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SUMMARY

Besides avoiding inter-symbol interference and leading to high capacity, wireless

orthogonal frequency division multiplexing (OFDM) or other multicarrier systems provide

fine granularity for resource allocation since they are capable of dynamically assigning sub-

carriers to multiple users and adaptively allocating transmit power. The current dominate

layered networking architecture, in which each layer is designed and operated independently,

results in inefficient and inflexible resource use in wireless networks due to the nature of the

wireless medium, such as time-varying channel fading, mutual interference, and topology

variations. Thus, we need an integrated adaptive design across different layers.

In this thesis, we focus on resource allocation and scheduling in wireless OFDM net-

works based on joint physical and medium access control (MAC) layer optimization. To

achieve orders of magnitude gains in system performance, we use two major mechanisms

in resource management: exploiting the time variance and frequency selectivity of wireless

channels through adaptive modulation, coding, as well as packet scheduling and regulat-

ing resource allocation through network economics. With the help of utility functions that

capture the satisfaction level of users for a given resource assignment, we establish a utility

optimization framework for resource allocation in OFDM networks, in which the network

utility at the level of applications is maximized subject to the current channel conditions and

the modulation and coding techniques employed in the network. Although the nonlinear

and combinatorial nature of the cross-layer optimization challenges algorithm development,

we propose novel efficient dynamic subcarrier assignment (DSA) and adaptive power alloca-

tion (APA) algorithms that are proven to achieve the optimal or near-optimal performance

with very low complexity. Based on a holistic design principle, we design max-delay-utility

(MDU) scheduling, which senses both channel and queue information. The MDU scheduling

can simultaneously improve the spectral efficiency and provide right incentives to ensure

that all applications can receive their different required quality of service (QoS). To facilitate

xi



the cross-layer design, we also deeply investigate the mechanisms of channel-aware schedul-

ing, such as efficiency, fairness, and stability. First, using extreme value theory, we analyze

the impact of multiuser diversity on throughput and packet delay. Second, we reveal a

generic relationship between a specific convex utility function and a type of fairness. Third,

with rigorous proofs, we provide a method to design cross-layer scheduling algorithms that

allow the queueing stability region at the network layer to approach the ergodic capacity

region at the physical layer.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The allocation and management of resources are crucial for wireless networks, in which the

scarce wireless spectral resources are shared by multiple users. In the current dominate lay-

ered networking architecture, each layer is designed and operated independently to support

transparency between layers. Among these layers, the physical layer is in charge of raw-bit

transmission, and the medium access control (MAC) layer controls multiuser access to the

shared resources. However, wireless channels suffer from time-varying multipath fading;

moreover, the statistical channel characteristics of different users are different. The sub-

optimality and inflexibility of this architecture result in inefficient resource use in wireless

networks. We need an integrated adaptive design across different layers. Therefore, cross-

layered design and optimization across the physical and MAC layers are desired for wireless

resource allocation and packet scheduling [3, 62].

For cross-layer optimization, channel-aware scheduling strategies are proposed to adap-

tively transmit data and dynamically assign wireless resources based on channel state in-

formation (CSI). The key idea of channel-aware scheduling is to choose a user with good

channel conditions to transmit packets [76]. Taking advantage of the independent channel

variation across users, channel-aware scheduling can substantially improve the network per-

formance through multiuser diversity, whose gain increases with the number of users [33,76].

To guarantee fairness for resource allocation and exploit multiuser diversity, utility-pricing

structures in network economics are usually preferred for scheduling design [41].

The growth of Internet data and multimedia applications requires high-speed trans-

mission and efficient resource allocation. To avoid inter-symbol interference, orthogonal

frequency division multiplexing (OFDM) is desirable for wireless high-speed communica-

tions [16]. OFDM-based systems are traditionally used for combating frequency-selective

1



fading. From a resource allocation point of view, however, multiple channels in an OFDM

system naturally have the potential for more efficient MAC since subcarriers can be assigned

to different users [15, 79]. Another advantage of OFDM is that adaptive power allocation

can be applied for a further improvement.

The basic problem that we need to solve in this thesis is how to effectively allocate

resources on the downlink of Internet protocol (IP)-based OFDM networks by exploiting

knowledge of CSI and the characteristics of traffic to enhance the spectral efficiency and

guarantee quality of service (QoS).

The objective of this thesis is to establish a theoretical framework and to develop efficient

algorithms for resource allocation in wireless multicarrier networks based on cross-layer

optimization. This research focuses on both studies on the mechanisms of efficiency, fairness,

as well as QoS provisioning and algorithm development for resource allocation in multiuser

frequency-selective fading environments.

1.2 Background and Related Work

In this section, we review state-of-the-art techniques for wireless resource allocation, includ-

ing multiuser diversity, resource allocation in OFDM networks, and network economics.

1.2.1 Multiuser Diversity and Opportunistic Communications

Recently, the principles of multiuser downlink or MAC designs have been changed from the

traditional point-to-point view to a multiuser network view. Time-varying fading is a unique

characteristic of wireless channels. For a point-to-point link, using adaptive modulation and

coding [23,48], the transmitter can send more data at a higher transmission data rate when

the channel quality is good. However, the bandwidth efficiency is still low during deep-

fading periods. In [33], the authors have studied the sum capacity of uplink (many-to-one)

fading channels in a scenario where the CSI is known for the transmitters and the receiver.

There are two important results obtained in [33]. First, the optimal strategy is to choose

only one user with the best channel condition. Second, the sum capacity increases with the

number of users, which is called multiuser diversity. The similar results have been shown

in downlink (one-to-many) fading channels in [75].

2



Time

SNR

User 1

User 2

SNR for transmitted signals

Figure 1.1. Scheduling for the two-user case.

The above results regarding multiuser diversity indicate that the use of simple schedul-

ing techniques and the feedback of CSI can significantly improve spectral efficiency [76].

Actually, multiuser diversity results from the independent channel variation across users.

To illustrate multiuser diversity, we consider a two-user case in Figure 1.1, where the user

with the best channel condition is scheduled to transmit signals. Therefore, the equivalent

signal-to-noise ratio (SNR) for transmission is max{SNR1(t),SNR2(t)}. When there are

many users served in the system, the packets are with a high probability transmitted at

high data rates since different users experience independent fading fluctuations. From a user

point of view, packets are transmitted in a stochastic way in the system using channel-aware

scheduling, which is also called opportunistic communications [41].

Currently, multiuser diversity has received much attention. Based on its concept,

channel-aware dynamic packet scheduling is applied in 1x evolution (1xEV) for code divi-

sion multiple access 2000 (CDMA2000), also known as IS-856 [73] and high speed downlink

packet access (HSPDA) for wideband CDMA [2]. Aside from cellular networks, multiuser

diversity is also exploited in distributed systems [52,58].

3



1.2.2 Resource Allocation for OFDM-Based Networks

OFDM divides an entire channel into many orthogonal narrowband subchannels (subcarri-

ers) to deal with frequency-selective fading and to support a high data rate. Furthermore,

in an OFDM-based wireless network, different subcarriers can be allocated to different users

to provide a flexible multiuser access scheme [15,35] and exploit multiuser diversity.

There is plenty of room to exploit the high degree of flexibility of radio resource manage-

ment in the context of OFDM. Since channel frequency responses are different at different

frequencies and for different users, data rate adaptation over each subcarrier, dynamic sub-

carrier assignment (DSA), and adaptive power allocation (APA) can significantly improve

the performance of OFDM networks. Using data rate adaptation [23, 48], the transmitter

can send higher transmission rates over the subcarriers with better conditions so as to im-

prove throughput and simultaneously to ensure an acceptable bit-error rate (BER) at each

subcarrier. Despite the use of data rate adaptation, deep fading on some subcarriers still

leads to low channel capacity.

On the other hand, channel characteristics for different users are almost mutually inde-

pendent in multiuser environments; the subcarriers experiencing deep fading for one user

may not be in a deep fade for other users; therefore, each subcarrier could be in a good

condition for some users in a multiuser OFDM wireless network. By dynamically assigning

subcarriers, the network can benefit from multiuser diversity. Resource allocation issues

and the achievable regions for multiple access and broadcast channels have been investi-

gated in [74] and [36], respectively, which have proved that the largest data rate region

is achieved when the same frequency range is shared with overlap by multiple users in

broadcast channels. However, when optimal power allocation is used, from [24], there is

only a small range of frequency with overlapping power sharing. Thus, optimal power allo-

cation with dynamic subcarrier (non-overlap) assignment can achieve a data transmission

rate close to the channel capacity boundary. In [79], the authors have investigated optimal

resource allocation in multiuser OFDM systems to minimize the total transmission power

while satisfying a minimum rate for each user. The numerical optimization algorithms have

been proposed in [83] for characterizing the uplink rate region achievable in OFDM with

4



inter-symbol interference. Several algorithms have been presented in [32,55] for subcarrier

and power allocation.

1.2.3 Network Economics for Resource Allocation

As seen in previous sections, exploiting multiuser diversity can significantly improve the

spectral efficiency. In addition to the spectral efficiency, fairness and QoS are crucial for

resource allocation for wireless networks. Usually, it is impossible to achieve the optimality

for spectral efficiency, fairness, and QoS simultaneously. For instance, scheduling schemes

aiming to maximize the total throughput are unfair to those users far away from a base

station or with bad channel conditions. On the other hand, the absolute fairness may lead

to low bandwidth efficiency. Therefore, an effective trade-off among efficiency, fairness, and

QoS is desired in wireless resource allocation.

The issues on efficient and fair resource allocation have been well studied in economics,

where utility functions are used to quantify the benefit of usage of certain resources. Sim-

ilarly, utility theory can be used in communication networks to evaluate the degree to

which a network satisfies service requirements of users’ applications, rather than in terms

of system-centric quantities like throughput, outage probability, packet drop rate, power,

etc. [65]. The basic idea of utility-pricing structures is to map the resource use (bandwidth,

power, etc.) or performance criteria (data rate, delay, etc.) into the corresponding utility

or price values and optimize the established utility-pricing system.

In wireline networks, utility and pricing mechanisms have been used for flow control [30,

31], congestion control [43], and routing [5]. In wireless networks, the pricing of uplink power

control in CDMA has been investigated in [25, 59, 61, 80]. Utility-based power allocation

on CDMA downlinks for voice and data applications has been proposed in [40, 69, 84].

To guarantee QoS and exploit multiuser diversity, utility-pricing structures are applied in

opportunistic communications [41].

In summary, network economics is becoming more and more important in modern net-

work designs, especially for cross-layer optimization in wireless networks.
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Figure 1.2. Downlink data scheduling over multiple shared channels based on OFDM

1.3 System Model and Problem Description

The architecture of a downlink data scheduler with multiple shared channels for multiple

users is shown in Figure 1.2. OFDM provides a physical basis for the multiple shared

channels, where the total bandwidth B is divided into K subcarriers (subchannels), and

each subcarrier has a bandwidth of4f = B/K. Let K = {1, 2, . . . ,K} denote the subcarrier

index set. The OFDM signaling is time-slotted, and the length of each time slot is Ts. The

base station simultaneously serves M users, each of which has a queue to receive its incoming

packets. LetM = {1, 2, · · · ,M} denote the user index set. To achieve high efficiency, both

frequency and time multiplexing are allowed in the whole resource. The scheduler makes

a subcarrier assignment once every slot based on each user’s current channel quality and

queue length.

1.3.1 Channel Characteristics in OFDM

The complex baseband representation of the impulse response of a wireless multipath chan-

nel for user i can be described by

hi(t, τ) =
∑

k

γk,i(t)δ(τ − τk,i),
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where τk,i is the delay of the k-th path and γk,i(t) is the corresponding complex amplitude

at time t. The γk,i(t)’s are assumed to be wide-sense stationary and narrowband stochastic

Gaussian processes, which are independent for different paths and users. The frequency

response of the above channel impulse response is expressed as

Hi(f, t) =

∫ +∞

−∞
hi(t, τ)e−j2πfτ dτ =

∑

k

γk,i(t)e
−j2πfτk,i .

For OFDM systems with proper cyclic extension and sample timing, the channel fre-

quency response at subcarrier k at time n can be expressed as

Hi[k, n] , Hi(k4f, nTs).

Then, the channel quality of user i is given by

ρi[k, n] =
|Hi[k, n]|2

Ni[k]
,

where Ni[k] is the noise power of user i at subcarrier k. With a power allocation p[k, n],

the SNR at subcarrier k at time n is

γi[k, n] = p[k, n]ρi[k, n].

There are many ways to obtain the CSI at the base station. In a frequency division duplex

(FDD) system, using pilot symbols that are inserted in the downlink with a certain time-

frequency pattern, the mobile terminals can effectively estimate the channel parameters

Hi[k, n]’s and ρi[k, n]’s [37] and feed back them to the base station. In a time division

duplex (TDD) system, since the symmetry of the channel characteristics for the downlink

and uplink, the base station can obtain the CSI by directly measuring the uplink channels.

1.3.2 Rate Adaptation in OFDM

By estimating the CSI via pilot signals and feeding it back to the base station, the achievable

data transmission rate per Hz for user i at subcarrier k during time slot n, ci[k, n], can be

known at the base station. Usually, the ci[k, n]’s are determined by the current channel

SNR, the required BER, and the modulation and coding techniques that are used in the

system.

7



If continuous rate adaptation is used, the achievable transmission rate per Hz at sub-

carrier k for user i can be written as a function of the current SNR, γi[k, n], [53]

ci[k, n] = log2(1 + βγi[k, n]), (1.1)

where β is a constant related to a targeted BER by

β =
−1.5

ln(5 · BER)
.

Generally, ci[k, n] can be expressed as

ci[k, n] = f (log2(1 + βγi[k, n])) , (1.2)

where f(·) depends on the used rate adaptation scheme. For instance, if variable M-ray

quadrature amplitude modulation (MQAM) with modulation levels {0, 2, 4, 6,. . . } is em-

ployed,

f(x) = 2b
1

2
xc,

where bxc represents the largest integer that is less than x.

1.3.3 Dynamic Subcarrier Assignment and Adaptive Power Allocation

Each subcarrier in the adaptive OFDM can be dynamically assigned to any user. Let D
(n)
i

denote the set of subcarrier indices assigned to user i at time n. In the OFDM system, each

subcarrier cannot be shared by multiple users, which is mathematically expressed as

D
(n)
i

⋂

D
(n)
j = ∅, ∀ i 6= j,

⋃

i∈M

D
(n)
i ⊆ K.

With a subcarrier assignment, the data transmission rate of user i at time slot n, ri[n],

is given by

ri[n] =
∑

k∈D
(n)
i

ci[k, n]4f.

Let p[n] be the transmit power vector defined as [p[1, n], p[2, n], . . . , p[K,n]]T , which

p[k, n] is the transmit power at subcarrier k at time n. If the adaptive power allocation is

used, the transmit powers can be adjusted but constrained by

K∑

k=1

p[k, n] ≤ P̄ ,
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where P̄ is the total power constraint.

1.3.4 Queue Structure

Each connection is assumed to have a queue with infinite capacity at the base station. Let

Qi[n] be the amount of bits in the queue of user i at time nTs. During time slot n, the base

station serves the queue of user i at rate ri[n]. Then, the queue length evolution equation

is given by

Qi[n + 1] = Qi[n]−min (Qi[n], ri[n]Ts) + ai[n] (1.3)

where ai[n] is the amount of arrival bits during time slot n.

1.3.5 Problem Description

The major problem is how to effectively assign subcarriers and allocate power on the down-

link of OFDM-based networks by exploiting knowledge of the wireless channel conditions

and the characteristics of traffic to improve the spectral efficiency and guarantee diverse

QoS.

1.4 Our Approach

In this thesis, we primarily take an analytical approach and use simulation to support the

theoretical results and demonstrate the performance of ours schemes in more realistic envi-

ronments. In the joint physical and MAC layer optimization framework, we use two major

mechanisms in resource management: exploiting the time variance and the frequency se-

lectivity of wireless channels in network protocols through adaptive modulation, coding, as

well as packet scheduling and regulating resource allocation through network economics.

Besides leading to high capacity, OFDM provides fine granularity for resource allocation

since different subcarriers can be assigned to different users. With the help of utility func-

tions that capture the satisfaction level of users for a given resource assignment, we establish

a utility optimization framework for resource allocation in OFDM networks, in which the

network utility at the level of applications is maximized subject to the channel conditions

and the modulation and coding techniques employed in the network.
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Figure 1.3 illustrates the structure of the thesis. In the cross-layer optimization with

utility functions with respect to instantaneous data rates, we develop novel efficient DSA and

APA algorithms, which provide the algorithm implementation for channel-aware scheduling

and joint channel- and queue-aware scheduling. Using utility functions with respect to

average data rates, we can design channel-aware scheduling desirable for best-effort traffic.

We reveal a generic relationship between a specific convex utility function and a type of

fairness. Based on a holistic design principle, we develop a joint channel- and queue-

aware scheduling scheme that maximizes the total utility with respect to average delays.

The stability issue of the queueing system is comprehensively investigated because of the

importance to delay-sensitive traffic. The utility-based architecture is finally proven to

have the ability of QoS differentiation for heterogeneous traffic. Moreover, in the case when

the utility function is just the throughput, we provide a concise asymptotic analysis for

throughput and packet delay to reveal the impact of multiuser diversity.

From a traditional point of view, cross-layer design would usually seem complicated and

intractable. Therefore, we pursue consistency in methodology and simplicity in results in

this thesis. Asymptotic approach is extensively used in analysis since it leads to elegant

results. Those results can be not only helpful in obtaining insights but also fully applied to

the system design. For instance, the study on the optimization properties of the “extreme”

OFDM in which the number of subcarrier is infinite directly guides the algorithm devel-

opment for practical systems. The study on the stability properties of joint channel- and

queue-aware scheduling plays a crucial role in designing scheduling for heterogeneous traf-

fic with diverse QoS requirements. The asymptotic throughput analysis of channel-aware

scheduling is very accurate for typical environments and can deal with a general fading dis-

tribution. In addition, the convexity of the ergodic capacity region at the physical layer is

fully exploited throughout the thesis, which makes most results concerning such complicated

problems as fairness and stability elegant.
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Figure 1.3. Structure of the thesis research

1.5 Thesis Outline

The thesis is organized as follows. In Chapter 2, using rate-based utility functions, we

formulate the cross-layer optimization problem as one that maximizes the total utility of

all active users subject to certain conditions, which are determined by adaptive resource

allocation schemes. We present the necessary and sufficient conditions for the utility-based

optimal subcarrier assignment and power allocation for the asymptotic case in which the

number of subcarrier is infinite. Taking various conditions into account, we develop a variety

of efficient algorithms, including sorting-search dynamic subcarrier assignment, greedy bit

loading and power allocation, as well as objective aggregation algorithms. We also modify

those algorithms for a certain type of non-concave utility function. In addition, with utility

functions with respect to average data rates, time diversity can be exploited to further

improve performance.

In Chapter 3, packet scheduling in a shared multicarrier downlink is investigated based
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on cross-layer design and optimization. We first develop max-delay-utility (MDU) schedul-

ing, a joint channel- and queue-aware scheduling scheme that maximizes the total utility

with respect to average delays, to exploit multiuser diversity and guarantee QoS. The sta-

bility property of a scheduling policy is characterized by the stability region, which is the

largest region on the arrival rates for which the queueing system can be stabilized by the

scheduling policy. It is shown that under very loose conditions, the MDU scheduling has

the maximum stability region. In environments with insufficient scattering or strong light-

of-sight components, delay transmit diversity can increase the fluctuation in the frequency

domain, thereby improving the performance.

In Chapter 4, we use the MDU scheduling to effectively provide QoS differentiation for

heterogenous traffic. The mechanisms of the MDU scheduling at resource allocation and

stability aspects are discussed in the scenario in which multiple types of traffic are served.

A comprehensive simulation that takes into account packet-switched voice, streaming, and

best-effort applications demonstrates the advantages of the MDU scheduling for integrated

services with diverse QoS.

In Chapter 5, we provide an asymptotic performance analysis of channel-aware packet

scheduling based on extreme value theory. We first address the average throughput of

systems with a homogeneous average SNR and obtain its asymptotic expression. Compared

to the exact throughput expression, the asymptotic one, which is applicable to a broader

range of fading channels, is more concise and easier to get insights. For a system with

heterogeneous SNRs, normalized-SNR-based scheduling need to be used for fairness. We

investigate the asymptotic average throughput of the normalized-SNR-based scheduling and

prove that the average throughput in this case is less than that in the homogeneous case

with a power constraint. Furthermore, we propose an asymptotic delay analysis for both

single-carrier and multicarrier systems based on extreme value theory and queueing theory.

The asymptotic analysis for mean packet delays demonstrates that the multiuser diversity

gain in multicarrier networks is not limited by slow fading as in single-carrier networks.
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CHAPTER 2

CROSS-LAYER RESOURCE ALLOCATION AND

SCHEDULING USING RATE-BASED UTILITY

FUNCTIONS

In this chapter, we do not consider the burstness of arrival streams and investigate resource

allocation and scheduling for best-effort traffic. Therefore, rate-based utility functions are

used to perform cross-layer optimization and balance efficiency and fairness in this chapter.

In Section 2.1, we the general properties of rate-based utility functions. In Sections 2.2 and

2.3, we investigate the optimization problems at an instantaneous time, which are formu-

lated based on utility functions with respect to instantaneous data rates. In Section 2.2, we

focus on the OFDM network that contains infinite number of subcarriers and employs con-

tinuous rate adaptation. In Section 2.2, we develop efficient resource allocation algorithms

for the cross-layer optimization in various system configurations. In Section 2.4, we propose

channel-aware scheduling based on utility functions with respect to average data rates. The

algorithms developed in Section 2.2 can be directly used for the channel-aware scheduling.

In Section 2.5, we discuss the efficiency and fairness issues. The relationship between a

utility function and a certain type of fairness is revealed. In Section 2.6, we demonstrate

the performance improvement of the cross-layer optimization through numerical results.

2.1 Rate-Based Utility Functions

Utility functions are used for the cross-layer optimization and balancing the efficiency and

fairness. A utility function maps the network resources that a user utilizes into a real

number. In almost all wireless applications, a reliable data transmission rate is the most

important factor to determine the satisfaction of users. Thus, the utility function U(r)

should be a nondecreasing function of the data rate r. In particular, when U(r) = r, the

13



utility is just the throughput, which is the objective of most traditional network optimiza-

tions. Therefore, our work can be regarded as a general extension of traditional network

optimizations.

Utility functions serve as an optimization objective for the adaptive physical and MAC

layer techniques. Consequently, they can be used to optimize radio resource allocation for

different applications and to build a bridge among the physical, MAC, and higher layers.

When a utility function is used to capture the user’s feeling, such as the level of satisfac-

tion for assigned certain resources, it cannot be obtained only through theoretical derivation.

In this case, it can be estimated from subjective surveys. For best-effort traffic [29], a utility

function can be described by

U(r) = 0.16 + 0.8 ln(r − 0.3), (2.1)

where r is in unit of kbps. To prevent assigning too much resource to the user with good

channel conditions, the slope of the utility curves decreases with an increase in the data

rate. We will discuss more on the issue of fairness and efficiency in Section 2.5.

2.2 Theoretical Framework

To obtain the performance bound of the cross-layer optimization, we assume in this section

that there is an infinite number of orthogonal subcarriers in all frequency resources, or

the bandwidth of each orthogonal subcarrier is infinitesimal, which can be regarded as an

extreme situation of OFDM. In a practical OFDM system, the minimum granularity of

resource allocation is one subcarrier. The OFDM system in which 4f → 0 provides an

infinitesimal granularity of resource allocation, thereby presenting the performance upper

bound.

2.2.1 Problem Formulation

Since we consider the “extreme” OFDM system, some parts of the system model in Section

1.3 should be modified slightly. Thus, we will briefly describe the modifications in the

system model.
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Figure 2.1. Channel model

Because we investigate the cross-layer optimization in terms of the instantaneous data

rates, we ignore time parameter t in all formulas in this section.

The M -user frequency-selective broadcast fading channel is shown in Figure 2.1. The

channel frequency response corresponding to user i is denoted by Hi(f). The quality of

each user’s channel can be indicated by the SNR function, ρi(f), when the transmission

power density p(f) = 1, which is defined as

ρi(f) =
| Hi(f) |2

Ni(f)
.

where Ni(f) is the noise power density function of user i.

