90 research outputs found

    Downlink Performance of Superimposed Pilots in Massive MIMO systems

    Full text link
    In this paper, we investigate the downlink throughput performance of a massive multiple-input multiple-output (MIMO) system that employs superimposed pilots for channel estimation. The component of downlink (DL) interference that results from transmitting data alongside pilots in the uplink (UL) is shown to decrease at a rate proportional to the square root of the number of antennas at the BS. The normalized mean-squared error (NMSE) of the channel estimate is compared with the Bayesian Cram\'{e}r-Rao lower bound that is derived for the system, and the former is also shown to diminish with increasing number of antennas at the base station (BS). Furthermore, we show that staggered pilots are a particular case of superimposed pilots and offer the downlink throughput of superimposed pilots while retaining the UL spectral and energy efficiency of regular pilots. We also extend the framework for designing a hybrid system, consisting of users that transmit either regular or superimposed pilots, to minimize both the UL and DL interference. The improved NMSE and DL rates of the channel estimator based on superimposed pilots are demonstrated by means of simulations.Comment: 28 single-column pages, 6 figures, 1 table, Submitted to IEEE Trans. Wireless Commun. in Aug 2017. Revised Submission in Feb. 201

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Superimposed Pilots are Superior for Mitigating Pilot Contamination in Massive MIMO

    Get PDF
    In this paper, superimposed pilots are introduced as an alternative to time-multiplexed pilot and data symbols for mitigating pilot contamination in massive multiple-input multiple-output (MIMO) systems. We propose a non-iterative scheme for uplink channel estimation based on superimposed pilots and derive an expression for the uplink signal-to-interference-plus-noise ratio (SINR) at the output of a matched filter employing this channel estimate. Based on this expression, we observe that power control is essential when superimposed pilots are employed. Moreover, the quality of the channel estimate can be improved by reducing the interference that results from transmitting data alongside the pilots, and an intuitive iterative data-aided scheme that reduces this component of interference is also proposed. Approximate expressions for the uplink SINR are provided for the iterative data-aided method as well. In addition, we show that a hybrid system with users utilizing both time-multiplexed and superimposed pilots is superior to an optimally designed system that employs only time-multiplexed pilots, even when the non-iterative channel estimate is used to build the detector and precoder. We also describe a simple approach to implement this hybrid system by minimizing the overall inter and intra-cell interference. Numerical simulations demonstrating the performance of the proposed channel estimation schemes and the superiority of the hybrid system are also provided

    Downlink Massive MIMO Systems: Reduction of Pilot Contamination for Channel Estimation with Perfect Knowledge of Large-Scale Fading

    Get PDF
    Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches . &nbsp

    Analysis and Design of Algorithms for the Improvement of Non-coherent Massive MIMO based on DMPSK for beyond 5G systems

