.

• Unlike the global optimization policies, the proposed method does not rely on a priori knowl-

edge of the driving condition. It is also a data-driven model which does not require any

detailed and accurate HEV modeling. In fact, the underlying network learns all the details

of the model that are important in making power distribution decision.

4.2 Related Works

The HEV power distribution strategy indicates the operation of ICE and EM, to satisfy the

requested thrust with minimum fuel consumption. The rule-based HEV powertrain control strate-

gies have been developed to follow a set of rules which are derived based on the human expertise

or many-valued logic methods such as fuzzy logic [119, 26]. Despite the ease of running these kinds

of approaches in real-time, they do not guarantee the optimality of the control actions.

To overcome their imperfection, one may employ the global optimization methods such as

dynamic programming, to decide how to split the power between the ICE and EM [120, 121]. A

decision made based on global optimization results in the most optimal fuel consumption for a

given trip. However, they need a priori knowledge of the driving condition during the whole trip.

Moreover, they heavily rely on an accurate and detailed model of the HEV. In contrast, real-time

optimization techniques [122], such as the adaptive equivalent consumption minimization strategy

(AECMS), emerged to transform the global optimization problem into a sub-optimal instantaneous

optimization. Despite their vast adaptation of these techniques in real-time powertrain control
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strategies, their performances depend on the driving conditions. Finally, the third group of power

management strategies employ a short-term prediction of the drive cycle [87, 88, 89] to make their

decisions towards the control of powertrain components. Compared to the real-time strategies,

accessing the short-term prediction of the drive cycle gives an extra degree of freedom to the

controller to adjust the soft constraints locally, e.g., level of SOC, based on its pre-knowledge of the

future driving conditions with the aim of efficiency improvement, and still satisfies them globally

(at the end of the drive cycle).

Machine learning provides a powerful tool for the decision-maker (i.e., the agent) to realize how

to optimally take action when the highly accurate model of system dynamics is difficult, or even

impractical, to obtain. The agent can sense the state of the environment to take action based on

the current state. Then, a reward based on the taken action will be given to the agent. Inspired by

the given reward, and being aware of the current state, the agent seeks a policy, which maps each

possible state to an action, by learning from its taken actions at each state and the received reward

values. A reinforcement learning (RL) framework has been already developed for the HEV energy

management problem [123]. Their proposed policy for power distribution in HEVS does not rely

on any knowledge of the future driving condition. In [124], the application of inverse reinforcement

learning has been investigated for learning driver behavior. However, it is out of our focus.

RL has been applied to the problem of HEV power distribution to minimize fuel consumption,

or total operation cost [123, 125, 126]. Even though RL techniques have been proven to convergence

to the optimal policy; the convergence rate depends on the dimensions of the state and action space.

With the success and popularity of neural networks in many machine learning applications, a few

research works studied applications of learning techniques on HEVs. He et al. [127], proposed a

learning vector quantization neural network to identify the driving cycle profile. A fuzzy neural

network has been employed in [128] to detect urban driving conditions. In [129] a framework is

introduced based on the ECMS and an adaptive neural network for driving cycle recognition to

decrease the sensitivity of the algorithm to different driving patterns.

The original DPG paper demonstrated data efficiency for stochastic actor-critic in an off-policy

fashion. They applied the method on multiple toy problems with linear approximators. However,

they did not examine how robust is the approach to high-dimensional state spaces. Levine et al.

[130] showed that the frameworks which are developed based on DPG could not deal with large



Hadi Kazemi Chapter 3. Drive-Cycle Aware Control 69

scale problems. A vast majority of the past work with actor-critic optimization approaches, due to

instability in training, had the same problem with scaling up to more challenging tasks [131].

Recent works demonstrated that with a model-free policy search the whole framework is more

robust to the scale of the problem [132]. Wawrzy et al. [133] proposed to use stochastic policies

in actor-critic frameworks employing a replay buffer. The DPG algorithm has been extended [134]

with an auxiliary network, namely deviator, which learns ∂Q/∂a explicitly.

However, they only train it on low-dimensional action spaces. To solve this issue, SVG(0)

is proposed in [135] which employs a Q-critic to learn a stochastic policy. This method can be

applied to stochastic policies using the re-parametrization trick. Schulman et al. [136] developed

trust region policy optimization (TRPO), which directly incorporates stochastic neural network

policies without braking up the problem into an optimal control phase and supervision phase. This

approach does not need to learn an action-value function, and consequently, is significantly less

data efficient.

To overcome the challenges of training an actor-critic framework, Levine et al. [137] proposed to

employ guided policy search (GPS) algorithms and decompose the problem into three easy-to-solve

stages: first, they utilize full-state observations to produce locally-linear approximations, and then

use optimal control to find the locally-linear optimal policy; finally, they use supervised learning to

learn a complex, non-linear policy (parameterized with a deep neural network) to regenerate the

state-to-action mapping.

4.3 Preliminaries

In this section, we provide some rudiments of RL and Recurrent Neural Networks, necessary to

understand the proposed framework.

4.3.1 Reinforcement Learning

To get benefit of the near future driving conditions, we can follow the standard reinforcement

learning setup in which an agent interacts with an unknown environment E in discrete timesteps.

At each timestep the agent senses the environment through an observation s ∈ S (known as state)

and takes an action a ∈ A. Consequently, it receives a scalar reward r from the environment.
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Here, S is the set of possible states, and A is the set of plausible actions. In our setup, S consists

of all the possible configurations of the HEV drivetrain which can affect our power distribution

decision regarding the fuel economy improvement, namely battery State of the Charge (SOC),

driver’s demanded power, and ICE and EM speeds. Similarly, A is the set of actions we can take,

which is also the output of our power distribution control unit. We define the action as the portion

of the requested power which is supposed to be provided by the EM. Clearly, the action set should

be in the range of [Pm/Pd, 1], where Pm is the minimum possible instantaneous power of the EM,

and Pd is the demanded power by the driver.

A policy, π, defines the agents behavior and maps each states to the actions. The return from

a state is defined as cumulative total of discounted future rewards R(s, a) = r(s, a) + γR(s′, a′),

where 0 ≤ γ ≤ 1 is the discount parameter. It should be noted that the value of the return is

related to the actions chosen, and therefore depends on the policy π.

In Reinforcement Learning, we are looking for a policy π : S → A that maximizes the expected

return Qπ(s0), which is defined as the total expected rewards, following a policy π and starting

from an initial state s0. To find such a policy, in most of the reinforcement learning algorithms

the action-value function is employed. Action-value function describes the expected return in given

state s after taking an action a, and thenceforth selecting the actions from policy π:

Qπ(s, a) =
∑
s′

T (s, a, s′)(r(s, a) + γQπ(s′, π(s′))) (4.1)

where T (s, a, s′) denotes the probability of transitioning from state s to s′ when taking action a.

An optimal policy πopt necessarily satisfies the following condition:

πopt(s) = arg max
a∈A

Qπopt(s, a), ∀s ∈ S (4.2)

Therefore, an easy strategy to find the optimal policy is to estimate an optimal action-value function

Qopt and then find πopt using Eq. (4.2). The action-value function depends only on the environment

which means that we can learn Qopt policy, using actions which are taken from a completely different

stochastic behavior policy. In Q-learning [138], one of the most common off-policy algorithms, a

greedy policy π(s) = arg maxaQ(s, a) is utilized for this purpose.

