19 research outputs found

    New Approaches Using Cognitive Radio in Green Networking

    Get PDF
    The green networks are energy-efficient network architectures and we consider them as the basis of the wireless communication optimizing energy usage. Indeed, future communication technologies are moving in this direction, meaning that they will be less energy-intensive and, in some cases, even energy self-sufficient. Specifically, cognitive radio (CR) networks, cooperative relay networks, and non-orthogonal multiple access (NOMA) techniques have been considered as effective means to facilitate energy harvesting (EH) and a power spectrum allocation for the minimization of total transmit power, hence, making the wireless communication greener. The dissertation consists of three research sections corresponding to the aims. The first aim deals with an radio frequency (RF) wireless energy transfer model for D2D systems. In order to harvest more energy, a multiple-antenna base station and a power beacon are adopted for the D2D transmission network. We derive expressions outage probability in closed-forms. Further, independent simulations are used to validate the exactness of the theoretical expressions. In the second aim, new cooperative system models are proposed and studied. To reach the second aim, the secondary source acts as a relay and employs Amplify and Forward (AF) mode to serve distant NOMA users under a given interference constraint. To provide a detailed examination of the system performance metrics, we derived closed-form formulas for the outage probability and average throughput of the multi-users in the presence of interference constraints. In the last aim of the dissertation, we designed a new system model for a hybrid satellite-terrestrial cognitive network (HSTCN) relying on NOMA interconnecting a satellite and multiple terrestrial nodes. Reliability and security of transmission were studied to minimize the total transmit power. To reach the third aim, we examined the following performance factors: outage probability, hardware impairment, intercept probability, and average throughput. The novel closed-forms expressions of these performance factors are derived. The last but not at least, we simulated the new HSTCN system model. The achieved results figured that the new proposed approaches make it possible to take into account service quality requirements and are applicable in future green networking.Zelené sítě jsou energeticky efektivní síťové architektury a považujeme je za základ bezdrátové komunikace optimalizující spotřebu energie. Tímto směrem se ubírají budoucí komunikační technologie, což znamená, že budou méně energeticky náročné a v některých případech dokonce energeticky soběstačné. Kognitivní rádiové (CR) sítě, kooperativní relay sítě a neortogonální vícenásobné přístupové (NOMA) techniky jsou považovány za účinný prostředek k usnadnění získávání energie (EH) a přidělování výkonového spektra pro minimalizaci celkového vysílacího výkonu, díky čemuž je bezdrátová komunikace zelenější. Disertační práce se skládá ze tří výzkumných částí odpovídajících cílům. První cíl se zabývá modelem bezdrátového přenosu radiofrekvenční (RF) energie pro systémy D2D. Aby bylo možné získat více energie, jsou pro přenosovou D2D síť použity základnové stanice s více anténami a napájecím radiomajákem. Pro navržený model jsou odvozeny pravděpodobnosti výpadků, kdy tyto výrazy jsou v uzavřené formě. Dále jsou k ověření platnosti získaných teoretických výrazů použity nezávislé simulace. Ve druhém cíli jsou navrženy a zkoumány nové modely kooperativního systému. Aby bylo dosaženo druhého cíle, sekundární zdroj funguje jako relay uzel a využívá režim AF (Amplify and Forward), který slouží vzdáleným NOMA uživatelům za specifických interferenčních podmínek. Abychom poskytli podrobné zhodnocení výkonnostních metrik systému, odvodili jsme vztahy v uzavřené formě pro pravděpodobnost výpadků a průměrnou propustnost více uživatelů za přítomnosti interferenčních omezení. V posledním cíli disertační práce jsme navrhli nový systémový model pro hybridní satelitně-terestrickou kognitivní síť (HSTCN) založenou na neortogonálním vícenásobném přístupu (NOMA) propojující satelit a více terestrických uzlů. Zkoumána byla spolehlivost a zabezpečení přenosu s důrazem na minimalizaci celkového vysílacího výkonu. Pro dosažení třetího cíle jsme zkoumali následující výkonnostní faktory: pravděpodobnost výpadku, poškození hardwaru, pravděpodobnost zachycení a průměrnou propustnost. Pro tyto výkonnostní faktory jsou odvozeny v uzavřených formách nové výrazy. V neposlední řadě jsme rovněž simulovali nový systémový HSTCN model. Dosažené výsledky potvrdily, že nově navržené přístupy umožňují zohledňovat požadavky na kvalitu služeb a jsou použitelné v budoucích zelených sítích.440 - Katedra telekomunikační technikyvyhově