Let ci(f) denote the achievable throughput of user i at frequency f for a given BER and

a transmission power density p(f). When continuous rate adaptation is used, ci(f) can be

expressed as [53]

ci(f) = log2(1 +
βp(f) | Hi(f) |2

Ni(f)
) (bits/sec/Hz)

= log2(1 + βp(f)ρi(f)). (2.2)

In the scenario, the Di’s become the frequency sets assigned to different users, which

are constrained by

Di

⋂

Dj = ∅, i 6= j, (2.3)

M⋃

i=1

Di ⊆ [0, B]. (2.4)
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Besides dynamically assigning the frequency sets, the transmission power density at dif-

ferent frequencies can also be adjusted to improve the network performance with a total

transmission power constraint by

1

B

∫ B

0
p(f) df ≤ 1. (2.5)

The achievable transmission efficiency of user i in the continuous-frequency case is given by

ci(f) = log2[1 + βp(f)ρi(f)],

and the transmission throughput of user i can be expressed as

ri =

∫

Di

ci(f) df. (2.6)

Let the utility function of user i be Ui(·). If user i has a data rate ri, the user’s utility is

Ui(ri). The utility-based cross-layer optimization is to assign wireless resources (including

frequency band and power density) to maximize the average utility of the network, which

can be expressed as

1

M

M∑

i=1

Ui(ri). (2.7)

In the next several sections, we will discuss dynamic subcarrier assignment (DSA),

adaptive power allocation (APA), and joint DSA and APA, respectively.

2.2.2 Dynamic Subcarrier Assignment

In this section, we investigate DSA to improve the performance of an OFDM-based network

when the transmission power is uniformly distributed over the entire available frequency

band, that is, p(f) = 1, then the achievable throughput at frequency f , ci(f), can be

expressed as

ci(f) = log2(1 + βρi(f)).

Thus, the DSA problem is to maximize

1

M

M∑

i=1

Ui(ri) =
1

M

M∑

i=1

Ui

(∫

Di

ci(f) df

)

, (2.8)
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subject to

M⋃

i=1

Di ⊆ [0, B], (2.9)

Di

⋂

Dj = ∅, i 6= j and i, j = 1, 2, · · · ,M. (2.10)

We first present the results for a network with two users and then extend to general networks.

2.2.2.1 Network with Two Users

Assume a network with only 2 users sharing the bandwidth [0, B]. Define

D̄1(α) = {f ∈ [0, B] :
c2(f)

c1(f)
=

log2(1 + βρ2(f))

log2(1 + βρ1(f))
≤ α}, (2.11)

and

D1(α) = {f ∈ [0, B] :
c2(f)

c1(f)
=

log2(1 + βρ2(f))

log2(1 + βρ1(f))
< α}. (2.12)

Similarly, we can define D̄2(α) and D2(α) as the regions where c2(f)
c1(f) >= α and c2(f)

c1(f) > α,

respectively. It can be easily seen that

D̄2(α) ∪D1(α) = D̄1(α) ∪D2(α) = [0, B],

and

D̄2(α) ∩D1(α) = D̄1(α) ∩D2(α) = ∅.

The following theorem is proved in Appendix A and it determines the optimal subcarrier

assignment for the cross-layer optimization.

Theorem 2.1 For a network with two users, if the subcarrier assignment, {D∗
1 ,D

∗
2}, is

optimal, then D∗
1 and D∗

2 satisfy

D1(α
∗) ⊆ D∗

1 ⊆ D̄1(α
∗), D∗

2 = [0, B]−D∗
1, α∗ =

U ′
1(r

∗
1)

U ′
2(r

∗
2)

,

and

r∗i =

∫

D∗
i

ci(f)df =

∫

D∗
i

log2(1 + βρi(f))df, for i = 1, 2,

where

U ′
i(r) =

dUi(r)

dr
.
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Figure 2.2. Optimal subcarrier assignment for a two-user network

(a) Frequency responses for two users; (b) Subcarrier assignment resulting from throughput-based

optimization; (c) Subcarrier assignment resulting from utility-based optimization

Figure 2.2 demonstrates the difference between the utility-based optimization and the

traditional throughput-based optimization. For the traditional optimization, Ui(r) = r;

therefore, the threshold, α∗ =
U ′

1(r1)
U ′

2(r2)
is always 1. Consequently, a subcarrier or frequency

is allocated to the user with the larger channel gain, as in Figure 2.2 (b). To balance

the efficiency and fairness, an increasing utility curve with a decreasing slope is usually

used. In this case, the threshold α∗ depends on how much resource each user has already

occupied. Since the channel corresponding to user 2 is not as good as that of user 1 in

Figure 2.2 (a), user 2 gets more frequency resource in the utility-based optimization than

in the throughput-based optimization, as in Figure 2.2 (c).

It should be noted that the optimal subcarrier assignment is not unique as we can see

in a network with flat fading channels. However, α∗, r∗1, and r∗2 are unique.
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2.2.2.2 Network with Multiple Users

The results for a two-user network can be extended to the general case of more than two

users, which is summarized in the following theorem.

Theorem 2.2 For a network with M users, if the subcarrier assignment, D∗
i ’s for i =

1, 2, · · · ,M , maximizes the average utility, then for any f ∈ D∗
i , we have

U
′

j(r
∗
j )cj(f) ≤ U

′

i (r
∗
i )ci(f), for any j 6= i, (2.13)

and

r∗i =

∫

D∗
i

ci(f)df.

The proof of the above theorem is very similar to that of Theorem 2.1 and is omitted here.

2.2.3 Adaptive Power Allocation

In the previous section, in which the power allocation is assumed to be fixed, we discussed

using DSA to maximize the network performance. In this section, we first investigate APA

with fixed subcarrier assignment and then study joint DSA and APA. Since the achievable

throughput is a function of the power allocation, it becomes

ci(f) = log2(1 + βp(f)ρi(f)).

2.2.3.1 Adaptive Power Allocation with Fixed Subcarrier Assignment

When a subcarrier assignment is fixed, the APA optimization can be formulated as follows:

given a fixed subcarrier assignment, Di’s for i = 1, 2, · · · ,M , assign the power density,

p(f), to maximize

1

M

M∑

i=1

Ui(ri) =
1

M

M∑

i=1

Ui

(∫

Di

log2[1 + βp(f)ρi(f)] df

)

, (2.14)

subject to

1

B

∫ B

0
p(f) df ≤ 1, and p(f) ≥ 0. (2.15)

To achieve its optimality, a utility-based multi-level water filling is needed, which is stated

in the following theorem.
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Theorem 2.3 For a given fixed subcarrier assignment, Di’s for all i, the optimal power

allocation, p∗(f), satisfies

p∗(f) =

[

U
′

i (r
∗
i )

λ
−

1

βρi(f)

]+

λ > 0, f ∈ Di (2.16)

where λ is a constant for the normalization of the optimal power density,

[x]+ =







x x ≥ 0

0 x < 0
,

and λ as well as the r∗i ’s satisfy

1

B

∫ B

0
p∗(f) df = 1,

and r∗i =

∫

Di

log2[1 + βp∗(f)ρi(f)] df,

where the r∗i ’s and p∗(f) are the optimal values of the rates and the power density, respec-

tively.

It should be indicated that Theorem 2.3 only gives a necessary condition for the globally

optimal power allocation. The proof of the above theorem is similar to the water-filling

theorem [64], which is summarized in Appendix B.

Similar to the classical water filling [64], the optimal power allocation cannot be di-

rectly calculated from (2.16), and iterative algorithms are needed to obtain the optimal one

satisfying the power constraint.

There are two major differences between the classical water-filling and the one in The-

orem 2.3. First, the water level for each user is proportional to its current marginal utility

value, U
′

i (ri). In other words, the power allocation is also related to the utility functions.

Since the data rates of users are unlikely equal, it is from (2.16) that the water levels,

U ′
i(r

∗
i )

λ ’s, are different for different users. Second, the power constraint is the total trans-

mission power rather than the power of an individual user. As shown in Figure 2.3, the

utility-based multi-level water-filling (2.16) can be regarded as an extension of the fixed-

priority multi-level water-filling in [27].
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Figure 2.3. Multi-level water-filling for adaptive power allocation in a two-user network.

2.2.3.2 Joint Dynamic Subcarrier Assignment and Adaptive Power Allocation

The DSA and APA can be used simultaneously for the cross-layer optimization. The joint

DSA and APA optimization can be formulated as follows: adjust the Di’s and p(f) to

maximize

1

M

M∑

i=1

Ui(ri) =
1

M

M∑

i=1

Ui

(∫

Di

log2[1 + βp(f)ρi(f)] df

)

, (2.17)

subject to

M⋃

i=1

Di ⊆ [0, B], (2.18)

Di

⋂

Dj = ∅, i 6= j and i, j = 1, 2, · · · ,M, (2.19)

and

1

B

∫ B

0
p(f) df ≤ 1 and p(f) ≥ 0. (2.20)

Obviously, there are two necessary conditions for the global optimum for the joint DSA

and APA:
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1. Fixing the optimal subcarrier assignment, any change of the power allocation does

not increase the total utility.

2. Fixing the optimal power allocation, any change of the subcarrier assignment does

not increase the total utility.

Therefore, an optimal frequency assignment, D∗
i ’s for all i, and power allocation p∗(f)

must satisfy the conditions in both Theorems 2.2 and 2.3. Consequently, we have the

following theorem.

Theorem 2.4 Let the D∗
i ’s for i = 1, 2, · · · , M and p∗(f) be the optimal subcarrier

assignment and power allocation, respectively. Then they satisfy the following conditions:







U
′

j(r
∗
j ) log2(1 + βp∗(f)ρj(f)) ≤ U

′

i (r
∗
i ) log2(1 + βp∗(f)ρi(f)) f ∈ D∗

i ,

p∗(f) =

[

U
′

i (r
∗
i )

λ
−

1

βρi(f)

]+

λ > 0 f ∈ D∗
i ,

(2.21)

where the r∗i ’s and λ are constrained by

1

B

∫ B

0
p∗(f) df = 1,

and r∗i =

∫

D∗
i

log2(1 + βp∗(f)ρi(f))df.

When the utility function is just the throughput, Ui(ri) = ri, the optimal subcarrier as-

signment is independent of the optimal power allocation. In this case, the optimal subcarrier

assignment and power allocation have the following closed forms:







D∗
i = {f ∈ [0 : B] : ρi(f) = maxm ρm(f)}

p∗(f) =

[
1

λ
−

1

β maxm ρm(f)

]+

1

B

∫ B

0
p∗(f) df = 1,

which is identical to the result in [75]. This illustrates that frequency division multiple

access (FDMA)-type systems can achieve Shannon capacity when they are optimized for

the sum of throughputs.
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2.2.4 Properties of Cross-Layer Optimization

In this section, we will prove the convexity of the achievable data rate region and show

that, if the utility function is concave, then a local maximum is also a global maximum.

Therefore, the necessary conditions in Theorems 2.2, 2.3, and 2.4 are also sufficient ones.

2.2.4.1 Convexity of Instantaneous Data Rate Region

A data rate vector r is defined as

r = (r1, r2, . . . , rM )T ∈ R
M
+ ,

where M is the number of users. The instantaneous data rate region, Cπ , is a set that

consists of the total achievable data rate vectors under the constraint of a resource allocation

policy π, such as DSA, APA, or joint DSA and APA. The instantaneous data rate region is

obviously determined by the channel conditions and the resource allocation constraints. It

is intuitive that more adaptive resource allocation techniques will result in a larger feasible

region.

The objective function is

U(r) =
1

M

M∑

i=1

Ui(ri).

Thus, the optimization problem can be regarded as

max
r∈Cπ

U(r)

Therefore, if Cπ is convex, the optimization problem will become tractable. The convexity

of the instantaneous data rate region with frequency assignment and power allocation can

be described by the following theorem, which is proved in Appendix C.

Theorem 2.5 For an OFDM-based network with infinitesimal subcarrier space and with

DSA, APA, or joint DSA and APA, the achievable data rate region is convex.

With the above theorem, we can obtain the following property of the cross-layer opti-

mization.
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Lemma 2.1 Let the boundary of the instantaneous data rate region be a subset of the

data rate region with the following property: no component of any data rate vector can be

increased while the other data rate components remain fixed. The data rate with respect to

the maximum of the average utility must be on the boundary of the data rate region if each

utility function is strictly increasing.

Proof: Suppose that the maximum can be achieved by a data rate vector r, which is

not on the boundary of the data rate region. There must exist a vector r∗ such that r 6 r∗

1 with ri < r∗i for some i, then U(r) < U(r∗). The contradiction shows Lemma 2.1.

Lemma 2.1 implies that using a strictly increasing utility function intends to assign all

resources including all power and bandwidth to users.

2.2.4.2 Global Optimum

For general differentiable utility functions, the conditions (2.13), (2.16), and (2.21) are

sufficient and necessary for locally optimal solutions of respective optimization problems;

hence they are only necessary for the global optimality. With concave utility functions,

however, the global optimality of the cross-layer optimization can be described by the

following theorem.

Theorem 2.6 If all Ui(ri)’s are concave functions, then a local maximum of U(r) is also

a global maximum, and the conditions (2.13), (2.16) and (2.21) are not only necessary but

also sufficient, respectively.

Proof: The proof simply uses the following two consequences in convex analysis [56].

1. If all Ui(ri) are concave functions, then the objective function U(r) = 1
M

∑M
i=1 Ui(ri)

is also a concave function.

2. If Cπ ∈ R
n is a convex set and U : Cπ 7→ R is a concave function, then a local maximum

of U is also a global maximum.

1r 6 r∗ means ri ≤ r∗i , for all i.
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Figure 2.4. Feasible data rate region and optimal rate allocation

The sufficiency of the conditions (2.13), (2.16), and (2.21) for a global optimum is

indispensable for algorithm design. If, in addition, the Ui(ri)’s are all strictly concave,

there is a unique global maximum solution to the optimization problems. Note that the

unique global maximum implies that there is only one optimal data rate vector. However,

there may be different frequency and power allocation schemes corresponding to the optimal

data rate vector as we can see from a network with flat fading channels for all users.

The relation between the feasible data rate region and concave utility functions is shown

in Figure 2.4. Heuristically, Lemma 2.1 shows that the rate vector corresponding to the

maximum is located on the boundary of the achievable rate region. Therefore, the optimal

rate vector should be a point of tangency between the region boundary and an average

utility contour.

2.3 Algorithm Development

We have established a theoretical framework for cross-layer optimization in OFDM wireless

networks in Section 2.2. In this section, we focus on effective and practical algorithms

for efficient and fair resource allocation in OFDM wireless networks. In practical OFDM

wireless networks, the number of subcarriers is finite; therefore, the optimization problem

turns from continuous to discrete. This discrete optimization, together with nonlinear utility
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functions, challenges algorithm design.

The system model is presented in Section 1.3, but the time parameter n is omitted in

this section. Given a power vector p, the achievable transmission efficiency at subcarrier k

is denoted as cpi [k]. To make optimization problems more tractable, we will further assume

that the utility curve is continuously differentiable. We take various conditions into account

and develop a variety of efficient algorithms, including sorting-search dynamic subcarrier

assignment, greedy bit loading and power allocation, as well as objective aggregation algo-

rithms. Furthermore, we will also extend our discussion to a special type of non-concave

utility functions in Section 2.4.

The use of utility functions with respect to average data rates can further improve

performance by exploiting time diversity. A low-pass time filter can be easily incorporated

into all of the algorithms.

2.3.1 Dynamic Subcarrier Assignment Algorithms

In this section, we develop DSA algorithms by assuming a fixed power allocation. When

only DSA is used, the problem can be mathematically formulated as follows: given a fixed

power allocation, p,

max
Di,i∈M

∑

i∈M

Ui(ri) (2.22)

subject to
⋃

i∈M

Di ⊆ K, (2.23)

Di

⋂

Dj = ∅, i 6= j ∀i, j ∈M, (2.24)

Unlike the scenario of infinite subcarriers, which is analyzed in Section 2.2, the instanta-

neous data rate region determined by (2.23) and (2.24) is not convex anymore. Therefore,

it is necessary to investigate the corresponding optimality conditions.

2.3.1.1 Optimality Conditions

In order to study the optimality, we reformulate the above discrete DSA problem as a non-

linear integer (0-1) programming one. Let xik indicate whether subcarrier k is assigned to
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user i or not, that is,

xik =







1, if subcarrier k is assigned to user i,

0, otherwise.

Then the equivalent non-linear integer (0-1) programming problem can be described as

follows.

max
x

∑

i∈M

Ui

(

4f
∑

k∈K

cpi [k]xik

)

subject to
∑

i∈M

xik = 1, k ∈ K, and

xik ∈ {0, 1}, i ∈M, k ∈ K,

where x = [x11, · · · , x1K , x21, · · · , x2K , · · · , xM1, · · · , xMK ]T . Thus, there is a one-to-one

correspondence between x and the Di’s.

Let

U(x) =
∑

i∈M

Ui

(

4f
∑

k∈K

cpi [k]xik

)

,

and B be the feasible region of x’s. If the utility functions Ui(r)’s are concave and differen-

tiable, from the property of the subgradient of concave functions [56], ∀x ∈ B,

U(x)− U(y) ≥ OxU(x)T (x− y) ∀y ∈ B. (2.25)

where the gradient of U(x) is defined as,

OxU(x) =























U
′

1(r1)c
p
1 [1]4f

...

U
′

1(r1)c
p
1 [K]4f

...

U
′

M (rM )cpM [1]4f

...

U
′

M (rM )cpM [K]4f























,

with

U
′

i (r) =
dUi(r)

dr
.
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It can be directly derived from (2.25) that if x∗ satisfies

OxU(x∗)T (x∗ − x) ≥ 0 ∀x ∈ B, (2.26)

then

U(x∗)− U(x) ≥ 0, ∀x ∈ B,

which means that x∗ is globally optimal. The condition (2.26) is equivalent to the following

expression. ∀k ∈ K, letting i be the user index with respect to k such that x∗
ik = 1,

U
′

i (r
∗
i )c

p
i [k] ≥ U

′

j(r
∗
j )c

p
j [k], ∀j 6= i ∈M

and r∗i =
∑

k∈K

cpi [k]4fx∗
ik.

The above condition can be also expressed as follows. For a fixed power allocation p

and concave utility functions, a set of D∗
i ’s is globally optimal if

U
′

i (r
∗
i )c

p
i [k] ≥ U

′

j(r
∗
j )c

p
j [k], ∀k ∈ D∗

i , ∀i, j ∈M (2.27)

and r∗i =
∑

k∈D∗
i

cpi [k]4f. (2.28)

Therefore, the variation of the optimality conditions for the continuous frequency case

developed in Theorem 2.2 also holds for the discrete frequency case. It is worth noting that

the above conditions are only sufficient for optimality, and that its necessity is lost due to

the non-convexity of the achievable data rate region in this case.

We consider two specific cases. First, continuous rate adaptation is used. In this sce-

nario, since the channel fading levels, Hi[k]’s, are continuous random variables, the cpi [k]’s

are continuous random variables as well, which implies that P
{
cpi [k] = cpi′ [k

′]
}

= 0 for pair

(i, k) 6= (i′, k′). According to (2.27) and (2.28), subcarrier k should be assigned to user m

according to the following rule:

m(k) = arg max
i∈M
{U

′

i (r
∗
i ) · c

p
i [k]}, (2.29)

where m(k) represents that subcarrier k should be assigned to user m(k), and

r∗i =
∑

k∈D∗
i

cpi [k]4f.
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Another scenario is that linear utility functions are used. For a linear utility function

Ui(ri), its marginal utility function U
′

i (ri) is a constant, which is denoted as U
′

i . With the

linearity, (2.25) becomes

U(x)− U(y) = OxUT (x− y) ∀y ∈ B.

Using the same method, we have that with linear utility functions, a set of D∗
i ’s is globally

optimal if and only if

U
′

i c
p
i [k] ≥ U

′

jc
p
j [k], ∀k ∈ D∗

i , ∀i, j ∈M (2.30)

Therefore, the optimal subcarrier assignment has the following closed form

m(k) = arg max
i∈M
{U

′

i · c
p
i [k]}. (2.31)

2.3.1.2 Sorting-Search Algorithm of Subcarrier Assignment

The utility-based subcarrier assignment optimization belongs to the set of nonlinear combi-

natorial optimization problems, in which there is no general approach to achieve optimality.

In this section, we propose a sorting-search algorithm to seek the optimal subcarrier assign-

ment.

Let us first consider the two-user case, in which each subcarrier in a set of subcarrier

indices A (A ⊆ K) will be assigned to either user 1 or user 2. For this combinatorial

optimization problem, there are 2|A| choices to assign |A| subcarriers, where |A| denotes

the number of elements in set A. The key idea of sorting-search algorithm is to assume

that the conditions (2.27) and (2.28) are both sufficient and necessary. Thus, we have the

following rule for an optimal subcarrier assignment: In the two-user case, if subcarrier i

is assigned to user 1, and
cp2 [j]

cp1 [j]
<

cp2 [i]

cp1 [i]
, then subcarrier j must be assigned to user 1 as

well. From the above rule, after the
cp2 [k]

cp1 [k]
’s for all k ∈ A are sorted in an increasing order,

there are only |A|+ 1 possible assignments that may result in the optimal point, including

the two extreme cases: all subcarriers are assigned to user 1 or user 2. In other words, if

the conditions (2.27) and (2.28) are both sufficient and necessary, the optimal rate vector

should be located on the boundary of the convex hull of the feasible data rate vector set.
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Figure 2.5. An illustration of properties of DSA

For example, if there are three subcarriers for users 1 and 2, and
cp2 [1]

cp1 [1]
≤

cp2 [2]

cp1 [2]
≤

cp2 [3]

cp1 [3]
,

then there are only 4 possible choices for D1/D2: {∅}/{1, 2, 3}, {1}/{2, 3}, {1, 2}/{3},

{1, 2, 3}/{∅}. The data rates for users 1 and 2 with those four different subcarrier assign-

ments are shown in Figure 2.5. From the figure, we can see that the slopes of the lines ab,

bc, and cd are −
cp2 [1]

cp1 [1]
, −

cp2 [2]

cp1 [2]
, and −

cp2 [3]

cp1 [3]
, respectively. Note that the data rate vectors a,

b, c, and d are located on the boundary of the convex hull of the feasible data rate vector

set.

The remaining problem is to find out the optimal one among |A|+1 choices. Let T be a

threshold that subcarriers satisfying
cp2 [k]

cp1 [k]
> T are assigned to user 2, and the rest to user

1. Therefore, T will determine a subcarrier assignment. From the previous discussion, the

optimal T should be close to
U

′

1(r1)

U
′

2(r2)
. With the increase of T , r1 increases, and r2 decreases.

Because of the concavity of utility functions,
U

′

1(r1)

U
′

2(r2)
decreases with the increase of T . Clearly,

binary search is the best way to arrive at the optimal threshold.

The complexity of this algorithm is very low. The average computational complexity of

sorting is about |A| log2(|A|), and that of binary search is only log2(|A|) [34]. Therefore,

the average computational complexity of this algorithm is less than (K + 1) log2(K).

30



Algorithm 1 Sorting-Search Subcarrier Assignment for the Two-User Case

sort
cp2 [k]

cp1 [k]
, k ∈ A in increasing order

get thresholds: T [k], k ∈ {1 : |A|+ 1} in increasing order
low = 1; high = |A|+ 1
while high − low > 0 do

center ← b(low + high)/2c
T ← center

if T −
U

′

1(r1)

U
′

2(r2)
> 0 then

high← center
else

low← center
end if

end while
choose the best T between low and high

For the M -user case, we can update the subcarrier assignment of every two users iter-

atively by means of the subcarrier assignment algorithm for the two-user case. Obviously,

the computational complexity is nearly (M−1)2(K +1) log2(K), which is still efficient com-

pared to the number of choices of this combinatorial optimization problem, KM . Moreover,

the algorithm is robust to both continuous and discrete rate adaptation.

It should be indicated that the above sorting-search algorithm is in general suboptimal.