In actuality, an optimal-policy agent is after collecting more rewards following the approximated
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optimal strategy, and learning an accurate approximator of the action-value function, Q, across the

state-action space. The latter needs a comprehensive exploration of the state-action space, S ×A,

which commonly earned by employing an stochastic policy, called ε-greedy, which selects a random

non-optimal policy with a probability ε. In other words, the ε-greedy policy is defined as follows

πε(s) =

π̂opt(s), w. prob. 1− ε

Random a ∈ A, w. prob. ε
(4.3)

In deep Q-learning, to learn a function approximator of the action-value function, a neural

network parameterized by θQ is used which can be optimized by minimizing the following loss

L(θQ) =
∑

(s,a,r)

(
Q̂(s, a; θQ)− y(s, a)

)2
(4.4)

y(s, a) = r(s, a) + γQ̂(s′, π(s′); θQ)

where y(s, a) is an approximation of the true value of the action-value function for the given state-

action pair (s, a). However, the aforementioned Q-learning setup cannot be directly applied to the

continuous action spaces, since in continuous spaces it is too complex to find the greedy policy with

large, unconstrained function approximators. Therefore, an actor-critic approach proposed in [117]

can be used to train the neural network using stochastic gradient descent updates.

In that work, they proposed to use another neural network, called actor function π(s; θπ),

parameterized by θπ, which maps each state to a specific action in a deterministic fashion. The

action-value function Q(s, a), also called critic, is learned as explained, while the actor is updated

applying the chain rule to the expected return [117]. In other words, defining the objective function

J as the total discounted reward for a given policy, the actor estimator can be updated using the

gradient of J with respect to the actor parameters

5θπJ =
1

N

∑
sn

5aQ(s, a; θQ) |a=π(sn)
s=sn · 5θπ π(s; θπ) |s=sn (4.5)

where N is the total number of samples in the training batch and sn is the nth state sample.
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Figure 4.1: Schematic of the whole concept

4.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have a memory of the past actions. Therefore, the net-

work is capable of modeling dynamic temporal and spatial dependencies of sequence data. Long

short term memory (LSTM) networks are a variant of RNNs which allows capturing long term de-

pendencies. They have been successfully applied in many applications such as speech recognition,

time-series prediction, and natural language processing (NLP).

HEV power distribution strategies require looking over a long sequence of states and actions to

make an optimal decision. Clearly, the optimal action in each timestep is not independent of the

previous actions and states, since the dynamic responses of the vehicle’s components have relatively

large time constants compared to the control decision time steps. Consequently, observing just the

instantaneous state of the powertrain is not sufficent to make the power split decision. Bakker

[139] has shown that LSTM can outperform feed-forward networks in complex tasks where part of

the environment’s state is hidden from the agent. Therefore, our reinforcement learning agent gets

the benefit from added memory, by utilization of LSTM networks, which results in making smarter

decision which are way closer to the optimal solution.

An extended Deterministic Policy Gradient (DPG) algorithm has been proposed in [140],

namely RDPG, to deal with the recurrent networks in reinforcement learning critic and actor

updates. In this work we also follow the same technique to train our critic and actor networks.



Hadi Kazemi Chapter 3. Drive-Cycle Aware Control 73

Figure 4.2: Schematic of Drive Cycle Aware Power Distribution

4.4 Drive-Cycle Aware Powertrain control

The explained reinforcement learning algorithm in Section 4.3.1 is able to learn a single policy in

order to maximize the cumulative reward of a given task. In the problem of HEV power distribution

though, learning a single policy is not optimal for all the driving conditions. It is proven that the

powertrain control decision is a function of the long-term driving pattern, such as urban or highway,

in addition to the instantaneous driving condition. Therefore, in this work, we propose to learn a

distinct controller for each driving pattern, which we refer to as sub-controllers. Then, we also learn

a separate DQN as a meta-controller which is responsible to choose the most optimal sub-controller

based on the history of the driving information.

The agent, which in the new formulation has multiple controllers in different levels of goal

abstraction, takes action based on the received sensory data. The underlying controllers of the

agent are referred to as meta-controller and sub-controllers. Note that separate DQNs are employed

inside each of these controllers. The meta-controller incorporates the raw information about the

states and define a policy over driving patterns by estimating an action-value function Qm(st, at; θ)

which maximizes the expected future reward given the sub-controllers. The sub-controllers, in

contrast, take in the states and generate a policy over actions by estimating their own action-value

functions Qsi(st, at;φi) to solve their underlying optimization problem which is associated with a
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specific driving pattern (see Figure 4.2).

We first define the underlying optimization problem to be solved. In our formulation, we have a

distribution over drive cycles (tasks). The ultimate goal is to design a meta-controller which select

among a set of drive cycle specific controllers. In other words, our framework is supposed to learn

the tasks which are sampled from the drive cycle distribution.

Denoting S and A as the state space and action space, respectively, we can define a Markov

Decision Process (MDP) with a transition function P (s′, r|s, a), where (s′, r) represent the next

state and reward pair, and (s, a) is the current state and action pair. The agent, here, is defined as

a function which maps a series of state-action-reward history (s0, a0, r0, s1, a1, r1, . . . , st−1) to the

next optimal action at. To learn this reinforcement learning agent, we propose to iteratively learn

high and low level control networks with the weights denoted by θ and φ = [φi], respectively. In

fact, each low level control network φi learns to be optimal for a specific type of driving condition.

These low and high level control networks, define a stochastic policy πφ,θ(a|s). Our objective is

to optimize the expected return (negative fuel consumption) during a low level control networks

entire lifetime, over the sampled tasks (drive cycles).

There are different possible ways that one can integrate high level control parameters θ and

drive cycle specific parameters φ. In this work, we suggest an architecture that is developed having

the hierarchical reinforcement learning as motivation. More specifically, each sub-controller φi

defines a sub-policy πφi(a|s). The high level controller which switches between the sub-policies,

is implemented as a separate neural function estimator. In other words, it defines a meta-policy

which is parameterized by θ, and choose action from the set of sub-controller indices {i = 1, . . . , k}.

Here, the meta-policy takes actions at a fixed N timesteps.

4.4.1 Algorithm

Our framework is developed based on learning a set of sub-policies and a meta-policy, iteratively.

Each sub-policy should be optimal to reach high performance for the assigned task by the meta-

controller. At the same time, the distribution of tasks between the sub-controller should be in a

way that the framework can learn the meta-policy rapidly. To this end, we let the meta-controller

decides when to switch between the sub-policies based on our hand-defined drive cycle patterns.

More specifically, we start learning the meta-policy using our own definition of drive cycle patterns.
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This step is referred to as warm-up training of the meta-controller. However, the meta-controller

has the flexibility to choose between the sub-policies in the main training loop.

Algorithm 1 describes how we train the sub and meta-policies. Starting from a random initial-

ization, we update the two components, iteratively. We start with a meta-policy warm up training

step. Note that during the warm up step, we use our own labeling for the driving patterns. In this

work, we define three driving pasterns, namely urban, highway, and harsh. Consequently, we have

three sub-controllers to be selected by the meta-policy.

During the warm-up stage, we first sample a new driving pattern (task) from the driving pattern

distribution Pi. Then, we sample from the distribution of the selected driving pattern states Pdc.

Finally, we update the corresponding sub-controller which is selected to maximize its expected

return. In other words, in this stage, the meta-policy is not in the loop of sub-controllers’ update.

Instead, we update the meta-controller by forcing it to select the correct sub-controller given the

information about the past, current, and future driving conditions.

