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Abstract 
 

In June 2003, the Littoral Acoustic Demonstration Center conducted an acoustic characterization 

experiment for a standard seismic exploration array. Two moorings with Environmental Acoustic 

Recording Systems (EARS) were deployed in the northern part of the Gulf of Mexico to measure ambient 

noise and collect shot information. A 21-element seismic airgun array was  towed along five parallel 

linear tracks with horizontal closest approach points to the EARS buoy position of 63, 500, 1000, 2000, 

and 5000 m. Calibrated acoustic pressure measurements collected during the experiment were analyzed to 

obtain zero-to-peak sound pressures, sound exposure levels, and pressure levels in 1/3-octave frequency 

bands. In addition, the experimental data were modeled by using a modified underwater acoustic 

propagation model to fill in missing data measurements. The resulting modeling procedure showed good 

agreement between measured and modeled data in absolute pressure amplitudes and frequency 

interference patterns for frequencies up to 1000 Hz. The analysis is important for investigating the 

potential impact on marine mammals and fish and predicting the exposure levels for newly planned 

seismic surveys in other geographic areas. 

Based on results of the experiment conducted and data analysis performed, a new experimental 

design was proposed to maximize the amount of collected data using the available equipment while 

minimizing the time needed for the source ship. The design used three patches, one with 3º angular 

spacing between the lines at a reference depth. Embedded is a smaller patch with 1º spacing and within 

that a still smaller patch with one half degree spacing. This arrangement gives a reasonably uniform 

distribution of shots versus solid angle with a large variety of emission and azimuthal angles for different 

ranges. Due to the uncertainty of positioning systems, the angular space is divided into solid angle bins. 

Simulations predicted more than 200 shots per bin for emission angles greater than 13 degrees. Statistical 

analysis of collected data will be performed on the proposed bin basis. An experiment based on the 

proposed design was conducted in Fall 2007. The data measurements collected during the experiment are 

currently being analyzed and will be reported in the near future. 

 

 

 

 

 

 

 

Keywords: Airgun array characterization, airgun array, seismic airgun array, underwater acoustics, 

acoustical data analysis, hydrophone measurements, acoustic propagation modeling.
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Chapter 1 Overview 
 

The main tool used by oil companies to explore for hydrocarbons beneath the ocean is a seismic 

airgun array towed behind a source ship. The airgun array consists of individual guns which release 

compressed air to generate acoustic pulses.  They are towed near the surface and the combination of the 

direct pulse and the surface reflected pulse constitute the primary source signal from the airgun.  

Although many experiments have been done to measure the properties of seismic airgun arrays, some of 

them proprietary, there has not been a major experiment to completely characterize the three-dimensional 

primary acoustic field of the array.  In 2003 the source ship, MV Kondor, was in the Gulf of Mexico to do 

a controlled exposure experiment with sperm whales.  Three different groups had hydrophones in the 

water to make limited measurements of the acoustic field.  One group, the Littoral Acoustic 

Demonstration Center (LADC), had a moored hydrophone pair at a depth of 750 m.  The pair consisted of 

a sensitive phone to measure ambient noise and a desensitized phone which could measure the airgun 

array in close proximity without clipping.  At the end of the controlled exposure experiment, the Kondor 

ran five tracks for recording by LADC.  One was directly over the moored hydrophone and the others had 

horizontal offsets of 500 m, 1000 m, 2000 m, and 5000 m.  The analysis of this experiment has been 

published in the Journal of the Acoustical Society of America (Tashmukhambetov et al., 2008), and it 

forms Chapter 3 of this dissertation.  As a result of that careful experiment using calibrated hydrophones, 

LADC was approached by the oil industry to conduct a detailed study of the hydrophone three-

dimensional field.  The 2003 experiment was funded by the Industry Research Funding Coalition through 

the International Association of Geophysical Contractors (IAGC).  The detailed study is funded by a 

consortium of oil industry partners through the International Association of Oil and Gas Producers 

(OGP).  This effort is part of multiple environmental projects funded by the consortium under the name 

Joint Industry Programme (JIP).  Each project is overseen by a Project Study Group (PSG).  In particular, 

there is a PSG for the seismic airgun characterization experiment, headed by Dr. Michael Jenkerson of 

ExxonMobil, which has worked closely with the LADC consortium partners.  One of the first tasks for 

LADC was to design the experiment which would make the measurements needed to completely 

characterize the three-dimensional field of the seismic airgun array. The resulting design is discussed in 

Chapter 4. 

LADC is a consortium of scientists from UNO (the University of New Orleans), USM (the 

University of Southern Mississippi), ULL (the University of Louisiana at Lafayette), NRL (the Naval 

Research Laboratory) at Stennis Space Center, NAVOCEANO (the Naval Oceanographic Office) and the 

Applied Research Laboratories of the University of Texas at Austin. All institution but the last 

participated in these experiments. 
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 This dissertation gives an overview of the mathematical description of acoustic propagation in a 

fluid in Chapter 2.  It gives the derivation of the linear wave equation for a fluid medium. This linear 

wave equation is both space and time dependent. It can be reduced to the Helmholtz differential equation 

by applying the separation of variables technique. The Helmholtz equation is a second order differential 

equation which is a function of space variables only. It can be further simplified by taking into account 

azimuthal symmetry, the paraxial approximation, and factorization, which lead to a first order parabolic 

equation. Solution to the parabolic equation can be found by further approximating the equation 

operators, in this case by the Pade approximation (Collins, 1993). 

The 2003 experiment is described in Chapter 3, which is adapted from an article published in the 

Journal of Acoustical Society of America (Tashmukhambetov et. al., 2008). The first part after an 

introduction gives detailed information about the experimental broadband measurements of absolute 

pressures output from the seismic exploration array. The second part of the chapter has a description and 

results of the modeling procedure adapted and used to model measured absolute pressure during the 

described experiment.  

The experimental design developed by LADC, which was led by the dissertation author, is 

described in Chapter 4. It was developed for characterizing the three-dimensional primary acoustic field 

of a seismic airgun array and specifies both the tracks of a dedicated source vessel and hydrophone 

placement in the water column.   The experiment has been done and the data collected.  Intensive analysis 

of the data is now underway.  The data are also being modeled.  Future publications will report on these 

phases.  

Results of the designed experiment and future research guidelines are summarized in the last part 

of this dissertation.  
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Chapter 2 Underwater acoustic wave propagation 

 

2.1 Wave Equation 

 

The propagation of acoustic waves in the ocean obeys the nonlinear acoustic wave equation. In 

the case of small flows and small perturbations quadratic terms responsible for the nonlinear effects can 

be neglected and the nonlinear wave equation can be linearized. The resulting linear acoustic wave 

equation can be developed from a set of three linear equations – the continuity equation, the force 

equation (Euler’s equation), and the equation of state (Kinsler et al., 1982). 