However, the algorithm will be optimal in each of the following cases.

1. The utility functions are all linear : This is because the condition (2.30) is sufficient

and necessary for the optimality.

2. The bandwidth of a subcarrier of the OFDM signal is infinitesimal : In this case,
4f

B
→

0, the feasible data rate region becomes convex. From Section 2.2, this condition leads

to the sufficient and necessary condition for optimality

OxU(x)T (x− y) ≥ 0 ∀y ∈ B.

In practical OFDM systems,
4f

B
is usually small, and thus the performance of the

sorting-search algorithm is nearly optimal in practical situations.
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2.3.2 Adaptive Power Allocation Algorithms

We develop algorithms for adaptive power allocation in this section. First, we assume that

subcarrier assignment is fixed, and then we extend the developed algorithms to the joint

DSA and APA.

2.3.2.1 APA for Fixed Subcarrier Assignment

When only APA is allowed in the system, the subcarrier assignment, Di for all i, is fixed,

and we have

max
p

∑

i∈M

Ui(ri) (2.32)

subject to
∑

k∈K

p[k] ≤ P̄ (2.33)

p[k] ≥ 0. (2.34)

When continuous rate adaptation is used, the optimal power allocation for a fixed subcarrier

assignment has the following solution, which comes from Theorem 2.3.

p∗[k] =

[

U
′

i (r
∗
i )

λ
−

1

βρi[k]

]+

λ > 0, k ∈ Di (2.35)

and λ and r∗i ’s satisfy

∑

k∈K

p∗[k] = P̄

r∗i =
∑

k∈Di

log2(1 + βp∗[k]ρi[k])4f.

This is actually a utility-based water-filling.

2.3.2.2 Sequential-Linear-Approximation Water-filling Algorithm for Continuous Rate
Adaptation

With continuous rate adaptation, the APA optimization is still a non-linear convex pro-

gramming problem, and (2.35) is both sufficient and necessary for global optimality. When

a subcarrier assignment is fixed, the non-linear optimization problem can be approached

by a series of linear optimization problems by means of the sequential-linear-approximation

algorithm (Frank-Wolfe method) [47], which can be summarized by Algorithm 2. Each
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iteration of the algorithm contains two steps. First, we solve an optimization problem with

fixed marginal utilities, which is a regular water-filling problem, and then update their mar-

ginal utilities using a subgradient method. Intuitively, by solving the group of optimization

problems with a linear objective
∑

i∈M γiri subject to the same constraints as those of the

original problem, for all possible γi ≥ 0, we can trace out the entire boundary of the data

rate region.

Algorithm 2 Sequential-Linear-Approximation Water-filling Algorithm for Continuous
Rate Adaptation

Iterate until
∑

i∈M U
′

i (r
(n)
i )(r

(n+1)
i − r

(n)
i ) ≤ ε

1. Get the new power allocation from the linear optimization problem and the corre-
sponding data rates.

p[k] ←




γ

(n)
m(k)

λ
−

1

βρm(k)[k]





+

for all k

r
(n+1)
i ←

∑

k∈Di

log2(1 + βp[k]ρi[k])4f for all i,

where m(k) means that subcarrier k is assigned to user m(k).

2. Update γ
(n)
i with a positive step-size µ ∈ (0, 1).

γ
(n+1)
i ← (1− µ)γ

(n)
i + µU

′

i (r
(n+1)
i ) for all i

2.3.2.3 Greedy Power Allocation Algorithm Based on Maximizing Total Utility for Dis-
crete Rate Adaptation

In practice, continuous rate adaptation is infeasible, and there are only several modulation

levels. Thus, the optimal power level at each subcarrier for discrete rate adaptation is

not continuous either. As a result, the previous water-filling algorithm cannot achieve the

optimal power allocation. Therefore, we develop a greedy algorithm for discrete modulation

levels.

The key idea of the greedy algorithm is to allocate bits and the corresponding power

successively and maximize the utility argument per power in each step of bit loading. Let

f(b) be the required power to transmit b bits/sec/Hz, which is usually determined by the
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system design. If MQAM is used, according to (2.2), f(b) is given by

f(b) =
2b − 1

βρ[k]
.

In initialization, zero bits are assigned to all subcarriers. During each bit loading iteration,

power is allocated at some subcarrier so that the increase of utility per power is maximized.

The iteration process will stop when the total transmission power constraint is reached. The

greedy power allocation is summarized in Algorithm 3. Note that nonlinear concave utility

functions do not increase the algorithm complexity compared to linear utility functions.

Algorithm 3 Greedy Power Allocation Algorithm for Discrete Rate Adaptation

bk ← 0; 4pk ← 0 for all k
ri ← 0 for all i
ptotal ← 0; 4p← 0
while ptotal +4p < P̄ do

ptotal ← ptotal +4p
4pk ← f(bk +4bk)− f(bk) for all k,
where bk is the current modulation level of subcarrier k, and 4bk is the difference
between the next modulation level and the current one for subcarrier k.
if ptotal +4pk > P̄ then
4pk ←∞

end if
4Uk ← Um(k)(rm(k) +4bk)− Um(k)(rm(k))

k̂ ← arg maxk∈K(4Uk

4pk
)

4p←4pk̂
if ptotal +4p ≤ P̄ then

bk̂ ← bk̂ +4bk̂
rm(k̂) ← rm(k̂) +4bk̂

end if
end while

Using the following three steps, we can prove that the greedy algorithm results in the

global optimal bit loading and power allocation with concave utility functions. First, we

show that the objective function (2.32) is also concave with respect to the power vector

p. Then, we check that the feasible region of power allocation vector p constrained by

(2.33) is a polymatroid, which satisfies the normalized, nondecreasing, and submodular

properties [21]. Finally, taking advantage of the concavity of objective function and the

polymatroid structure of the feasible region, we can demonstrate the optimality of the

greedy algorithm according to [21].
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2.3.3 Joint Dynamic Subcarrier Assignment and Adaptive Power Allocation

As in Section 2.2, when both power allocation and subcarrier assignment can be changed,

the joint DSA and APA optimization problem can be expressed as follows:

max
Di,i∈M,p

∑

i∈M

Ui(ri) (2.36)

subject to
⋃

i∈M

Di ⊆ K, (2.37)

Di

⋂

Dj = ∅, i 6= j ∀i, j ∈M, (2.38)

∑

k∈K

p[k] ≤ P̄ (2.39)

p[k] ≥ 0. (2.40)

Obviously, the optimal resource allocation (optimal rate vector) must simultaneously sat-

isfy the conditions for the DSA-only and APA-only problems. Similar to the discussion

in Section 2.3.2.2, for concave functions, the algorithm for the joint DSA and APA using

continuous rate adaptation is a combination of iterative subcarrier assignment, power allo-

cation, and the update of marginal utility, which is summarized in Algorithm 4. For those

concave utility functions, using this algorithm with an appropriate update-step µ, we can

find a global maximum. The computational complexity of the subcarrier assignment is only

O(MK). For discrete rate adaptation, we can iteratively use the sorting-search DSA and

the greedy APA algorithms.

2.3.4 Algorithm Modification for Nonconcave Utility Functions

Utility functions depend on the type of applications and are not always concave. For

instance, it is demonstrated in [29] that the utility function for best-effort applications is

U(r) = [0.16 + 0.8 ln(r − 0.3)]+, (2.41)

where the r is in units of kbps. For a more general use, we express the utility function as

U(r) =







a + b ln(r − c) r ≥ rthr

0 0 ≤ r < rthr

(2.42)

where b > 0 and a = −b ln(rthr − c) is a threshold. Even though the above utility function

(2.41) is not exactly concave over [0,+∞), it is strictly concave and differentiable when
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Algorithm 4 Joint DSA and APA with Continuous Rate Adaptation

Iterate until
∑

i∈M U
′

i (r
(n)
i )(r

(n+1)
i − r

(n)
i ) ≤ ε

1. Get the new subcarrier assignment, according to the condition (2.30), using

m(k)← arg max
i∈M
{γ

(n)
i cpi [k]} for all k

2. Get the new power allocation from the linear optimization problem and the corre-
sponding data rates.

p[k] ←




γ

(n)
m(k)

λ
−

1

βρm(k)[k]





+

for all k

r
(n+1)
i ←

∑

k∈Di

log2(1 + βp[k]ρi[k])4f for all i

3. Update γ
(n)
i with a positive step-size µ ∈ (0, 1).

γ
(n+1)
i ← (1− µ)γ

(n)
i + µU

′

i (r
(n+1)
i ) for all i

the data rate is above a threshold. For this utility function (2.41), the threshold, rthr =

1.119 kbps, is very small. As a result, the non-concavity of this function may not significantly

affect the solution of the optimization problem, especially in the case of high SNR. However,

the non-concavity sometimes does affect the solution; therefore, we will propose an approach

to deal with the non-concavity problem.

Finding the global optimum of a non-convex optimization problem is in general very

difficult. An intuition can be obtained from (2.42); this utility function implies the need

of admission control. rthr is actually the threshold for admission control. Our solution

includes the following two steps:

• Modifying this utility function to Ũ(r) as follows:

Ũ(r) =







U(r), r ≥ rthr,

U
′
(rthr)(r − rthr), 0 ≤ r < rthr,

(2.43)

which is concave over [0,+∞), and a global maximum for the modified utility function

can be obtained by using the previous algorithms. Note that the modification is

suitable for any utility function that is concave over [rthr,+∞).
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• Using admission control, shown in Figure 2.6, the solution obtained from the modified

utility function Ũ(r) can be corrected to that of the original utility function U(r).

allocation with the modified
utility function

the lowest data rate

Exists
Yes

No

Iterative subcarrier and power

a user having

with 

Remove the  user with

�������

����

Figure 2.6. Modified dynamic resource allocation algorithm

2.4 Cross-Layer Optimization Based on Utility Functions

With Respect to Average Date Rates

All of the forementioned resource allocation algorithms underlying maximizing the aggregate

utility just consider the instantaneous channel conditions, fairness, and efficiency. In reality,

however, users mainly care about the average data rate during a certain period of time, not

the instantaneous one. In this section, we investigate the impact of time diversity on the

performance of the cross-layer optimization. We start with a general case and then study

the asymptotic performance.

The average data rate r̄i[n] of each user at time n can be expressed by using an expo-

nentially weighted low-pass time window as

r̄i[n] = (1− ρw)r̄i[n− 1] + ρwri[n]. (2.44)

where ri[n] is the instantaneous data rate of user i at time n. ρw =
Ts

Tw
, where Ts is the slot

length, and Tw is the length of the window. Therefore, the optimization problem should

be expressed as maximizing the total utility with respect to the average data rates, r̄i[n]’s,
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that is,

max
r[n]∈Cπ(H)

∑

i∈M

Ui(r̄i[n]) (2.45)

where r[n] is the data rate vector [r1[n], r2[n], · · · , rM [n]]T , and Cπ(H) is the instantaneous

feasible data rate region at time n, determined by the current channel states H, which is

given by

H = (H1[1], · · · ,H1[K], · · · ,HM [1], · · · ,HM [K]),

and the allocation constraints of a certain resource allocation policy π, such as DSA, APA,

as well as joint DSA and APA.

Since r̄i[n] is a function of ri[n] in (2.44), the optimization problem (2.45) can be rewrit-

ten as

max
r[n]∈Cπ(H)

∑

i∈M

Vi(ri[n]) (2.46)

where Vi(ri[n]) = Ui ((1− ρw)r̄i[n− 1] + ρwri[n]).

The above problem can be regarded as an optimization based on utility functions Vi(·)’s

with respect to the instantaneous data rates ri[n]’s as well. The marginal utility function

is given by

∂

∂ri[n]
Vi(ri[n]) = ρwU ′

i(ri)
∣
∣
ri=(1−ρw)r̄i[n−1]+ρwri[n]

,

Therefore, all previous algorithms work well as long as Ui(ri) and U
′

i (ri) are replaced by

Ui(r̄i[n]) and ρwU
′

i (r̄i[n]), respectively. The computational complexity of maximizing the to-

tal utility function with respect to the average data rates is the same as that of optimization

with respect to the instantaneous data rates.

Without a time window, the optimization problem must guarantee fairness in each slot

period. However, when the time window is used, the fairness requirement is relaxed to a

time-window length. This provides more flexibility to improve the spectral efficiency. On

the other hand, the current resource allocation is related to the previous ones. If one user

has a higher average date rate, his priority is set to be lower. Hence, the use of a time

window may enhance fairness as well. The length of the time window should be longer than
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the correlation time of the channel in order to get more time diversity. But if it is too long,

the utility function cannot capture the short-term preference of users.

If ρw is small enough, the computational complexity of the optimization problem can

be reduced furthermore. With a small ρw, we have

∂Ui(r̄i[n])

∂ri[n]
≈ ρwU ′

i(ri)
∣
∣
ri=r̄i[n−1]

,

which means that the current marginal utility values are totally determined by the previous

resource allocation. With one-order Taylor formula, it follows that

∑

i∈M

Ui(r̄i[n])−
∑

i∈M

Ui(r̄i[n− 1])

≈
∑

i∈M

U ′
i(r̄i[n − 1])(ρwri[n]− ρwr̄i[n− 1]) (2.47)

Since all r̄i[n − 1]’s are fixed at time n, the optimization problem becomes the one with a

linear objective function as follows,

max
r[n]∈Cπ(H)

∑

i∈M

U ′
i(r̄i[n− 1])ri[n], (2.48)

which maximizes the sum of weighted rates. The weights are adaptively controlled by the

marginal utility with respect to the current average rates.

The linear objective function greatly simplifies the corresponding algorithms. In partic-

ular, for DSA, we have the following closed form according to (2.31),

m(k, n) = arg max
i∈M
{U

′

i (r̄i[n− 1]) · cpi [k, n]}, (2.49)

where m(k, n) represents that subcarrier k is assigned to user m(k, n) at time n, and cpi [k, n]

denotes the achievable transmission efficiency of subcarrier k at time n. Its complexity is

only M ·K. If there is only one carrier (single-carrier system), and if Ui(r̄i[n]) = ln(r̄i[n]),

and (2.49) is simplified as

m(n) = arg max
i∈M
{

cpi [n]

r̄i[n− 1]
},

which is just the proportional fair scheduling proposed for CDMA systems in [76]. Therefore,

the utility-based resource allocation we presented here is a general framework for allocating

multiuser shared resources. For APA or joint DSA and APA, iteration is still needed, but

the linear objective function offers fast convergence.
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2.5 Efficiency and Fairness

Both efficiency and fairness issues are very important for resource allocation in wireless

networks. An allocation scheme is said to be efficient if there is no other scheme that would

simultaneously benefit someone and harm nobody in terms of their utilities. Therefore,

the utility-based optimization is obviously efficient. Note that it differs from the spectral

efficiency that is measured in terms of the total throughput over the bandwidth. Clearly,

the maximum spectral efficiency is achieved by using a utility function Ui(ri) = ri for all i.

With the channel knowledge for each user at the base station, the DSA scheme tends

to assign subcarriers to users with a better SNR at the corresponding subcarriers, thereby

having high spectral efficiency. It is obvious from (2.13) that the utility-based DSA penalizes

the users with poor channel conditions.

When Ui(ri) = ri, U
′

i (ri) = 1. In this case each subcarrier is assigned to the user with

the best channel conditions among all users; therefore, the system can obtain the largest

multiuser diversity with respect to spectral efficiency. Although the multiuser diversity is

similar to the traditional selection diversity, its diversity gain results from the number of

users, rather than from the number of antennas.

Fairness requires a fair share of bandwidth among competing users and protection from

aggressive connections. Two representative types of fairness are proportional fairness [30]

and max-min fairness [10]. Proportional fairness provides each connection a priority in-

versely proportional to its data rate. A vector of rates r ∈ C is said to be proportionally fair

if for any other feasible rate vector r′ ∈ C, the aggregate of proportional changes is zero or

negative:

M∑

i=1

r′i − ri

ri
≤ 0. (2.50)

For a concave utility function U(r) and a convex set Cπ, r is optimal if and only if

∇U(r)T (r′ − r) ≤ 0 for all r′ ∈ Cπ. (2.51)

where ∇U(r) = [U ′
1(r1), U

′
2(r2), · · · , U

′
M (rM )]T . When the logarithmic utility function,

U(r) = ln(r), is used, (2.51) is identical to (2.50). Therefore, the logarithmic utility function

is associated with the proportional fairness for the utility-based optimization.
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A data rate vector r is max-min fair if for each m ∈M, rm cannot be increased without

decreasing ri form some i for which ri < rm. Obviously, max-min fairness has a strict

fairness criterion since lower rates can get an absolute priority.

Consider a family of utility functions that is expressed as

U(r) = −
r−α

α
, α > 0. (2.52)

Obviously, the parameter α determines the degree of fairness. As α increases, the fairness

of the corresponding utility function becomes stricter and stricter. When α→∞, it turns

out to be the max-min fairness.

It can be also seen from (2.13) that increasing utility functions encourage the users

having good channel conditions, and decreasing marginal utility functions assign a high

priority to the users with a low data rate. Therefore, utility-based resource allocation can

guarantee both efficiency and fairness.

2.5.1 Fairness of “Extreme OFDM” Using Utility Functions With Respect to
Instantaneous Data Rates

Since the instantaneous capacity is convex in the “extreme OFDM” system in Section 2.2, in

which the number of subcarrier is assumed to be infinite, utility-based optimization related

to instantaneous data rates in Section 2.2 can maintain a fairness defined as (2.51) with

respect to the instantaneous capacity region.

2.5.2 Fairness of “Practical OFDM” Using Utility Functions With Respect to
Average Data Rates

In practical OFDM systems, in which the number of subcarrier is finite, the instantaneous

capacity region is not convex anymore. Thus, we focus on the steady state of the system

and the fairness related to the long-term average data rate region.

The scheduling algorithm (2.49) is assumed to be used. We consider the situation in

steady state when the window size Tw → ∞. It is assumed that the channel processes H

are ergodic. We denote by r̃i the limit data rate of user i; due to the ergodicity of H, it
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follows that

r̃i = lim
n→∞

r̄i[n]

= E{ri},

Let C̃π be the long-term average data rate region under the allocation constraints of the

policy π, which consists of the average data rate vectors obtained by all possible stationary

resource allocation schemes.

It is easy to prove that C̃π is a convex set; that is, ∀ r̃(1), r̃(2) ∈ C̃π, α ∈ [0, 1], we

will show that αr̃(1) + (1 − α)r̃(2) ∈ C̃π. According to the definition of C̃π, there must

exist such a resource allocation scheme F (1) that r̃(1) = E{F (1)(H)}, where F (1)(H) is the

data rate vector of user i under the channel states H when a resource allocation scheme

F (1) is employed. Likely, r̃(2) results from another resource allocation scheme F (2) so that

r̃(2) = E{F (2)(H)}. We can construct such a new scheme F that under the channel states

H,

F =







F (1) ξ = 1

F (2) ξ = 0
,

where ξ is a binary random variable with P{ξ = 1} = α. It follows that

r̃ = E{F (H)}

= E{ξF (1)(H) + (1− ξ)F (2)(H)}

= P{ξ = 1}E{F (1)(H)}+ (1− P{ξ = 1})E{F (2)(H)}

= αr̃(1) + (1− α)r̃(2)

The data rate vector r̃ with respect to the scheme F lies in C̃π; therefore, αr̃(1)+(1−α)r̃(2) ∈

C̃π.

The optimization problem (2.48) in steady state can be expressed as

max
r∈Cπ(H)

∑

i∈M

U ′
i(r̃i)ri, (2.53)

where r̃ is the steady-state data rate vector. The data rate vector r∗ under the channel

conditions H with respect to the scheme (2.53) is given by

r∗ = arg max
r∈Cπ(H)

∑

i∈M

U ′
i(r̃i)ri. (2.54)
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Due to being in steady state, E{r∗} = r̃. Obviously, with any other scheme F , it follows

that r′ = F (H), and

OU(r̃)T (r′ − r∗) ≤ 0, r′ ∈ Cπ(H), (2.55)

where, OU(r̃) = [U
′

1(r̃1), U
′

2(r̃2), · · · , U
′

M (r̃M )]T . Taking expectation on both sides, we have

OU(r̃)T (̃r′ − r̃) ≤ 0, r̃′ ∈ C̃π. (2.56)

Due to the convexity of the feasible average rate region C̃π and the concavity of utility

functions Ui(r)’s, the condition (2.56) is sufficient and necessary for the optimality of the

following problem [56]

max
r̃∈C̃π

∑

i∈M

Ui(r̃i). (2.57)

Therefore, when ρw → 0, the optimization problem in the instantaneous rate region

(2.48) can achieve the optimality of the optimization problem with respect to the long-term

average data rates in the average rate region (2.57). In this scenario, the properties of

efficiency and fairness that utility functions offer are all concerned with long-term average

data rates. For instance, if Ui(r̃i) = ln(r̃i), then U
′

i (r̃i) = 1/r̃i. It follows from (2.56) that

∑

i∈M

r̃′i − r̃i

r̃i
≤ 0, for all r̃′ ∈ C̃π,

in which the long-term average data rate vector r̃ is proportionally fair.

2.6 Simulation Results

In this section, we present simulation results to illustrate the performance of the various

resource allocation approaches developed in this chapter. In our simulation, the channel is

assumed to have a bad-urban (BU) delay profile [70] and suffer from shadowing with 8.0 dB

standard deviation. Let the acceptable BER be 10−6 for rate adaptation. The bandwidth of

each subcarrier is 10 kHz, and the utility function in (2.41) is used. To be able to compare

those results properly, we set the average bandwidth per user, B/M , to be 80 kHz and show

the average total utility per 80 kHz in simulation results.
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At first, we assume the distances from the base station to all users are identical and

compare various resource allocation schemes without a time window. Figure 2.7 shows some

numerical results for different resource allocation schemes. Here continuous rate adaptation

is used for all schemes. The fixed subcarrier assignment (FSA) results in the same perfor-

mance when the number of users changes, while DSA offers significant multiuser diversity,

which increases with the number of users. However, in the continuous rate adaptation case,

the joint DSA and APA only leads to a very small improvement compared to DSA. The

contribution of the APA is limited in this case as well.

Figure 2.8 shows the performance of different adaptive resource allocation policies with

discrete rate adaptation. The variable MQAM with modulation levels {0, 2, 4, 6, · · · } is

assumed to be employed. The improvement from the DSA is similar to that in the continuous

rate adaptation case. However, the contribution of the APA is significant in sharp contrast

to that of continuous rate adaptation. Besides, the DSA in conjunction with the APA is able

to substantially improve the network performance even in the two-user case. For example,

to achieve an average utility of 3, the gain from the joint DSA and APA is about 8 dB for

the two-user case, and it increases to around 11 dB for the 16-user case.

Next, we evaluate fairness and spectral efficiency in the scenario when the distances

between users and the base station are different. The path loss is modeled by

PL(d) = 128.1 + 37.6 log10 d [dB]

where d (km) is the distance between a user and the base station. Each user is assumed

to be stationary or slowly moving so that the maximum Doppler shift is 5 Hz; as a result,

their path loss and shadowing values are fixed during the simulation. In this simulation, the

number of users is 8. We sort the 8 users according to their distances to the base station.

The path loss difference between the users closest to and fartherest from the base station

is about 18 dB in the simulation.

Figures 2.9 and 2.10 show the average throughput and average of each user with various

resource allocation policies when continuous and discrete rate adaptation techniques are

deployed, respectively. It is clear that although each user gets the same bandwidth and
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Figure 2.7. Average user utility versus SNR for OFDM wireless network with different resource

allocation schemes

45



0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
2 users

Average SNR (dB)

A
ve

ra
ge

 U
til

ity

FSA
DSA
APA
DSA+APA

(a) 2 users

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
4 users

Average SNR (dB)

A
ve

ra
ge

 U
til

ity

FSA 
DSA
APA
DSA+APA

(b) 4 users

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
16 users

Average SNR (dB)

A
ve

ra
ge

 U
til

ity

FSA
DSA
APA
DSA+APA

(c) 16 users

Figure 2.8. Average user utility versus SNR by using discrete rate adaptation and different

resource allocation schemes
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power, different path loss values result in different data rates. It can be seen from both

figures that all utility-based resource allocation policies can increase the total throughput.