Algorithm 1 Drive Cycle Aware Power Distribution

1: Randomly initialize θ and φi for ∀i
2: repeat . (warm-up)
3: Sample driving pattern index i ∼ Pi
4: Sample from the ith driving pattern D ∼ Pdc
5: Update φi to maximize the expected return
6: Update θi to select the ith sub-controller
7: until convergence
8: repeat . (joint optimization)
9: for m=1,...,M do

10: Sample driving pattern index i ∼ Pi
11: Sample from the ith driving pattern D ∼ Pdc
12: Update θi to select the ith sub-controller with the maximum expected return

13: for s=1,...,S do
14: Sample driving pattern index i ∼ Pi
15: Sample from the ith driving pattern D ∼ Pdc
16: Update the selected φi by the meta-controller to maximize the expected return

17: until convergence

During the joint optimization stage of the algorithm, both parts (meta and sub controllers)

get optimized simultaneously. In this stage, we do not use the pre-defined driving pattern labels

to update the meta-controller weights. Instead, at each time step, we update the meta-controller

weights in a way to select the sub-policy which maximizes the expected reward. Note that in the
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training of the meta-controller we calculate the expected reward of the sub-policies over a larger

window size including information from the history of the driving conditions. In this way, the meta-

policy can gets the benefit of a larger window to select the most optimal sub-policy. We update

the meta-controller for a pre-defined number of steps before updating the sub-policies. Preliminary

results proved the effect of multiple step training on improving the performance of the learned

policies, and the stability of the training process.

Finally, after completing the meta-controller update steps, we fixed the weights of the meta-

policy and train the selected sub-controller by the meta-policy (at each step), and update its weight

to maximize the underlying expected return. Since we have multiple sub-controllers, the number of

sub-policy update steps is usually more than of the update steps of the meta-policy. We iteratively

switch between training of sub and meta controllers until the framework converges.

4.4.2 Architecture and Training

The critic and actor networks comprise 4 fully-connected layers followed by an LSTM layer, 64

nodes each. Both networks take system state as their inputs while the critic network gets the per-

formed action as well. As it is mentioned, we have a multi-dimensional state vector (instantaneous

driver’s demanded power, SOC, and ICE and EM speeds, as well as the predicted driving condition

in the next 30 seconds) and a scalar action value (EM contribution on the drivers’ requested power).

The structure of the networks are illustrated in Fig. 2.

We trained the DQN by running the model of the HEV in Matlab/Simulink for multiple drive

cycles. The reinforcement learning agent was implemented in TensorFlow/Python. The Simulink

model and the reinforcement agent were communicating through TCP/IP. The Simulink model

runs in a fixed-step setting to send vehicle’s state to the agent with a fixed timestep. Subsequently,

the agent sends back the action for that timestep and receives the corresponding reward in the next

step. The instantaneous reward for each timestep is defined in section 4.4.3.

For exploration purposes, in training time, instead of using ε-greedy policy, an exploration

normal noise is added to the action of the actor network before passing it to the HEV model. In

other words, the action at each time is given by at = π(st; θ
π) + ηt where ηt is the normal noise.

To abate how highly correlated data affect the training process, we utilized a large replay buffer

to train the neural networks. At each training step, the last five states, actions, and their immediate
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rewards are saved as a single training sample in the replay memory. When the size of the replay

memory exceeds the batch size, the training process is started by drawing a batch of samples

uniformly at random. The replay memory has a fixed maximum size of 100,000 samples. If it

reaches its maximum size, new training samples replace the oldest ones. The training is performed

in episodic fashion. We used Adam optimization technique to update the networks’ parameters. At

the end of each drive cycle, the next drive cycle where chosen randomly. We trained the networks

for 2.5 millions steps.

4.4.3 Reward Function

The most critical key to the success of reinforcement learning agents is the definition of a

proper reward function. The reward should be a good representative of to what extend each action

is aligned with the main goal of the problem. The given reward at each timestep, in general, could

be not only a consequence of the last taken action but past several actions. The goal of our control

system is to minimize the fuel consumption of the HEV over a drive cycle. However, since an

HEV can also use electrical energy, the final trip battery State of Charge (SoC) also matters in the

optimization. Therefore, instead of just minimizing the total fuel consumption of the vehicle over

a drive cycle, we need to minimize the total weighted energy consumption of the vehicle:

Etotal = Efuel + αEbattery (4.6)

However, the we cannot employ this reward in its intrinsic form, and therefore we define a suitable

reward function as

r(at) ==

−rnf , at Not feasible

−Etfuel − αEtbattery, at Feasible
(4.7)
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where rnf > 0 is a big penalty value to prevent the network from generating infeasible actions. In

our problem, an infeasible action is an action which cannot satisfy one of the following conditions:

Pd = Pm + Pi

Pm ≤ Pm ≤ Pm (4.8)

P i ≤ Pi ≤ P i

where Pd is the power demand, Pm is the power of the EM, and Pi > 0 stands for the power of ICE.

The underlines and upperlines represent the minimum and maximum possible value of the power,

respectively. In braking time, however, this condition should not be satisfied and at represents the

portion of the maximum possible regenerative braking to be provided by the EM. Obviously, in the

best action with this definition for braking time is at = 1.

To select the value of α, we ran the model of HEV for multiple drive cycles with different

driving pattern (e.g. urban, highway, and harsh) both in hybrid (EM and ICE) and pure electric

(EM only) modes. Then, the value of alpha is selected as follows

α =
Ef

Ee − Eeh

where Ef is the consumed fuel energy, Ee is the electrical energy consumption using EM in pure

electric mode, and Eeh is the electrical energy consumption in hybrid mode, where both the EM and

ICE are utilized. We ran the model using Adaptive Consumption Minimization Strategy (AECMS)

controller to estimate an initial value for the alpha. During training. Since the value of α is related

to the energy management strategy, we update the alpha in a moving average fashion at the end

of each episode:

α = βα+ (1− β)αepisode, (4.9)

where 0 < β � 1 is a real valued coefficient.

Learning the meta-controller to maximize the expected return may result in frequent switches

between different controllers. To prevent frequent switches, we add a reward term to the objective

function of meta-controller proportional to the time since the last control switch.
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4.5 Simulation Results

The simulation results of the proposed framework for a P2 HEV power distribution are presented

in this section. We follow the same HEV model as in the previous chapter. The proposed multi-level

reinforcement learning framework for HEV power management is compared with the the Method III

proposed in Section 3.4.3 and AECMS, based on both standard (UDDS, HWFET, US06) and real-

word, i.e., model deployment (MD) dataset [106], driving cycles. To train the agents we used three

hours of velocity pattern from MD dataset. The velocity profiles, then, clustered into three groups

of highway, urban, and harsh driving conditions. We added a random smooth noise (generated by

choosing a Fourier transform coefficient randomly) to augment the data. Due to the lack of harsh

driving conditions in the dataset, we created a set of harsh driving profiles by adding relatively

high frequency noise to the highway profiles.

To improve the stability of neural-network based reinforcement learning algorithm we use target

network schemes. The algorithm maintains two copies of the value function and of the policy

networks. We update the first copies, which are used in real-time simulation, with some delay.

Different authors have investigated different methods to update the first copies. In this work, we

use soft updates as in [117].