    Energy efficient resource allocation for future wireless communication systemsy

    Get PDF
    Next generation of wireless communication systems envisions a massive number of connected battery powered wireless devices. Replacing the battery of such devices is expensive, costly, or infeasible. To this end, energy harvesting (EH) is a promising technique to prolong the lifetime of such devices. Because of randomness in amount and availability of the harvested energy, existing communication techniques require revisions to address the issues specific to EH systems. In this thesis, we aim at revisiting fundamental wireless communication problems and addressing the future perspective on service based applications with the specific characteristics of the EH in mind. In the first part of the thesis, we address three fundamental problems that exist in the wireless communication systems, namely; multiple access strategy, overcoming the wireless channel, and providing reliability. Since the wireless channel is a shared medium, concurrent transmissions of multiple devices cause interference which results in collision and eventual loss of the transmitted data. Multiple access protocols aim at providing a coordination mechanism between multiple transmissions so as to enable a collision free medium. We revisit the random access protocol for its distributed and low energy characteristics while incorporating the statistical correlation of the EH processes across two transmitters. We design a simple threshold based policy which only allows transmission if the battery state is above a certain threshold. By optimizing the threshold values, we show that by carefully addressing the correlation information, the randomness can be turned into an opportunity in some cases providing optimal coordination between transmitters without any collisions. Upon accessing the channel, a wireless transmitter is faced with a transmission medium that exhibits random and time varying properties. A transmitter can adapt its transmission strategy to the specific state of the channel for an efficient transmission of information. This requires a process known as channel sensing to acquire the channel state which is costly in terms of time and energy. The contribution of the channel sensing operation to the energy consumption in EH wireless transmitters is not negligible and requires proper optimization. We developed an intelligent channel sensing strategy for an EH transmitter communicating over a time-correlated wireless channel. Our results demonstrate that, despite the associated time and energy cost, sensing the channel intelligently to track the channel state improves the achievable long-term throughput significantly as compared to the performance of those protocols lacking this ability as well as the one that always senses the channel. Next, we study an EH receiver employing Hybrid Automatic Repeat reQuest (HARQ) to ensure reliable end-to-end communications. In inherently error-prone wireless communications systems, re-transmissions triggered by decoding errors have a major impact on the energy consumption of wireless devices. We take into account the energy consumption induced by HARQ to develop simple-toimplement optimal algorithms that minimizes the number of retransmissions required to successfully decode the packet. The large number of connected edge devices envisioned in future wireless technologies enable a wide range of resources with significant sensing capabilities. The ability to collect various data from the sensors has enabled many exciting smart applications. Providing data at a certain quality greatly improves the performance of many of such applications. However, providing high quality is demanding for energy limited sensors. Thus, in the second part of the thesis, we optimize the sensing resolution of an EH wireless sensor in order to efficiently utilize the harvested energy to maximize an application dependent utilit

    Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities

    Get PDF
    [EN] Energy efficiency is a significant characteristic of battery-run devices such as sensors, RFID and mobile phones. In the present scenario, this is the most prominent requirement that must be served while introducing a communication protocol for an IoT environment. IoT network success and performance enhancement depend heavily on optimization of energy consumption that enhance the lifetime of IoT nodes and the network. In this context, this paper presents a comprehensive review on energy efficiency techniques used in IoT environments. The techniques proposed by researchers have been categorized based on five different layers of the energy architecture of IoT. These five layers are named as sensing, local processing and storage, network/communication, cloud processing and storage, and application. Specifically, the significance of energy efficiency in IoT environments is highlighted. A taxonomy is presented for the classification of related literature on energy efficient techniques in IoT environments. Following the taxonomy, a critical review of literature is performed focusing on major functional models, strengths and weaknesses. Open research challenges related to energy efficiency in IoT are identified as future research directions in the area. The survey should benefit IoT industry practitioners and researchers, in terms of augmenting the understanding of energy efficiency and its IoT-related trends and issues.Kumar, K.; Kumar, S.; Kaiwartya, O.; Cao, Y.; Lloret, J.; Aslam, N. (2017). Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities. Energies. 10(12):1-40. https://doi.org/10.3390/en10122073S1401012Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22-32. doi:10.1109/jiot.2014.2306328Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., M. Leung, V. C., & Guan, Y. L. (2015). Wireless energy harvesting for the Internet of Things. IEEE Communications Magazine, 53(6), 102-108. doi:10.1109/mcom.2015.7120024Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., & Liu, X. (2016). Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects. IEEE Access, 4, 5356-5373. doi:10.1109/access.2016.2603219Grieco, L. A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., & Boggia, G. (2014). IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 54, 32-47. doi:10.1016/j.comcom.2014.07.013Aijaz, A., & Aghvami, A. H. (2015). Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol Stack Perspective. IEEE Internet of Things Journal, 2(2), 103-112. doi:10.1109/jiot.2015.2390775Lin, Y.-B., Lin, Y.-W., Chih, C.-Y., Li, T.-Y., Tai, C.-C., Wang, Y.-C., … Hsu, S.-C. (2015). EasyConnect: A Management System for IoT Devices and Its Applications for Interactive Design and Art. IEEE Internet of Things Journal, 2(6), 551-561. doi:10.1109/jiot.2015.2423286Bello, O., & Zeadally, S. (2016). Intelligent Device-to-Device Communication in the Internet of Things. IEEE Systems Journal, 10(3), 1172-1182. doi:10.1109/jsyst.2014.2298837Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010Kaur, N., & Sood, S. K. (2017). An Energy-Efficient Architecture for the Internet of Things (IoT). IEEE Systems Journal, 11(2), 796-805. doi:10.1109/jsyst.2015.2469676Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues. IEEE Communications Surveys & Tutorials, 17(1), 179-197. doi:10.1109/comst.2014.2341600Machine-to-Machine Communications (M2M). M2M Service Requirementshttp://www.etsi.org/deliver/etsi_ts/102600_102699/102689/01.01.01_60/ts_102689v010101p.pdfKhan, M., Silva, B. N., & Han, K. (2016). Internet of Things Based Energy Aware Smart Home Control System. IEEE Access, 4, 7556-7566. doi:10.1109/access.2016.2621752Huang, S.-C., Chen, B.-H., Chou, S.-K., Hwang, J.-N., & Lee, K.-H. (2016). Smart Car [Application Notes]. IEEE Computational Intelligence Magazine, 11(4), 46-58. doi:10.1109/mci.2016.2601758Kant, K., & Pal, A. (2017). Internet of Perishable Logistics. IEEE Internet Computing, 21(1), 22-31. doi:10.1109/mic.2017.19Roopaei, M., Rad, P., & Choo, K.-K. R. (2017). Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Computing, 4(1), 10-15. doi:10.1109/mcc.2017.5Tröster, G. (2011). Smart Clothes—The Unfulfilled Pledge? IEEE Pervasive Computing, 10(2), 87-89. doi:10.1109/mprv.2011.32Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376. doi:10.1109/comst.2015.2444095Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 4(5), 1125-1142. doi:10.1109/jiot.2017.2683200Perera, C., Liu, C. H., Jayawardena, S., & Min Chen. (2014). A Survey on Internet of Things From Industrial Market Perspective. IEEE Access, 2, 1660-1679. doi:10.1109/access.2015.2389854Kamilaris, A., & Pitsillides, A. (2016). Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal, 3(6), 885-898. doi:10.1109/jiot.2016.2600569Arcadius Tokognon, C., Gao, B., Tian, G. Y., & Yan, Y. (2017). Structural Health Monitoring Framework Based on Internet of Things: A Survey. IEEE Internet of Things Journal, 4(3), 619-635. doi:10.1109/jiot.2017.2664072Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for Internet of Things: A Survey. IEEE Internet of Things Journal, 3(1), 70-95. doi:10.1109/jiot.2015.2498900Luong, N. C., Hoang, D. T., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2016). Data Collection and Wireless Communication in Internet of Things (IoT) Using Economic Analysis and Pricing Models: A Survey. IEEE Communications Surveys & Tutorials, 18(4), 2546-2590. doi:10.1109/comst.2016.2582841Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context Aware Computing for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials, 16(1), 414-454. doi:10.1109/surv.2013.042313.00197Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-Radio-Based Internet of Things: Applications, Architectures, Spectrum Related Functionalities, and Future Research Directions. IEEE Wireless Communications, 24(3), 17-25. doi:10.1109/mwc.2017.1600404Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016). Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23(5), 10-16. doi:10.1109/mwc.2016.7721736Cao, Y., Jiang, T., & Han, Z. (2016). A Survey of Emerging M2M Systems: Context, Task, and Objective. IEEE Internet of Things Journal, 3(6), 1246-1258. doi:10.1109/jiot.2016.2582540Rajandekar, A., & Sikdar, B. (2015). A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things Journal, 2(2), 175-186. doi:10.1109/jiot.2015.2394438Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021Risteska Stojkoska, B. L., & Trivodaliev, K. V. (2017). A review of Internet of Things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454-1464. doi:10.1016/j.jclepro.2016.10.006Liu, C. H., Fan, J., Branch, J. W., & Leung, K. K. (2014). Toward QoI and Energy-Efficiency in Internet-of-Things Sensory Environments. IEEE Transactions on Emerging Topics in Computing, 2(4), 473-487. doi:10.1109/tetc.2014.2364915Du, R., Gkatzikis, L., Fischione, C., & Xiao, M. (2015). Energy Efficient Sensor Activation for Water Distribution Networks Based on Compressive Sensing. IEEE Journal on Selected Areas in Communications, 33(12), 2997-3010. doi:10.1109/jsac.2015.2481199Chen, Y., Chiotellis, N., Chuo, L.-X., Pfeiffer, C., Shi, Y., Dreslinski, R. G., … Kim, H. S. (2016). Energy-Autonomous Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes. IEEE Journal on Selected Areas in Communications, 34(12), 3962-3977. doi:10.1109/jsac.2016.2612041Akgül, Ö. U., & Canberk, B. (2016). Self-Organized Things (SoT): An energy efficient next generation network management. Computer Communications, 74, 52-62. doi:10.1016/j.comcom.2014.07.004Ahn, J. H., & Lee, T.-J. (2018). ALLYS: All You can Send for Energy Harvesting Networks. IEEE Transactions on Mobile Computing, 17(4), 775-788. doi:10.1109/tmc.2017.2740929Mondal, S., & Paily, R. (2017). Efficient Solar Power Management System for Self-Powered IoT Node. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9), 2359-2369. doi:10.1109/tcsi.2017.2707566Qureshi, F. F., Iqbal, R., & Asghar, M. N. (2017). Energy efficient wireless communication technique based on Cognitive Radio for Internet of Things. Journal of Network and Computer Applications, 89, 14-25. doi:10.1016/j.jnca.2017.01.003Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2017). Energy harvested roadside IEEE 802.15.4 wireless sensor networks for IoT applications. Ad Hoc Networks, 56, 109-121. doi:10.1016/j.adhoc.2016.12.003Khanouche, M. E., Amirat, Y., Chibani, A., Kerkar, M., & Yachir, A. (2016). Energy-Centered and QoS-Aware Services Selection for Internet of Things. IEEE Transactions on Automation Science and Engineering, 13(3), 1256-1269. doi:10.1109/tase.2016.2539240Afzal, B., Alvi, S. A., Shah, G. A., & Mahmood, W. (2017). Energy efficient context aware traffic scheduling for IoT applications. Ad Hoc Networks, 62, 101-115. doi:10.1016/j.adhoc.2017.05.001Song, L., Chai, K. K., Chen, Y., Schormans, J., Loo, J., & Vinel, A. (2017). QoS-Aware Energy-Efficient Cooperative Scheme for Cluster-Based IoT Systems. IEEE Systems Journal, 11(3), 1447-1455. doi:10.1109/jsyst.2015.2465292Energy-Efficient Probabilistic Routing Algorithm for Internet of Thingshttp://www.ietf.org/rfc/rfc3561.txtMachado, K., Rosário, D., Cerqueira, E., Loureiro, A., Neto, A., & de Souza, J. (2013). A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications. Sensors, 13(2), 1942-1964. doi:10.3390/s130201942Chelloug, S. A. (2015). Energy-Efficient Content-Based Routing in Internet of Things. Journal of Computer and Communications, 03(12), 9-20. doi:10.4236/jcc.2015.312002Zhao, M., Ho, I. W.