Furthermore, the poorer the channel conditions, the greater improvement in throughput;

hence all utility-based resource allocation schemes can provide fairer services than the FSA.

Figure 2.9 also confirms that using the DSA can provide the similar performance as the

joint DSA and APA for continuous rate adaptation. For discrete rate adaptation, however,

Figure 2.10 shows the significant improvement of the joint DSA and APA in offering efficient

and fair allocation.

Figure 2.11 demonstrates the performance of the DSA and the joint DSA and APA over

time windows with different window lengths when discrete rate adaptation is employed.

For the DSA, the time window helps to enhance the fairness of resource allocation. On the

other hand, for the joint DSA and APA, a time window can further improve the average

throughput of each user. However, the complexity of implementation time windows is

negligible.

2.7 Summary

In this chapter, we have presented utility-based cross-layer optimization for OFDM-based

wireless networks. The utility is used here to build a bridge between the physical and

MAC layers and to balance the efficiency and fairness of resource allocation. In particular,

we have investigated the necessary and sufficient conditions for finding an optimum for

the DSA, APA, and joint DSA and APA schemes when instantaneous-rate-based utility

functions are used and the number of subcarriers is assumed to be infinite. Based on

the theoretical framework, we have developed a variety of efficient algorithms, including

the sorting-search DSA, the greedy bit-loading and power allocation, and the objective

aggregation algorithms for practical OFDM systems. We have also modified the algorithms

for non-concave utility functions. The use of average-rate-based utility functions is very

suitable to best-effort traffic. A low-pass time filter resulting from average-rate-based utility

functions can easily be incorporated into all algorithms to exploit time diversity,. The

extensive computer simulation results demonstrate the significant performance gain for the
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Figure 2.9. Average performance of various resource allocation schemes with continuous rate

adaptation
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Figure 2.10. Average performance of various resource allocation schemes with discrete rate

adaptation
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developed algorithms. In the next Chapter, we will focus on using utility-based optimization

for delay-sensitive traffic.
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CHAPTER 3

JOINT CHANNEL- AND QUEUE-AWARE

MULTICARRIER SCHEDULING USING DELAY-BASED

UTILITY FUNCTIONS

The relationship between rate-based utility functions and fairness in wireless networks has

been shown in Chapter 2. Rate-based scheduling schemes, which apply the CSI and rate-

based utility functions, do not take traffic burstiness into account. In this chapter, utility

functions with respect to average delays is used for designing channel- and queue-aware

scheduling, which is highly advantageous to data transmission with a low latency require-

ment.

This chapter is organized as follows. In Section 3.1, we introduce the background and

motivations of this work. In Section 3.2, we briefly introduce how to extend scheduling

schemes existing in single-carrier systems into the corresponding multichannel scheduling

schemes. In Section 3.3, we develop the MDU scheduling based on maximizing the total

utility in terms of average waiting time. In Section 3.4, we state the maximum stability

region and develop the results regarding stability. In Section 3.6, we propose using delay

transmit diversity and adaptive power allocation to further improve the system performance.

Finally, in Section 3.7, we compare several multicarrier scheduling schemes using simulation.

3.1 Introduction

It is increasingly clear that most information traffic would be delivered based on IP networks

because of the efficient bandwidth use and the low-cost infrastructure construction. Thus,

the queue state information, such as queue length and packet delay, which is a reflection

of traffic burstiness, should be utilized in scheduling packets. On the other hand, since the

queue state information is tightly connected with QoS, wisely controlling queues is one of the
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most effective ways for QoS provisioning. As compared to channel-aware scheduling, joint

channel- and queue-aware scheduling would be more beneficial to wireless resource allocation

and QoS provisioning. Modified largest weighted delay first (M-LWDF) and exponential

(EXP) scheduling rules have been proposed for CDMA downlink transmission in [8, 63],

respectively. Neither rules require statistical information about arrival traffic and wireless

channels. The stability properties of the M-LWDF and the EXP scheduling rules over

time-varying channels have been also studied by using the fluid limit technique in [8, 63],

respectively. Other work on packet scheduling with emphasis on queueing system stability

can be found in [20,45,49,71,72].

In this chapter, we investigate joint channel- and queue-aware scheduling in OFDM-

based networks with emphasis on designing joint channel- and queue-aware scheduling

schemes for multicarrier networks. It should be indicated that the scheduling design for

multicarrier networks is not just a simple extension of existing scheduling approaches in

single-carrier networks. First, multicarrier networks have nice granularity for resource allo-

cation since the whole bandwidth is divided into many subchannels. Second, multicarrier

scheduling actually works in a parallel fashion. Unlike in single-carrier networks, multiple

users can be served simultaneously in multicarrier networks; thus, from a queueing point of

view, there are multiple servers in multicarrier scheduling.

3.2 Extending Scheduling Rules in Single-Carrier Networks

into OFDM Networks

In this section, DSA is used, but power allocation is fixed. Some existing scheduling schemes

exploiting multiuser diversity in single-carrier networks can be directly extended to multi-

carrier networks. In dynamically assigning subcarriers, we usually need to solve the opti-

mization problem expressed as follows:

max
D

(n)
i ,i∈An

∑

i∈An

wi[n]ri[n] (3.1)

subject to
⋃

i∈An

D
(n)
i ⊆ K, (3.2)

D
(n)
i

⋂

D
(n)
j = ∅, i 6= j ∀i, j ∈ An, (3.3)
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where An = {i : Qi[n] > 0} is the set in which each queue is not empty at time slot n,

and the optimization objective is to maximize the sum weighted data rate with the weights

w1[n], w2[n], · · · , wM [n]. In Section 2.3.1, the optimal assignment for the above problem is

derived as

m(k, n) = arg max
i∈An

{wi[n]ci[k, n]} , (3.4)

where m(k, n) (m(k, n) ∈ An) represents subcarrier k to be assigned to user m(k, n) at time

n. This result is very useful to design scheduling approaches or to extend some scheduling

rules in the single-carrier case to the OFDM scenario.

3.2.1 Max-Sum-Capacity (MSC) Rule

The MSC rule is a channel-aware scheduling scheme that maximizes the total throughput in

the system. Thus, the optimization problem can be expressed as (3.1)-(3.3) with wi[n] = 1,

for all i. Clearly, the MSC rule is given by

m(k, n) = arg max
i∈An

{ci[k, n]} . (3.5)

Although the MSC rule makes the most efficient use of the bandwidth, it can lead to

unfairness and instability, especially for nonsymmetrical channel conditions and nonuniform

traffic patterns.

3.2.2 Proportional Fair (PF) Scheduling

The PF scheduling is a channel-aware scheduling rule aiming to maximize
∑

i ln(r̄i[n]),

where r̄i[n] is the average data rate for user i. The scheduling rule in multicarrier networks

is obtained in [67,76] also in Chapter 2 as

m(k, n) = arg max
i∈An

{
ci[k, n]

r̄i[n]

}

. (3.6)

Since ρw is very small, r̄i[n] ≈ r̄i[n − 1]. Although this DSA algorithm guarantees the

proportional fairness [67], it is not throughput-optimal 1 [7]. The PF scheduling is suitable

to best-effort traffic, which has no specific QoS requirements.

1A scheduling algorithm is called throughput-optimal if it stabilizes a queueing system in which stability
is feasible at all to do with any algorithms [8] .
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3.2.3 Modified Largest Weighted Delay First (M-LWDF) Rule

In [8], the M-LWDF scheme is proposed for single-carrier CDMA networks with a shared

downlink channel. From an optimization point of view, the M-LWDF intends to maximize

∑

i
THOL,i[n]

r̄i[n] ri[n], where THOL,i is the delay of the head-of-line (HOL) packet of user i. Using

the result (3.4), we have the multichannel version of M-LWDF as

m(k, n) = arg max
i∈An

{
ci[k, n]

r̄i[n]
THOL,i[n]

}

.

3.2.4 Exponential (EXP) Rule

The EXP scheduling rule is also designed for single-carrier CDMA networks with a shared

downlink channel [63]. The structure of the EXP rule is very similar to the M-LWDF, but

with different weights. The multichannel version of EXP rule can be expressed as

m(k, n) = arg max
i∈An







ci[k, n]

r̄i[n]
exp




THOL,i[n]

1 +
√

THOL[n]










,

where THOL[n] = 1
|An|

∑

i∈An THOL,i[n].

The M-LWDF and EXP rules have been proven to be throughput-optimal in single-

carrier networks [8,63]. With a few modifications, the proofs are valid in OFDM networks.

Both scheduling rules are proposed for delay-sensitive traffic.

3.3 Max-Delay-Utility (MDU) Scheduling

Designing channel-aware-only scheduling is usually tractable. It is shown in Chapter 2

that most channel-aware-only scheduling schemes can be derived by maximizing the sum

of specific utility functions with respect to data rates. However, there are two difficul-

ties in designing joint channel- and queue-aware scheduling. First, it is hard to formulate

the desired optimization goals related to the QoS requirements such as average waiting

time, delay violation probability, etc. Second, the optimal solutions to those optimization

problems usually require dynamic programming with exponential computational complex-

ity, which makes them impossible in practice. In this section, we propose using the utility
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functions with respect to average waiting times in designing joint channel- and queue-aware

scheduling, which was first reported in [68].

3.3.1 Utility Functions

Assume that user i is associated with an average waiting time Wi and the corresponding

utility is Ui(Wi). Obviously, with a long delay, the user has a low level of satisfaction

(utility). It is reasonable to assume that Ui(Wi) is decreasing. There are usually two

approaches to obtaining utility functions. For a specific type of application, the utility

function may be obtained by sophisticated subjective surveys. Another method is to design

utility functions based on the habits of the traffic and appropriate fairness in the network.

3.3.2 Optimization Objective

Assume the average arrival bit rate of user i as λi, defined as

λi =
1

Ts
lim

n→∞

Ai[n]

n

where Ai[n] is the total number of bits arriving during (0, nTs]. Assuming that Qi[n] is

ergodic, with Little’s law, the average waiting time for user i, Wi, is

Wi =
Qi

λi

where Qi = lim
N→∞

∑N−1
n=0 Qi[n]

N
.

Let the base station control service bit rates so that

ri[n]Ts ≤ Qi[n]. (3.7)

Then, the queue evolution equation (1.3) becomes

Qi[n + 1] = Qi[n]− ri[n]Ts + ai[n]. (3.8)

By exploiting an exponentially weighted low-pass filter, the average queue length, Q̄i[n],

can be updated as

Q̄i[n] = (1− ρw)Q̄i[n− 1] + ρwQi[n] (3.9)
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where 0 < ρw < 1.

Define the average waiting time over the time window at time nTs as

Wi[n] =
Q̄i[n]

λi
. (3.10)

At time nTs (the beginning of time slot n), given the service rate ri[n], the predicted average

waiting time at the end of time slot n, (n + 1)Ts, is obtained by

Ŵi[n + 1] =
Eai[n]{Q̄i[n + 1]}

λi

where Eai[n]{·} denotes expectation with respect to ai[n]. According to (1.3) and (3.9), we

have

Eai[n]{Q̄i[n + 1]} = (1− ρw)Q̄i[n] + ρw(Qi[n]− ri[n]Ts + E{ai[n]})

Using E{ai[n]} = λiTs, Ŵi[n + 1], is obtained by

Ŵi[n + 1] = (1−ρw)
Q̄i[n]

λi
+ ρw

Qi[n]

λi
+ ρwTs−

ρw

λi
Tsri[n]

= (1−ρw)Wi[n] + ρw
Qi[n]

λi
+ ρwTs−

ρw

λi
Tsri[n]

Therefore, the predicted average waiting time at time (n + 1)Ts is a function of the service

rate during time slot n, ri[n].

The optimization objective is to maximize the total utility with respect to the predicted

average waiting times at each time slot in the network, that is,

max
ri[n],i∈M

M∑

i=1

Ui(Ŵi[n + 1]).

Given the arrival processes, the average waiting time is actually determined by the service

rate. It is obvious that

∂Ui

∂ri
= −

∂Ui

∂Wi

ρw

λi
Ts.
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If ρw is small enough, and using the properties of Ui(Wi), we have

M∑

i=1

Ui(Ŵi[n + 1])−

M∑

i=1

Ui(Ŵi[n])

≈

M∑

i=1

∂Ui

∂ri

∣
∣
∣
∣
ri=ri[n−1]

(ri[n]− ri[n− 1])

≈
M∑

i=1

−
∂Ui

∂Wi

∣
∣
∣
∣
Wi=Wi[n]

ρwTs(
ri[n]

λi
−

ri[n− 1]

λi
)

=

M∑

i=1

∣
∣
∂Ui

∂Wi

∣
∣

∣
∣
∣
∣
Wi=Wi[n]

ρwTs(
ri[n]

λi
−

ri[n− 1]

λi
)

Since the ri[n − 1]’s are fixed at time slot n, the optimization objective turns out to be a

linear function of ri[n],

max

M∑

i=1

∣
∣U ′

i(Wi[n])
∣
∣

λi
ri[n], (3.11)

where U ′
i(Wi[n]) = ∂Ui(Wi)

∂Wi

∣
∣
∣
∣
Wi=Wi[n]

, and Wi[n] can be obtained from (3.10).

3.3.3 Problem Formulation in OFDM

If the subcarriers can dynamically be assigned, with the objective (3.11), we formulate this

problem in the OFDM system as

max
D

(n)
i ,i∈An

∑

i∈An

∣
∣U ′

i(Wi[n])
∣
∣

λ̂i

ri[n] (3.12)

subject to
⋃

i∈An

D
(n)
i ⊆ K, (3.13)

D
(n)
i

⋂

D
(n)
j =∅, i 6=j ∀i, j ∈ An, (3.14)

ri[n] ≤
Qi[n]

Ts
, i ∈ An. (3.15)

where the constraint (3.15) comes from the queue control rule (3.7), which means that the

scheduler does not waste service rate. We refer to (3.15) as the frugality constraint (FC).

Note that in the optimization objective (3.12) the estimated arrival rate λ̂i replaces the

expected (exact) value λi. This is because the base station does not know the arrival rates

and the λi’s must be estimated. They can also be estimated through an exponentially

weighted low-pass window. Besides, there is another way to estimate the arrival rates.
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Since the FC is applied, the scheduler does not serve any empty queue and waste service

rate; therefore, λi equals the long-term average of the service rate of user i, E{ri}, in this

scenario. In practice, we let

λ̂i = r̄i[n].

Letting

h(r; rmax) =







r if r < rmax,

rmax if r ≥ rmax,

we can rewrite the optimization problem defined in (3.12)-(3.15) as

max
D

(n)
i ,i∈An

∑

i∈An

∣
∣U ′

i(
Q̄i[n]

λ̂i
)
∣
∣

λ̂i

h(ri[n];
Qi[n]

Ts
) (3.16)

subject to
⋃

i∈An

D
(n)
i ⊆ K, (3.17)

D
(n)
i

⋂

D
(n)
j = ∅ i 6= j ∀i, j ∈ An. (3.18)

3.3.4 Algorithms

The integer optimization problem (3.16)-(3.18) is NP-hard. In Section 2.3.1, an efficient and

fast suboptimal DSA algorithm, a sorting-search algorithm, is proposed for the subcarrier

assignment problem with the concave objective function. Note that the function h(r; rmax)

is concave with respect to r. Therefore, the sorting-search algorithm can work well to solve

the problem described in (3.16)-(3.18).

The FC is not necessary for the MDU scheduling. Without the FC, the MDU scheme

can be implemented according to (3.4). To avoid ambiguity, we use MDU-FC to indicate

the MDU working with the FC in this chapter. On the other hand, the FC can be applied

in other scheduling schemes, such as those schemes mentioned in Section 3.2. Certainly, the

sorting-search algorithm is needed in the case in which the FC is used.

3.4 Stability

It is shown in Chapter 2 that a utility function with respect to the data rate are directly

associated with a kind of fairness. The trade-off between the spectral efficiency and fairness
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is a core problem of resource allocation, especially for best-effort traffic. In addition, Chapter

2 demonstrates that concave utility functions can provide clear, tractable efficiency-fairness

relations. Fortunately, a logarithmic function, which is concave, is usually used to describe

best-effort traffic [30,65].

Unlike best-effort traffic, the necessary condition for guaranteeing the QoS requirements

of a delay-sensitive stream is that the service rate must be larger than the incoming rate of

the stream. Therefore, the study of stability issue is the key to analyze scheduling algorithms

for delay-sensitive traffic. In this chapter, we show the relationship between utility functions

and stability. In fact, utility functions with very loose conditions (e.g. convexity/concavity

is not required.) are able to stabilize the system using the MDU scheduling.

3.4.1 Background and Definition of Stability

The interaction between queueing and time-varying wireless channels is not well understood

in a multiuser environment since multiple interacting queues result in difficulty in analysis.

Currently, the stability property of scheduling is becoming more and more important [20,

49, 71]. First, the stability issue is essential for QoS provisioning and admission control.

Moreover, the stability issue is mathematically tractable in many cases. There are two

important methods to deal with the stability issue: Foster-Lyapunov drift [46] and fluid

limit [17]. The Foster-Lyapunov mothed is classical for stability and harmonic analysis, but

it may be very intricate in complicated scenarios. The fluid limit technique establishes the

equivalency on stability between the orignal network and the associated fluid model with

deterministic and continuous arrival streams. However, the above equivalent relationship

for stability is usually built on the Markovian property of the system, and it is still unknown

if the Markov assumption can be relaxed to just a stationary condition for the fluid limit

technique in a general case. Moreover, both methods applied in most previous work such

as [20, 45, 49, 71] (using the Foster-Lyapunov mothed) and [8, 63] (using the fluid limit

technique) are challenged by the fact that the weights used in the MDU scheduling are

functions of the current and previous queue states. In this section, we incorporate the

concept and the properties of limit into the Foster-Lyapunov method to deal with the
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above difficulty and to make the proofs concise.

For a queueing system, the system is stable if each queue length reaches a steady state

and does not go to infinity. Mathematically, we define stability as follows. The system is

stable if there exists p > 0 such that

lim sup
N→∞

1

N

N−1∑

n=0

E
{∣
∣(Q[n])p

∣
∣
}

<∞, (3.19)

where Q[n] = (Q1[n], Q2[n], · · · , QM [n])T , and for a vector x = [x1, x2, · · · , xM ]T , |x| =

∑M
i=1 xi. To investigate the stability issue, we will first discuss the capacity region of the

downlink system.

3.4.2 Capacity Region

Define a data rate vector r as

r = (r1, r2, . . . , rM )T ∈ R
M
+ ,

where M is the number of users. The instantaneous capacity region for service data rates,

C(H) , is a set that consists of the total achievable data rate vectors in the current channel

state H. For instance, if DSA is allowed in the system, then the instantaneous data rate

region is given by

CDSA(H) =

{

r(D) : Di

⋂

Dj = ∅, ∀i 6= j,
⋃

i∈M

Di ⊆ K

}

,

where D = {D1,D2, · · · ,DM}. Usually, in practical systems, C(H) is a non-convex set since

real systems can only provide finite modulation and coding schemes.

A resource allocation policy R(H) is said to be channel-stationary if the rate allocation

depends only on the channel state H. Note that channel-stationary policies can exploit time-

sharing for the achievable data rate vectors in C(H). Hence, all available channel-stationary

resource allocation policies can construct the convex hull of C(H); that is,

cov(C(H)) = {R(H) : for all R} . (3.20)

Hence cov(C(H) can be seen as the capacity region that can be achieved by time-averaging

two or more feasible rate vectors in the instantaneous capacity region in the channel state

H.
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Assume the channel state process H(t) to be ergodic. Let C̃ be the ergodic capacity

region under the allocation constraints, which consists of the average data rate vectors

obtained by all possible channel-stationary resource allocation schemes. Thus,

C̃ = {E {R(H)} : for all R} .

Explicitly, the ergodic capacity region is a closed, convex, and compact set. Nevertheless,

we do not consider non-channel-stationary resource allocation policies, for which the average

service data rate vector is defined as

lim inf
t→∞

∫ t
τ=0 r(τ) dτ

t
.

However, we have the following lemma.

Lemma 3.1 With ergodic channel state processes, any average service data rate vector

under any non-channel-stationary policy still lies in the ergodic capacity region C̃.

The proof is shown in Appendix D.

The lemma claims that the long-term average service rate vector under any resource

allocation policy lies in the ergodic capacity region, which is determined by the physical

layer techniques and the channel distributions.

3.4.3 Maximum Stability Region

Assume that the input streams are stationary and ergodic with rate vector λ = [λ1, λ2, · · · , λM ]T ,

and that the channel processes are stationary and ergodic as well. Then, with a similar

proof to that of Lemma 1b in [49], we have the following lemma.

Lemma 3.2 The necessary condition for stability is λ ∈ C̃.

However, in the case λ ∈ C̃, not all scheduling policies can stabilize the system. The

stability region of a policy is defined to be the set of all possible arrival rate vectors for

which the system is stable under the policy [71]. Note that the capacity region is concerned

with the service data rates, whereas the stability region is with regard to the arrival rates.

The maximum stability region is defined as the largest stability region that can be achieved
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by some scheduling schemes. Similarly, a policy is called a maximum-stability-region policy

if the stability region of the policy covers all stability regions under all other policies.

Thus, the concept of maximum-stability-region policy is interchangeable with the concept

of throughput-optimal policy in [8].

Naturally, we are interested in the following questions. First, does the maximum stability

region always exist? Second, how large can the maximum stability region be? Finally,

how do we identify and design maximum-stability-region policies without the statistical

information about the arrivals and the wireless channels? The answer to the first question

is yes. Mathematically, the maximum stability region is the superset of stability regions of

all possible policies. Let S1 and S2 be the stability regions of policyR1 and R2, respectively.

Then, we can construct a policy R such that

R =







R1 if λ ∈ S1 − S2

R2 if λ ∈ S2 − S1

R1 or R2 if λ ∈ S1
⋂
S2.

Thus, the policy R has the stability region S1
⋃
S2. With the same method, we can always

construct a policy with the superset of stability regions of all possible policies - the maximum

stability region. For the second question, it is easy to show from Lemma 3.2 that the

maximum stability region must be a subset of C̃. We will explore the remaining questions

by investigating a more general scheduling policy that allocates data rate vectors such that

max
r[n]∈C(H[n])

gT (V[n]) r[n] (3.21)

where the vector function g(·) and the vector V[n] are described as follows:

• Let g(x) = [g1(x1), g2(x2), · · · , gM (xM )]T and assume that the functions gi(·)’s are

non-negative and non-decreasing functions such that

for x <∞, gi(x) <∞, (3.22)

lim
x→∞

gi(x) =∞, (3.23)
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and given any constant A > 0,

lim sup
x→∞

gi(x + A)

gi(x)
= 1. (3.24)

• Let V[n] = (V1[n], V2[n], · · · , VM [n])T , where Vi[n] = f(Qi[n], Qi[n − 1], · · · ). The

function f is non-negative and non-decreasing with respect to the Qi[n]’s for all n.

Furthermore,

E{|Qi[n]− Vi[n]|} <∞ for all i. (3.25)

• In addition to the ergodicity of the channel processes and arrival streams, we assume

that

E {gi(ai[n])ai[n]} <∞ for all i. (3.26)

where ai[n] is the arrival bits during a time slot for user i. From a practical point of

view, any achievable instantaneous data rates are bounded, which can also simplify

the proof of the following theorem.

We first consider the optimization problem given by

max
r∈C(H[n])

wT r, (3.27)

where w = [w1, w2, · · · , wM ]T . Clearly, the scheduling policy based on (3.27) is stationary.

Furthermore, the following lemma shows that the scheduling policy also leads to optimality

in the long-term sense.

Lemma 3.3 For a given weight vector w, assume that r∗(H) is the optimization problem

(3.27) in the instantaneous capacity region C(H). Let r̃∗ = E{r∗(H)}, then r̃∗ is the optimal

solution to the following optimization problem in the ergodic capacity region C̃

max
r̃∈C̃

wT r̃. (3.28)

The proof is shown in Appendix E. Then, we present the major results for the stability

issue in the following theorem.
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Theorem 3.1 If the average arrival rate vector is within the interior of the ergodic capacity

region, Int(C̃), where Int(C̃) = C̃ − the boundary of C̃, then the scheduling (3.21) satisfying

the conditions (3.22) - (3.26) stabilizes the queues in the following sense

lim sup
N→∞

1

N

N−1∑

n=0

E
{∣
∣g(V[n])

∣
∣
}

<∞. (3.29)

In other words, the scheduling has the maximum stability region, which is Int(C̃).