To investigate the effect of multi-level control strategy in the proposed framework, we also

trained a single universal agent to deal with all the three driving conditions. Similar to the previous

experiments in this work, we assumed that the next 30 seconds of the drive cycle is available to

the controller. Table II compares the fuel consumptions of proposed methods in this work with the

AECMS over different driving cycles. Note that the test MD drive cycle is created by creating a 2-

hour driving profile from multiple profiles in MD dataset (different than the one used in the training

phase).The fuel consumptions of the proposed multi-level DRL framework are always lower than

that of the all other methods. It also always outperforms the single-level control strategy which

confirm our assumption that a single-level control strategy could be sub-optimal for different driving

conditions.

Strategy MPG # ON/OFF Final SOC Window Improvement

UDDS

AECMS 54.77 24 30.53 - -
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Method III 55.75 20 30.53 30 s 1.8 %

Multi-Level DRL 56.24 17 30.49 30 s 2.7 %

Single-Level DRL 56.19 17 30.38 30 s 2.6 %

HWFET

AECMS 39.77 21 31.05 - -

Method III 40.93 17 31.23 30 s 2.9 %

Multi-Level DRL 41.08 18 31.12 30 s 3.3 %

Single-Level DRL 41.04 20 31.09 30 s 3.2 %

US06

AECMS 24.99 20 30.52 - -

Method III 25.92 14 30.35 30 s 3.7 %

Multi-Level DRL 26.11 17 30.18 30 s 4.1 %

Single-Level DRL 25.96 17 30.25 30 s 3.9 %

Model Deployment

AECMS 45.18 68 30.22 - -

Method III 46.24 59 30.61 30 s 2.3 %

Multi-Level DRL 48.03 52 30.52 30 s 6.3 %

Single-Level DRL 47.76 56 30.57 30 s 5.7 %

Table 4.1: Fuel Economy, Final SOC, and Number of Engine

ON/OFF of the proposed multi-level DRL control strategy

compared to that of AECMS, Method III, and single-level

DRL on different drive cycles

Figure 4.3 shows how the meta-controller split a drive cycle (extracted from MD dataset)

between different low-level controllers. Note that, the labels for low-level controllers comes from

the pre-training phase. It is clear from the figure that the high-level controller captured the patterns

of different scenarios (urban, highway, and harsh).

Figure 4.4 compares the total reward achieved by Multi-Level DRL and Single-Level DRL

through the training process. Clearly, Multi-Level DRL converges faster and gets higher rewards



Hadi Kazemi Chapter 3. Drive-Cycle Aware Control 81

Figure 4.3: High level controller selects a low level controller for power distribution based on the
history and future of the driving conditions.

at the end of training.

4.6 Conclusion

An energy management strategy (EMS) plays a critical role in the efficiency of HEVs. However,

the driver-specific and general variation of driving conditions affect the optimality of traditional

EMSs. In this work, in contrast to the previous developed EMSs in the literature which are designed

to track a set of pre-specified rules that are not adaptive to the variable driving conditions, we

propose to design an EMS framework that can adapt its rules to the current driving condition.

We refer to this framework as drive cycle aware EMS. This adaptation could be to a general pre-

defined driving patterns, such as urban, highway, or harsh driving conditions, or drive-specific

driving habits. To this end, we proposed a deep Q-Network (DQN) based EMS such that it can

switch between multiple policies based on the overall driving conditions in the past and near future.

Similar to our proposed PECMS, the EMS output action is the ratio of demanded power distribution

between the electric motor and the internal combustion engine. The effectiveness of the proposed
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Figure 4.4: Comparison of total reward vs. training steps for Multi-Level DRL and Single-Level
DRL.

method has been studied with a set of simulation experiments. Experimental results validate the

superiority of drive cyle aware EMS compared to our proposed PECMS.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we explored several applications of ITS in improving the efficiency and

safety of vehicles, by the integration of information, telecommunication, and cyber technologies

into transportation systems. This integration provides vehicles with a real-time comprehensive

awareness of their surroundings and situations for the purpose of improving safety and efficiency.

In the first part of this work, we first designed a neural-network based trajectory predictor which can

estimate the location of other vehicles from the information communicated through V2V commu-

nication. Then, we developed an MPC controller which employs future location of the surrounding

vehicles to improve the stability and safety of a CACC platoon. The designed controller can react

in time and properly to an unexpected cut-in scenario in the middle of the platoon. In the sec-

ond part of this dissertation, we designed multiple power distribution strategies for HEVs which

incorporate the predicted near-future velocity of the vehicle to decrease the fuel consumption by

optimally distributing the requested power between the EM and the ICE. Then, we designed a

controller which can detect different driving conditions, and use corresponding drive-cycle specific

sub-controller to distribute the requested power between the ICE and EM.

Safety: Handling interfering vehicles in a CACC platoon.

Unsignaled lane change is one of the most critical situations among unexpected remote vehicle

maneuvers to be addressed in CACC design as it can significantly affect the level of safety and pla-

tooning performance in this application. In this work, we specifically focused on a cut-in maneuver
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by a remote vehicle, due to its imminent threat to the safety and stability of the whole CACC

platoon. We first predicted the probability of any remote vehicles in the adjacent lanes to show a

cut-in intention. Then, we developed a probabilistic framework to incorporate the probability of

a possible cut-in, in the middle of a CACC platoon, in the control system design to improve the

performance of the current conventional CACC controllers.

In our design, a cut-in maneuver of an interfering vehicle is detected, and its trajectory is

predicted using a three-layer neural network-based approach. Then, the predicted path of the

remote vehicle is used to calculate the probability of a possible cut-in maneuver. The probability

is defined as the ratio of predicted trajectory overlap with the host vehicles bad-set area. This

probability, which is referred to as cut-in probability, determines how likely a dangerous situation

may be caused by a sudden cut-in into a stable CACC platoon. Clearly, higher values of this

probability need more urgent reactions from the host vehicles controller to prevent the possible

collision with a smooth and safe reaction. This goal is achieved by giving this probability to a new

stochastic MPC controller, designed based on the emerging SHS concept. The overall performance

of the designed system is evaluated, and its effectiveness for better regulation of the host vehicles

reaction to dangerous cut-in situations is discussed using realistic cut-in driving scenarios from

SPMD dataset.

Efficiency: HEV power distribution strategy.

We focused on the design of a power distribution strategy for splitting the instantaneous de-

manded power by the driver, between the EM and ICE in a hybrid electric vehicle. The proposed

methods incorporate the prediction of the drive cycle in the near future, to improve the current

real-time techniques. We introduced two novel approaches. First, we developed a method based on

a linear estimation of the optimal equivalent factor of AECMS in the prediction horizon, namely

PECMS. The proposed method then uses this sub-optimal solution to adjust the equivalent factor

of AECMS toward a sub-optimal solution. Here, the AECMS, as of its original version, adjusts the

equivalent factor to prevent the SOC from diverging too much of its nominal value. However, the

PECMS relieves the constraint of AECMS on the SOC, based on the information about the near

future driving condition, such as energy requirement or the optimal equivalent factor. We achieved

up to 4% improvement in fuel economy using the proposed PECMS methods.

Second, we followed the recent development in reinforcement learning for a novel multi-level



References 85

power distribution control. This is important because there is no other prior work addressing this

problem using a controller which can adjust its decision to the driving pattern. We proposed to

use two reinforcement learning agents in two levels of abstraction. The first agent, select the most

optimal low-level controller (second agent) based on the overall pattern of the drive cycle, i.e., urban,

highway and harsh. Then, the selected agent by the high-level controller (first agent) decides how

to distribute the demanded power between the EM and ICE. We found that by carefully designing a

training scheme, it is possible to effectively improve the performance of this data-driven controller.