The equation of state describes the thermodynamical behavior of the substance and relates such 

thermodynamical properties as pressure  , density   and temperature  . For ideal gases the equation of 

state has the following form 

 , (2.1.1)

where  = specific gas constant,  = gas constant, and  = number of moles.  

By their nature acoustical processes are nearly isentropic, i.e., adiabatic and reversible, so 

acoustic behavior of an ideal gas is directed by the adiabat 

 
, (2.1.2)

where  is the ratio of specific heats,  is the ambient pressure, and  is the ambient density.  

 For fluids other than an ideal gas, the adiabat is more complicated and the equation of state can be 

represented by a Taylor’s series expansion 

 
 

1
2

 (2.1.3)

 For small acoustic fluctuations only the lowest order terms need to be kept, which gives a linear 

relationship between pressure fluctuation and change in the medium density 

 
, (2.1.4)

where  = acoustic pressure,  =  adiabatic bulk modulus, and  =  condensation 

(change in density). 

 The equation of continuity describes the relationship between fluid particle velocity  and 

instantaneous density   

 
· 0. (2.1.5)
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Because ambient density  does not change with time or position and condensation  is usually a 

very small number, the continuity equation becomes  

 
· 1 · 1 · 0. (2.1.6)

 The general form of Euler’s force equation is given by 

 
0. (2.1.7)

This equation can be reduced to linear form for acoustic waves of small amplitude by substituting 

expressions for density  and pressure  and neglecting small order terms to produce 

 ·   0. (2.1.8)

 Taking the time derivative of the linear continuity equation (2.1.6) and the divergence of the 

linear Euler’s equation (2.1.8), rearranging terms, and substituting one in the other results in the linear 

acoustic wave equation 

 · ·
1

· 0 ,  

 · · 0,  

  
1

0, (2.1.9)

where   is the thermodynamic speed of sound.  

Equation (2.1.9) is the linear lossless wave equation for propagation of sound in fluids with phase 

speed  . Since during the derivation we never used any restrictions on the adiabatic bulk modulus or 

ambient pressure with respect to the space, this equation is valid for acoustic wave propagation in media 

with sound speeds that are functions of space, such as the ocean. 

 

2.2 Helmholtz Equation 

 

The linear acoustic wave equation (2.1.9) can be reduced to the homogeneous Helmholtz 

differential equation by using the separation of variables technique (Kinsler et al.,1982) 

 p r, t A r T t
1

T A A
1 T

0,  
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 T A A
1 T A

A
1 T

,  

 
A
A

A 0, (2.2.1)

 
1 T T

0, (2.2.2)

where  = angular frequency, and  is the magnitude of the wave vector , the vector wavenumber. 

The solution of the time dependant equation (2.2.2) will be a linear combination of sine and 

cosine functions, with angular frequency  , while the form of the solution for the homogeneous 

Helmholtz equation (2.2.1) in space will depend on boundary conditions. 

Because of the presence of the source of acoustic waves in a medium we have to solve the 

inhomogeneous Helmholtz equation  

 r r r , (2.2.3)

where r  is a source function which describes the source of the waves, and   is the 

Helmholtz operator.  

This equation (2.2.3) can be solved by using a Green’s function. Green’s function r, r  is a 

function which satisfies the following equation (Bayin, 2006) 

 r, r r r . (2.2.4)

If such a function r, r  can be found for the operator  , then if we multiply equation (2.2.4) by 

the source function, and then integrate over the r  variable we will obtain 

 r, r   r dr r r r dr r r .  

Since the operator r  is linear and independent of the integration variable r , we can take it 

outside the integral and find the general expression for the solution of equation (2.2.3) 

 r, r r dr r ,  

 r r, r r dr . (2.2.5)

 

2.3 Parabolic Equation 

 

Complete analytic solutions describing wave propagation in an oceanic medium can be found for 

cases with no or linear variation in the sound speed with the depth, and range independence. All other 

situations require using numerical approach in the solution. A variety of different numerical methods was 
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developed during the previous several decades. The parabolic equation (Levy, 2000) approach based on a 

numeric Pade’s rational approximation was used for this thesis research.  

We will substitute the Laplace operator expression in cylindrical coordinates into the 

homogeneous Helmholtz equation (2.2.1) 

 
1
r
∂
∂r

r
∂
∂r

1
r

∂

∂θ

∂
∂z

, (2.3.1)

 r
1
r
∂
∂r

r
∂
∂r

1
r

∂

∂θ

∂
∂z

r, θ, z 0. (2.3.2)

Because the oceanic environment is assumed to be azimuthally independent, the second term of 

the Laplace operator is equal to zero  

 
1
r

∂

∂θ
r, θ, z 0 A A r, z ,  

 
1
r
∂
∂r

r
∂
∂r

∂
∂z

r, z 0. (2.3.3)

A r, z  is written as A r, z
√
u r, z  and expanded 

 
1
r
∂
∂r

r
∂
∂r

∂
∂z

1

√r
u r, z   

 
1

√r

∂
∂z

u r, z  
1

√r

∂
∂r

u r, z
1
4r

1

√r
u r, z

1

√r
u r, z 0. (2.3.4)

The paraxial approximation states that 
√
 u r, z  is negligibly small for distant ranges resulting in  

 ∂
∂z

u r, z
∂
∂r

u r, z u r, z 0. (2.3.5)

We can define two operators P , and O
ω

, and rewrite (2.3.5) in 

the following way 

 P k O u r, z 0. (2.3.6)

Equation (2.3.6) can be factored into two equations governing backward and forward acoustic 

wave propagation 

 P  ik · O P ik · O u r, z 0. (2.3.7)

Since we have no interest in the backscattered field, only the equation responsible for forward 

propagation will be considered. Expressions for the operators are substituted in (2.3.7)  

 P u r, z ik · O u r, z ,  
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 ∂
∂r
u r, z  ik ·

1
k

∂
∂z

ω

c k
· u r, z i ·

ω

c
1

c
ω

∂
∂z

· u r, z . (2.3.8)

We will perform a change of variables u r, z p r, z e and replace terms 
ω

k ,
ω

X, resulting in  

 ∂
∂r
p r, z i · k 1 √1 X · p r, z . (2.3.9)

Numerical solution to the first order differential equation (2.3.9) is given by Collins (1993) 

 p r Δr, z exp ik Δr 1 √1 X · p r, z , (2.3.10)

where the expression in the exponential can be approximated by Pade’s polynomial expansion 

 exp ik Δr 1 √1 X 1
a , X

1 b , X
. (2.3.11)