The proof is shown in Section 3.5.

Note that the performance of the scheduling (3.21) is worse than that of the scheduling

(3.21) with the FC since the scheduling (3.21) may waste some subcarriers on empty queues.

The system without the use of the FC is called the dominant system. Therefore, the

scheduling (3.21) with the FC has the maximum stability region as well.

To study the MDU scheduling, we have to prove the relation (3.25) first. We have the

following lemma.

Lemma 3.4 Let Q̄i[0] = Qi[0] for all i. Then

E{|Qi[n]− Q̄i[n]|} <∞ for all i.

The proof is shown in Appendix F. The following corollary states the stability property of

the MDU scheduling.

Corollary 3.1 Express the weights
|U ′

i(Q̄i[n]/λ̂i)|

λ̂i

’s in the MDU scheduling as the gi(Q̄i[n])’s.

Then the MDU scheduling with the functions gi(·)’s satisfying the conditions (3.22) - (3.26)

has the maximum stability region, Int(C̃). If the average arrival rate vector are within Int(C̃),

then the MDU scheduling policy is stable, that is,

lim sup
N→∞

1

N

N−1∑

n=0

E
{∣
∣g(ρwQ[n])

∣
∣
}

<∞,

where ρwQ[n] = (ρwQ1[n], ρwQ2[n], · · · , ρwQM [n])T .

Proof: The weights of the MDU scheduling are gi(Vi[n])’s, where Vi[n] = Q̄i[n].

Lemma 3.4 shows the validity of (3.25) for the MDU scheduling. It follows from (3.9) that

ρwQ[n] ≤ Q̄[n].
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Since g(·) is non-decreasing, then

g(ρwQ[n]) ≤ g(Q̄[n]).

Therefore, we obtain

lim sup
N→∞

1

N

N−1∑

n=0

E
{∣
∣g(ρwQ[n])

∣
∣
}
≤ lim sup

N→∞

1

N

N−1∑

n=0

E
{∣
∣g(Q̄[n])

∣
∣
}

<∞.

Remarks

• The general scheduling rule (3.21) that is able to achieve the maximum stability region

does not require statistical information about the arrivals and the wireless channels.

• If gi(x) is continuously differentiable, the condition (3.24) can be replaced by

lim
x→∞

g′i(x)

gi(x)
= 0.

Intuitively, any non-negative and increasing function whose increasing order is higher

than or equal to the logarithm function and lower than the exponential function sat-

isfies both conditions (3.23) and (3.24). Therefore, there are many degrees of freedom

for designing scheduling policies with the maximum stability region. Similarly, there

is enough room to choose the Vi[n]’s. For instance, given a finite positive integer J ,

Vi[n] = Qi[n−J ], Vi[n] =
∑J−1

j=0 Qi[n− j]/J , Vi[n] = (Qi[n] ·Qi[n−2] ·Qi[n−J +1])
1
J ,

etc., are all able to stabilize the system.

• The maximum stability region is shown to be the interior of the ergodic capacity region

that is determined by the physical layer techniques. Figure 3.1 illustrates the stability

regions of some scheduling schemes for the two-user case. According to Lemma 3.3,

the rate allocation of the MSC scheduling is the solution to the following problem

max
[r̃1,r̃2]T ∈C̃

r̃1 + r̃2.
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Thus, the optimal solution [r̃∗1, r̃
∗
2 ]

T should be the tangent point between the boundary

of C̃ and a line r̃1+r̃2 = b for an appropriate b; the stability region is, therefore, λ1 < r̃∗1

and λ2 < r̃∗2. The PF scheduling with a very small ρw leads to the optimization

problem

max
[r̃1,r̃2]T∈C̃

1

r̃†1
r̃1 +

1

r̃†2
r̃2.

Similar to the MSC, the optimal rate vector for the PF [r̃†1, r̃
†
2]

T should be the point of

tangency between the boundary of C̃ and a line 1

r̃†1
r̃1+ 1

r̃†2
r̃2 = b′ with an appropriate b′.

Since the MSC and PF scheduling schemes have small stability regions, they cannot

stabilize all arrival vectors inside the ergodic capacity region but outside their stability

regions.

0

The maximum stability region

The stability region 

of PF scheduling

The stability region 

of MSC scheduling

The ergodic capacity region 

Figure 3.1. Stability regions for different scheduling schemes in the two-user case

• In the proof of Theorem 3.1, we see that the FC cannot stabilize scheduling approaches

without the maximum stability region, and that the effect of the FC may become

marginal with a heavy traffic load. The impact of the FC on different scheduling

policies will be discussed in Section 3.7.

• To obtain more system gains, we should jointly design and optimize techniques in

multiple layers, but cross-layer design usually seems complicated and not transparent.

However, the above result gives us a guideline for cross-layer optimization. First, use
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advanced physical layer techniques to enlarge the ergodic capacity region. Second,

design a scheduling scheme with the maximum stability region to fully exploit the

ergodic capacity region.

3.5 Proof of Theorem 3.1

The primary method used in the proof is the Foster-Lyapunov method. A new tip is to

apply Fatou’s lemma and the definition of the upper limit. The proof does not require the

Markovian property on the channel states and/or the arrival traffic.

Let the Lyapunov function be

L(Q[n]) =
∑

i∈M

Li(Qi[n]),

where dLi(x)
dx = gi(x). Define

Q′[n + 1] = Q[n]− r[n]Ts + a[n]

and ξ = −r[n]Ts + a[n]. (3.30)

Using the mean value theorem [57], we obtain

L(Q′[n + 1])− L(Q[n]) = ∇LT (Q′[n] + ν � ξ)ξ

= gT (Q′[n] + ν � ξ)ξ,

where a� b = [a1b1, a2b2, · · · , aM bM ]T , 0 < νi < 1 for all i. Clearly,

L(Q′[n + 1])− L(Q[n])

= gT (V[n])ξ +
[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ. (3.31)

Define the state pair Y[n] = (Q[n],V[n]). Conditioning on Y[n] and taking expectation,

we obtain

E
{
L(Q′[n + 1])− L(Q[n])

∣
∣Y[n]

}

= gT (V[n])E
{
ξ
∣
∣Y[n]

}
(3.32)

+ E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ
∣
∣Y[n]

}

. (3.33)
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We will study parts (3.32) and (3.33) separately. (3.32) then becomes

gT (V[n])E
{
ξ
∣
∣Y[n]

}
= Tsg

T (V[n])E

{
a[n]

Ts
− r[n]

∣
∣
∣Y[n]

}

= Tsg
T (V[n])

(
λ− E

{
r[n]

∣
∣Y[n]

})
. (3.34)

According to Lemma 3.3, the scheduling policy (3.21) results in

E
{
r[n]

∣
∣Y[n]

}
= arg max

r̃[n]∈C̃
gT (V[n])r̃[n],

which minimizes (3.34). Since λ is located within the interior ergodic capacity region C̃,

there exists a rate vector r′ ∈ C̃ such that r′i > λi for all i. Let δ = min
i

(r′i − λi). Thus,

under the scheduling policy,

gT (V[n])E
{
ξ
∣
∣Y[n]

}
≤ Tsg

T (V[n])
(
λ− r′[n]

)

< −Ts|g(V[n])|δ. (3.35)

To explore the property of (3.33), we consider

lim sup
V[n]→∞

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

|g(V[n])|
. (3.36)

Using the dual of Fatou’s lemma [26], we obtain

(3.36) = lim sup
V[n]→∞

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

|g(V[n])|

}

≤ E

{

lim sup
V[n]→∞

[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

|g(V[n])|

}

≤ E

{

lim sup
V[n]→∞

∑

i∈M

[gi(Qi[n] + νiξi)− gi(Vi[n])] ξi

gi(Vi[n])

}

.

= E

{
∑

i∈M

[

lim sup
Vi[n]→∞

gi(Qi[n] + νiξi)

gi(Vi[n])
− 1

]

ξi

}

Let ζ = Q[n]−V[n], then E{|ζi|} <∞ for all i according to the condition (3.25). Equation

(3.30) and the condition (3.26) lead to

E{|ξi|} ≤ E{ri[n]}Ts + E{ai[n]}

<∞ for all i.
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Hence it follows from the properties of the gi(·)’s given by (3.23) and (3.24) that

lim sup
Vi[n]→∞

gi(Qi[n] + νiξi)

gi(Vi[n])

= lim sup
Vi[n]→∞

gi(Vi[n] + ζi + νiξi)

gi(Vi[n])

= 1 with probability 1.

Therefore, we have

[

lim sup
Vi[n]→∞

gi(Qi[n] + νiξi)

gi(Vi[n])
− 1

]

ξi = 0 with probability 1,

and

lim sup
V[n]→∞

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

|g(V[n])|

≤ E

{

lim sup
V[n]→∞

∑

i∈M

[gi(Qi[n] + νiξi)− gi(Vi[n])] ξi

gi(Vi[n])

}

= 0,

which means that

lim sup
V[n]→∞

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

|g(V[n])|
= −Ω0,

where Ω0 ≥ 0.

The definition of the upper limit 2 implies that for any ε > 0, there exists V∗ > 0 such

that for V[n] > V∗,

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

|g(V[n])|
< −Ω0 + ε (3.37)

< ε. (3.38)

It follows from (3.37) and the fact that |g(V[n])| > 0 for V[n] > V∗ that

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

< ε|g(V[n])|. (3.39)

2lim sup
x→∞

f(x) = lim
y→∞

sup{f(x) : x > y} = inf
y

sup{f(x) : x > y}
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Due to the assumptions (3.22) and (3.26), there must exist a positive number Ω1 <∞ such

that

sup
V[n]≤V∗

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

< Ω1. (3.40)

Part (3.33) can be obtained from (3.39) and (3.40) as

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

<







Ω1 V[n] ≤ V∗

ε|g(V[n])| V[n] > V∗
,

which can be combined into

E

{[
g(Q[n] + ν � ξ)− g(V[n])

]T
ξ

∣
∣
∣Y[n]

}

< ε|g(V[n])| + Ω1. (3.41)

Therefore, it follows from (3.35) and (3.41) that

E
{
L(Q′[n + 1])− L(Q[n])

∣
∣Y[n]

}
< −(Tsδ − ε)|g(V[n])| + Ω1.

Since ε is an arbitrary positive, we let ε be small enough so that ε < Tsδ.

On the other hand,

Q[n + 1]−Q′[n + 1] =







0 r[n]Ts ≤ Q[n]

r[n]Ts −Q[n] r[n]Ts > Q[n],

and

E
{
L(Q[n + 1])− L(Q′[n + 1])

∣
∣Y[n]

}

= E
{
g
(
Q′[n + 1] + ννν′ � (r[n]Ts −Q[n])

)
(r[n]Ts −Q[n]) · 1{r[n]Ts > Q[n]}

∣
∣Y[n]

}
,

where 1{event} equals 1 if the event is true, whereas it equals 0. Therefore,

E
{
L(Q[n + 1]) − L(Q′[n + 1])

∣
∣Y[n]

}
is bounded by a positive number, Ω2.

Consequently, it follows that

E
{
L(Q[n + 1])− L(Q[n])

∣
∣Y[n]

}

= E
{
L(Q[n + 1])− L(Q′[n + 1])

∣
∣Y[n]

}
+ E

{
L(Q′[n + 1])− L(Q[n])

∣
∣Y[n]

}

< −(Tsδ − ε)
∣
∣g(V[n])

∣
∣+ Ω1 + Ω2.

71



Taking expectation with respect to Y[n], we obtain

E {L(Q[n + 1]) − L(Q[n])} < −(Tsδ − ε)E
{∣
∣g(V[n])

∣
∣
}

+ Ω1 + Ω2.

Taking summation, we have

E {L(Q[N ])} − L(Q[0]) < −(Tsδ − ε)

N−1∑

n=0

E
{∣
∣g(V[n])

∣
∣
}

+ N(Ω1 + Ω2),

and

1

N

N−1∑

n=0

E
{∣
∣g(V[n])

∣
∣
}

<
Ω1 + Ω2

Tsδ − ε
+

1

N
L(Q[0]).

Let N →∞, 1
N L(Q[0])→ 0, and then the theorem is proved.

3.6 Further Improvement Through Delay Transmit Diver-
sity and Adaptive Power Allocation

The studies on the stability issue in Section 3.4 can directly guide us to techniques for

improving the performance of multicarrier scheduling. According to the properties of the

maximum stability region, we propose the use of joint stabilizing scheduling and power

allocation to extend the maximum stability region so as to enhance the throughput-delay

performance. Moreover, we propose the use of delay transmit diversity to increase the

fluctuations in the frequency domain, by which we can obtain more frequency diversity.

3.6.1 Joint Dynamic Subcarrier Assignment and Adaptive Power Allocation

In Section 3.4, we showed that the maximum stability region is the interior of the ergodic

capacity region at the physical layer. Thus, any techniques that are able to enlarge the

ergodic capacity region can definitely improve the system performance. Adaptive power

allocation lets the transmit power at each subcarrier be adjustable and only constrained by

the total power limit P̄ ; let p[k] be the power at subcarrier k, then
∑

k∈K

p[k] ≤ P̄ . Then, the

instantaneous data rate region for the joint DSA and APA is given by

CDSA+APA(H) =

{

r(D,p) : Di

⋂

Dj = ∅, ∀i 6= j,
⋃

i∈M

Di ⊆ K,
∑

k∈K

p[k] ≤ P̄

}

,

where p = {p[1], p[2], · · · , p[K]}. Since the joint DSA and APA has looser constraints on

resource allocation than the DSA, CDSA(H) ⊆ CDSA+APA(H) for each channel state H;
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therefore, the ergodic capacity region of joint DSA and APA is larger than that of DSA

as well. As long as a scheduling scheme with the maximum stability region is applied in

the system, the enlarged ergodic capacity region can be fully exploited. Obviously, the

scheduling rule (3.21) on CDSA+APA(H) still has the maximum stability region.

The effect of APA is influenced by the rate adaptation used in the system. With con-

tinuous rate adaptation, the improvement of APA is trivial; however, the improvement of

APA becomes substantial when there are only a small number of modulation levels, which

is shown in Chapter 2.

For discrete rate adaptation, water-filling is not optimal for power allocation. In Sec-

tion 2.3.2.3, a greedy power allocation algorithm is proposed to achieve the optimality of

optimization problems with a concave objective function. To solve the joint DSA and APA

problem, the sorting-search DSA and the greedy APA algorithms can be used iteratively.

Mathematically, the MDU with FC can be expressed as the above optimization problem;

thus, the sorting-search DSA and the greedy APA algorithms proposed in Section 2.3 can

be implemented with no change.

3.6.2 Delay Transmit Diversity

In a single-carrier network, the multiuser diversity gain is limited in environments with

little scattering or slow fading. Opportunistic beamforming is proposed in [76] to induce

fast and large fluctuations so as to amplify the multiuser diversity gain. The main idea of

opportunistic beamforming is to change the magnitudes and phases of antenna weights in

a pseudorandom fashion.

In a multicarrier network, the multiuser diversity gain is diminished in environments with

flat fading, which is usually caused by a line-of-sight path and/or little scattering. Therefore,

we propose a simpler multiple transmit antenna scheme, delay transmit diversity, to increase

the randomness in the frequency domain compared with the opportunistic beamforming in

the time domain.

Delay transmit diversity was first proposed in single-carrier systems [78]. Delay trans-

mit diversity actually converts spatial diversity into frequency diversity by inducing multiple
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paths. Thus, the Viterbi algorithm is needed in the receivers in single-carrier systems. An

OFDM system with delay transmit diversity is shown in Figure 3.2. The signals from

IFFT

D

D

D

Antenna 1

Antenna 2

Antenna N
a

Figure 3.2. Delay transmit diversity in an OFDM system

additional antennas are the same as the signal from the first antenna but with different de-

lays. Note that delay transmit diversity is implemented after inverse fast Fourier transform

(IFFT) processing. For traditional OFDM systems, although the delay transmit diversity

does not require additional processing in the receivers, some channel coding across subcarri-

ers is needed to obtain the frequency diversity amplified by the delay transmit diversity [38].

However, in OFDM systems using DSA, the delay transmit diversity becomes totally trans-

parent since any modulation, coding, and scheduling schemes used in the single-antenna

case remain unchanged. Moreover, the frequency diversity induced by delay transmit diver-

sity is transformed into multiuser diversity, which can be absorbed through DSA. In brief,

delay transmit diversity and opportunistic beamforming are duals of each other.

3.7 Simulation Results and Performance Comparison

In this section, we compare the performance of different scheduling schemes in an OFDM

network. In the simulation, each user’s channel suffers multipath Rayleigh fading with the

delay profile of Channel B for outdoor to indoor and pedestrian environments in [54], and

each user is assumed to be stationary or slowly moving so that the maximum Doppler shift

is 10 Hz. In the OFDM network, there are 128 subcarriers in a total channel bandwidth of

1.920 MHz. We assume that there are 20 users in the system. These 20 users have different
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distances from the base station; consequently, their average achievable transmission rates

are different due to path loss.

Let the acceptable BER be 10−6 for rate adaptation since data transmission is sen-

sitive to error. Assume that a set of achievable transmission rates in bits/sec per Hz is

{0,1/2,1,2,3,4}. The transmission rate is chosen to be the largest available rate whose re-

quired SNR determined by (2.2) is larger than or equal to the current SNR. In practice,

we can use 1/2-rate channel coding and a series of modulation schemes including BPSK,

QPSK, 16-QAM, 64-QAM, as well as 256-QAM to achieve the above feasible rates.

The packet length is assumed to be independently and exponentially distributed with

an average length of 1024 bits. The packet arrival is modeled as a Poisson random variable

for the following two reasons. First, delay-sensitive traffic is usually generated smoothly.

Second, delays in the system are determined by two factors: the burst of arrivals and the

fluctuation of scheduled service rates. Since in this chapter we are more interested in the

second factor, Poisson arrival is assumed.

The length of a time slot Ts is 4 ms. All simulations were run for 300,000 slots, which

correspond to 20 minutes in reality.

3.7.1 Performance Comparison

The simulation results are shown in Figure 3.3 in terms of traffic load versus mean delay. In

each simulation, all users have the same arrival rate. Due to the asymmetry among users’

channel conditions, Figure 3.3 represents the mean delays for the worst user who has the

smallest average SNR, for the best user who has the largest average SNR, and averaging for

all users in the system, respectively. We compare the performance of PF, M-LWDF, EXP,

and MDU scheduling rules in an adaptive OFDM network. For comparison, the MDU uses

|U ′
i(W )| = W for all i. Since the FC can be deployed with all scheduling rules, we run two

schemes for each scheduling rule: with and without FC, respectively.

Figure 3.3 shows the advantages of maximum-stability-region scheduling schemes. Since

the PF scheduling has a small stability region, the maximum throughput the PF is able

to support for the worst user is around 117 kbps, whereas the saturated throughput of the
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Figure 3.3. Delay performance of different scheduling policies
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worst user with the MDU is 170 kbps. Furthermore, the PF scheduling cannot guarantee

delay fairness, which is concluded from the fact that with a heavy traffic load, the worst

user suffers from an extremely long delay while the mean delay of the best user is very short.

However, M-LWDF, EXP, and MDU, all of which have the maximum stability region, can

maintain fairness in terms of delay performance.

Figure 3.3 also depicts the effect of FC. In Section 3.4, we concluded that the FC

cannot stabilize the system. It is shown in Figure 3.3 that although the FC enhances the

performance of the PF scheduling, the PF-FC does not have the maximum stability region.

The effect of FC on the M-LWDF and EXP rules is very small, particularly with a heavy

traffic load. However, the FC can boost the performance of the MDU scheduling. When

the traffic load is light or moderate, the MDU-FC can reduce the mean delay to half that

with the MDU when not using the FC.

Finally, Figure 3.3 demonstrates that a scheduling scheme with the maximum stability

region cannot sufficiently provide good performance. The EXP scheduling has the maximum

stability region, but its performance is still poor compared to the M-LWDF and the MDU

approaches. This is due to the mechanism of the EXP rule. If one user has a larger delay

than others, the weight of this user becomes very large because of the exponential function

used in the weight, and then this user may occupy all of the subcarriers with high probability.

Because the frequency-selective fading is present, assigning the whole bandwidth to one user

is less efficient. Therefore, unlike single-carrier networks, aggressive weight assignments hurt

the efficiency in OFDM networks. This is a big difference in designing scheduling between

single and multiple carrier networks. It is shown that the multichannel version of M-LWDF

works well. However, since the MDU policy uses the average queue lengths (delays) as

the weights, which is a more moderate way, the MDU policy can allocate resources more

efficiently. Figure 3.3 shows that the MDU-FC outperforms the other schemes.

3.7.2 Improvement of Delay Transmit Diversity and Adaptive Power Alloca-
tion

In this subsection, we present the simulation results when delay transmit diversity and

power allocation are used. The MDU scheduling with FC is applied in the simulation.
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We let one delay tap in the delay transmit diversity be 1 µs. Figure 3.4 shows that the

joint DSA and APA scheme exhibits a substantial improvement on the throughput-delay

performance. Taking advantage of transparency and simplicity, the delay transmit diversity

can boost the performance of the scheduling schemes based on DSA as well as those having

joint DSA and APA.

3.8 Summary

We have investigated joint channel- and queue-aware multichannel scheduling in OFDM

networks from several important aspects. Based on utility functions with respect to aver-

age waiting times, we proposed MDU scheduling, which can be implemented by an on-line

algorithm without knowledge of the statistical information about the channels and arrival

traffic. Since the stability issue of scheduling is essential for QoS provisioning, we character-

ized the maximum stability region, which can reach the interior of the ergodic physical-layer

capacity region. Through concise proofs, we showed that with very few conditions on the

scheduling schemes, the scheduling schemes can achieve the maximum stability region. To

deal with environments with insufficient scattering or strong light-of-sight components, we

proposed using delay transmit diversity to induce the randomness in the frequency domain.

In the simulation, we compared several scheduling schemes, and showed that MDU-FC

scheduling has better throughput-delay performance than other scheduling schemes, and

that the combination of scheduling and power allocation can significantly improve the per-

formance further.
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CHAPTER 4

UTILITY-BASED GENERALIZED QOS SCHEDULING

FOR HETEROGENEOUS TRAFFIC

We developed the MDU scheduling with the help of channel and queue state information

to enhance spectral efficiency and guarantee QoS in Chapter 3, in which, however, we em-

phasized its theoretical framework, such as queueing system stability. In this chapter, we

apply the MDU scheduling to allocate resources for QoS differentiation for different applica-

tions. We also present comprehensive simulation results that consider multiple traffic types,

including packet-switched voice, streaming, and best-effort traffic. The simulation results

demonstrate that the MDU scheduling is a generalized QoS scheduling algorithm that is

able to efficiently allocate resources for heterogeneous traffic with diverse QoS requirements.

It substantially outperforms the multichannel version of a combination of M-LWDF [8] and

PF scheduling [67,76], called M-LWDF-PF scheduling.

4.1 Introduction

Guaranteeing QoS for multiple types of traffic is challenging to resource allocation and

scheduling, especially for wireless data networks [4]. Traditionally, the main idea of QoS

provisioning is to reserve resources so as to ensure that certain subjective or objective

performance measures are met. In terms of scheduling, generalized processor sharing [50]

(GPS)-based scheduling schemes, such as weighted fair queueing (WFQ) [9], and priority

queueing are usually proposed for worst-case throughput and delay guarantee [12, 44, 77].

Obviously, their major drawback is that they cannot improve capacity since no CSI is used.