-H., & Chong, P. H. J. (2016). An Energy-Efficient Region-Based RPL Routing Protocol for Low-Power and Lossy Networks. IEEE Internet of Things Journal, 3(6), 1319-1333. doi:10.1109/jiot.2016.2593438Qiu, T., Lv, Y., Xia, F., Chen, N., Wan, J., & Tolba, A. (2016). ERGID: An efficient routing protocol for emergency response Internet of Things. Journal of Network and Computer Applications, 72, 104-112. doi:10.1016/j.jnca.2016.06.009Liu, Y., Liu, A., Hu, Y., Li, Z., Choi, Y.-J., Sekiya, H., & Li, J. (2016). FFSC: An Energy Efficiency Communications Ap-proach for Delay Minimizing in Internet of Things. IEEE Access, 1-1. doi:10.1109/access.2016.2588278Qiu, S., Haselmayr, W., Li, B., Zhao, C., & Guo, W. (2017). Bacterial Relay for Energy-Efficient Molecular Communications. IEEE Transactions on NanoBioscience, 16(7), 555-562. doi:10.1109/tnb.2017.2741669Biason, A., Pielli, C., Rossi, M., Zanella, A., Zordan, D., Kelly, M., & Zorzi, M. (2017). EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design. IEEE Access, 5, 6894-6908. doi:10.1109/access.2017.2692522Huang, Z., Lin, K.-J., Yu, S.-Y., & Hsu, J. Y. (2014). Co-locating services in IoT systems to minimize the communication energy cost. Journal of Innovation in Digital Ecosystems, 1(1-2), 47-57. doi:10.1016/j.jides.2015.02.005Kwak, J., Kim, Y., Lee, J., & Chong, S. (2015). DREAM: Dynamic Resource and Task Allocation for Energy Minimization in Mobile Cloud Systems. IEEE Journal on Selected Areas in Communications, 33(12), 2510-2523. doi:10.1109/jsac.2015.2478718Abu Sharkh, M., & Shami, A. (2017). An evergreen cloud: Optimizing energy efficiency in heterogeneous cloud computing architectures. Vehicular Communications, 9, 199-210. doi:10.1016/j.vehcom.2017.02.004Bui, D.-M., Yoon, Y., Huh, E.-N., Jun, S., & Lee, S. (2017). Energy efficiency for cloud computing system based on predictive optimization. Journal of Parallel and Distributed Computing, 102, 103-114. doi:10.1016/j.jpdc.2016.11.011Liu, A., Zhang, Q., Li, Z., Choi, Y., Li, J., & Komuro, N. (2017). A green and reliable communication modeling for industrial internet of things. Computers & Electrical Engineering, 58, 364-381. doi:10.1016/j.compeleceng.2016.09.005Kim, J. (2015). Energy-Efficient Dynamic Packet Downloading for Medical IoT Platforms. IEEE Transactions on Industrial Informatics, 11(6), 1653-1659. doi:10.1109/tii.2015.2434773Chiu, T.-C., Shih, Y.-Y., Pang, A.-C., & Pai, C.-W. (2017). Optimized Day-Ahead Pricing With Renewable Energy Demand-Side Management for Smart Grids. IEEE Internet of Things Journal, 4(2), 374-383. doi:10.1109/jiot.2016.2556006Gandotra, P., Jha, R. K., & Jain, S. (2017). Green Communication in Next Generation Cellular Networks: A Survey. IEEE Access, 5, 11727-11758. doi:10.1109/access.2017.2711784Li, J., Peng, M., Yu, Y., & Ding, Z. (2016). Energy-Efficient Joint Congestion Control and Resource Optimization in Heterogeneous Cloud Radio Access Networks. IEEE Transactions on Vehicular Technology, 65(12), 9873-9887. doi:10.1109/tvt.2016.2531184Kaiwartya, O., Abdullah, A. H., Cao, Y., Lloret, J., Kumar, S., Shah, R. R., … Prakash, S. (2018). Virtualization in Wireless Sensor Networks: Fault Tolerant Embedding for Internet of Things. IEEE Internet of Things Journal, 5(2), 571-580. doi:10.1109/jiot.2017.2717704Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3kaiwartya, omprakash, Abdullah, A., Cao, Y., Rao, R. S., Kumar, S., Lobiyal, D. K., … Shah, R. R. (2016). T-MQM: Testbed based Multi-metric Quality Measurement of Sensor Deployment for Precision Agriculture-A Case Study. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2016.2614748Alrajeh, N. A., Khan, S., Lloret, J., & Loo, J. (2013). Secure Routing Protocol Using Cross-Layer Design and Energy Harvesting in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(1), 374796. doi:10.1155/2013/374796Mehmood, A., Khan, S., Shams, B., & Lloret, J. (2013). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972-989. doi:10.1002/dac.272

