310 research outputs found

    Cross layer designs for OFDMA wireless systems with heterogeneous delay requirements

    Get PDF
    This paper investigates a cross layer scheduling scheme for OFDMA wireless system with heterogeneous delay requirements. Unlike most existing cross layer designs which take a decoupling approach, our design considers both queueing theory and information theory in modeling the system dynamics. The cross layer design is formulated as an optimization of total system throughput, subject to individual user's delay constraint and total base station transmit power constraint. The optimal scheduling algorithm for the delay-sensitive cross layer optimization is to dynamically allocate radio resources based on users' channel state information, source statistics and delay requirements. Specifically, optimal power allocation was found to be multilevel water-filling where urgent users have higher water-filling levels, while optimal subcarrier allocation strategy is shown to be achievable by low complexity greedy algorithm. Simulation results also show the proposed jointly optimal power and subcarrier allocation policy can provide substantial throughput gain with all delay constraints being satisfied. © 2006 IEEE.published_or_final_versio

    Cross-Layer Resource Allocation and Scheduling in Wireless Multicarrier Networks

    Get PDF
    The current dominate layered networking architecture, in which each layer is designed and operated independently, results in inefficient and inflexible resource use in wireless networks due to the nature of the wireless medium, such as time-varying channel fading, mutual interference, and topology variations. In this thesis, we focus on resource allocation and scheduling in wireless orthogonal frequency division multiplexing (OFDM) networks based on joint physical and medium access control (MAC) layer optimization. To achieve orders of magnitude gains in system performance, we use two major mechanisms in resource management: exploiting the time variance and frequency selectivity of wireless channels through adaptive modulation, coding, as well as packet scheduling and regulating resource allocation through network economics. With the help of utility functions that capture the satisfaction level of users for a given resource assignment, we establish a utility optimization framework for resource allocation in OFDM networks, in which the network utility at the level of applications is maximized subject to the current channel conditions and the modulation and coding techniques employed in the network. Although the nonlinear and combinatorial nature of the cross-layer optimization challenges algorithm development, we propose novel efficient dynamic subcarrier assignment (DSA) and adaptive power allocation (APA) algorithms that are proven to achieve the optimal or near-optimal performance with very low complexity. Based on a holistic design principle, we design max-delay-utility (MDU) scheduling, which senses both channel and queue information. The MDU scheduling can simultaneously improve the spectral efficiency and provide right incentives to ensure that all applications can receive their different required quality of service (QoS). To facilitate the cross-layer design, we also deeply investigate the mechanisms of channel-aware scheduling, such as efficiency, fairness, and stability. First, using extreme value theory, we analyze the impact of multiuser diversity on throughput and packet delay. Second, we reveal a generic relationship between a specific convex utility function and a type of fairness. Third, with rigorous proofs, we provide a method to design cross-layer scheduling algorithms that allow the queueing stability region at the network layer to approach the ergodic capacity region at the physical layer.Ph.D.Committee Chair: Ye (Geoffrey) Li; Committee Member: Ian F. Akyildiz; Committee Member: James McClellan; Committee Member: John R. Barry; Committee Member: Xingxing Y

    Performance of Subcarrier and Power Allocation Orthogonal Frequency-Division Multiplexing on Millimeter Wave

    Get PDF
    Local multipoint distribution system (LMDS) that operated in millimeter waves can be used to fulfill the need of bit rate higher than 40 Mbps. However it has problem when applied in tropic country such as Indonesia because of the high rainfall. Therefore LMDS system was developed by cross-layer mechanism.  In this research we used joint subcarrier and power allocation (JSPA) technique in multi-user cross-layer OFDM. This technique is proposed to increase the performance of telecommunication system even there were disturbance of rain attenuation. The research is discussing the performance of transmission capacity, data rate, utility and fairness of JSPA algorithm that applied in rain attenuation measurement in Surabaya. The result shows the increment of performance system using JSPA technique. For 40 dB rain attenuation, JSPA can achieves respectively average capacity of transmission up to 173,3%, 189,9 % for data rate and 9,6% for fairness system. The application of JSPA technique improve the performance of utility 13,61-15,48 bps/H

    Cross-layer design for OFDMA wireless systems with heterogeneous delay requirements

    Get PDF
    This paper proposes a cross-layer scheduling scheme for OFDMA wireless systems with heterogeneous delay requirements. We shall focus on the cross-layer design which takes into account both queueing theory and information theory in modeling the system dynamics. We propose a delay-sensitive cross-layer design, which determines the optimal subcarrier allocation and power allocation policies to maximize the total system throughput, subject to the individual user's delay constraint and total base station transmit power constraint. The delay-sensitive power allocation was found to be multilevel water-filling in which urgent users have higher water-filling levels. The delay-sensitive subcarrier allocation strategy has linear complexity with respect to number of users and number of subcarriers. Simulation results show that substantial throughput gain is obtained while satisfying the delay constraints when the delay-sensitive jointly optimal power and subcarrier allocation policy is adopted. © 2007 IEEE.published_or_final_versio

    Downlink scheduling and resource allocation for 5G MIMO-multicarrier: OFDM vs FBMC/OQAM

    Get PDF
    OAPA The definition of the next generation of wireless communications, so-called 5G networks, is currently underway. Among many technical decisions, one that is particularly fundamental is the choice of the physical layer modulation format and waveform, an issue for which several alternatives have been proposed. Two of the most promising candidates are: (i) orthogonal frequency division multiple (OFDM), a conservative proposal that builds upon the huge legacy of 4G networks, and (ii) filterbank multicarrier/offset quadrature amplitude modulation (FBMC/OQAM), a progressive approach that in frequency selective channels sacrifices subcarrier orthogonality in lieu of an increased spectral efficiency. The comparative merits of OFDM and FBMC/OQAM have been well investigated over the last few years but mostly, from a purely physical layer point of view and largely neglecting how the physical layer performance translates into user-relevant metrics at the upper-layers. This paper aims at presenting a comprehensive comparison of both modulation formats in terms of practical network indicators such as goodput, delay, fairness and service coverage, and under operational conditions that can be envisaged to be realistic in 5G deployments. To this end, a unifying cross-layer framework is proposed that encompasses the downlink scheduling and resource allocation procedures and that builds upon a model of the queueing process at the data-link control layer and a physical layer abstraction that can be chosen to model either OFDM or FBMC/OQAM. Extensive numerical results conclusively demonstrate that most of the apriori advantages of FBMC/OQAM over OFDM do indeed translate into improved network indicators, that is, the increase in spectral efficiency achieved by FBMC/OQAM makes up for the distortion caused by the loss of orthogonality.Peer ReviewedPostprint (published version

    Cross-layer QoS Analysis of Opportunistic OFDM-TDMA and OFDMA Networks

    Full text link
    • …
    corecore