We achieved up to 6% improvement in fuel economy using the proposed drive-cycle aware power

distribution strategy.

5.2 Future Work

5.2.1 Stochastic MPC design for CACC

To handle a possible cut-in in a CACC platoon, we reformulated the problem as a deterministic

MPC design by remodeling the system as a time-triggered hybrid system. However, as future

work, the performance of CACC developed based on its original stochastic MPC problem can be

compared with the designed controller. One may also adopt the proposed method in other scenarios

than cut-in in a CACC.

5.2.2 HEV Powertrain Control

In Chapters 2 and 3, we proposed two methods of power distribution in HEVs. However, our

design was only evaluated in the perfect estimation of the near future velocity of the vehicle. One

may evaluate the effect of prediction error on the proposed methods. The design might also need

to degrade the effect of prediction error. For future work, it would also be interesting to use a real

velocity predictor and study different sources of imperfection. For the multi-level RL controller,

a neural network based velocity predictor can be incorporated in the network, as it enables us to

jointly optimize the velocity predictor and the controller.
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Chapter 6

Appendices

Appendix A

The model predictive control law finds the optimal input sequence u∗[k] which minimize a

predicted cost function J [k] at each time instant:

u∗[k] = arg min
u
J [k] (6.1)

subject to
xmin ≤ x[k + i|k] ≤ xmax
umin ≤ u[k + i|k] ≤ umax

i = 1, . . . , N − 1

In the receding horizon implementation of MPC, only the first element of this optimal input se-

quence is selected as the input to the system and the whole process repeats at each time instant.

However, designing a receding horizon controller based on a finite-horizon cost function does not

guarantee the stability and optimality of the closed loop system. This problem can be avoided by

defining an infinite prediction horizon for performance evaluation cost:

J(k) =
∞∑
i=0

[xT (k + i|k)Qx(k + i|k) + uT (k + i|k)Ru(k + i|k)] (6.2)

However to keep the number of MPC optimization problem finite, a dual-mode prediction approach

can be utilized in which the predicted input sequence is defined as follows

u(k + i|k) =

optimization variables i = 0, 1, ..., N − 1

Kx(k + i|k) i = N,N + 1, ...
(6.3)



CHAPTER 6. APPENDICES 98

Then by choosing the terminal weighting matrix Q̄ in a way that xT (k+N |k)Q̄x(k+N |k) is equal

to the cost over the second mode of the predicted input sequence, the infinite cost (6.2) can be

rewritten as

J(k) =
N−1∑
i=0

[xT (k + i|k)Qx(k + i|k) + uT (k + i|k)Ru(k + i|k)]

+ xT (k +N |k)Q̄x(k +N |k) (6.4)

Theorem 3 The performance cost (6.4) is equal to the infinite cost (6.2) under the control law

(6.3) when Q̄ and K are the solutions of the Riccati equations

K = (R+BT Q̄B)−1BT Q̄A (6.5)

Q̄− (A+BK)T Q̄(A+BK) = Q+KTRK

To solve the MPC problem (6.1), it should first converted into a Quadratic Programming (QP)

Problem by rewriting the cost function (6.4) in a compact form

J(k) = uT [k]Hu[k] + 2xT [k]F Tu[k] + xT [k]Gx[k] (6.6)

where

H = CT Q̃C + R̃, F = CT Q̃M , G = M T Q̃M +Q

with M = [A,A2 . . . AN ]T , R̃ = diag[R,R . . . R], Q̃ = diag[Q . . .Q, Q̄] and the convolution matrix

C is defined by

C =


B 0 . . . 0

AB B . . . 0
...

...
. . .

AN−1B AN−2B . . . B


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Then, the MPC problem (6.1) is equivalent to the following QP problem

u∗[k] = arg min
u

uTHu + 2xT [k]F Tu[k] (6.7)

subject to Acu ≤ b0 +Bxx[k]

where

Ac =


Inu

−Inu
C

−C

 , b0 =


Inuumax

−Inuumin
INxmax

−INxmin

 , Bx =


0nu

0nu

−A
A


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Appendix B

As a direct consequence of the more general condition for Cauchys series convergence test, we

know that for any infinite sequence a(0), a(1), . . ., if
∑n

k=0 a(k) tends to finite limit as n→∞, then

a(k)→ 0 as k →∞.

From that, we can show that if there exists a continuously differentiable positive definite scalar

function V (x) such that V (f(x))− V (x) ≤ −l(x) ≤ 0, then l(x(k)) as k →∞.

Proof: Since V (f(x)) − V (x) ≤ −l(x) ≤ 0 implies l(x(k)) ≤ V (x(k)) − V (x(k + 1)), and by

summing the both sides of this inequality over k = 0, 1, . . . we have

∞∑
k=0

l(x(k)) ≤ V (x(0))− lim
k→∞

V (x(k)) (6.8)

The right hand side of this inequality is finite as V (x(k)) ≥ 0 and V (x(k + 1)) ≤ V (x(k)) imply

that V (x(k)) converge to a finite limit when k →∞. Consequently, l(x)→ 0.

Now with the assumption of MPC optimization problem being feasible, i.e., at all time steps

there exist predicted input and state trajectories that satisfy the constraints, then the MPC cost

function is a function of x(k) or equivalently J∗(k) = V (x(k)). Now, to satisfy the positive defi-

niteness condition of V (x(k)), either of the following conditions should be held:

• Q is positive definite.

• (A,Q

1

2 ) is an observable pair, where Q

1

2 s any matrix with Q

1

2
T
Q

1

2 = Q.

When the second condition is met, then J∗(k) = 0 implies ‖ Q
1

2x(k+ i|k) ‖22= 0, i = 0, 1, . . . and

since (A,Q

1

2 ) is observable, we have x(k) = 0.
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Appendix C

This section lists the codes developed in MATLAB for the designed MPC controller for CACC

to handle interfering vehicles.

Listing 6.1: Matlab code for CACC

1 function [ d e l ta out , de l t a v out , a out , u out , pr out ] =

CACC MPC hybrid( pr , p r l a s t , h , d0 , d e l t a i n , d e l t a v i n , a in , u in

, t , v platoon , l b )

2 % h : time gap

3 % pr : p r o b a b i l i t y o f a cut−in

4 % p r l a s t : l a s t s t e p p r o b a b i l i t y o f a cut−in

5 % d e l t a i n : l a s t s t e p d e l t a

6 % d e l t a v i n : l a s t s t e p d e l t a v

7 % a i n : l a s t s t e p a

8 % u in : l a s t s t e p input

9 % [ d e l t a o u t , d e l t a v o u t , a out ] = CACC( pr , p r l a s t , h , d0 , d e l t a i n ,

d e l t a v i n , a in , u in , t )

10

11 c i = 0 . 2 5 ;

12 N = 30 ;

13 Nc = 23 ;

14 d e l t a t = 0 . 1 ; %Sample Time

15 Len = 0 ;

16

17 %% C o n t r o l l e r and System Modeling

18

19 % System i s c o n t r o l l a b l e s i n c e rank ( c t r b (A0, B0) ) = 3

20 A0 = [ 1 , d e l t a t ,−h∗ d e l t a t ;0 ,1 ,− d e l t a t ;0 ,0 ,1− d e l t a t / c i ] ;

21 B0 = [ 0 ; 0 ; d e l t a t / c i ] ;

22 G0 = [ 0 ; d e l t a t ; 0 ] ;

23

24 G1 = [ G0, zeros (3 ,N−1) ] ;

25 G2 = [ zeros (N, 1 ) , [ eye (N−1) ; zeros (1 ,N−2) , 0 . 1 ] ] ;

26
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27 A = [ A0 ,G1 ; zeros (N, 3 ) ,G2 ] ;