The final numerical solution for equation (2.3.2) is given by 

 
A r, z

e

√r
p r, z , p r Δr, z 1

a , X

1 b , X
· p r, z . (2.3.12)

This numerical solution is implemented in the Range-Dependant Acoustic Model (RAM) developed by 

Michael Collins (1993). 
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Chapter 3 Three-dimensional seismic array characterization study: Experiment and modeling 
 

3.1 Introduction 

 

In the last decade a considerable amount of effort has been focused on understanding how sound 

generated by human-made acoustic sources in the ocean may influence marine mammals. One of the 

important aspects of this effort is the measurement and prediction of the broadband acoustic energy 

distribution of such sources in complex, variable ocean waveguides. Seismic exploration arrays are of 

interest for environmental impact assessment (Gordon et al., 2004). These arrays comprise a collection of 

airguns distributed over an array geometry and towed behind a seismic vessel. They are designed to fire 

synchronously and produce powerful highly-directional bottom-directed pulses to image acoustically the 

sub-bottom structure. The geophysical response is primarily analyzed in the low frequency band up to 300 

Hz (Caldwell and Dragoset, 2000). Hence, the higher frequency component of acoustic radiation from   

has been  mostly overlooked until concerns were raised about the effect of this radiation on marine 

species, especially marine mammals, that rely on acoustics as a survival tool (for orientation, food 

foraging, communication, etc.). Recent studies of individual sperm whale communication codas strongly 

suggest that frequencies above 1000 Hz are of particular importance in sperm whale communication (Ioup 

et al., 2005). This frequency range may overlap with the high frequency component of seismic array 

radiation. On-whale tag recordings during controlled exposure experiments conducted in the Northern 

Gulf of Mexico (GoM) in 2002 and 2003 showed that received peak pressures and sound exposure levels 

(SEL’s) of tagged whales do not necessarily decrease as the range between the whale and the seismic 

array increases under certain circumstances, such as constructive interference of overlapping arrivals, the 

presence of a surface duct, etc. (Madsen et al., 2006). Reported data show that absolute received pressure 

levels can be as high at 12 km as they are at 2 km. It strongly suggests that spherical and cylindrical 

spreading approaches should not be automatically used to determine impact zones and that animal SEL 

should be determined from existing waveguide propagation conditions and three-dimensional source 

array directional patterns. 

There are discussions in the underwater acoustic community and oil industry about the results of 

quantitative studies of the effects of waveguide propagation including surface ducts, which are formed 

seasonally in the GoM, on acoustic energy distribution (MacGillivray, 2006; DeRuiter et al., 2006; 

Tolstoy et al., 2004). Surface ducts can form a series of energetically powerful precursor pulses (arriving 

before the main energy associated with the direct arrival) spread throughout the entire depth of the water 

column with a range decay rate slower than that of the direct arrival (Labianca, 1972; Monjo and 

DeFerrari, 1994; Sidorovskaia and Werby, 1995; Sidorovskaia, 2004). Therefore, an animal at any depth 
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can be exposed to significant levels of acoustic energy that are not associated with the direct arrival. 

Hence, waveguide propagation modeling should become an indispensable part of the development of any 

mitigation metrics. Both calibrated measurements and quantitative modeling of a seismic array energy 

distribution for a full range of angles and emitted frequencies become the first steps in our ability to 

predict and mitigate any potentially negative effects.  

Experimental calibrated measurements of the broadband absolute pressure output from an 

industrial seismic exploration airgun array, which has been collected by the Littoral Acoustic 

Demonstration Center (LADC) in June 2003 for three-dimensional seismic source characterization 

studies, will be presented in the second and third paragraphs of this chapter. LADC, which was founded 

in 2001, currently is a consortium of scientists from three universities (the University of New Orleans, the 

University of Southern Mississippi, and the University of Louisiana at Lafayette) and the Naval Research 

Laboratory at Stennis Space Center. Since 2001, LADC has conducted or participated in eight 

experiments in the Northern GoM and the Mediterranean Sea to study natural and anthropogenic noise in 

marine environments and the potential impact on marine mammals (Newcomb et al., 2002a, 2002b; 

Newcomb et al., 2005; Sidorovskaia et al., 2006; Tashmukhambetov et al., 2006). The results of 

quantitative modeling of measured absolute pressures by using enhanced modeling techniques based on 

standard underwater acoustic propagation model [the range dependent acoustic model (RAM)] will be 

presented in the fourth paragraph of this chapter . 

 

3.2 Experiment 

 

3.2.1 Source/receiver configuration 

 

LADC deployed Environmental Acoustic Recording System (EARS) buoys developed by the 

Naval Oceanographic Office. Two single channel EARS buoys (25 kHz bandwidth) were collocated on 

the same mooring near Green’s Canyon in the Northern GoM (27° 40.0995’ N, 90° 21.9660’W) during 

June 2003 for a seismic characterization experiment. One buoy hydrophone recorded ambient noise and 

the other was desensitized (by 12.7 dBV) to record marine seismic array emissions without clipping the 

data. 

The hydrophone of each buoy was approximately 250 m from the bottom in a water depth of 

about 990 m. Only the data from the desensitized EARS hydrophone are discussed in this chapter. The 

M/V Kondor towed a 21-element seismic airgun array of total volume of 3590 in.3 (0.0588 m.3) on five 

parallel linear tracks with horizontal closest approach points to the EARS buoy position of 63, 500, 1000,  
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Figure 3.2.1 The M/V Kondor seismic array configuration for the seismic characterization experiment. The numbers 
inside each airgun indicate the individual volume in in.3 of each airgun. 

 

 

 

Figure 3.2.2 Reference coordinate system with the origin at the array center. 
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2000, and 5000 m. The seismic array configuration is shown in Figure 3.2.1. Figure 3.2.2 shows the 

reference coordinate system used in this research to characterize the array directionality. The emission 

angle   is the angle between the vertical and a line connecting the position of the array center and a 

receiving hydrophone. The azimuthal angle  is measured in the horizontal plane with 0° directly in front 

of the array, 180° directly behind, 90° to starboard, and 270° to port. The tracks provide a wide range of 

measured emission angles (6°–84°, with 0° corresponding to the vertical) and horizontal ranges up to 7 

km from the array center to the EARS buoys. The Kondor tracks (labeled as line 0.2, line 500, line 1000, 

line 2000, and line 5000) are illustrated in Figure 3.2.3. The total number of shots recorded was about 

500. 