    Physical-Layer Security in Cognitive Radio Networks

    Get PDF
    The fifth-generation (5G) communications and beyond are expected to serve a huge number of devices and services. However, due to the fixed spectrum allocation policies, the need for cognitive radio networks (CRNs) has increased accordingly. CRNs have been proposed as a promising approach to address the problem of under-utilization and scarcity of the spectrum. In CRNs, secondary users (SUs) access the licensed spectrum of the primary users (PUs) using underlay, overlay, or interweave paradigms. SUs can access the spectrum band simultaneously with the PUs in underlay access mode provided that the SUs’ transmission power does not cause interference to the PUs’ communication. In this case, SUs should keep monitoring the interference level that the PU receiver can tolerate and adjust the transmission power accordingly. However, varying the transmission power may lead to some threats to the privacy of the information transfer of CRNs. Therefore, securing data transmission in an underlay CRN is a challenge that should be addressed. Physical-layer security (PLS) has recently emerged as a reliable method to protect the confidentiality of the SUs’ transmission against attacks, especially for the underlay model with no need for sharing security keys. Indeed, PLS has the advantage of safeguarding the data transmission without the necessity of adding enormous additional resources, specifically when there are massively connected devices. Apart from the energy consumed by the various functions carried out by SUs, enhancing security consumes additional energy. Therefore, energy harvesting (EH) is adopted in our work to achieve both; energy efficiency and spectral efficiency. EH is a significant breakthrough for green communication, allowing the network nodes to reap energy from multiple sources to lengthen battery life. The energy from various sources, such as solar, wind, vibration, and radio frequency (RF) signals, can be obtained through the process of EH. This accumulated energy can be stored to be used for various processes, such as improving the users’ privacy and prolonging the energy-constrained devices’ battery life. In this thesis, for the purpose of realistic modelling of signal transmission, we explicitly assume scenarios involving moving vehicles or nodes in networks that are densely surrounded by obstacles. Hence, we begin our investigations by studying the link performance under the impact of cascaded κ−μ fading channels. Moreover, using the approach of PLS, we address the privacy of several three-node wiretap system models, in which there are two legitimate devices communicating under the threat of eavesdroppers. We begin by a three-node wiretap system model operating over cascaded κ − μ fading channels and under worst-case assumptions. Moreover, assuming cascaded κ − μ distributions for all the links, we investigate the impact of these cascade levels, as well as the impact of multiple antennas employed at the eavesdropper on security. Additionally, the PLS is examined for two distinct eavesdropping scenarios: colluding and non-colluding eavesdroppers. Throughout the thesis, PLS is mainly evaluated through the secrecy outage probability (SOP), the probability of non-zero secrecy capacity (Pnzcr ), and the intercept probability (Pint). Considering an underlay CRN operating over cascaded Rayleigh fading channel, with the presence of an eavesdropper, we explore the PLS for SUs in the network. This study is then extended to investigate the PLS of SUs in an underlay single-input-multiple-output (SIMO) CRN over cascaded κ-μ general fading channels with the presence of a multi-antenna eavesdropper. The impact of the constraint over the transmission power of the SU transmitter due to the underlay access mode is investigated. In addition, the effects of multiple antennas and cascade levels over security are well-explored. In the second part of our thesis, we propose an underlay CRN, in which an SU transmitter communicates with an SU destination over cascaded κ-μ channels. The confidentiality of the shared information between SUs is threatened by an eavesdropper. Our major objective is to achieve a secured network, while at the same time improving the energy and spectrum efficiencies with practical modeling for signals’ propagation. Hence, we presume that the SU destination harvests energy from the SU transmitter. The harvested energy is used to produce jamming signals to be transmitted to mislead the eavesdropper. In this scenario, a comparison is made between an energy-harvesting eavesdropper and a non-energy harvesting one. Additionally, we present another scenario in which cooperative jamming is utilized as one of the means to boost security. In this system model, the users are assumed to communicate over cascaded Rayleigh channels. Moreover, two scenarios for the tapping capabilities of the eavesdroppers are presented; colluding and non-colluding eavesdroppers. This study is then extended for the case of non-colluding eavesdroppers, operating over cascaded κ-μ channels. Finally, we investigate the reliability of the SUs and PUs while accessing the licensed bands using the overlay mode, while enhancing the energy efficiency via EH techniques. Hence, we assume that multiple SUs are randomly distributed, in which one of the SUs is selected to harvest energy from the PUs’ messages. Then, utilizing the gathered energy, this SU combines its own messages with the amplified PUs messages and forwards them to the destinations. Furthermore, we develop two optimization problems with the potential of maximizing the secondary users’ rate and the sum rate of both networks