28 B = [ B0 ; zeros (N, 1 ) ] ;

29

30 c b = [ 1 , zeros (1 , length (A)−1) ; 0 , 1 , zeros (1 , length (A)−2) ; 0 , 0 , 1 , zeros (1 ,

length (A)−3) ] ; %y = c b ∗ x

31

32 x max = [ 5 ; 5 ; 5 ; 1 0 0 ∗ ones (N, 1 ) ] ;

33 x min = [−5;−5;−5;−100∗ ones (N, 1 ) ] ;

34 x max = [ l b ; 1 5 ; 9 ; 1 0 0 ∗ ones (N, 1 ) ] ;

35 x min = [− l b /2;−5;−8;−100∗ ones (N, 1 ) ] ;

36 u max = 3 ;

37 u min = −5;

38

39 mu = [ ] ;

40 C = [ ] ;

41 Ac = [ ] ;

42 b0 = [ ] ;

43 Bx = [ ] ;

44

45 for i = 1 :N

46 mu = [mu;Aˆ i ] ;

47 Bx = [ Bx;−Aˆ i ;Aˆ i ] ;

48 end

49

50 for i = 1 :N

51 Ci = [ ] ;

52 for j = 1 :N

53 i f ( j==i )

54 Ci = [ Ci ;B ] ;

55 e l s e i f ( j>i )

56 Ci = [ Ci ; (Aˆ( j−i ) ) ∗B ] ;

57 else

58 Ci = [ Ci ; zeros ( s ize (B) ) ] ;

59 end

60 end
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61 b0 = [ b0 ; x max;−x min ] ;

62 C = [C, Ci ] ;

63 end

64

65 Q = c b ’∗ c b ;

66 R = 0 . 0 1 ;

67

68 [ Q b , L , k ] = dare (A,B,Q,R) ;

69

70 temp = repmat ({Q} , 1 , N−1) ;

71 temp (end+1) = {Q b } ;

72 Q t = blkd iag ( temp { :} ) ;

73

74 temp = repmat ({R} , 1 , N) ;

75 R t = blkd iag ( temp { :} ) ;

76 H = C’ ∗ Q t ∗ C + R t ;

77 H = (H+H’ ) /2 ;

78 G = mu’ ∗ Q t ∗ mu + Q;

79 F = C’ ∗ Q t ∗ mu;

80

81 %rank ( obsv (A+B∗k , c b ) )

82

83 Ac = [ [ eye (N) ;−eye (N) ] ; Ac ] ;

84

85 for i = 1 :N

86 s t a r t = 1 + ( i −1) ∗ length (B) ;

87 Ac = [ Ac ;C( s t a r t : s t a r t+length (B) −1 ,:) ;−C( s t a r t : s t a r t+length (B)

−1 ,:) ] ;

88 end

89

90 b0 = [ ones (N, 1 ) ∗u max ; −ones (N, 1 ) ∗u min ; b0 ] ;

91 Bx = [ zeros (2∗N, s ize (Bx , 2 ) ) ; Bx ] ;

92

93 %% Run the p la toon system

94
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95 a0 = 0 ; %I n i t i a l A c c e l e r a t i o n o f the l e a d RV

96 v0 = v platoon ; %I n i t i a l V e l o c i t y o f the l e a d RV %30

97 d e l t a = [ 0 , d e l t a i n ] ; %I n i t i a l Spacing Error

98 d e l t a v = [ 0 , d e l t a v i n ] ; %I n i t i a l V e l o c i t y D i f f e r e n c e ( V i − V (

i−1))

99 a = [ a0 , a i n ] ; %I n i t i a l A c c e l e r a t i o n o f a l l 4 v e h i c l e s

100 v = [ v0 , v0 − d e l t a v (2 ) ] ;

101

102 index = 1 ;

103

104 A = [0 ,1 ,−h ;0 ,0 ,−1;0 ,0 ,−1/ c i ] ;

105 B = [ 0 ; 0 ; 1 / c i ] ;

106 G = [ 0 ; 1 ; 0 ] ;

107 u = [ 0 , 0 , 0 , 0 , 0 ] ;

108 a (1 ) = 0 ;

109

110 %update v e l o c i t y o f the i−th HV v e h i c l e

111 v (2 ) = v (2) + a (2) ∗ d e l t a t ;

112

113 i f ( v (2 ) < 0)

114 v (2 ) = 0 ;

115 end

116

117 d e l t a d e l t a = (1 + pr ) ∗ (h ∗ v (2 ) + Len + d0 ) − (1 + p r l a s t ) ∗ (h ∗ v

(2) + Len + d0 ) ;

118

119 d e l t a (2 ) = d e l t a (2 ) − d e l t a d e l t a ;

120 x u = [ d e l t a (2 ) , d e l t a v (2 ) , a (2 ) , a (1 ) ∗ ones (1 ,N) ] ’ ;

121

122 % S o l v i n g the QP problem

123 temp = quadprog (H, F∗x u , Ac , b0 + Bx ∗ x u ) ;

124

125 %update s t a t e s o f the i−th HV v e h i c l e

126 x = [ d e l t a (2 ) , d e l t a v (2 ) , a (2 ) ] ’ ;

127 d e l t a x = (A ∗ x + B ∗ u in + G ∗ a (1 ) ) ∗ d e l t a t ;



CHAPTER 6. APPENDICES 105

128 x = x + d e l t a x ;

129 y = [ x ; a (1 ) ] ;

130

131 i f length ( temp )>0

132 u out = temp (1) ;

133 else

134 i f d e l t a (2 )< 0

135 u out = −5;

136 else

137 u out = 3 ;

138 end

139 end

140

141 d e l t a o u t = x (1) ;

142 d e l t a v o u t = x (2) ;

143 a out = x (3) ;

144 pr out = pr ;

145

146 end



CHAPTER 6. APPENDICES 106

Appendix D

This section lists the codes developed in MATLAB/Simulink for the HEV simulation.

Listing 6.2: Implementation of AECMS

1 function [ P em opt , P ice opt , error ] = AECMS( P req , s , P em min ,

speed em RPM , P em max , P ice max , speed ice RPM , eng spd , eng trq ,

eng map , mot spd , mot trq , mot map , cha rge su s ta in ing , e s s v o l t ,

e s s max curr charge , e s s max cu r r d i s cha rg e )

2

3 % P req : r e q u e s t e d power by the d r i v e r

4 % s : E q u i v a l e n t f a c t o r

5 % P em min : Minimum i n s t a n t a n e o u s EM power

6 % speed em RPM : Ins tantaneous EM speed

7 % P em max : Maximum i n s t a n t a n e o u s EM power

8 % P ice max : Maximum i n s t a n t a n e o u s ICE power

9 % speed ice RPM : Ins tantaneous ICE speed

10 % eng spd : Speed a x i s f o r ICE e f f i c i e n c y map

11 % e n g t r q : Torque a x i s f o r ICE e f f i c i e n c y map

12 % eng map : ICE e f f i c i e n c y map

13 % mot spd : Speed a x i s f o r EM e f f i c i e n c y map

14 % mot trq : Torque a x i s f o r EM e f f i c i e n c y map

15 % mot map : EM e f f i c i e n c y map

16 % c h a r g e s u s t a i n i n g : Check i f we are in c h a r g e s u s t a i n i n g mode to use