 

3.2.2 Experimental data calibration  

 

In order to obtain absolute measured sound pressure levels, it is important that the recording 

equipment calibrations be fully understood. Figure 3.2.4 is a block diagram of the data acquisition flow in 

a typical EARS buoy. Two calibration methods have been implemented for the EARS buoys. The first 

method, which is often called a frequency-domain method since the result is a direct function of 

frequency, involves injecting a single narrowband sine wave into the electronics downstream of the 

hydrophone. The input voltage magnitude and phase of the injected signal are compared to the output 

voltage. This is repeated for many different frequencies to obtain the transfer function of the equipment 

across a broad frequency band. In the other method, which is often called the time-domain method since 

the result is a direct function of time, a temporally very short signal (4.7 s long) is injected into the 

electronics downstream of the hydrophone. The temporally short characteristic of this “impulse” results in 

a very wide band of frequencies. The output is recorded and is a direct measure of the impulse response of 

the equipment. Ideally, the impulse response of the equipment and the transfer function of the equipment 

are Fourier transform pairs and will lead to the same final results when appropriately applied to the raw 

data. For the LADC 2003 experiment, a comparison of the two methods for the desensitized EARS buoy 

yielded the same results between 6 Hz and 25 kHz. Since the time-domain method requires the use of 

more complicated deconvolution techniques to remove the impulse response from the recorded data, all 

final calibrations of the recorded data were performed using the frequency-domain method. It must be 

noted that neither of the above methods of calibration includes the response of the hydrophone itself. This 

must be included in the final calibration of the acoustic data to obtain absolute pressure levels. The 

hydrophone transfer functions have been determined by the manufacturer. Figure 3.2.5 illustrates 200 ms 

of acoustic data corresponding to the direct arrivals from an array emission near the closest point of  



 

 

Figure 3.2
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approach (CPA) of the array to the EARS buoy. The upper plot is the raw data in volts and the bottom 

plot is the same data segment in micropascals after all the calibrations have been applied. The EARS 

response (including the hydrophone) is nearly flat from 6 Hz to 25 kHz so that the two plots have very 

little difference except in units. We will restrict our analyses of the data to this calibrated frequency band 

(6 Hz to 25 kHz). 

 

3.3 Experimental data analysis: methods and results. 

 

Seismic arrays are designed to be highly directional in order to focus the low-frequency sound energy 

in the vertical direction for the purpose of seismic exploration. The probability that a marine mammal will 

be exposed to the near vertical downward propagating direct pulse is fairly small. This is not so with off-

axis acoustic emissions, so studies of off-axis acoustic signatures are of special interest. Hence, multipath 

propagation and leakage of high-frequency energy from the airgun array into the ocean waveguide are 

critical issues for studying the impact on marine mammals. Figures 3.3.1–3 show a series of absolute 

acoustic pressures versus time recorded during the experiment and the corresponding spectrograms for 

individual shots on different tracks with different horizontal ranges from the center of the array to the 

buoy location and different emission and azimuthal angles. The spectrograms ,  are calculated 

over a 5 ms window with 20% overlap, 

 , 20 · log √2 , , 1, … ,
2

1, 

 
, ∆ ∆ ,  

0,1, … , 1, 0, … ,  

(3.3.1)

where ,  are complex Fourier coefficients obtained from a standard fast Fourier transform program; 

∆  are calibrated temporal pressure samples; =390 is the number of pressure samples in a 5 ms 

analysis window; ∆ =1.28×10−5 s is the sampling interval for the collected data; ∆ · , ∆

∆ ·
, 0,1, … , ; · 0.8 is the temporal index shift in terms of pressure sample number for 

20% overlap; /  is the integer number of spectral windows in a 2 s spectrogram. The calculation 

of the Fourier coefficients in equation (3.3.1) reflects the transient nature of the measured seismic 

signatures that should be considered finite energy signals, not power signals. (Fricke et al., 1985; 

Johnston et al., 1988). Instead of the power flux spectral density traditionally analyzed for infinitely long 

stationary signals, an energy flux spectral density  is quantified in the calibration procedure for 

marine seismic source transient signals (Fricke et al., 1985): 
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Figure 3.3.2(a) Measured absolute calibrated acoustic pressure for shot 235 on line 1000 vs. time. The horizontal range is 

1655 m, the direct distance to the hydrophone is 1810 m, the emission angle is 66°, and the azimuthal angle 
is 144°. (b) Spectrogram of the signal in (a) over a 5 ms rectangular window with 20% overlaps from 6 Hz 
to 25 kHz. (c) The calibrated amplitude spectrum over a 2 s rectangular window with a start time 
corresponding to the 0.2 s temporal mark of the spectrogram in (b) and cumulative energy flux in % vs. 
frequency. 

 
Figure 3.3.3 (a) Measured absolute calibrated acoustic pressure for shot 211 on line 5000 vs. time. The horizontal range is 

6197 m, the direct distance to the hydrophone is 6240 m, the emission angle is 83°, and the azimuthal angle is 
128°. (b) Spectrogram of the signal in (a) over a 5 ms rectangular window with 20% overlaps from 6 Hz to 25 
kHz. The lateral (head) wave precursor is the first arrival. High frequencies are attenuated as would be 
expected for a lateral wave. (c) The calibrated amplitude spectra over a 0.2 s rectangular window with start 
times corresponding to the 0.15, 0.35, and 0.65 s temporal marks of the spectrogram in (b) and cumulative 
energy fluxes (%) vs. frequency. 
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1
| | , (3.3.2)

where  is the discrete Fourier transform coefficient, which is defined in equation (3.3.1) for a single 

 value,  is the water density at the receiver position, and  is the speed of sound at the measuring point. 

The energy flux spectral density curve has the same shape as the amplitude spectrum (absolute values of 

the Fourier coefficients) but different units (J/(m2Hz)). For a decibel scale, the amplitude spectrum level 

(referenced to 1 Pa) is 182 dB larger than the energy flux spectral density level (referenced to 1 

(J/(m2Hz)) if the acoustic impedance of sea water is approximated by the constant value 

 1026 1500 1.54 10 . 

Following SEG standards for specifying marine seismic energy sources (Johnston et al., 1988), 

cumulative energy flux  and total energy flux /2  are calculated for the experimental data, 

 ∆ 0 2∆ , 1, … ,
2

1, 
(3.3.3)

 0 ∆ 0 ,
2 2

1 ∆
2
. 