    Get PDF
    Mención Internacional en el título de doctorNowadays, it is nearly impossible to think of a service that does not rely on wireless communications. By the end of 2022, mobile internet represented a 60% of the total global online traffic. There is an increasing trend both in the number of subscribers and in the traffic handled by each subscriber. Larger data rates, smaller extreme-to-extreme (E2E) delays and greater number of devices are current interests for the development of mobile communications. Furthermore, it is foreseen that these demands should also be fulfilled in scenarios with stringent conditions, such as very fast varying wireless communications channels (either in time or frequency) or scenarios with power constraints, mainly found when the equipment is battery powered. Since most of the wireless communications techniques and standards rely on the fact that the wireless channel is somehow characterized or estimated to be pre or post-compensated in transmission (TX) or reception (RX), there is a clear problem when the channels vary rapidly or the available power is constrained. To estimate the wireless channel and obtain the so-called channel state information (CSI), some of the available resources (either in time, frequency or any other dimension), are utilized by including known signals in the TX and RX typically known as pilots, thus avoiding their use for data transmission. If the channels vary rapidly, they must be estimated many times, which results in a very low data efficiency of the communications link. Also, in case the power is limited or the wireless link distance is large, the resulting signal-tointerference- plus-noise ratio (SINR) will be low, which is a parameter that is directly related to the quality of the channel estimation and the performance of the data reception. This problem is aggravated in massive multiple-input multiple-output (massive MIMO), which is a promising technique for future wireless communications since it can increase the data rates, increase the reliability and cope with a larger number of simultaneous devices. In massive MIMO, the base station (BS) is typically equipped with a large number of antennas that are coordinated. In these scenarios, the channels must be estimated for each antenna (or at least for each user), and thus, the aforementioned problem of channel estimation aggravates. In this context, algorithms and techniques for massive MIMO without CSI are of interest. This thesis main topic is non-coherent massive multiple-input multiple-output (NC-mMIMO) which relies on the use of differential M-ary phase shift keying (DMPSK) and the spatial diversity of the antenna arrays to be able to detect the useful transmitted data without CSI knowledge. On the one hand, hybrid schemes that combine the coherent and non-coherent schemes allowing to get the best of both worlds are proposed. These schemes are based on distributing the resources between non-coherent (NC) and coherent data, utilizing the NC data to estimate the channel without using pilots and use the estimated channel for the coherent data. On the other hand, new constellations and user allocation strategies for the multi-user scenario of NC-mMIMO are proposed. The new constellations are better than the ones in the literature and obtained using artificial intelligence techniques, more concretely evolutionary computation.This work has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391. The PhD student was the Early Stage Researcher (ESR) number 2 of the project. This work has also received funding from the Spanish National Project IRENE-EARTH (PID2020-115323RB-C33) (MINECO/AEI/FEDER, UE), which funded the work of some coauthors.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Eva Lagunas Targaron

    Downlink Massive MIMO Systems: Reduction of Pilot Contamination for Channel Estimation with Perfect Knowledge of Large-Scale Fading

    Get PDF
    Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches . &nbsp

    Integrated Sensing and Communication for Network-Assisted Full-Duplex Cell-Free Distributed Massive MIMO Systems

    Full text link
    In this paper, we combine the network-assisted full-duplex (NAFD) technology and distributed radar sensing to implement integrated sensing and communication (ISAC). The ISAC system features both uplink and downlink remote radio units (RRUs) equipped with communication and sensing capabilities. We evaluate the communication and sensing performance of the system using the sum communication rates and the Cramer-Rao lower bound (CRLB), respectively. We compare the performance of the proposed scheme with other ISAC schemes, the result shows that the proposed scheme can provide more stable sensing and better communication performance. Furthermore, we propose two power allocation algorithms to optimize the communication and sensing performance jointly. One algorithm is based on the deep Q-network (DQN) and the other one is based on the non-dominated sorting genetic algorithm II (NSGA-II). The proposed algorithms provide more feasible solutions and achieve better system performance than the equal power allocation algorithm.Comment: 14 pages, 7 figures,submit to China Communication February 28, 2023, date of major revision July 09, 202