AECMS

17 % e s s v o l t : ESS v o l t a g e

18 % e s s m a x c u r r c h a r g e : ESS max charg ing current

19 % e s s m a x c u r r d i s c h a r g e : ESS max d i s c h a r g i n g v o l t a g e

20

21 P em opt = 0 ;

22 P i c e o p t = 0 ;

23 error = 0 ;

24

25 i f ( c h a r g e s u s t a i n i n g > 0)

26 de l ta P = 200 ;
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27 J min = 1 e10 ;

28

29 P req mot max = P req ;

30 i f ( P req > P em max)

31 P req mot max = P em max ;

32 end

33

34 P em vec = linspace ( P em min , P req mot max , de l ta P ) ;

35 P i c e v e c = P req − P em vec ;

36 P em = P em vec ( P i c e v e c <= P ice max ) ;

37 P i c e = P i c e v e c ( P i c e v e c <= P ice max ) ;

38

39 i f ( speed ice RPM > 590 && ˜isempty ( P i c e ) )

40 [ P e , curr ] = P ech (P em , speed em RPM , mot spd , mot trq , mot map ,

e s s v o l t ) ;

41 i f (sum( curr >= es s max cu r r d i s cha rg e )==0)

42 P e = 0 ;

43 P f = 0 ;

44 error = 1 ;

45 P em = P em min ;

46 e l s e i f (sum( curr <= ess max cur r charge )==0)

47 P e = 0 ;

48 P f = 0 ;

49 error = 1 ;

50 P i ce = min( P ice max , P req ) ;

51 %P em = min ( [ e s s m a x c u r r c h a r g e ∗ e s s v o l t , P req − P ice , P em max ] ) ;

52 P em = min ( [ e s s max cur r charge ∗ e s s v o l t , P req − P ice , P em max ] ) ;

53 else

54 P f = P f u e l ( P ice , speed ice RPM , eng spd , eng trq , eng map ) ;

55 P e = P e ( curr <= ess max cur r charge & curr >= e s s max cu r r d i s cha rg e )

;

56 P f = P f ( curr <= ess max cur r charge & curr >= e s s max cu r r d i s cha rg e )

;

57 P em = P em( curr <= ess max cur r charge & curr >=

es s max cu r r d i s cha rg e ) ;
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58 P i ce = P ice ( curr <= ess max cur r charge & curr >=

es s max cu r r d i s cha rg e ) ;

59 end

60 J = P f + s ∗ P e ;

61

62 J min = min( J ) ;

63 P em = P em( J == J min ) ;

64 P i c e = P ice ( J == J min ) ;

65 i f (˜ isempty (P em) )

66 P em opt = P em (1) ;

67 P i c e o p t = P ice (1 ) ;

68 else

69 P em opt = min(P em max , P req ) ;

70 P i c e o p t = 0 ;

71 end

72 else

73 P em opt = min(P em max , P req ) ;

74 P i c e o p t = 0 ;

75 end

76 end

77 end

78

79 function p f = P f u e l ( P ice , speed i c e , eng spd , eng trq , eng map )

80 s p e e d i c e r a d = s p e e d i c e ∗ (2 ∗ pi / 60) ;

81 T ice = P ice /( s p e e d i c e r a d ) ;

82

83 m dot = interp2 ( eng trq , eng spd , eng map , T ice , s p e e d i c e ∗ ones (1 ,

length ( T ice ) ) ) ;

84

85 f u e l d e n s i t y v a l = 0 . 8 0 1 ; % kg /L

86 f u e l h e a t i n g v a l = 29047000; % ( J/ kg ) S p e c i f i c LHV

87 Q fue l = f u e l d e n s i t y v a l ∗ f u e l h e a t i n g v a l /1000 ; % J/g

88

89 p f = m dot ∗ Q fue l ; % m dot i s the f u e l r a t e and Q f u e l i s

the f u e l energy d e n s i t y
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90 end

91

92 function [ P e curr ] = P ech (P em , speed em , mot spd , mot trq , mot map ,

e s s v o l t )

93 i f ( speed em > 0)

94 speed em rad = speed em ∗ (2 ∗ pi / 60) ;

95 T em = abs (P em/( speed em rad ) ) ;

96

97 e f f i c i e n c y = interp2 ( mot trq , mot spd , mot map ’ , T em , speed em∗ ones (1 ,

length (T em) ) ) /100 ;

98 P em(P em >= 0) = P em(P em >= 0) . / e f f i c i e n c y (P em >= 0) ;

99 P em(P em < 0) = P em(P em < 0) .∗ e f f i c i e n c y (P em < 0) ;

100 P e = P em ;

101 curr = −P em / e s s v o l t ;

102 else

103 curr = 0 ;

104 P e = 0 ∗ P em ;

105 end

106 end

Listing 6.3: Implementation of PECMS

1 function [ s p , s n , E0 a l l , t l a s t o u t ]= E q u i v a l e n t f a c t o r ( t s t a r t ,

gear num , Sch Cycle , pedal , E 0 l a s t , eng spd , eng trq , eng map ,

mot spd , mot trq , mot map , eng trq max map , eng trq max spd ,

mot trq max map , mot trq max spd , e s s v o l t , t l a s t , s n l a s t ,

s p l a s t )%, E o l d i n )

2 %%

3 a l l E e p =[0 0 0 0 0 0 ] ;

4 a l l E f p =[0 0 0 0 0 0 ] ;

5

6 a l l E e n =[0 0 0 0 0 0 ] ;

7 a l l E f n =[0 0 0 0 0 0 ] ;

8

9 E e p o ld = [ 0 0 0 0 0 0 ] ;

10 E e n o ld = [ 0 0 0 0 0 0 ] ;
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11 E f p o l d = [ 0 0 0 0 0 0 ] ;

12 E f n o l d = [ 0 0 0 0 0 0 ] ;

13

14 m = 1700 ;

15 grade = 0 ;

16 R Wheel = 0 . 3 5 3 ;

17 C r = 0 . 0 0 9 ;

18 D r a g c o e f f i c i e n t = 0 . 3 7 2 ;

19 g = 9 . 8 1 ;

20 D i f f r a t i o = 2 . 7 7 ;

21

22 t lookahead = 5 ;

23 t ime sps = 10 ;

24

25 i p = 1 ;

26 i n = 1 ;

27

28 s p = s p l a s t ;

29 s n = s n l a s t ;

30 E 0 a l l = E 0 l a s t ;

31

32 %E o l d o u t = E o l d i n ;

33

34 i f pedal > 0 .005

35 %c a l c u l a t e s

36 i f t s t a r t − t l a s t > 1

37 t l a s t

38 t l a s t = t s t a r t ;

39 for u = −1 : 0 . 1 : 1

40 i f ( ( u>−0.6 && u < 0 . 6 ) | | u == −1 | | u == 1)

41 t num = t ime sps ∗ t lookahead ;

42 gear = gear num ;

43 E f = 0 ;

44 E e = 0 ;

45
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46 i f (any( E e p o ld ) | | any( E f p o l d ) )

47 t num0 = t ime sps ∗ ( t lookahead − ( t s t a r t − t l a s t ) ) ;

48 else

49 t num0 = 0 ;

50 end

51

52 % t l a s t = t s t a r t ;

53

54 for t i ndex = t num0 : 1 : t num

55 s im t = t s t a r t + t index / t ime sps ;

56 v e h i c l e s p e e d = interp1 ( Sch Cycle ( : , 1 ) , Sch Cycle ( : , 2 ) , s im t ) ∗ 0 . 4470 4 ;