The cumulative energy flux corresponds to the amount of energy flux in a frequency band from 0 

Hz to ∆ . The total energy flux is the cumulative energy flux in the full recorded frequency band. The 

cumulative energy flux is usually expressed as a percentage of the total energy flux, 

 
2

100%, 0,1, … , /2. (3.3.4)

Figure 3.3.1(a) shows the measured calibrated pressure in micropascals for the closest approach 

point on line 0.2, which corresponds to a horizontal range of 63 m, with a direct distance to the 

hydrophone of 736 m, emission angle of 5°, and azimuthal angle of 202°. The 2 s shot spectrogram is 

shown in Figure 3.3.1(b). The amplitude spectrum level and cumulative energy flux for the 200 ms 

Fourier analysis window with a start time corresponding to the 0.2 s mark on the spectrogram plot are in 

Figure 3.3.1(c). The direct arrival, surface reflected arrival, bottom reflected arrival, bubble oscillation 

cycle, and multiples can be clearly identified in Figures 3.3.1(a) and 3.3.1(b). The separation between the 

direct and bottom reflected arrivals is 340 ms. The maximum amplitude spectrum power level is 159 dB 

re 1 Pa/Hz, with the level reaching 110 dB re 1 Pa/Hz at 1000 Hz for the direct arrival and 85 dB re 1 

Pa/Hz at 5000 Hz for the direct arrival. The calculated total energy flux is 0.32 J/m2. The sound 

propagation geometry to the EARS buoy for this shot is nearly vertical for the direct and bottom reflected 

pulses. The seismic arrays are tuned for optimal (near vertical) transmission of low frequencies for this 

geometry. The cumulative energy flux plot in Figure 3.3.1(c) shows that most of the energy is under 
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300 Hz. This is consistent with the array design. The high frequencies are about 35 dB lower than the 300 

Hz level. Semiquantitative comparison from Figure 3.3.1(b) shows that the direct path signal energy flux 

spectral density level is about 20 dB greater at most high frequencies than the bottom reflected arrival and 

the multiples. 

 Figures 3.3.2(a)-3.3.2(c) show similar plots for shot 235 on line 1000. The horizontal range is 

1655 m, the direct distance to the hydrophone is 1810 m, the emission angle is 66°, and the azimuthal 

angle is 144°. The calculated total energy flux is 0.0017 J/m2. The arrival structure is still identifiable and 

labeled in Figures 3.3.2(a) and 3.3.2(b). The separation between the direct and bottom reflected arrivals is 

decreased to 200 ms. This may potentially indicate an increased sound exposure level vs. range to the shot 

for an animal having a 200 ms energy integration window (as discussed below). The maximum amplitude 

spectrum power level is 125 dB re 1 Pa/Hz, with the level reaching 100 dB re 1 Pa/Hz at 1000 Hz for 

the direct arrival and 80 dB re 1 Pa/Hz at 5000 Hz for the direct arrival, which is close to the 

background noise level. Figure 3.3.2(c) shows again that most of the energy is at a low frequency, under 

500 Hz. At this range, the difference is about 25 dB between the high frequency and the 500 Hz levels. 

Figures 3.3.3(a)-3.3.3(c) present the data for shot 211 on line 5000. The horizontal range is 6197 m, the 

direct distance to the hydrophone is 6240 m, the emission angle is 83°, and the azimuthal angle is 128°. 

The signal is more complicated and the interpretation of the arrival pattern is not as straightforward as for 

the shots shown in Figures 3.3.1 and 3.3.2. The spectra reveal that most of the energy of the precursor is 

below 300 Hz. As one can see from the moveout of the signal with different shots on line 5000 in Figure 

3.3.4, the temporal separation between the precursor and the main energy arrival increases with range. An 

additional analysis of the signal moveout curves for other lines indicates that the precursor starts 

appearing at ranges larger than 4.5 km. These features of the precursor arrival strongly suggest that it is a 

lateral (head, interface) wave. Correlation of experimental time delays between arrivals with modeled 

ones is required to gain more confidence concerning the analysis of the precursor. The frequency partition 

of energy for the various components of this shot is similar to that shown in the previous two figures. The 

amplitude spectrum level and cumulative energy flux for the 200 ms Fourier analysis window for three 

identifiable arrivals with start times corresponding to 0.15, 0.35, and 0.65 s on the spectrogram plot are 

shown in Figure 3.3.3(c). The calculated total energy fluxes are 0.028 10−3, 0.023 10−3, and 0.051 10−3 

J/m2. The high-frequency level reaches 90 dB re 1 Pa/Hz at 1000 Hz for the strongest arrival and this is 

close to the background noise level. 

Figures 3.3.1-3.3.4 clearly demonstrates that there is a significant multipath energy in the sound 

field of the seismic array. The conclusion is that the acoustic energy in the multipath must be taken into 

account when calculating marine mammal exposure metrics, as suggested by Madsen et al. (2006). This  
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Figure 3.3.4 Normalized signal moveout map for line 5000 shots. The time is synchronized on the first bottom reflection. 
Each shot pressure function is normalized by the absolute value of the maximum pressure in this shot. The 
separation between a precursor and a reference strongest arrival increases with range. 

 

can only be done accurately by using propagation models to calculate the full sound field for the 

waveguide environment. 

Sequential 2 s amplitude spectra for all calibrated shots are collected in Figure 3.3.5. The high-

frequency part of the spectrum (16–21 kHz) is shown separately in Figure 3.3.5(b), which allows better 

identification of the narrow spectral lines centered at 18 kHz. These represent the spectral content of the 

on-board echo-sounder signal. A Simrad EA500 echo-sounder was part of the M/V Kondor equipment 

suite and emitted a 3 ms pulse every 12 s throughout the duration of the experiment. It is apparent from 

Figure 3.3.5 that the high frequency acoustic power levels from the seismic array as recorded by the 

EARS buoy at 739 m depth do not approach the levels of the echo sounder, at least for ranges below 7 

km. 
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Figure 3.3.5(a) Sequential spectra of all calibrated shots collected over a 2 s rectangular window during the seismic 
characterization experiment from 6 Hz to 25 kHz. (b) High-frequency band (16–21 kHz) of the sequential 
spectra presented in (a). The short vertical lines centered at 18 kHz are spectra of the 3 ms pulses from an 
18 kHz echo sounder on the M/V Kondor. It had a repetition rate of 12 s. 

 

Various analysis attributes are generated to quantify and characterize the acoustic output of the 

seismic airgun array in the ocean in addition to the time and frequency analyses already given. The results 

shown here can easily be compared to the other studies presented in the literature (Blackwell et al., 2004; 

Madsen et al., 2006). The first characteristic widely accepted in the oil industry is the maximum received 

pressure level, zero to peak. (Some authors report a peak-to-peak value for far-field signatures, which will 

not be more than 3 dB greater than the zero-to-peak level.) Figure 3.3.6(a) shows the maximum received 

pressure level for each shot collected during the experiment. The maximum level for the closest shot 

almost directly overhead (horizontal range of 63 m, direct distance to the hydrophone of 736 m, and 

emission angle of 5°) is 200 dB re 1 Pa. Figure 3.3.6(b) shows the same data as a function of the 

horizontal range to the EARS buoy. The multivalued levels at a fixed range are due to array directionality 

and gun volume differences on the front versus the back of the array [see Figure 3.2.1(a)]. The maximum 

received pressure levels do not gradually decrease with increasing range beyond 3 km for off-axis shots. 