    Energy-driven techniques for massive machine-type communications

    Get PDF
    In the last few years, a lot of effort has been put into the development of the fifth generation of cellular networks (5G). Given the vast heterogeneity of devices coexisting in these networks, new approaches have been sought to meet all requirements (e.g., data rate, coverage, delay, etc.). Within that framework, massive machine-type communications (mMTC) emerge as a promising candidate to enable many Internet of Things applications. mMTC define a type of systems where large sets of simple and battery-constrained devices transmit short data packets simultaneously. Unlike other 5G use cases, in mMTC, a low cost and power consumption are extensively pursued. Due to these specifications, typical humantype communications (HTC) solutions fail in providing a good service. In this dissertation, we focus on the design of energy-driven techniques for extending the lifetime of mMTC terminals. Both uplink (UL) and downlink (DL) stages are addressed, with special attention to the traffic models and spatial distribution of the devices. More specifically, we analyze a setup where groups of randomly deployed sensors send their (possibly correlated) observations to a collector node using different multiple access schemes. Depending on their activity, information might be transmitted either on a regular or sporadic basis. In that sense, we explore resource allocation, data compression, and device selection strategies to reduce the energy consumption in the UL. To further improve the system performance, we also study medium access control protocols and interference management techniques that take into account the large connectivity in these networks. On the contrary, in the DL, we concentrate on the support of wireless powered networks through different types of energy supply mechanisms, for which proper transmission schemes are derived. Additionally, for a better representation of current 5G deployments, the presence of HTC terminals is also included. Finally, to evaluate our proposals, we present several numerical simulations following standard guidelines. In line with that, we also compare our approaches with state-of-the-art solutions. Overall, results show that the power consumption in the UL can be reduced with still good performance and that the battery lifetimes can be improved thanks to the DL strategies.En els últims anys, s'han dedicat molts esforços al desenvolupament de la cinquena generació de telefonia mòbil (5G). Donada la gran heterogeneïtat de dispositius coexistint en aquestes xarxes, s'han buscat nous mètodes per satisfer tots els requisits (velocitat de dades, cobertura, retard, etc.). En aquest marc, les massive machine-type communications (mMTC) sorgeixen com a candidates prometedores per fer possible moltes aplicacions del Internet of Things. Les mMTC defineixen un tipus de sistemes en els quals grans conjunts de dispositius senzills i amb poca bateria, transmeten simultàniament paquets de dades curts. A diferència d'altres casos d'ús del 5G, en mMTC es persegueix un cost i un consum d'energia baixos. A causa d'aquestes especificacions, les solucions típiques de les human-type communications (HTC) no aconsegueixen proporcionar un bon servei. En aquesta tesi, ens centrem en el disseny de tècniques basades en l'energia per allargar la vida útil dels terminals mMTC. S'aborden tant les etapes del uplink (UL) com les del downlink (DL), amb especial atenció als models de trànsit i a la distribució espacial dels dispositius. Més concretament, analitzem un escenari en el qual grups de sensors desplegats aleatòriament, envien les seves observacions (possiblement correlades) a un node col·lector utilitzant diferents esquemes d'accés múltiple. Depenent de la seva activitat, la informació es pot transmetre de manera regular o esporàdica. En aquest sentit, explorem estratègies d'assignació de recursos, compressió de dades, i selecció de