Currently, channel-aware or opportunistic scheduling has received much attention since

it can exploit the variations of wireless fading channels to improve the spectral efficiency

[11, 42]. Although proper fairness can be maintained by it, channel-aware scheduling is

mainly suitable to best-effort applications but not efficient for delay-sensitive applications.
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M-LWDF [6, 8], which makes scheduling decisions based on the current channel condi-

tions and the states of the queues, is proposed for delay-sensitive applications with a QoS

requirement that is defined as follows:

P{Wi > Ti} ≤ δi, (4.1)

where Wi is a packet delay for user i, and parameters Ti and δi are the delay threshold and

the maximum probability of exceeding it, respectively. Its multichannel version is proposed

in Section 3.2. To meet QoS differentiation on delay performance, the M-LWDF maps the

QoS requirement (4.1) to a scheduling weight

ai = −
log δi

Ti
, (4.2)

which is based on the results of large deviations. The M-LWDF scheduling is widely used

in 1xEV-DO/DV for scheduling delay-sensitive traffic. In addition, it has the maximum

stability region. However, the M-LWDF scheduling cannot well handle more complicated

QoS requirements and heterogenous traffic.

In the MDU scheduling, the QoS requirements of each user are described by its utility

function. From the application view, the MDU scheduling captures the essence of QoS

levels with a detail sufficient to predict subjective quality of users. From the network view,

it provides the simplicity to enable monitoring and control mechanisms for guaranteeing

QoS. By maximizing the total utility within the network, the MDU scheduling establishes

a simple, automatic mechanism that can simultaneously improve the spectral efficiency and

provide right incentives to ensure that all applications can receive their required QoS.

4.2 MDU Scheduling for Heterogeneous Traffic

In this section, we show how to employ the MDU scheduling for a mixture of delay-sensitive

and best-effort traffic by designing utility functions according to the QoS requirements.

Note that the MDU scheduling implements the FC in this chapter.
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4.2.1 Mechanisms of MDU Scheduling for Diverse QoS Requirements

To apply the MDU scheduling, we need to design utility functions with respect to average

waiting time W for the corresponding QoS requirements. Since the marginal utility func-

tions are proportional to the scheduling weights, the marginal utility functions, the U ′
i(·)’s,

play a crucial role in scheduling. Therefore, we directly design the marginal utility functions

rather than the utility functions in this section.

We design marginal utility functions based on both certain objective and subjective

performance criteria. The objective consideration is the system stability, which is studied

in Section 3.4. One of results is that conditions (3.22)-(3.24) can make the MDU scheduling

stabilize the queueing system. From a system perspective, a significant different between

delay-sensitive and best-effort applications is that the incoming rate of a delay-sensitive

stream is usually determined by its source, but the data rate of a best-effort connection is

controlled by its transport layer according to the level of network congestion [28]. From

a subject perspective, best-effort applications have no specific QoS requirements. Based

on these two reasons, the core idea of designing marginal utility functions is to let the

marginal utility functions of delay-sensitive traffic satisfy conditions (3.22)-(3.24), but make

the marginal utility functions of best-effort traffic bounded. Assume that connections 1

to M1 are delay-sensitive, connections M1 + 1 to M (M1 < M) are best-effort. Their

corresponding incoming rate are the λi’s. It follows from the design that

lim
W→∞

U ′
i(W )

U ′
j(W )

= 0, i ∈ {M1 + 1,M1 + 2, · · · ,M} and j ∈ {1, 2, · · · ,M1}. (4.3)

The above equation means that the MDU scheduling can sense the level of network conges-

tion. If the network is congested, best-effort connections hardly obtain resources to transmit

packets according to (4.3). If rate vector [λ1, λ2, · · · , λM1 , 0, 0, · · · , 0]
T is located within the

ergodic capacity region C̃, the above design makes all of delay-sensitive connections stable,

which comes directly from the results of Corollary 3.1. Therefore, the MDU scheduling

does not allow those best-effort connections to affect the stability of delay-sensitive connec-

tions. If the network load is low, the scheduler can automatically assign more resources to

those best-effort connections. The more specific design of the marginal utility functions is
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based on the subjective performance criteria of certain applications. Section 4.2.2 shows

the details.

4.2.2 Marginal Utility Functions for MDU Scheduling

In this section, we design the marginal utility functions based on the corresponding required

QoS for packet-switched voice, streaming, and best-effort traffic.

4.2.2.1 Delay-sensitive Applications

For a delay-sensitive application, we set a threshold for the marginal utility function that

depends on the characteristics of the application. When the average waiting time is less

than the threshold, the marginal utility increases with a small order. When the average

waiting time is beyond the threshold, the marginal utility increases with a relatively high

order.

For packet-switched voice or voice over IP (VoIP), the end-to-end delay is usually re-

quired less than 100 ms [1]. Since there are other delay factors besides the delay resulting

from wireless scheduling, we set the marginal utility function for voice as follows:

|U ′
V (W )| =







W W ≤ 25ms

W 1.5 − 251.5 + 25 W > 25ms,

(4.4)

where the threshold, 25 ms, comes from one-forth of 100 ms.

Good-quality streaming transmission needs end-to-end delay between 150-400 ms. We

choose the following marginal utility function for streaming traffic.

|U ′
S(W )| =







W 0.6 W ≤ 100ms

W − 100 + 1000.6 W > 100ms,

(4.5)

where the threshold, 100 ms, comes from one-forth of 400 ms. Obviously, marginal utility

functions (4.4) and (4.5) both satisfy conditions (3.22)-(3.24) .

4.2.2.2 Best-Effort Applications

Since best-effort traffic is not delay-sensitive, the utility function with respect to average

waiting time is not enough sufficient to describe the performance of this traffic. From a
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point of view of scheduling weights, however, we can still give the marginal utility function

in terms of average waiting time. For example, the marginal utility function is given by

|U ′
D(W )| =







W 0.5 W ≤ 100ms

1000.5 W > 100ms.

(4.6)

Please note a long average waiting time means network congestion. Compared to (4.4) and

(4.5), the marginal utility function for best-effort traffic (4.6) lets the scheduling weights

be bounded, whereas delay-sensitive applications set higher scheduling weights according

to (4.4) and (4.5). In this simulation, we intend to know the maximum throughput that

best-effort traffic can obtain. Thus, we fix |U ′
D(W )| to the maximum value, 1000.5. Actually,

the MDU scheduling for the best-effort traffic becomes the PF scheduling, which is known

to be well applicable to best-effort traffic in Chapter 2.

4.3 Simulation

In this section, we design appropriate simulations that take into account the impacts of

different traffic types and average SNR values on scheduling performance.

4.3.1 Simulation Conditions

For comparison, we assume that the number of each traffic type is an even integer. For

each type of traffic, half of users have the same average SNR of 15 dB, and we call them

good users; the rest have the same average SNR of 8 dB, we call them bad users. In the

simulation, each bad user’s channel suffers multipath Rayleigh fading with the delay profile

of Channel B for outdoor to indoor and pedestrian environments in [54], and each user is

assumed to be stationary or slowly moving so that the maximum Doppler shift is 10 Hz.

Each good user experiences Rician fading whose delay profile and Doppler shift are the

same as those of bad users’ channels. The Rician factor is 0.5. In the OFDM network,

there are 256 subcarriers in a total channel bandwidth of 2.048 MHz. These 256 subcarriers

are grouped into 32 clusters, each of which can be dynamically assigned to a user during a

time slot. Let the acceptable BER be 10−5 for rate adaptation since data transmission is

sensitive to error. Assume that a set of achievable transmission rates in bits/sec per Hz is

84



{0,1/2,1,2,3,4}. In practice, we can use 1/2-rate channel coding and a series of modulation

schemes including BPSK, QPSK, 16-QAM, 64-QAM, as well as 256-QAM to achieve the

above feasible rates.

We consider three types of traffic: packet-switched voice, streaming, and best-effort

traffic. The traffic model for voice traffic is the on-off voice activity model with exponentially

distributed duration of voice spurts and gaps [60]. The average talk spurt is 1.00 s, and

the average silent interval is 1.35 s. Within each talk spurt interval, a 32 kbps digital voice

coding is assumed. The streaming traffic is simulated according to the model in [19]. The

duration of each state is exponentially distributed with mean 160 ms. The data rate in each

state is generated according to a truncated exponential distribution in which the minimum,

maximum, and average data rates are 64, 256, and 180 kbps, respectively. As mentioned

before, we only care about the maximum throughput of best-effort traffic in this simulation

and fix its scheduling weights. Therefore, we apply a full-buffer model to best-effort traffic.

In the full-buffer model, there are infinite data packets in the queues. Although this model

may not be realistic, it can obtain the maximum achievable throughput for best-effort traffic.

For M-LWDF-PF scheduling, the weights for delay-sensitive applications can be calcu-

lated by (4.2). The weights in simulation are list in the following table.

Table 4.1. Scheduling weights for M-LWDF-PF

Voice Streaming Best-effort

Ti (ms) 100 400 –

δi 5% 5% –

Weight 13 3.25 0.26

4.3.2 Simulation Results

We design three experiments in the simulation and compare the performance of the MDU

scheduling and that of the M-LWDF-PF scheduling. The performance of delay-sensitive

traffic is evaluated in terms of 95th percentile delay, and that of best-effort traffic is mea-

sured in terms of average throughput. We focus on discussing the properties of the MDU

scheduling at first.
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4.3.2.1 Increase of voice users

In this experiment, we fix the numbers of streaming and best-effort users to be 14 and 20,

respectively, and increase the number of voice users. It is seen from Figure 4.1 that as the

number of voice users increases, the throughput of best-effort traffic decreases apparently;

the delay for streaming users increases slightly. However, there is only a very little rise in

the delay for voice and streaming users in the system employing the MDU scheduling.

4.3.2.2 Increase of streaming users

In this experiment, we fix the numbers of voice and best-effort users both to be 20 and

increase the number of streaming users. Since the average data rate of a streaming link

is as large as 180 kbps, we can clearly see the performance in both less-congested and

congested situations in Figure 4.2. When the network is less-congested (the number of

streaming users does not exceed 16), the MDU scheduling can maintain high-quality delay

performance for those delay-sensitive applications and provide a high data rate for the

best-effort users. When the network is congested, e.g. in the 20-streaming-user case, the

throughput for best-effort users becomes extremely small, and the delay for streaming users

has a dramatical increase. However, the performance of voice users is still very good.

4.3.2.3 Increase of best-effort users

In the last experiment, we fix the numbers of voice and streaming users to be 20 and 10,

respectively, and increase the number of best-effort users. It is seen from Figure 4.3 that as

the number of best-effort users increases, the performance of voice and streaming users is

maintained very well with the MDU scheduling, and the throughput for best-effort increases,

which results from multiuser diversity.

Therefore, we can in these three experiments see the excellent mechanisms of the MDU

scheduling: high spectral efficiency by taking advantage of knowledge of CSI and good di-

verse QoS provisioning by exploiting utility functions. We also compare the MDU with the

M-LWDF-PF in Figures 4.1-4.3. Note that the M-LWDF scheduling is also a scheduling
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Figure 4.1. Heterogeneous traffic performance versus the number of voice users
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Figure 4.2. Heterogeneous traffic performance versus the number of streaming users
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(b) Average total throughput for best-effort traffic

Figure 4.3. Heterogeneous traffic performance versus the number of best-effort users
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scheme that can adjust resource allocation according to users’ channel and queue state infor-

mation and have the maximum stability region. All experiments show that both scheduling

schemes offer similar delay performance for the voice users, and that in most of the cases,

the MDU scheduling provides considerably smaller delays for streaming traffic than the

M-LWDF-PF while the MDU allows best-effort users to achieve higher throughput than

the M-LWDF-PF at the same time. This is mainly because the MDU scheduling can more

appropriately capture required QoS compared to other scheduling schemes.

4.4 Summary

By simulation, we have demonstrated that the MDU scheduling can effectively handle mul-

tiple traffic types with diverse QoS requirements and substantially outperforms the mul-

tichannel version of the M-LWDF-PF scheduling. The MDU scheduling benefits from the

awareness of channel quality and queue information, traffic multiplexing, and resource reg-

ulation through utility functions, which appropriately capture the QoS requirements of

specific traffic. In addition, the MDU scheduling has a very simple QoS architecture. It

does not need statistical information about incoming traffic, and its implementation com-

plexity is also low. Therefore, the MDU scheduling is an attractive solution for IP-based

wireless data networks.
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CHAPTER 5

ASYMPTOTIC PERFORMANCE ANALYSIS FOR

CHANNEL-AWARE SCHEDULING

To obtain the multiuser diversity gain, adaptive modulation and channel-aware scheduling

must be used. However, the channel variance and the opportunistic nature of channel-

aware scheduling make throughput analysis very difficult. An asymptotic analysis of SNR

for multiuser diversity is presented in [76]. Capacity analyses for Rayleigh and Nakagami

fading channels are addressed in [81] and [14], respectively. However, the results of those

capacity analyses are too complicated to get insights.

In this chapter, we provide an asymptotic performance analysis of channel-aware packet

scheduling based on extreme value theory, including throughput an delay analysis for both

sing-carrier and multicarrier networks. In Section 5.1, we briefly describe the main results of

extreme value theory used in this chapter. In Section 5.2, we propose an asymptotic analysis

of throughput of single-carrier systems with channel-aware scheduling. we first address the

average throughput of systems with a homogeneous average SNR and obtain its asymptotic

expression. Compared to the exact throughput expression, the asymptotic one, which is

applicable to a broader range of channel fading distributions, is more concise and easier to

get insights. Furthermore, we confirm the accuracy of the asymptotic results by numerical

simulation. For a system with heterogeneous SNRs, normalized-SNR-based scheduling need

to be used for fairness. We also investigate the asymptotic average throughput of the

normalized-SNR-based scheduling and prove that the average throughput in this case is

less than that in the homogeneous case with a power constraint. In Section 5.3, we provide

a closed-form asymptotic average packet delay analysis for single-carrier networks exploiting

multiuser diversity. In Section 5.4, asymptotic analysis of throughput and delay is extended

into multicarrier networks. The asymptotic analysis for mean packet delay demonstrates

that the multiuser diversity gain in multicarrier networks is not limited by slow fading as

91



in single-carrier networks.

5.1 Extreme Value Theory

Extreme value theory deals with asymptotic distributions of extreme values, such as max-

ima or minima. It can be used to analyze the performance of channel-aware scheduling

approaches. In this section, we will briefly introduce the major results of extreme value

theory [18,22] that are used in the analysis.

Let ξ1, ξ2, · · · , ξM be independently identically distributed (i.i.d.) random variables with

common distribution function F (x). We are interested in the distribution of the maximum,

ZM = max
i∈M

ξi as M → ∞. The cumulative distribution function (cdf) of the maximum,

HM (x), is given by

HM (x) = P{ZM ≤ x} = FM (x)

When M →∞, we have

FM (x)→







1 if F (x) = 1,

0 if F (x) = 0,

which means that the limiting distribution is degenerate at either 0 or 1. In order to avoid

this degeneration, we look for such normalizing constants aM and bM depending on M that

lim
M→∞

HM (aM + bMx) = lim
M→∞

P{
ZM − aM

bM
≤ x}

= lim
M→∞

FM (aM + bMx)

= H(x)

where H(x) is a limiting non-degenerate distribution function. We also say that
ZM − aM

bM

converges in the sense of distribution in this case. An important result about limiting

distribution is described as follows.

Let ξ1, ξ2, · · · , ξM be i.i.d. random variables with distribution function F (x), and ZM =

max
i∈M

ξi. If there exist constants aM ∈ R, and bM > 0, and some non-degenerate distribution

function H such that the distribution of
ZM − aM

bM
converges to H, then H belongs to one of

the three standard extreme value distributions: Frechet, Webull, and Gumbel distributions.
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It is very interesting that there are only three possible non-degenerate limiting distribu-

tions for maxima. The distribution function F (x) determines the exact limiting distribution.

Thus, if a distribution function F (x) results in one limiting distribution for extremes, we

say that F (x) belongs to the domain of attraction of this limiting distribution. Next, we

will introduce a sufficient condition for a distribution function F (x) to belong to the domain

of attraction of the Gumbel distribution.

Lemma 5.1 Let ξ1, ξ2, · · · , ξM be i.i.d. random variables with distribution function F (x).

Define ω(F ) = sup{x : F (x) < 1}. Assume that there is a real number x1 such that, for all

x1 ≤ x < ω(F ), f(x) = F ′(x) and F ′′(x) exist and f(x) 6= 0. If

lim
x→ω(F )

d

dx

[
1− F (x)

f(x)

]

= 0, (5.1)

then there exist sequences aM and bM > 0 such that, as M →∞,
ZM − aM

bM
uniformly con-

verges in distribution to a normalized Gumbel (maxima) random variable. The normalizing

constants aM and bM can be chosen as

aM = F−1

(

1−
1

M

)

,

bM = F−1

(

1−
1

Me

)

− F−1

(

1−
1

M

)

,

where F−1(x) = inf{y : F (y) ≥ x}.

For a random variable Z with the normalized Gumbel distribution for maxima, exp[− exp(−x)],

−∞ < x <∞, it follows that

E{Z} = E0,

Var{Z} =
π2

6
,

where E0 = 0.5772 · · · is the Euler constant [22].

In this chapter, we intend to calculate the average throughput; thus, mean convergence

is used extensively. However, convergence in distribution cannot generally guarantee mean

convergence. [51] established the relation between convergence in distribution and moment

convergence, which is stated in the following lemma.
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Lemma 5.2 If
ZM − aM

bM
converges in distribution to a random variable Z that has a non-

degenerate distribution function, and if E{[(ZM )−]p} < ∞ for any positive real number p,

where (x)− = −x, x < 0, = 0, otherwise, then

lim
M→∞

E

(
ZM − aM

bM

)p

= E{Zp},

provided E|Z|p <∞.

Obviously, convergence in distribution for the maximum of nonnegative random variables

results in moment convergence.

Lemmas 5.1 and 5.2 can be restated for minima by consider (−ξi) instead of ξi. We

give below the result about the asymptotic distribution of the minimum of i.i.d. random

variables. Let WM = min
i∈M

ξi.

Lemma 5.3 Let ξ1, ξ2, · · · , ξM be i.i.d. random variables with distribution function F (x).

Define α(F ) = inf{x : F (x) > 0}. Assume that there is a real number x1 such that, for all

α(F ) ≤ x < x1, f(x) = F ′(x) and F ′′(x) exist and f(x) 6= 0. If

lim
x→α(F )

d

dx

[
F (x)

f(x)

]

= 0, (5.2)

then there exist sequences cM and dM > 0 such that, as M →∞,
WM − cM

dM
uniformly con-

verges in distribution to a normalized Gumbel (minima) random variable. The normalizing

constants cM and dM can be chosen as

cM = F−1

(
1

M

)

,

dM = F−1

(
1

M

)

− F−1

(
1

Me

)

.

For a random variable W with the normalized Gumbel distribution for minima, 1−exp[− exp(−x)], −

∞ < x <∞, it follows that

E{W} = −E0,

Var{W} =
π2

6
.

With extreme value theory, we can study the asymptotic performance of channel-aware

scheduling.
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5.2 Asymptotic Throughput Analysis of Single-Carrier Net-

works

In this section, we focus on asymptotic throughput analysis for single-carrier networks with

channel-aware scheduling.

5.2.1 System Model

Consider a shared downlink channel of a single-carrier system with a bandwidth B and M

users. The downlink channel is time-slotted, and each time slot can adaptively be assigned

to a user. It is assumed that the base station knows the CSI of each user, and that continuous

rate adaptation is applied in the downlink channel. Therefore, the transmission data rate,

R, depends on the current SNR, Γ. The relationship can be written as [23]

R = B log2(1 + βΓ), (5.3)

where β is a constant related to the targeted BER and the used modulation and coding

techniques.

First, we assume that the all users experience statistically independent identical fading

processes. The max-sum-capacity (MSC) scheduling rule [66,76] is used in the system. The

MSC rule is a channel-aware scheduling scheme that maximizes the total throughput in the

system and works well in the homogeneous system. It assigns the channel to the user with

the best channel condition on each time slot, which is described as

m = arg max
i∈M
{Γi}, (5.4)

whereM = {1, 2, · · · ,M}, and Γi is the SNR of user i.

We also consider the heterogeneous case, in which different users have different average

SNR values due to various path losses. For the purpose of fairness, the normalized-SNR-

based scheduling [81] is used. This scheduling rule makes decisions based on the normalized

SNR rather than the absolute SNR values, which is expressed as

m = arg max
i∈M
{
Γi

γi
}, (5.5)

where γi is the average SNR of user i; that is, E{Γi} = γi. It is obvious that the normalized-

SNR-based scheduling is equivalent to the MSC scheduling in the homogeneous system.
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5.2.2 Throughput Analysis for Rayleigh Fading

In this section, we will analyze the throughput performance of multiuser diversity for

Rayleigh fading channels with the same average SNR γ0. The cdf of the SNR for Rayleigh

fading can be expressed as

FΓ(γ) = 1− exp(−
γ

γ0
). (5.6)

5.2.2.1 Exact Analysis

According to the MSC scheduling, the base station schedules the user with the strongest

channel condition. Therefore, the effective SNR at the transmitter, Γeff, is given by

Γeff = max
i∈M

Γi, (5.7)

and its distribution is

FΓeff
(γ)=P{Γ1 < γ,Γ2 < γ,· · · ,ΓM < γ}

=
(

1−e−γ/γ0

)
M

By taking derivative, the pdf of Γeff can be obtained as

fΓeff
(γ) =

d

dγ
FΓeff

(γ)

= M(1− e−γ/γ0)M−1 e−γ/γ0

γ0
. (5.8)

Using (5.8), we calculate the average SNR when the MSC scheduling is used as

E{Γeff} =

∫ ∞

0
γ · fΓeff

(γ) dγ

= γ0

M∑

i=1

1

i
. (5.9)

The throughput of the MSC scheduling is expressed as

Rtotal = B log2(1 + βΓeff);

hence the average throughput is

E{Rtotal} = B

∫ ∞

0
log2(1 + βγ)fΓeff

(γ) dγ. (5.10)
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To obtain a closed-form result of E{Rtotal}, rewriting (5.8) by using the binomial expansion

as

fΓeff
(γ) =

M

γ0

M−1∑

i=0

(−1)i






M − 1

i




 e

−
(1+i)γ

γ0 , (5.11)

where 




M − 1

i




 =

(M − 1)!

(M − i− 1)! i!
.

Substituting (5.11) into (5.10), we obtain

E{Rtotal} =
M

ln 2

M−1∑

i=0

(−1)i+1






M−1

i






e
1+i
γ0

i+1
Ei(−

1+i

γ0
) (5.12)

with

Ei(−x) = E0 + ln(x) +
∞∑

i=1

(−1)ixi

i! i
.

As seen above, the exact analysis of throughput analysis is very complicated, and the

exact result lacks insights. Therefore, in the rest of the chapter, we will provide the simple

results through asymptotic analysis.

5.2.2.2 Asymptotic Analysis

First, we study the asymptotic distribution for the effective SNR Γeff in (5.7). The expo-

nential distribution leads to

1− FΓ(γ)

fΓ(γ)
= γ0.

As a result, it follows that

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

= 0, for γ > 0.

According to the results of extreme value theory in Section 5.1, the exponential distribution

is in the domain of attraction of the Gumbel distribution, and

aM = γ0 ln M,

bM = γ0.
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According to Lemma 5.2, as M →∞,

E{Γeff} − γ0 ln M

γ0
→ E0.

With a large M , therefore,

E{Γeff} ≈ γ0(ln M + E0). (5.13)

It is shown in [82] that

1

2(M + 1)
<

M∑

i=1

1

i
− (ln M + E0) <

1

2M
,

which implies that the difference between the exact value (5.9) and the asymptotic value

(5.13) is very small even for a small M .

We can also use the results of extreme value theory in Section 5.1 to obtain an asymptotic

analysis for throughput Rtotal = maxi∈M Ri. Let

R = T (Γ) , B log2(1 + βΓ).