   

20 
 

They can be as high at the 5 km range as at the 3 km range due to waveguide propagation effects. These 

results are consistent with data recorded on sperm whales using acoustic tags during controlled exposure 

experiments (Madsen et al., 2006). Solid and dashed curves represent the modeled maximum levels as a 

function of range in the vertical 0° plane aligned with the central line of the array obtained by using the 

parabolic equation model, RAM (Collins, 1993), and two notional source signature models: GUNDALF 

and NUCLEUS (Hatton, 2004; Nucleus) The details of the modeling are described in the next section. 

The modeled data do not reproduce all the features of measured data because the array directionality in 

different vertical planes is not taken into account due to computational time limitations. Next step in 

modeling procedures is moving to parallel cluster computers to implement full three-dimensional field 

modeling. Maximum levels of direct and reflected arrivals are important measures of the seismic array 

signal directionality and attenuation in a waveguide and provide meaningful information for seismic 

interpretation characterizing the reflection strength of different sub-bottom reflectors, but they cannot be 

used as standalone parameters to account for acoustic sensation by a marine mammal because they do not 

take the duration of the transient seismic pulses into account. It is suggested that most biological 

receivers, including marine mammals, are best modeled as energy integrators, which integrate intensity 

over a frequency-dependent time window (Au et al., 1997; Madsen, 2005). The integration time of 200 

ms is chosen because it is believed to be used as an integration time by the auditory system of the 

endangered sperm whale. Therefore, a second attribute, SEL, is calculated over the time of each shot as 

 

, 10 log ∆ ∆  

10 log ∆ , 10 log
2
, , 

(3.3.5)

where  is the shot number in the line, ∆ =1.28×10−5 s is the temporal sampling interval of the recorded 

data,  =15 625 corresponds to a 200 ms integration window,  is the sampled recorded calibrated 

pressure (in micropascals) for shot , and  is the initial time for a 200 ms analysis window for every 

possible start time within each shot including 200 ms of ambient noise recording before the first seismic 

arrival for each shot. The maximum SEL calculated for each shot is selected to characterize that shot. 

The maximum SEL for each shot in every line (sequentially) is displayed in Figure 3.3.7(a). The 

maximum value for the above-mentioned closest shot is 177 dB re 1 Pa2 s. In Figure 3.3.7(b), the 

maximum SEL is shown as a function of the horizontal range between the center of the array and the 

receiving hydrophone. Solid and dashed lines are modeled sound exposure levels in the vertical 0° plane 

passing through the central line of the array. There are several factors that cause the maximum SEL to 

increase with range at ranges larger than 3 km. The first factor is that the temporal separation between the  
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Figure 3.3.6 (a) Maximum received calibrated zero-to-peak sound pressure levels for each shot relative to the CPA 

indicated by the CPA marker on the horizontal axis for each line. (b) Maximum received zero-to-peak sound 
pressure levels for all collected shots as a function of range. Different symbols correspond to different shot 
lines. Note that the maximum levels monotonically decrease only for the first 3 km in range. They then start 
increasing again for ranges larger than 3 km, which indicates that the bottom reflected pulse dominates over 
the direct arrival. Solid and dashed lines are the modeled maximum received zero-to-peak sound pressure 
levels in the zero degree fixed vertical plane. 

 
Figure 3.3.7 (a) Maximum sound exposure levels for a 200 ms sliding integration window for each shot plotted relative to 

the line CPA indicated by the CPA marker on the horizontal axis for each line. (b) Maximum sound 
exposure levels for a 200 ms sliding integration window for each shot shown for all shots as a function of 
range. Different symbols correspond to different shot lines. Solid and dashed lines are the modeled 
maximum sound exposure levels in the zero degree fixed vertical plane. 
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Figure 3.3.8 Sound exposure level vs the temporal position of the center of a 200 ms integration window for the entire shot 

(including multipath arrivals) for the three shots presented in Figures 3.3.1-3. 
 

first (direct) and the second (bottom reflected) arrivals becomes less than the integration window. The 

second factor is that the SEL maxima are determined by energy in the multipaths for large range off-axis 

shots. To support this statement, Figure 3.3.8 shows the SEL for the entire multipath shot as a function of 

time for the shots shown in Figures 3.3.1–3. 

The third attribute used for the recorded data is 1/3-octave band analysis (ANSI/ASA, 2004). 1/3-

octave bandwidths are reported to represent the likely lower and upper limits of auditory filters in marine 

mammal auditory systems for which sparse laboratory bioacoustic data are available (Richardson et al., 

1995; Southall et al., 2000; Southall et al., 2003). The results of 1/3-octave band analysis for all collected 

shots are presented in Figures 3.3.9(a) and 3.3.9(b). The 1/3-octave band received levels are calculated for 

the entire received signal (2 s temporal window) including all multipath arrivals received over 2 s. Figure 

3.3.9(a) shows 1/3-octave band analysis of all shots sequentially plotted both within line number and by 

line number. Central frequencies of the bands are on the vertical axis. Band numbers 11–43 are included. 

Figure 3.3.9(b) shows 1/3-octave band analysis of shots within a line plotted as a function of range. The 

panels correspond to lines 0.2, 500, 1000, 2000, and 5000. 
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Figure 3.3.9 (a) 1/3-octave band analysis of all shots plotted sequentially both within line number and by line number. 
Central frequencies of the bands are on the vertical axis and 1/3-octave bands are as defined in ANSI/ASA 
(2004). Band numbers 11–43 are included. (b) 1/3-octave band analysis of shots within a line plotted as a 
function of range. The panels correspond to lines 0.2, 500, 1000, 2000, and 5000. 
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3.4 Acoustic modeling: methods and results 

 

The seismic source acoustic energy distribution in the ocean depends not only on seismic source 

parameters but also on the propagation channel. Any meaningful mitigation efforts will be dependent on 

our ability to model quantitatively the acoustic energy distribution from a given seismic array in a 

particular ocean waveguide. There are several standard acoustic propagation models available to model 

sound propagation in range-dependent ocean waveguides: RAM, KRAKEN, UMPE, SWAMP, etc. 

