13,997 research outputs found

    CLIVAR Exchanges - Indian Ocean Climate

    Get PDF

    Experimental Design, Data Analysis, and Modeling for Characterizing the Three-Dimensional Acoustic Field of a Seismic Airgun Array

    Get PDF
    In June 2003, the Littoral Acoustic Demonstration Center conducted an acoustic characterization experiment for a standard seismic exploration array. Two moorings with Environmental Acoustic Recording Systems (EARS) were deployed in the northern part of the Gulf of Mexico to measure ambient noise and collect shot information. A 21-element seismic airgun array was towed along five parallel linear tracks with horizontal closest approach points to the EARS buoy position of 63, 500, 1000, 2000, and 5000 m. Calibrated acoustic pressure measurements collected during the experiment were analyzed to obtain zero-to-peak sound pressures, sound exposure levels, and pressure levels in 1/3-octave frequency bands. In addition, the experimental data were modeled by using a modified underwater acoustic propagation model to fill in missing data measurements. The resulting modeling procedure showed good agreement between measured and modeled data in absolute pressure amplitudes and frequency interference patterns for frequencies up to 1000 Hz. The analysis is important for investigating the potential impact on marine mammals and fish and predicting the exposure levels for newly planned seismic surveys in other geographic areas. Based on results of the experiment conducted and data analysis performed, a new experimental design was proposed to maximize the amount of collected data using the available equipment while minimizing the time needed for the source ship. The design used three patches, one with 3º angular spacing between the lines at a reference depth. Embedded is a smaller patch with 1º spacing and within that a still smaller patch with one half degree spacing. This arrangement gives a reasonably uniform distribution of shots versus solid angle with a large variety of emission and azimuthal angles for different ranges. Due to the uncertainty of positioning systems, the angular space is divided into solid angle bins. Simulations predicted more than 200 shots per bin for emission angles greater than 13 degrees. Statistical analysis of collected data will be performed on the proposed bin basis. An experiment based on the proposed design was conducted in Fall 2007. The data measurements collected during the experiment are currently being analyzed and will be reported in the near future

    Acoustics and oceanographic observations collected during the QPE Experiment by Research Vessels OR1, OR2 and OR3 in the East China Sea in the Summer of 2009

    Get PDF
    This document describes data, sensors, and other useful information pertaining to the ONR sponsored QPE field program to quantify, predict and exploit uncertainty in observations and prediction of sound propagation. This experiment was a joint operation between Taiwanese and U.S. researchers to measure and assess uncertainty of predictions of acoustic transmission loss and ambient noise, and to observe the physical oceanography and geology that are necessary to improve their predictability. This work was performed over the continental shelf and slope northeast of Taiwan at two sites: one that was a relatively flat, homogeneous shelf region and a more complex geological site just shoreward of the shelfbreak that was influenced by the proximity of the Kuroshio Current. Environmental moorings and ADCP moorings were deployed and a shipboard SeaSoar vehicle was used to measure environmental spatial structure. In addition, multiple bottom moored receivers and a horizontal hydrophone array were deployed to sample transmission loss from a mobile source and ambient noise. The acoustic sensors, environmental sensors, shipboard resources, and experiment design, and their data, are presented and described in this technical report.Funding was provided by the Office of Naval Research under Contract No. N00014-08-1-076

    Geometric and seabed parameter estimation using a vector sensor array: experimental results from Makai experiment 2005

    Get PDF
    A vector sensor is constituted by one omni directional pressure sensor and three velocity-meters that are sensitive in a specific direction - x, y or z. Since a vector sensor is able to measure the three particle velocity directional components it acts as a spatial filter and therefore is advantageous in three dimensional direction of arrival (DOA) estimation. The potential gain obtained in DOA estimation can be extended to other geometric parameters such as source range and depth, as well as seabed parameters. The objective of this paper is to present experimental results of a four element vertical vector sensor array (VSA) data set collected during MakaiEx'05 experiment for geometric (range and depth) and seabed geoacoustic parameter estimation (sediment compressional speed, density and compressional attenuation). The parameter estimation problem is posed as an inversion method based on an extension of the conventional pressure only Bartlett estimator to particle velocity. The developed VSA based Bartlett estimator is proportional to the pressure only Bartlett estimator response by a directivity factor, providing an improved side lobe reduction or even suppression when compared with the pressure only response. This behavior will be illustrated for geometric and seabed parameters clearly showing the advantages of the use of VSA over hydrophone arrays. In source localization the VSA outperforms an array of hydrophones of same number of sensors. Moreover, when the VSA Bartlett estimator is applied for seabed parameter estimation, it will be shown that the estimation resolution of these parameters increased significantly, even for density and compressional attenuation, parameters difficult to estimate using an array of hydrophones

    Multipurpose acoustic networks in the integrated arctic ocean observing system

    Get PDF
    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism, and search and rescue will increase the pressure on the vulnerable Arctic environment. Technologies that allow synoptic in situ observations year-round are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual, and decadal scales. These data can inform and enable both sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. In this paper, we discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic, and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings, and vehicles. We support the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary in situ Arctic Ocean observatory
    corecore