Since T (Γ) is a monotonic increasing function of Γ, the distribution of data rate R is given

by

FR(r) = FΓ(T−1(r)),

where T−1(r) =
2

r
B − 1

β
. For the Rayleigh fading channel, we have

1− FR(r)

fR(r)
=

1− FΓ(T−1(r))

fΓ(T−1(r)) (T−1)′ (r)

=
βγ0

2
r
B − 1

. (5.14)

Equation (5.14) results in

lim
r→∞

d

dr

[
1− FR(r)

fR(r)

]

= 0. (5.15)

According to the results of extreme value theory in Section 5.1, therefore, the maximum

throughput, Rtotal = maxi∈M Ri, asymptotically behaves as a Gumbel random variable,
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aM + bMZ, where Z is a normalized Gumbel random variable, and

aM = B log2(1 + βγ0 ln M),

bM = B log2

(
1 + βγ0(1 + ln M)

1 + βγ0 ln M

)

.

Moreover, as M →∞,

E{Rtotal} − aM

bM
→ E{Z} = E0.

Thus, when M is large, the average throughput is given by

E{Rtotal} ≈ aM + E0bM

= B log2(1 + βγ0 ln M) + E0 · B log2

(
1 + βγ0(1 + ln M)

1 + βγ0 ln M

)

, (5.16)

where ln M is called multiuser diversity gain [76]. In contrast to (5.12), (5.16) provides a

very simple approximation for the average throughput. The numerical results in Section

5.2.5 will shows that this approximation is very accurate.

Note that as M →∞, aM →∞, and bM → 0. Therefore, with a large M ,

E{Rtotal} ≈ B log2(1 + βγ0 ln M)

is a rougher but simpler estimation for the average throughput. For the Rayleigh fading, it is

easy to prove (5.15). However, proving (5.15) may be difficult for other fading distributions.

We will provide a simple way to do it in the next section.

5.2.3 Throughput Analysis for General Channel Distributions

In previous sections, we have seen that finding the limiting distribution of the maximum

throughput is crucial to obtain the asymptotic throughput. In this section, we consider more

general cases beyond Rayleigh fading. Mathematically, we study the limiting distribution

of the throughput

R = T (Γ) = B log2(1 + βΓ),

given a SNR distribution, FΓ(γ). The major result is stated in the following theorem for

limiting throughput distribution (LTD).
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Theorem 5.1 (LTD Theorem): Assume that all users’ SNRs, {Γ1,Γ2, · · · ,ΓM}, are i.i.d.

random variables with a distribution FΓ(γ) such that ω(FΓ) = ∞, and fΓ(γ) = F ′
Γ(γ) as

well as F ′′
Γ (γ) exist and fΓ(γ) 6= 0 for all x1 ≤ x <∞, where x1 is some real number. If

lim
γ→∞

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

= 0, (5.17)

then the distribution of throughput, FR(r) = FΓ(T−1(r)), belongs to the domain of the

attraction of the Gumbel distribution (maxima). In addition,

aM = B log2

(

1 + βF−1
Γ (1−

1

M
)

)

, (5.18)

bM = B log2

(

1 + βF−1
Γ (1− 1

Me)

1 + βF−1
Γ (1− 1

M )

)

. (5.19)

The proof is shown in Appendix G. the LTD theorem tells us that we do not have to

check FR(r) directly, which is usually very complicated to find its limiting distribution. In

addition, Lemma 5.2 leads to

E{Rhom
total} − aM

bM
→ E0,

as M →∞, where Rhom
total is the total throughput for the homogeneous scenario. For a large

M , the average total throughput can be evaluated by using the following expression.

E{Rhom
total} ≈ aM + E0bM . (5.20)

5.2.3.1 Example

The Nakagami distribution is frequently used to characterize the fading statistics of wireless

channels in certain environments. Then, the cdf of the received SNR is given by

FΓ(γ) = Γ(m, m
γ0

)(γ) =

∫ γ

0

(
m

γ0

)m tm−1

Γ(m)
e
− m

γ0
t
dt, (5.21)

where m is called the fading figure, which is defined as the ratio of the total power to the

power of fading components, and Γ(m) is the gamma function. In this subsection, we use

the results of the LTD theorem to study the impact of Nakagami fading on throughput

in the system with the MSC scheduling. Applying the results of extreme value theory in
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Section 5.1 and letting u = m
γ0

, we have

lim
γ→∞

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

= lim
γ→∞

−
[1− FΓ(γ)]

f2
Γ(γ)/f ′

Γ(γ)
− 1

= lim
γ→∞

1−

∫ γ

0
tm−1e−utdt

γme−uγ

uγ −m + 1

− 1

= 0 (by L’Hospital’s rule).

According to the results of extreme value theory in Section 5.1 and the LTD theorem,

both FΓ(γ) and FR(r) belong to the domain of the attraction of the Gumbel distribution.

Therefore, the average total throughput for the Nakagami fading can be given by

E{Rhom
total} ≈ B log2

(

1 + βF−1
Γ (1−

1

M
)

)

+ E0B log2

(

1 + βF−1
Γ (1− 1

Me)

1 + βF−1
Γ (1− 1

M )

)

= B log2

(

1 + βΓ−1
(m, m

γ0
)(1−

1

M
)

)

+ E0B log2





1 + βΓ−1
(m, m

γ0
)(1−

1
Me)

1 + βΓ−1
(m, m

γ0
)(1−

1
M )



 ,

(5.22)

where Γ−1
(m, m

γ0
)(γ) is the inverse incomplete gamma function. Despite no closed form for it,

the inverse incomplete gamma function is usually provided in common softwares, such as

Matlab and Mathematica.

Actually, besides the Rayleigh and Nakagami distributions, the normal, Rician, and log-

normal distributions, which are often used to describe the statistics of wireless channels,

belong to the domain of the attraction of the Gumbel distribution [22].

5.2.3.2 Further Properties of Asymptotic Throughput

Note that as M → ∞, aM → ∞ since F−1
Γ (γ) → ∞ as γ → ∞. In addition, in Appendix

H, we prove that

lim
M→∞

bM

aM
= 0. (5.23)

Applying (5.23) to FΓ(γ) (aM and bM here are related to Γeff in (5.7)), we have

lim
M→∞

F−1
Γ (1− 1

Me)− F−1
Γ (1− 1

M )

F−1
Γ (1− 1

M )
= 0. (5.24)

101



From (5.24), we have the limit of bM that is corresponding to the throughput as follows:

lim
M→∞

bM = lim
M→∞

B log2

(

1 + βF−1
Γ (1− 1

Me)

1 + βF−1
Γ (1− 1

M )

)

= lim
M→∞

B log2

(

F−1
Γ (1− 1

Me)

F−1
Γ (1− 1

M )

)

= lim
M→∞

B log2

(

F−1
Γ (1− 1

Me)− F−1
Γ (1− 1

M )

F−1
Γ (1− 1

M )
+ 1

)

= 0. (5.25)

Therefore, when the number of users M is very large, we have

E{Rhom
total} ≈ aM = B log2

(

1 + βF−1
Γ (1−

1

M
)

)

, (5.26)

which is a rough estimation for the average total throughput with a large M . According to

(5.24), we have

F−1
Γ (1−

1

M
) = E{Γeff}+ o(E{Γeff}).

Thus, (5.26) can also be rewritten as

E{Rhom
total} ≈ B log2 (1 + β [E{Γeff}+ o(E{Γeff})]) ,

≈ B log2 (1 + βE{Γeff}) . (5.27)

The above equation means that the average throughput is approximately a function of the

average effective SNR.

Lemma 5.2 also shows that for any positive real number p,

lim
M→∞

E

(
Rhom

total − aM

bM

)p

= E{Zp}, (5.28)

where Z is a normalized Gumbel random variable. We consider p = 2, and we have

lim
M→∞

E

(
Rhom

total − aM

bM

)2

= E2
0 +

π2

6
.

Thus, as M →∞,

Var{Rhom
total} →

π2

6
b2
M .
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Because of (5.25), Var{Rhom
total} → 0, which indicates that this asymptotic analysis of average

throughput is quite accurate. In addition, it follows that

lim
M→∞

E

(

Rhom
total − aM

)p
= lim

M→∞
bME{Zp}, (5.29)

= 0. (5.30)

According to [51], (5.29) guarantees that Rhom
total − aM converges in probability1 to 0.

5.2.3.3 Channel Access Probability and Average Throughput per User

The channel access probability Pi is the probability that user i obtains the channel to

transmit data. In the homogeneous fading case, due to the the symmetry, each user has the

same channel access probability; that is,

Pi =
1

M
.

Therefore, the average throughput of user i with the scheduling, E{Rs
i}, is given by

E{Rs
i} =

1

M
E{Rhom

total}.

5.2.4 Throughput Analysis for Normalized-SNR-Based Scheduling

In previous sections, we presented the asymptotic throughput analysis for the homogeneous

fading case. In reality, the values of the average SNR of users vary according to their path

losses. Denote the average SNR of user i as γi. We consider a scenario in which different

users have the same normalized SNR distribution F (γ) but with different average SNR,

γi’s. We assume that F (γ) satisfies ω(F ) =∞ and (5.17).

Obviously, the MSC scheduling results in unfair channel access probabilities. When

the normalized-SNR-based scheduling is used, the base station schedules the user with the

largest normalized SNR to get the channel, which is mathematically expressed in (5.5).

Define the effective normalized SNR at the transmitter as

Γeff = max
i∈M

Γi

γi
.

1Assume Xn and X to be a random variable sequence and a random variable, if lim
n→∞

P{|Xn − X| > ε} = 0

for any ε > 0, then we say that Xn converges in probability to X.
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Because of the identical distribution of the normalized SNR, the previous results based

on extreme value theory is still applicable to the effective normalized SNR, and all users

have the same channel access probability as well; that is,

Pi =
1

M
.

Thus, the average throughput of user i can be expressed as

E{Rs
i} =

1

M

∫ ∞

0
B log2(1 + βγiγ)fΓeff

(γ)dγ (5.31)

Recalling (5.10) and the LTD theorem, we know that in the i.i.d. fading case if the distri-

bution of SNR FΓ(γ) satisfies (5.17), then, with a large M ,
∫ ∞

0
log2(1 + βγ)fΓeff

(γ)dγ ≈ log2

(

1 + βF−1
Γ (1−

1

M
)

)

+ E0 log2

(

1 + βF−1
Γ (1− 1

Me)

1 + βF−1
Γ (1− 1

M )

)

.

(5.32)

Comparing (5.31) and (5.32), we obtain the average throughput for user i as follows:

E{Rs
i} ≈

B

M

{

log2

(

1 + βγiF
−1(1−

1

M
)

)

+ E0 log2

(

1 + βγiF
−1(1− 1

Me)

1 + βγiF−1(1− 1
M )

)}

,

with a large M . Therefore, with the normalized-SNR-based scheduling, each user obtains

the same multiuser diversity gain as that in the homogeneous scenario and has the same

channel access probability, but its own average throughput depends on its average SNR.

Furthermore, we will compare the total throughput in the heterogeneous and homoge-

neous scenarios. We assume that

γ0 =
1

M

M∑

i=1

γi, (5.33)

and define

σ2
γ =

1

M

M∑

i=1

(γi − γ0)
2.

When the number of users M is large, we only consider use the first term, aM , to

evaluate the average throughput. Thus, the average total throughput in the heterogeneous

scenario is given by

E{Rhet
total} =

M∑

i=1

E{Rs
i}

≈
B

M

M∑

i=1

log2

(

1 + βγiF
−1(1−

1

M
)

)

,
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and the average total throughput in the homogeneous scenario is

E{Rhom
total} ≈ B log2

(

1 + βγ0F
−1(1−

1

M
)

)

,

We obtain

E{Rhet
total} − E{Rhom

total} ≈
B

M

M∑

i=1

log2

(

1 + βγiF
−1(1− 1

M )

1 + βγ0F−1(1− 1
M )

)

→
B

M

M∑

i=1

log2

(
γi

γ0

)

, as M →∞. (5.34)

(5.34) is valid since F−1(1− 1
M )→∞ as M →∞.

With the following inequality,

x−
1

2
x2 ≤ ln(1 + x) ≤ x, for x ≥ 0, (5.35)

we will consider the upper and lower bounds, respectively. For the upper bound, it follows

from (5.34) and (5.35) that

E{Rhet
total} − E{Rhom

total} ≤
B

ln(2)M

M∑

i=1

(
γi

γ0
− 1

)

= 0.

Similarly, the lower bound is given by

E{Rhet
total} − E{Rhom

total} >
B

ln(2)M

M∑

i=1

(
γi

γ0
− 1

)

−
1

2 ln 2

B

M

M∑

i=1

(
γi

γ0
− 1

)2

= 0−
B

2 ln 2

[

1

M

M∑

i=1

(
γi

γ0

)2

− 1

]

= −
B

2 ln 2

σ2
γ

γ2
0

.

Therefore, the main result is stated as follows: when the number of users M is large,

−
B

2 ln 2

σ2
γ

γ2
0

≤ E{Rhet
total} − E{Rhom

total} ≤ 0. (5.36)

This means that the homogeneous case leads to the maximum total throughput when

(5.33) holds.
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Figure 5.1. Average throughput for different environments. βγ0 = 1.

5.2.5 Numerical Results

We assume that all users experience i.i.d. Nakagami fading. Let βγ0 = 1. Figure 5.1 shows

the average total throughput in the Nakagami fading channels with different values of m.

For comparison, we also plot the average throughput in the additive white Gaussian noise

(AWGN) channel with the same average SNR in Figure 5.1.

It is shown in Figure 5.1 that the asymptotic results are still accurate even if the number

of users is small. The figure shows that the throughput increases with the number of users

in the fading scenario with dynamic scheduling. As m increases, the fading fluctuation of

the channel reduces, and the multiuser diversity gain is also diminished.

5.3 Asymptotic Delay Analysis of Single-Carrier Networks

Besides throughput, delay is another crucial factor for wireless data services, particularly for

time-sensitive applications. In [39], an analysis for mean delays is presented; however, only a

rough relationship between the average waiting time and the number of users in the system
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is provided. In [11], the system performance in the mean sense is studied by using multi-

class processor-sharing model. Since the dynamic user configuration is considered in [11],

the results are applicable for more general cases, but the complicated model has difficulty in

capturing the explicit relationship between system performance and multiuser diversity. In

this section, we propose an asymptotically analytical result to reveal the impact of dynamic

scheduling on average waiting times in single-carrier networks. Compared to [11], our

analysis has two major differences. First, we just consider the static user scenario to reveal

the impact of multiuser diversity on the mean delay. Although our analysis overestimates

the mean delay with a light traffic load, they would be accurate with a heavy traffic load.

Second, the system performance is evaluated in terms of the average delay for each packet

rather than the average delay for each file transmission in [11].

The system and scheduling models are the same as those in Section 5.2.1. In our analysis,

we make the following assumptions.

• When a queue is empty, a dummy packet is assumed to be in the queue. This system

is usually called the dominant system.

• Dynamic packet scheduling is usually allowed in time-slotted networks, which makes

delay analysis extremely difficult. For simplicity, we assume that the system is not

time-slotted. After finishing transmitting a packet, the base station can immediately

serve another packet.

• We assume that all users have the same channel statistics and arrival traffic statistics.

• For the arrival traffic, all packets are assumed to have the same length L. In addition,

the packet inter-arrival time for each user is assumed to be independently, identically,

and exponentially distributed with rate λ1. The total arrival rate is λ = Mλ1.

• For the channel fading, we assume that each user experiences i.i.d. block fading that

is constant while a packet is being served, but is independent across different packet

transmission durations.
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5.3.1 Asymptotic Distribution of Service Time

The service time S for transmitting a packet can be expressed as

S = S (Γ)

=
L

R

=
L

B

1

log2(1 + βΓ)
.

Thus, the distribution of the service time is

FS(s) = 1− FΓ(S−1(s)),

and its inverse function is

F−1
S (x) = S(F−1

Γ (1− x))

=
L

B

1

log2(1 + βF−1
Γ (1− x))

.

According to the MSC rule in the multiuser-symmetric environment, the base station

should serve the user with the strongest channel condition. This is equivalent to serving

the user who needs the shortest service time. Since the system performance in the scenario

of a large number of users can be obtained by extreme value theory [13], we focus on the

properties of the limit distribution of the random variable

Smin,M = min
i∈M

Si,

where Si is the service time for user i.

Similar to the LTD theorem, we state the result about asymptotic distribution of service

time as the following theorem.

Theorem 5.2 Assume that all users’ SNRs, {Γ1,Γ2, · · · ,ΓM}, are i.i.d. random variables

with a distribution FΓ(γ) such that ω(FΓ) = ∞, and fΓ(γ) = F ′
Γ(γ) as well as F ′′

Γ (γ) exist

and fΓ(γ) 6= 0 for all x1 ≤ x <∞, where x1 is some real number. If

lim
γ→∞

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

= 0, (5.37)
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then the distribution of service, FS(s) = 1 − FΓ(S−1(s)), belongs to the domain of the

attraction of the Gumbel distribution (minima). In addition,

cM =
L

B

1

log2(1 + βF−1
Γ (1− 1

M ))
, (5.38)

dM =
L

B

1

log2(1 + βF−1
Γ (1− 1

M ))
−

L

B

1

log2(1 + βF−1
Γ (1− 1

Me))
. (5.39)

lim
M→∞

dM

cM
= 0. (5.40)

The proof is omitted since it is very similar to that of LTD theorem. The fact that

cM → 0 as M →∞, together with (5.40), implies that Smin,M is approximately a constant

when M is large enough; that is,

Smin,M ≈ cM − E0dM .

In the case of Rayleigh fading, we have

cM =
L

B

1

log2(1 + βγ0 ln(M))
,

dM =
L

B

1

log2(1 + βγ0 ln(M))
−

L

B

1

log2 (1 + βγ0 (1 + ln(M)))
.

Therefore, we obtain the service rate for one packet.

5.3.2 Average Waiting Time

Because the stochastic characteristics of the packet arrivals and wireless channels of different

users are symmetrical, we only need to consider the delay performance of a specific user.

Under the MSC rule, each queue (user) is equally served with probability 1
M . As a result,

the time needed to transmit one packet, X, which is an integer multiple of Smin,M , has a

geometric distribution,

P(X = nSmin,M ) =

(
1

M

)(

1−
1

M

)n−1

,

where n is an integer.

Due to the Poisson arrivals, each queue can be modeled as an M/G/1 queue with server

vacations [10]. In equilibrium, the mean waiting time in a queue, Wq, can be decomposed

into the expected residual service time Tres plus the average service time of packets in the
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queue E{X}Nq, where Nq is the average queue length. Applying Little’s law, Nq = λ1Wq,

we have

Wq = Tres + E{X}λ1Wq

= Tres + ρWq,

where ρ = λSmin,M = Mλ1Smin,M . Therefore, the mean waiting time in queue is given by

Wq =
Tres

1− ρ
. (5.41)

Using the results of M/G/1 queues with vacations in [10], the expected residual service time

Tres can obtained as

Tres =
λ1E{X

2}

2
+ (1− ρ)

E{V 2}

2E{V }
,

where the length of a server vacation, V , is equal to Smin,M . Thus, it follows that

Tres =
λ1(2M − 1)MS2

min,M

2
+ (1− ρ)

Smin,M

2

=
(2M − 1)ρSmin,M

2
+ (1− ρ)

Smin,M

2
.

The mean waiting time in the single-carrier system, Wsingle, includes the mean waiting time

in queue and the service time of transmitting one packet. Thus,

Wsingle =
Tres

1− ρ
+ E{X}

=
(2M − 1)ρSmin,M

2(1 − ρ)
+

(

M +
1

2

)

Smin,M . (5.42)

5.4 Asymptotic Performance Analysis of Multicarrier Net-

works

In a multicarrier network with the same bandwidth B, the scheme assigns each subchannel

to the user with the best channel condition on it, which can be expressed as

m(k) = arg max
i∈M
{Γi[k]},

where m(k) represents the user scheduled at subcarrier k, and Γi[k] is the SNR of user i at

subcarrier k. Let FΓ(γ) be the distribution of the channel fading at each subcarrier. Other

assumptions here are the same as in the single-carrier network in Sections 5.2 and 5.3.
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5.4.1 Asymptotic Throughput Analysis

Note that there is no assumption on the correlation among subcarriers. The data rate at

subcarrier k is given by

Rmax[k] = max
i∈M

B

K
log2(1 + βΓi[k]). (5.43)

Then, the total throughput is given by

Rtotal =

K∑

k=1

Rmax[k].

Thus,

E{Rtotal} = KE{Rmax[k]}

= E{max
i∈M

B log2(1 + βΓ)},

where Γ is distributed with FΓ(γ). It follows from Theorem 5.1 that with a large M ,

E{Rtotal} ≈ aM + E0bM , (5.44)

where aM and bM are determined by (5.18) and (5.19). Therefore, the multicarrier network

has the same asymptotic throughput as the single-carrier network with the same bandwidth.

5.4.2 Asymptotic Delay Analysis

Similarly in the single-carrier system, each user has a probability 1
M of occupying a sub-

carrier. We consider an “extreme” scenario where the channel fluctuations are independent

across the subcarriers, and the number of subcarriers K →∞. At subcarrier k, the result-

ing data rate is a random variable given by (5.43). According to the strong law of large

numbers, as K →∞ and M � K, the total throughput is obtained as

Rtotal =
B

K

K∑

k=1

max
i∈M

log2(1 + βΓi[k])

→ B E{max
i∈M

log2(1 + βΓ)}, as K →∞,

where Γ is distributed with FΓ(γ). Therefore,

Rtotal ≈ aM + E0bM ,
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and the service time is

S′
min,M =

L

Rtotal
.

Since each user occupies a bandwidth of B/M , the MSC scheduling results in a traditional

FDM system with the fixed service rate R/M for each user. In other words, the service

time for one packet is MS′
min,M . Based on the results in [10], the mean waiting time in

queue can be expressed as

Wq =
λ1M

2S′2
min,M

2(1 − ρ)
+

S′
min,M

2

=
MρS′

min,M

2(1− ρ)
+

S′
min,M

2
.

Therefore, the average waiting time in the multicarrier network, Wmulti, is given by

Wmulti =
MρS′

min,M

2(1 − ρ)
+ (M +

1

2
)S′

min,M . (5.45)

The structure of the average waiting time expression for multicarrier networks in (5.45)

is similar to that for single-carrier networks in (5.42). We will compare them in the next

subsection.

5.4.3 Delay Performance Comparison

As the number of users M →∞,

Smin,M → cM

=
L

B

1

log2(1 + βF−1
Γ (1− 1

M ))
,

S′
min,M →

1

aM

=
L

B

1

log2(1 + βF−1
Γ (1− 1

M ))
.

In other words, both single and multiple carrier networks have the same asymptotic through-

put

B log2(1 + βF−1
Γ (1−

1

M
)).
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However, each system has a different delay performance for bursty traffic. When the traffic

load is light,

lim
ρ→0



 lim
M→∞
fixing ρ

Wsingle

Wmulti



 = 1.

When the traffic load is heavy,

lim
ρ→1



 lim
M→∞
fixing ρ

Wsingle

Wmulti



 = 2. (5.46)

This is because multicarrier networks can provide smoother service rates by exploiting

frequency diversity.

In the above analysis, we do not take the time correlation in channel fading into account.

This issue will be discussed in a descriptive manner as follows. We consider the extreme

case where the channel correlation time goes to infinity. In a single-carrier system using the

MSC rule, the average waiting time will become infinite with a heavy traffic load. However,

note that in the delay performance analysis of multicarrier networks, we exploit the channel

independence among subcarriers instead of the channel independence across different packet

transmission durations. Thus, for a multicarrier network in a highly frequency-selective

environment, the channel time correlation does not affect the average waiting time, and

the average waiting time is always equal to (5.45). Therefore, when the channel fading is

slow and highly frequency-selective, the multicarrier network greatly outperforms the single-

carrier network in terms of delay performance. More accurately, if the number of subcarriers

in the multicarrier network is large, the average waiting time in the multicarrier network is

half that in the single-carrier network when the traffic load is heavy, or is considerably less

than half with slow fading.

Figure 5.2 shows that the average waiting time of different systems in the Rayleigh fading

environment with the same bandwidth when there are 100 users. Since the MSC scheduling

can improve the throughput through multiuser diversity, both single-carrier and multicar-

rier networks with this scheduling provide a substantial delay performance improvement,

compared to the traditional TDMA. In the simulation, we consider a simple time correlation

model of the fading as follows. The channel is block-faded; the channel remains constant
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Figure 5.2. Average waiting time versus traffic load. βγ0 = 1, and M = 100

within a block, but is independent across different blocks. The length of a block is the

coherence time of the channel, which is an integer multiple of Smin,M . A longer coherence

time indicates a slow fading rate. When the coherence time equals 1, the fading model is

the same as that assumed in Section 5.2. It is concluded from Figure 5.2 that the analytical

result (5.42) fits the simulation curve very well, and that slow fading seriously impairs the

delay performance of single-carrier networks.