% m/ s

57 v e h i c l e s p e e d n e x t = interp1 ( Sch Cycle ( : , 1 ) , Sch Cycle ( : , 2 ) , s im t+1/

t ime sps ) ∗ 0 . 4 470 4 ;% m/ s

58 v e h i c l e a c c e l = ( v e h i c l e s p e e d n e x t − v e h i c l e s p e e d ) ∗ t ime sps ;

59 gear = t ransmi s s i on ( gear , v e h i c l e s p e e d /0 .44704) ;

60

61 w e = v e h i c l e s p e e d ∗60∗ D i f f r a t i o ∗ g e a r s e l e c t o r ( gear ) /( R Wheel∗2∗pi ) ;

62 w m = v e h i c l e s p e e d ∗60∗ D i f f r a t i o ∗2 . 5/ ( R Wheel∗2∗pi ) ;

63

64 i f v e h i c l e s p e e d > 0

65 tau d = (m ∗ v e h i c l e a c c e l + C r∗m∗g∗ cosd ( grade ) + v e h i c l e s p e e d ˆ2 ∗
D r a g c o e f f i c i e n t ) ∗R Wheel ;

66 else

67 tau d = (m ∗ v e h i c l e a c c e l + v e h i c l e s p e e d ˆ2 ∗ D r a g c o e f f i c i e n t ) ∗
R Wheel ;

68 end

69 tau d = tau d / ( D i f f r a t i o ) ;

70 tau e = 0 ;

71

72 max mot trq = interp1 ( mot trq max spd , mot trq max map , w m) ;

73

74 i f ( w e > 550)

75 max eng trq = interp1 ( eng trq max spd , eng trq max map , w e ) ;

76
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77 i f ( tau d>=0)

78 tau m = u ∗ tau d / 2 . 5 ;

79 tau e = ( tau d − tau m ∗ 2 . 5 ) / g e a r s e l e c t o r ( gear ) ;

80 i f ( tau e > max eng trq )

81 cont inue

82 end

83 else

84 tau m = tau d ;

85 tau e = 0 ;

86 end

87

88 i f ( tau m > max mot trq )

89 cont inue

90 end

91

92 P f = 0 ;

93 i f ( tau e ˜= 0)

94 P f = P f u e l ( tau e , w e , eng spd , eng trq , eng map ) / t ime sps ;

95 end

96 else

97 P f = 0 ;

98 i f ( tau d>=0)

99 tau m = min( tau d /2 . 5 , max mot trq ) ;

100 else

101 tau m = max( tau d /2.5 ,−max mot trq ) ;

102 end

103 end

104

105 [ P e , curr ] = P ech ( tau m , w m, mot spd , mot trq , mot map , e s s v o l t ) ;

106

107 E e = E e + P e/ t ime sps ;

108 E f = E f + P f ;

109 end

110

111 i f u == 0
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112 a l l E e p ( i p ) = E e ;% + E e p o l d ( i p ) ;

113 a l l E e n ( i n ) = E e ;% + E e n o l d ( i n ) ;

114 a l l E f p ( i p ) = E f ;% + E f p o l d ( i p ) ;

115 a l l E f n ( i n ) = E f ;% + E f n o l d ( i n ) ;

116 i p = i p + 1 ;

117 i n = i n + 1 ;

118 E 0 a l l = E e ;

119 e l s e i f ( u > 0 && u < 0 . 7 )

120 a l l E e p ( i p ) = E e ;% + E e p o l d ( i p ) ;

121 a l l E f p ( i p ) = E f ;% + E f p o l d ( i p ) ;

122 i p = i p + 1 ;

123 e l s e i f ( u < 0 && u > −0.7)

124 a l l E e n ( i n ) = E e ;% + E e n o l d ( i n ) ;

125 a l l E f n ( i n ) = E f ;% + E f n o l d ( i n ) ;

126 i n = i n + 1 ;

127 end

128 end

129 end

130 i f a l l ( a l l E e p == a l l E e p (1 ) )

131 s p = s p l a s t ;

132 s n = s n l a s t ;

133 else

134 s p t = polyf it ( a l l E e p , a l l E f p , 1 ) ;

135 s p = −s p t (1 ) ;

136 s n t = polyf it ( a l l E e n , a l l E f n , 1 ) ;

137 s n = −s n t (1 ) ;

138 end

139 E e p o ld = a l l E e p ;

140 E e n o ld = a l l E e n ;

141 E f p o l d = a l l E f p ;

142 E f n o l d = a l l E f n ;

143 else

144 s p = s p l a s t ;

145 s n = s n l a s t ;

146 E 0 a l l = E 0 l a s t ;
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147 end

148 else

149 s p = 0 ;

150 s n = 0 ;

151 E 0 a l l = 0 ;

152 end

153 t l a s t o u t = t l a s t ;

154 end

155

156 function r a t i o = g e a r s e l e c t o r ( gear )

157 r a t i o s = [ 4 . 6 2 0 0 , 3 .0400 , 2 .0700 , 1 .6600 , 1 .2600 , 1 , 0 .8500 , 0 . 6 6 0 0 ] ;

158 r a t i o = r a t i o s ( gear ) ;

159 end

160

161 function current m = c u r r e n t c a l c ( elec pow m , b a t t v o l t o c , b a t t r )

162 current m = −elec pow m / b a t t v o l t o c ;

163 b a t t v o l t = b a t t v o l t o c + b a t t r ∗ current m ;

164 current m = −elec pow m / b a t t v o l t ;

165 b a t t v o l t = b a t t v o l t o c + b a t t r ∗ current m ;

166 current m = −elec pow m / b a t t v o l t ;

167 end

168

169

170 function p f = P f u e l ( tau e , w e , eng spd , eng trq , eng map )

171 m dot = interp2 ( eng trq , eng spd , eng map , tau e , w e ) ;

172

173 f u e l d e n s i t y v a l = 0 . 8 0 1 ; % kg /L

174 f u e l h e a t i n g v a l = 29047000; % ( J/ kg ) S p e c i f i c LHV

175 Q fue l = f u e l d e n s i t y v a l ∗ f u e l h e a t i n g v a l /1000 ; % J/g

176

177 p f = m dot ∗ Q fue l ; % m dot i s the f u e l r a t e and Q f u e l i s

the f u e l energy d e n s i t y

178 end

179

180 function [ P e curr ] = P ech ( tau m , w m, mot spd , mot trq , mot map ,



CHAPTER 6. APPENDICES 115

Figure 6.1: Simulink model of HEV module.

e s s v o l t )

181 i f (w m > 0)

182 speed em rad = w m ∗ (2 ∗ pi / 60) ;

183

184 e f f i c i e n c y = interp2 ( mot trq , mot spd , mot map ’ , abs ( tau m ) , w m) /100 ;

185 i f ( tau m >= 0)

186 P em = tau m ∗ speed em rad / e f f i c i e n c y ;

187 else

188 P em = tau m ∗ speed em rad ∗ e f f i c i e n c y ;

189 end

190 P e = P em ;

191 curr = −P em / e s s v o l t ;

192 else

193 curr = 0 ;

194 P e = 0 ;

195 end

196 end
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Figure 6.2: Simulink model of driver module.

Figure 6.3: Simulink model of plant module.
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Figure 6.4: Simulink model of controller module.

Figure 6.5: Simulink model of AECMS module.
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Figure 6.6: Simulink model of PECMS module.
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