    Power Allocation in Uplink NOMA-Aided Massive MIMO Systems

    Get PDF
    In the development of the fifth-generation (5G) as well as the vision for the future generations of wireless communications networks, massive multiple-input multiple-output (MIMO) technology has played an increasingly important role as a key enabler to meet the growing demand for very high data throughput. By equipping base stations (BSs) with hundreds to thousands antennas, the massive MIMO technology is capable of simultaneously serving multiple users in the same time-frequency resources with simple linear signal processing in both the downlink (DL) and uplink (UL) transmissions. Thanks to the asymptotically orthogonal property of users' wireless channels, the simple linear signal processing can effectively mitigate inter-user interference and noise while boosting the desired signal's gain, and hence achieves high data throughput. In order to realize this orthogonal property in a practical system, one critical requirement in the massive MIMO technology is to have the instantaneous channel state information (CSI), which is acquired via channel estimation with pilot signaling. Unfortunately, the connection capability of a conventional massive MIMO system is strictly limited by the time resource spent for channel estimation. Attempting to serve more users beyond the limit may result in a phenomenon known as pilot contamination, which causes correlated interference, lowers signal gain and hence, severely degrades the system's performance. A natural question is ``Is it at all possible to serve more users beyond the limit of a conventional massive MIMO system?''. The main contribution of this thesis is to provide a promising solution by integrating the concept of nonorthogonal multiple access (NOMA) into a massive MIMO system. The key concept of NOMA is based on assigning each unit of orthogonal radio resources, such as frequency carriers, time slots or spreading codes, to more than one user and utilize a non-linear signal processing technique like successive interference cancellation (SIC) or dirty paper coding (DPC) to mitigate inter-user interference. In a massive MIMO system, pilot sequences are also orthogonal resources, which can be allocated with the NOMA approach. By sharing a pilot sequence to more than one user and utilizing the SIC technique, a massive MIMO system can serve more users with a fixed amount of time spent for channel estimation. However, as a consequence of pilot reuse, correlated interference becomes the main challenge that limits the spectral efficiency (SE) of a massive MIMO-NOMA system. To address this issue, this thesis focuses on how to mitigate correlated interference when combining NOMA into a massive MIMO system in order to accommodate a higher number of wireless users. In the first part, we consider the problem of SIC in a single-cell massive MIMO system in order to serve twice the number of users with the aid of time-offset pilots. With the proposed time-offset pilots, users are divided into two groups and the uplink pilots from one group are transmitted simultaneously with the uplink data of the other group, which allows the system to accommodate more users for a given number of pilots. Successive interference cancellation is developed to ease the effect of pilot contamination and enhance data detection. In the second part, the work is extended to a cell-free network, where there is no cell boundary and a user can be served by multiple base stations. The chapter focuses on the NOMA approach for sharing pilot sequences among users. Unlike the conventional cell-free massive MIMO-NOMA systems in which the UL signals from different access points are equally combined over the backhaul network, we first develop an optimal backhaul combining (OBC) method to maximize the UL signal-to-interference-plus-noise ratio (SINR). It is shown that, by using OBC, the correlated interference can be effectively mitigated if the number of users assigned to each pilot sequence is less than or equal to the number of base stations. As a result, the cell-free massive MIMO-NOMA system with OBC can enjoy unlimited performance when the number of antennas at each BS tends to infinity. Finally, we investigate the impact of imperfect SIC to a NOMA cell-free massive MIMO system. Unlike the majority of existing research works on performance evaluation of NOMA, which assume perfect channel state information and perfect data detection for SIC, we take into account the effect of practical (hence imperfect) SIC. We show that the received signal at the backhaul network of a cell-free massive MIMO-NOMA system can be effectively treated as a signal received over an additive white Gaussian noised (AWGN) channel. As a result, a discrete joint distribution between the interfering signal and its detected version can be analytically found, from which an adaptive SIC scheme is proposed to improve performance of interference cancellation

    Toward Massive MIMO 2.0: Understanding Spatial Correlation, Interference Suppression, and Pilot Contamination

    Get PDF
    Since the seminal paper by Marzetta from 2010, Massive MIMO has changed from being a theoretical concept with an infinite number of antennas to a practical technology. The key concepts are adopted into the 5G New Radio Standard and base stations (BSs) with M = 64 fully digital transceivers have been commercially deployed in sub-6GHz bands. The fast progress was enabled by many solid research contributions of which the vast majority assume spatially uncorrelated channels and signal processing schemes developed for single-cell operation. These assumptions make the performance analysis and optimization of Massive MIMO tractable but have three major caveats: 1) practical channels are spatially correlated; 2) large performance gains can be obtained by multicell processing, without BS cooperation; 3) the interference caused by pilot contamination creates a finite capacity limit, as M → ∞. There is a thin line of papers that avoided these caveats, but the results are easily missed. Hence, this tutorial article explains the importance of considering spatial channel correlation and using signal processing schemes designed for multicell networks. We present recent results on the fundamental limits of Massive MIMO, which are not determined by pilot contamination but the ability to acquire channel statistics. These results will guide the journey towards the next level of Massive MIMO, which we call "Massive MIMO 2.0"
    • …
    corecore