(Collins, 1993; Porter, 1995; Smith and Tappert, 1993; Sidorovskaia, 2004). However, most of the 

standard models are inherently two dimensional and produce the acoustic pressure distribution of a point 

harmonic source in the vertical plane of a source and a receiver. There are several issues that have to be 

addressed when using these models for quantitative modeling of the acoustic pressure distribution from a 

seismic array: (1) the broadband nature of the seismic pulse produced by each airgun in the array, (2) the 

complex temporal/angular structure of notional signatures for each airgun in the array due to bubble 

interactions after firing (Ziolkowski, 1970; Ziolkowski et al., 1982; Laws et al., 1990; Hatton, 2004; 

Nucleus), and (3) the different ranges to the receiver position for different sources in the array. The last 

becomes especially important in accounting for the correct relative phases of the high-frequency 

components at the receiver location. The quality of the calculation will be sensitive to the completeness 

and accuracy of the parameters describing the propagation channel and the adequacy of notional airgun 

source signatures to reproduce the near field of the seismic array. The sound speed profile along the 

propagation path for modeling was derived from expendable bathythermographs and from conductivity-

temperature-depth measurements taken during the experiment (see Figure 3.4.1). A very thin surface duct 

about 10 m thick was present during the experiment. No bottom structure information was collected 

during the experiment, so the bottom model for the propagation code was based on a historic database 

(Hamilton, 1980) and previously collected data near the experimental site (Turgut et al., 2002). The 

bottom model consists of three layers typically present in this area of the Gulf of Mexico: silty clay about 

10 m deep, sand deposits up to 1 km deep from the bottom-water interface, and rock formations 1 km 

below the bottom-water interface. 

The calibrated pressure data are modeled using the standard parabolic equation model RAM by 

Collins (1993), which is upgraded to generate waveguide transfer functions for a broadband multisource 

array. The measured individual frequency pressure components at the receiver location,  , , , are 

modeled in the frequency domain as  

 , , , , , , , (3.4.1)
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recorded during the experiment to 6.7 m that is used in modeling. The fine structure of the TFL carries 

information about reflections from bottom layers and multipaths. The TFL and arriving phase structure 

indicate that a point source model is not suitable for quantitative prediction of the seismic array energy 

distribution in the water column. 

Figure 3.4.4 shows the temporal notional signatures of selected airguns, which are generated by 

the NUCLEUS and GUNDALF models, for the seismic array used in the experiment. The notional 

signature of each airgun in the array is transformed into the frequency domain using a standard fast 

Fourier transform program and multiplied by RAM generated broadband transfer functions to model the 

frequency content of the calibrated shots  (refer to Eq. 3.4.1).  Figures 3.4.5(a) and 3.4.5(b) are a 

comparison between experimental and simulated data with the source notional signatures generated by 

GUNDALF and NUCLEUS for the closest approach shot on line 0.2 (a nearly on-axis shot) and for shot 

255 online 500 (an off-axis shot). The NUCLEUS model has a high frequency cutoff filter above 800 Hz, 

so its modeling is only valid up to 800 Hz. GUNDALF is designed to include the high frequency 

components up to 25 kHz. There are several factors contributing to the discrepancies between 

experimental and simulated data. The notches in the experimental data near 500 and 750 Hz are most 

probably due to the first bottom layer reflection that is inadequately specified based on the historical 

database. Errors in the bottom properties have an effect on the fine structure of the modeled signal. Both 

airgun modeling codes show better agreement with the experimental data for on-axis shots. The notional 

signatures used for this calculation were generated and calibrated for on-axis use and so are not the most 

appropriate for off-axis use (Hatton, 2002). 

The Fourier synthesis technique for digitized signals is used to model the time-domain response 

that was measured in the experiment and used as a starting point for the calculation of the exposure levels 

in the time domain. Frequencies above 6 Hz are used for comparison with experimental data both because 

of the rolloff in the receiving system frequency response and because the modeled frequency components 

at very low frequencies are not considered fully reliable. Figures 3.4.6 (a) and 3.4.6(b) show the 

quantitative comparison between measured and modeled signatures in the time domain for shot 255 on 

line 500. SELs over a 200 ms window for the modeled received pulses are also calculated in accordance 

with Eq. 3.3.5. Figure 3.4.6 (c) shows the comparison of the modeled SEL with one calculated from the 

experimental data for shot 255 on line 500. The modeled and experimental sound exposure levels agree 

well for the direct and surface reflected arrivals and the bubble oscillation cycle. The discrepancies 

between modeled and experimental sound exposure levels for the times corresponding to later arrivals are 

due to inaccurate information about the bottom structure and for initial times are due to wraparound. 

The good agreement between measured and calculated data allows us to model reliably the full 

three-dimensional acoustic energy distribution from the seismic array in the water column.  
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Figure 3.4.9
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Propagation codes combined with notional signature models predict the broadband data 

reasonably well. All presented modeling results are ab initio calculations with no adjustable parameters. 

The accuracy of prediction is limited by uncertainties in environmental information and by the accuracy 

of the source models. Modeling is a useful tool in the prediction of the three-dimensional acoustic energy 

distribution in an ocean volume of interest. It can be used to determine three-dimensional acoustic energy 

distribution variations due to anticipated changes in the details of future surveys including changes in 

ocean environmental conditions and source configuration, without necessarily conducting field 

experiments. Modeling allows a fairly accurate prediction of sound exposure levels for marine mammals 

to aid in planning future seismic surveys. 
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Chapter 4 Experimental Design for Measurements to Characterize 

the 3-D Primary Acoustic Field of a Seismic Airgun Array 

 

The initial requirement for the experimental design for measurements to characterize the 3-D 

acoustic field of a seismic airgun array was the ability to conduct the experiment during a standard marine 

seismic exploration survey in the Gulf of Mexico, avoiding as much interference with the survey as 

possible. During a standard exploration survey, special marine vehicles with attached seismic energy 

sources, i.e., air gun arrays, and long strings of receiving hydrophones travel along long parallel equally 

spaced (160 m separation distance) tracks as shown in Figure 4.1 Seismic shots are fired every 25 m 

along the line. Environmental Acoustic Recording System (EARS) buoys with attached hydrophones 

were planned to be deployed at some selected positions in the exploration field to collect sufficient 

acoustic data to characterize the acoustic emission field of the air gun array. 

Based on the configuration of available equipment on the marine vessel, the seismic source can 

either operate in a single shot regime or do flip-flop shooting during which it engages one of the two 

available air gun arrays (separated by 30 m) while the other array is in an air recharge mode. The 

configuration for the standard flip-flop operation mode is given in Figure 4.2. 

 Since the main criterion for experimental design is the three-dimensional characterization of the 

air gun array acoustic field, appropriate spherical polar coordinates (shown in Figure 4.3) are used for 

describing the relative positions of the receiving hydrophones of the EARS buoys and the seismic source. 