5.5 Summary

Using extreme value theory, we have proposed asymptotic average throughput and delay

analyses for the MSC scheduling with a general fading distribution in both single-carrier and

multicarrier networks, which not only have concise expressions, but also provide accurate

results. This asymptotic analysis shows that the use of the simple scheduling techniques

and the feedback of CSI can significantly improve the bandwidth efficiency. We have also

extended the analysis into a scenario in which different users experience different path

losses. The results shows that the normalized-SNR-based scheduling can obtain the same
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multiuser diversity gain as that in the homogeneous case while maintaining access-time

proportional fairness. Although multicarrier networks with channel-aware scheduling have

the same throughput as single-carrier networks, multicarrier networks can provide better

delay performance than single-carrier networks. This work is beneficial to QoS provisioning

for channel-aware scheduling.
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CHAPTER 6

CONCLUSION

This final chapter summarizes the major contributions of the thesis and highlights numerous

topics for future research.

6.1 Contributions

In this thesis, we have investigated resource allocation and scheduling in the wireless OFDM-

based downlink that serves multiple users and supports various applications based on joint

physical and MAC layer optimization. The main contributions of this thesis are summarized

as follows:

We have proposed a simple, effective cross-layer resource management architecture for

wireless resource allocation. The use of rate adaptation and packet scheduling can exploit

the characteristics of wireless channels, such as time variance, frequency selectivity, and

statistical independence among different users, to obtain the available natural diversity -

multiuser diversity. More importantly, with the help of economic theory, we use utility

as a measure of QoS and maximize the total utility in the network based on the current

channel and QoS conditions. Both theoretical and simulation results show that the utility-

based architecture can provide an efficient and stable mechanism for spectral efficiency

improvement, traffic multiplexing, and QoS differentiation.

We have developed various efficient DSA and APA algorithms that solve the proposed

utility optimization problems in multicarrier networks with different considerations, espe-

cially for the scenario with discrete rate adaptation, in which the nonlinear and combinato-

rial nature of the cross-layer optimization significantly challenges algorithm development.

Moreover, those algorithms are low-complexity and stable.

We have designed a novel scheduling approach maximizing the total utility with respect
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to mean delays, which is call MDU scheduling. Unlike most joint channel- and queue-

aware scheduling policies, such as the M-LWDF and EXP rules, the MDU scheduling has

an explicit optimization objective. Although it does not need statistical information about

incoming traffic, its utility-maximization mechanism enables the network to achieve the

right balance between capacity enlargement and QoS guarantees according to the channel

conditions and the level of network congestion. In Chapter 4, the MDU scheduling was

successfully used for handling heterogeneous traffic. The simulation results demonstrated

that the MDU scheduling can improve the spectral efficiency and provide right incentives

to ensure that all applications can receive their different required QoS. Through the thread

of cross-layer design, we also proposed delay transmit diversity, a simple and transparent

multiple transmit antenna technique that enhances the performance of the multicarrier

scheduling without requirement on algorithm modification.

We have deeply studied the fairness and stability issues in a general sense. First, we have

in theory revealed a generic relationship between a specific convex utility function and a type

of fairness. It is shown that the utility-based resource allocation has an explicit fairness

characteristic. Second, we proved that given some very loose conditions, the maximum

stability region of stable scheduling policies can reach the interior of the ergodic capacity

region at the physical layer. The results and proofs concerned with the stability issue in

this thesis are applicable to both cases of single and multiple servers and do not require

the Markovian property on channel states and/or arrival traffic. More importantly, we

provided a method to design cross-layer scheduling algorithms that allow the queueing

stability region at the network layer to approach the ergodic capacity region at the physical

layer. In Chapter 4, the results of the stability issue was successfully used in designing the

MDU scheduling for supporting integrated services.

To reveal the impact of multiuser diversity on throughput and delay performance, we

have provided closed-form asymptotic performance analyses for channel-aware scheduling in

both single-carrier and multicarrier networks based on extreme value theory and queueing

theory. Compared to the exact expression, the asymptotic one, which is applicable to a

broader range of fading channels, is more concise and easier to get insights. One of the
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most important results is that, in environments with highly frequency-selective fading, slow

fading does not limit the multiuser diversity gain in multicarrier networks with DSA.

In summary, this thesis is a deep and systematic study on cross-layer resource allocation

and scheduling in wireless OFDM-based networks. It not only proposes a utility-based cross-

layer wireless resource management architecture and corresponding scheduling algorithms

that substantially improve the spectral efficiency and effectively satisfy diverse performance

objectives of heterogeneous traffic, but also provides deep understanding of fundamental

mechanisms in advanced wireless resource management, including efficiency, fairness, and

stability, which would facilitate the design of future wireless multimedia networks that

support diverse QoS requirements in such a complicated environment where multiple users

compete shared channels with time-varying frequency-selective fading.

6.2 Future Research Directions

Cross-layer resource allocation is promising for future wireless networks. Two important

open questions are list as follows.

6.2.1 Admission Control for Channel-Aware Scheduling and MAC

The mechanism of exploiting channel variations across users has been used in scheduling

and MAC designs to improve the spectral efficiency. Due to variable data rates and sto-

chastic transmission inherent in channel-aware networks, the issue of admission control is

becoming very challenging and interesting. Our work on efficiency, fairness, and stability of

channel-aware scheduling will be beneficial to studying this issue. This research will result

in theoretical innovations and practical applications because this topic may lead to rethink-

ing the architecture of multimedia-over-wireless networks, and because current CDMA2000

1xEV systems require commercial solutions for admission control.

6.2.2 Distributed Channel- and QoS-Aware Multicarrier MAC

Since the resource allocation schemes studied in this thesis require centralized control, it

would be of great interest to extend our research to developing scalable and distributed

channel- and QoS-aware multicarrier MAC schemes without a centralized controller. The
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research should be based on deep understanding of specific properties of multicarrier sys-

tems. Distributed channel- and QoS-aware MAC approaches are very promising for the

following two major reasons. First, channel-aware-only MAC schemes are only optimal for

the total throughput rather than diverse QoS requirements of different applications. On

the other hand, the queueing model of a single carrier system is a single server with a

queue. However, since multicarrier systems can serve many users at the same time, there

are multiple servers from a queueing theory point of view. The multiserver systems would

be advantageous to QoS provisioning.
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APPENDIX A

PROOF OF THEOREM 2.1

Proof: If the D̄∗
1’s are optimal, then any change of allocation will not increase the

average utility. Let (f − 1
24f, f + 1

24f) ∈ D∗
1. If (f − 1

24f, f + 1
24f) is assigned to the

other user, then the data rate of user 1 will be decreased by 4r1 = c1(f)4f while the data

rate of user 2 will be increased by 4r2 = c2(f)4f . But, the new average utility will be

equal to or less than the optimal one, that is,

U1(r
∗
1 −4r1) + U2(r

∗
2 +4r2) ≤ U1(r

∗
1) + U2(r

∗
2),

which is equivalent to

U2(r
∗
2 +4r2)− U2(r

∗
2) ≤ U1(r

∗
1)− U1(r

∗
1 −4r1).

Dividing both sides by 4f , we have

U2(r
∗
2 +4r2)− U2(r

∗
2)

4f
≤

U1(r
∗
1)− U1(r

∗
1 −4r1)

4f
.

Since 4r1 = c1(f)4f and 4r2 = c2(f)4f , we have

U2(r
∗
2 +4r2)− Uj(r

∗
2)

4r2
c2(f) ≤

U1(r
∗
1)− U1(r

∗
1 −4r1)

4r1
c1(f).

When 4f → 0, 4r1 → 0 and 4r2 → 0. Consequently,

lim
4r2→0

U2(r
∗
2 +4r2)− Uj(r

∗
2)

4r2
c2(f) ≤ lim

4r1→0

U1(r
∗
1)− U1(r

∗
1 −4r1)

4r1
c1(f),

or

U
′

2(r
∗
2)c2(f) ≤ U

′

1(r
∗
1)c1(f) f ∈ D̄∗

1 . (A.1)

which implies, for any f ∈ D̄∗
1,

c2(f)

c1(f)
≤

U
′

1(r
∗
1)

U
′

2(r
∗
2)

(= α∗),
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that is, f ∈ D̄1(α
∗) and D∗

1 ⊆ D̄1(α
∗).

Similarly, we can prove that

D∗
2 ⊆ D̄2(α

∗).

Therefore,

D1(α
∗) = [0, B]− D̄2(α

∗)

⊆ [0, B]−D∗
2

= D∗
1
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APPENDIX B

PROOF OF THEOREM 2.3

Proof: For a fixed subcarrier assignment Di for all i, we define pi(f) for i = 1, 2, · · · , M

as,

pi(f) =







p(f) f ∈ Di

0 otherwise
.

Using the Lagrangian method, the above optimization problem with the power constraint

becomes to maximize

1

M

M∑

i=1

Ui

(∫

Di

log2 [1 + βp(f)ρi(f) df ]

)

− λ
′

[
1

B

∫ B

0
p(f) df − 1

]

,

or

1

M

M∑

i=1

{

Ui

(∫

Di

log2 [1 + βpi(f)ρi(f) df ]

)

−λ
′

[
1

B

∫

Di

pi(f) df − 1

]}

.

where λ
′
≥ 0.

With the Karush-Kuhn-Tucker (KKT) conditions [56], we have

1

M
U

′

i (r
∗
i )

∂

∂pi(f)
log2 {1 + βpi(f)ρi(f)} −

λ
′

B

∂

∂pi(f)
pi(f)

∣
∣
∣
∣
pi(f)=p∗i (f)

= 0, for all i, (B.1)

λ
′

≥ 0, (B.2)

λ
′

[

M∑

i=1

1

B

∫

Di

pi(f) df − 1] = 0. (B.3)

(B.1) is equivalent to

U
′

i (r
∗
i )

βρi(f)

1 + βρi(f)p∗i (f)
− λ

′ M

log2(e)B
= 0, for all i.

Let λ = λ
′ M
log2(e)B . Then, the optimal power allocation for a fixed subcarrier assignment

satisfies:






p∗i (f) =

[

U
′

i (r
∗
i )

λ
−

1

βρi(f)

]+

f ∈ Di

M∑

i=1

1

B

∫

Di

p∗i (f) df = 1.
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or






p∗(f) =

[

U
′

i (r
∗
i )

λ
−

1

βρi(f)

]+

f ∈ Di

1

B

∫ B

0
p∗(f) df = 1.
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APPENDIX C

PROOF OF THEOREM 2.5

Proof: Assume that the system has joint DSA and APA. Then ∀ r(1), r(2) ∈ CDSA+APA,

α ∈ [0, 1], we need to show that αr(1) + (1−α)r(2) ∈ CDSA+APA. r(1) = [r
(1)
1 , r

(1)
2 , . . . , r

(1)
M ]T

is achieved with D
(1)
m and p(1)(f), r(2) = [r

(2)
1 , r

(2)
2 , . . . , r

(2)
M ]T is achieved with D

(2)
m and

p(2)(f), where for m ∈ {1, 2, · · · ,M}. Of course, D
(1)
m and D

(2)
m satisfy (2.3) and (2.4);

p(1)(f) and p(2)(f) yield (2.5). We represent those two power allocations as p(1) and p(2),

respectively.

We define the measure of a frequency set as follows. When the frequency set D =
⋃

i

[ai, bi], bi ≤ ai+1, the measure µ is given by µ(D) =
∑

i

(bi − ai). For user m, we have

r(1)
m =

∫

D
(1)
m

cp
(1)

m (f) dµ

r(2)
m =

∫

D
(2)
m

cp
(2)

m (f) dµ

where cpm(f) denotes the achievable throughput of user m at frequency f with power allo-

cation p.

We divide [0, B] into a family of sets Fn’s so that

⋃

n

Fn = [0, B], Fi

⋂

Fj = ∅ i 6= j (C.1)

max
f∈Fn

{cp
(1)

m (f)} − min
f∈Fn

{cp
(1)

m (f)} → 0 for all m,n (C.2)

max
f∈Fn

{cp
(2)

m (f)} − min
f∈Fn

{cp
(2)

m (f)} → 0 for all m,n. (C.3)

(C.2) and (C.3) imply

max
f∈Fn

p(1)(f)− min
f∈Fn

p(1)(f)→ 0 for all n

max
f∈Fn

p(2)(f)− min
f∈Fn

p(2)(f)→ 0 for all n.
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Each Fn is divided into two subsets Fα
n and F

(1−α)
n that satisfy

Fα
n

⋃

F (1−α)
n = Fn, Fα

n

⋂

F (1−α)
n = ∅ (C.4)

and µ(Fα
n ) = αµ(Fn).

If Fn ∈ Dm, we use Dm,n to denote Fn. Thus,

r(1)
m =

∑

n

cp
(1)

m (n)µ(D(1)
m,n)

r(2)
m =

∑

n

cp
(2)

m (n)µ(D(2)
m,n)

In the same way, using Dα
m,n to denote Fα

n ∈ Dm, we have

∫

D
(1),α
m

cp
(1)

m (f) dµ =
∑

n

cp
(1)

m (n)µ(D(1),α
m,n )

= αr(1)
m

∫

D
(2),(1−α)
m

cp
(2)

m (f)dµ =
∑

n

cp
(2)

m (n)µ(D(2),(1−α)
m,n )

= (1− α)r(2)
m

where D(1),α
m =

⋃

n

D(1),α
m,n

D(2),(1−α)
m =

⋃

n

D(2),(1−α)
m,n .

Therefore, with the new frequency assignment Dm = D
(1),α
m ∪ D

(2),(1−α)
m and the new

power allocation

p(f) =







p(1)(f) f ∈ D
(1),α
m

p(2)(f) f ∈ D
(2),(1−α)
m

,

the new data rate for user m is

rm =

∫

D
(1),α
m

cp
(1)

m (f) dµ +

∫

D
(2),(1−α)
m

cp
(2)

m (f) dµ

= αr(1)
m + (1− α)r(2)

m
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Furthermore, due to (C.1) and (C.4), the Dm’s satisfy (2.3) and (2.4). In addition,

1

B

∫ B

0

p(f) dµ =
1

B

∑

m

∫

Dm

p(f) dµ

=
1

B

∑

m

∫

D
(1),α
m

p(1)(f) dµ +
1

B

∑

m

∫

D
(2),(1−α)
m

p(2)(f) dµ

=
α

B

∑

m

∫

D
(1)
m

p(1)(f)dµ +
1− α

B

∑

m

∫

D
(2)
m

p(2)(f)dµ

= α
1

B

∫ B

0

p(1)(f)dµ + (1− α)
1

B

∫ B

0

p(2)(f) dµ

≤ 1

Therefore, there are feasible frequency assignment and power allocation schemes such that

αr(1) + (1− α)r(2) ∈ C.

Let p(1)(f) = p(2)(f) in the above proof. Then we have that the achievable data rate

region is convex when only DSA is used. Let D
(1)
m = D

(2)
m for all m in the above proof.

Similarly, we have that the achievable data rate region is also convex when only APA is

used.
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APPENDIX D

PROOF OF LEMMA 3.1

We only prove the case with finite channel states in this thesis. For the continuous channel

state distributions, the major idea of the proof is still straightforward and very similar to

that for finite channel states, but the technicality seams intricate due to measure-theoretic

complications.

Proof: Let J represent the finite channel state set, and πj be the stationary probability

of state j, j ∈ J . Tj(t) denotes the subintervals of [0, t] during which the channel state is j.

|Tj(t)| is the total length of these subintervals. Due to the ergodicity of the channel states,

there exists a time t′ such that for any small value δ > 0,

|Tj(t
′)|

t′
≤ πj + δ, (D.1)

and lim inf
t→∞

∫ t
τ=0 r(τ) dτ

t
≤

∫ t′

τ=0 r(τ) dτ

t′
+ δ.

Thus,

lim inf
t→∞

∫ t
τ=0 r(τ) dτ

t
≤
∑

j∈J

|Tj(t
′)|

t′
1

|Tj(t′)|

∫

τ∈Tj(t′)
r(τ) dτ + δ.

According to (3.20), there exists a stationary policy R(j) such that

1

|Tj(t′)|

∫

τ∈Tj(t′)
r(τ) dτ ≤ R(j). (D.2)

It follows from (D.1) and (D.2) that

lim inf
t→∞

∫ t
τ=0 r(τ) dτ

t
≤
∑

j∈J

(πj + δ)R(j) + δ

=
∑

j∈J

πjR(j) + δ(|R(j)| + 1).

Since
∑

j∈J πjR(j) ∈ C̃, let δ → 0, then

lim inf
t→∞

∫ t
τ=0 r(τ) dτ

t
∈ C̃.
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APPENDIX E

PROOF OF LEMMA 3.3

Proof: Let

r∗(H) = arg max
r∈C(H)

wT r.

In other words,

wT (r1 − r∗(H)) ≤ 0, r1 ∈ C(H), (E.1)

wT (r2 − r∗(H)) ≤ 0, r2 ∈ C(H). (E.2)

Let r′ = αr1 + (1− α)r2, where α ∈ (0, 1). Then r′ is in the convex hull of C(H). Because

of (E.1) and (E.2), it follows that

wT (r′ − r∗(H)) ≤ 0, r′ ∈ cov(C(H)).

Taking expectation on both sides, we have

wT (r̃′ − r̃∗) ≤ 0, r̃′ ∈ C̃,

which is equivalent to

r̃∗ = arg max
r̃∈C̃

wT r̃.
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APPENDIX F

PROOF OF LEMMA 3.4

Proof:

Qi[n]− Q̄i[n] = Qi[n]− {(1 − ρw)Q̄i[n− 1] + ρwQi[n]}

= (1− ρw){Qi[n]− Q̄i[n− 1]}. (F.1)

Define

ξ′i[n] = Qi[n]−Qi[n− 1]

= −min(Qi[n− 1], ri[n]Ts) + ai[n]. (F.2)

Form (F.1), we have the following recurrence formula for Qi[n]− Q̄i[n],

Qi[n]− Q̄i[n] = (1− ρw){Qi[n− 1]− Q̄i[n− 1]}+ (1− ρw)ξ′i[n]. (F.3)

Since Q̄i[0] = Qi[0], it follows from the recursive relationship in (F.3) that

Qi[n]− Q̄i[n] =

n−1∑

j=0

(1− ρw)n−jξ′i[j + 1].

We have |Qi[n]− Q̄i[n]| ≤

n−1∑

j=0

(1− ρw)n−j|ξ′i[j + 1]|, and

E{|Qi[n]− Q̄i[n]|} ≤

n−1∑

j=0

(1− ρw)n−j
E{|ξ′i[j + 1]|}.

It follows from (F.2) that

E{|ξ′i[j]|} ≤ E{ri[j]}Ts + E{ai[j]}

≤ (Rtotal + λi)Ts

<∞,
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where Rtotal is the maximum expected sum capacity of the system. Obviously, for n <∞,

E{|Qi[n]− Q̄i[n]|} is bounded. Therefore, we need to consider the asymptotic case in which

n→∞. In this case,

E{|Qi[n]− Q̄i[n]|} ≤ (Rtotal + λi)Ts lim
n→∞

n−1∑

j=0

(1− ρw)n−j

=
1− ρw

ρw
(Rtotal + λi)Ts

<∞.
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APPENDIX G

PROOF OF THEOREM 5.1

Proof: According to the results of extreme value theory in Section 5.1, we have to

show that

lim
r→∞

d

dr

[
1− FR(r)

fR(r)

]

= 0,

if

lim
γ→∞

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

= 0. (G.1)

Since

1− FR(r)

fR(r)
=

1− FΓ(T−1(r))

fΓ(T−1(r)) (T−1)′ (r)
,

we have

d

dr

[
1− FR(r)

fR(r)

]

= −1−

[
1− FΓ(T−1(r))

] [

f ′
Γ(T−1(r))(

(
T−1

)′
(r))2 + fΓ(T−1(r))

(
T−1

)′′
(r)
]

[
fΓ(T−1(r)) (T−1)′ (r)

]2

= −1−
[1− FΓ(T−1(r))]f ′

Γ(T−1(r))

f2
Γ(T−1(r))

︸ ︷︷ ︸

−
[1− FΓ(T−1(r))]

(
T−1

)′′
(r)

fΓ(T−1(r))
[
(T−1)′ (r)

]2

︸ ︷︷ ︸

Part I Part II

(G.2)

Because T−1(r) is monotonically increasing with x and T−1(r)→∞ as r →∞,

lim
r→∞

[1− FΓ(T−1(r))]f ′
Γ(T−1(r))

f2
Γ(T−1(r))

= lim
γ→∞

[1− FΓ(γ)]f ′
Γ(γ)

f2
Γ(γ)

It is easy to check that

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

= −1−
[1− FΓ(γ)]f ′

Γ(γ)

f2
Γ(γ)

.
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Thus, we have

lim
r→∞

Part I = lim
r→∞

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

. (G.3)

Let T̃−1(r) =
2

x
B

β
. Due to the fact that

(
T−1

)′′
(r) =

ln 2

B

(
T−1

)′
(r),

and (T̃−1)′(r) = (T−1)′(r), it follows that

lim
r→∞

Part II = lim
r→∞

ln 2[1− FΓ(T−1(r))]

BfΓ(T−1(r)) (T−1)′ (r)
(G.4)

= lim
r→∞

ln 2[1− FΓ(T−1(r))]

BfΓ(T−1(r))
(

T̃−1
)′

(r)
. (G.5)

Since T̃−1(r) = T−1(r) + 1
γ and T̃−1(r)→∞ as r →∞,

lim
r→∞

1− FΓ(T̃−1(r))

fΓ(T̃−1(r))
= lim

r→∞

1− FΓ(T−1(r))

fΓ(T−1(r))
,

if (G.1) holds. Thus, we have

lim
r→∞

Part II = lim
r→∞

ln 2[1 − FΓ(T̃−1(r))]

BfΓ(T̃−1(r))
(

T̃−1
)′

(r)

= lim
r→∞

ln 2[1− FΓ(T̃−1(r))]

BfΓ(T̃−1(r))T̃−1(r) ln 2
B

= lim
γ→∞

1− FΓ(γ)

fΓ(γ)γ
(G.6)

Combining (G.3) and (G.6), we obtain

lim
r→∞

d

dr

[
1− FR(r)

fR(r)

]

= lim
γ→∞

d

dγ

[
1− FΓ(γ)

fΓ(γ)

]

+ lim
γ→∞

1− FΓ(γ)

fΓ(γ)γ
. (G.7)

According to L’Hospital’s rule, for a function g(x) such as g(x) → ∞ as x → ∞, if

lim
x→∞

g′(x) = 0, then lim
x→∞

g(x)

x
= 0. Equation (G.1) results in

lim
γ→∞

1− FΓ(γ)

fΓ(γ)γ
= 0,

Therefore, we obtain

lim
r→∞

d

dr

[
1− FR(r)

fR(r)

]

= 0.
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Since

F−1
R (x) = T (F−1

Γ (x)),

= B log2(1 + βF−1
Γ (x)),

we can obtain the normalizing constants (5.18) and (5.19) according to the results of extreme

value theory in Section 5.1.
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APPENDIX H

PROOF OF EQUATION (5.23)

Proof: Let X ≥ 0 be a random variable with distribution function F (x) and E{X} is

finite. The expected residual life of X is given by

R(t) = E{X − t|X ≥ t}

=
1

1− F (t)

∫ ∞

t
1− F (x)dx.

Theorem 2.1.3 and Lemma 2.7.2 in [22] show that if F (x) is in the domain of the Gumbel

distribution,

bM = R(aM ), (H.1)

and

lim
t→∞

R(t)

t
= 0. (H.2)

Since aM monotonically increases with M , (H.1) and (H.2) directly indicates that

lim
M→∞

bM

aM
= lim

M→∞

R(aM )

aM

= lim
t→∞

R(t)

t

= 0
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