dispositius per reduir el consum d'energia en el UL. Per millorar encara més el rendiment del sistema, també estudiem protocols de control d'accés al medi i tècniques de gestió d'interferències que tinguin en compte la gran connectivitat d'aquestes xarxes. Per contra, en el DL, ens centrem en el suport de les wireless powered networks mitjançant diferents mecanismes de subministrament d'energia, per als quals es deriven esquemes de transmissió adequats. A més, per una millor representació dels desplegaments 5G actuals, també s'inclou la presència de terminals HTC. Finalment, per avaluar les nostres propostes, presentem diverses simulacions numèriques seguint pautes estandarditzades. En aquesta línia, també comparem els nostres enfocaments amb les solucions de l'estat de l'art. En general, els resultats mostren que el consum d'energia en el UL pot reduir-se amb un bon rendiment i que la durada de la bateria pot millorar-se gràcies a les estratègies del DL.En los últimos años, se han dedicado muchos esfuerzos al desarrollo de la quinta generación de telefonía móvil (5G). Dada la gran heterogeneidad de dispositivos coexistiendo en estas redes, se han buscado nuevos métodos para satisfacer todos los requisitos (velocidad de datos, cobertura, retardo, etc.). En este marco, las massive machine-type communications (mMTC) surgen como candidatas prometedoras para hacer posible muchas aplicaciones del Internet of Things. Las mMTC definen un tipo de sistemas en los cuales grandes conjuntos de dispositivos sencillos y con poca batería, transmiten simultáneamente paquetes de datos cortos. A diferencia de otros casos de uso del 5G, en mMTC se persigue un coste y un consumo de energía bajos. A causa de estas especificaciones, las soluciones típicas de las human-type communications (HTC) no consiguen proporcionar un buen servicio. En esta tesis, nos centramos en el diseño de técnicas basadas en la energía para alargar la vida ´útil de los terminales mMTC. Se abordan tanto las etapas del uplink (UL) como las del downlink (DL), con especial atención a los modelos de tráfico y a la distribución espacial de los dispositivos. Más concretamente, analizamos un escenario en el cual grupos de sensores desplegados aleatoriamente, envían sus observaciones (posiblemente correladas) a un nodo colector utilizando diferentes esquemas de acceso múltiple. Dependiendo de su actividad, la información se puede transmitir de manera regular o esporádica. En este sentido, exploramos estrategias de asignación de recursos, compresión de datos, y selección de dispositivos para reducir el consumo de energía en el UL. Para mejorar todavía más el rendimiento del sistema, también estudiamos protocolos de control de acceso al medio y técnicas de gestión de interferencias que tengan en cuenta la gran conectividad de estas redes. Por el contrario, en el DL, nos centramos en el soporte de las wireless powered networks mediante diferentes mecanismos de suministro de energía, para los cuales se derivan esquemas de transmisión adecuados. Además, para una mejor representación de los despliegues 5G actuales, también se incluye la presencia de terminales HTC. Finalmente, para evaluar nuestras propuestas, presentamos varias simulaciones numéricas siguiendo pautas estandarizadas. En esta línea, también comparamos nuestros enfoques con las soluciones del estado del arte. En general, los resultados muestran que el consumo de energía en el UL puede reducirse con un buen rendimiento y que la duración de la batería puede mejorarse gracias a las estrategias del DLPostprint (published version

    Joint Multiple Relay Selection and Time Slot Allocation Algorithm for the EH-Abled Cognitive Multi-User Relay Networks

    No full text

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Interactions in Virtual Worlds:Proceedings Twente Workshop on Language Technology 15

    Get PDF

    Studies on Mobile Terminal Energy Consumption for LTE and Future 5G

    Get PDF
    corecore