The origin of the coordinate system is located at the geometrical center of the air gun array. The 

azimuthal angle is measured clockwise from the source carrier sailing direction as seen from above. The 

emission angle, according to present standards in the oil industry, is measured from zero pointing straight 

down from the air gun array center to 90 degrees in the horizontal plane. 

 The position of each individual shot is projected to the unit sphere of a receiving EARS 

hydrophone (Figure 4.4). Projections of all collected shots from all deployed EARS hydrophones are 

traced back onto unit sphere of the air gun array (Figure 4.5), and the collected information is used for 

analysis of the field.  

 Due to variations in temperature, density, and salinity of the waters of Gulf of Mexico, the sound 

speed in the water column is a function of depth.  Therefore the emitted acoustic energy does not travel 

straight paths, and it is necessary to incorporate into the experimental design and post-experimental data 

processing, corrections due to refraction in the water column.  Simple ray tracing based on Snell's law 

(Kinsler et al., 1982) is used (Figure 4.6).  

The ray tracing algorithm is implemented in MATLAB software, which is optimized for matrix 

calculations.  According to Snell’s law: 
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Figure 4.1 Experimental field configuration 

 

 

Figure 4.2 Detailed structure of the ship tracks and shots 
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Figure 4.3 Source array coordinate system 

 

Figure 4.4 Receiving hydrophone unit sphere 
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Figure 4.5 Source array unit sphere 

 

Figure 4.6 Ray tracing 
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sin
sin

 (4.1)

or 

 asin sin .  (4.2)

In matrix notation it is:   

 
asin

sin ,  (4.3)

  
∆

,
∆

, (4.4)

where  = depth of the bottom, = depth of the acoustic source, ∆  = selected depth step, 

= maximum ray emission angle, = minimum ray emission angle, ∆  = selected 

emission angle step, = initial ray emission angle vector, = sound speed vector.  Matrix 

consists of the ray angles for all depths from the depth of the source to the depth of the bottom. 

From this matrix, the horizontal range, which the emitted rays travel from the source to the receiver, is 

equal to: 

 

0

tan ∆
, (4.5)

 

where  = row number. 

The distance traveled along the ray and the travel time are equal to: 

 

0

∆
cos

, (4.6)

 

0

∆
cos

./ 0
. (4.7)

By comparing the horizontal range between the location of the source ship and the location of the 

deployed buoy with the range matrix values, emission angles can be found for given depth of the 

receiving hydrophone. The bisection algorithm is then used to find the ray emission angle, the distance 

traveled along the ray, and the propagation time for the given relative source-receiver positions. For the 

bottom reflected rays, the range, distance traveled, and propagation time matrices are: 
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As an example and an initial sound speed function, the sound speed profile measured during a 

previous experiment (Littoral Acoustic Demonstration Center (LADC) 03) in a nearby area is used in the 

calculations. It is shown in Figure 4.7. The sound speed measured in meters per second is plotted on the 

horizontal axis and the depth of the water column measured in meters is plotted on the vertical axis. The 

sound speed profile used for ray generation has a small surface duct, i.e., a small (about 10 m deep) 

waveguide which traps direct rays emitted at angles beyond 88.9 degrees. 

Examples of trajectories of direct rays emitted by the seismic source and bottom reflected rays are 

shown in Figures 4.8 and 4.9. Range or horizontal distance from the acoustic source measured in meters is 

plotted on the horizontal scale. The typical seismic source depth during standard exploration surveys is 

about 6-7 meters.  

 Emission angles for the generated rays are shown in Figures 4.10 and 4.11. The color bar 

corresponds to the emission angle in the coordinate system used in the experiment design. The dark red 

color above the refraction boundary corresponds to the shadow area where no primary arrivals could be 

received by the receiving hydrophone. Since the main objective of the experiment is to measure the 

primary emission field of a seismic source, hydrophones located in the dark red area will not record any 

useful information about the field of interest. This sets a constraint on the location of hydrophones during 

the experiment. The name primary arrival is given to the combination of the direct arrival and the 

immediate surface bounce which together form the field of interest for characterizing the airgun array. 

 Direct and bottom reflected rays (shown in Figure 4.12) are used to generate the time delay 

between arrivals as a function of the horizontal range and depth of the receiving hydrophone, and are 

shown in Figure 4.13. The color bar corresponds to time delay measured in milliseconds. The dark blue 

color corresponds to shadow zones where no primary arrivals are observed on the receiving hydrophones.  

 Following the example of an acoustic recording from the similar LADC03 experiment shown in 

Figure 4.14, a decision by the Project Study Group (PSG) was made to establish a constraint on the time 
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Figure 4.7 Sound speed profile 

 

Figure 4.8 Direct emitted rays’ trajectories  
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Figure 4.9 Bottom reflected rays’ trajectories 

 

Figure 4.10 Emission angles for direct emitted rays 
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Figure 4.11 Emission angles for bottom reflected rays 

 

Figure 4.12 Estimation of time delay between arrivals  
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Figure 4.13 Time delays 

 

Figure 4.14 Shot example from LADC 2003 
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Figure 4.15 Limited time delay between arrivals 

separation between primary and bottom-reflected arrivals of at least 300 milliseconds to make it possible 

to study the bubble oscillation phenomenon. The resulting experimental zone is shown in Figure 4.15, 

where the dark blue color on the color bar corresponds to the zone of unusable data due to both refraction 

and time separation constraints. According to Figure 4.15, useful information will be collected on 

hydrophones deployed at depths up to 1200 meters and located at horizontal ranges from the seismic 

source up to 4.5 kilometers. 

 The structure of our long EARS buoy mooring is given in Figure 4.16. It shows a long vertical 

mooring with flotation, anchor, acoustical releases, and several EARS buoys units, with hydrophones 

attached through a cabling system. The maximum sampling rate for the current generation of buoys is 200 

kHz. Based on that, the buoy can be configured in up to a 4-channel mode giving a sampling rate of at 

least 50 kHz per channel, collecting data from up to 4 hydrophones simultaneously. In order to investigate 

the emission field from a seismic source which is relatively strong compared to the usual background 

noise in close proximity to the source ship, each hydrophone depth is shared between two hydrophones – 

one sensitive for ambient noise measurement and another one desensitized for measuring the emission 

field from the nearby seismic source. The dynamic ranges of both hydrophones overlap in such a way that  
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Figure 4.16 EARS buoy configuration 

there is the possibility of merging collected data into one single data stream. Based on this, in the 4-

channel mode each EARS buoy covers two hydrophone depths. The relative positions of the hydrophone 

depths can be adjusted by shifting the positions of buoys and cabling systems along the main line. There 

is a limit on the separations between hydrophones connected to the same buoy due to the length of the 

available cabling system. 

 One of the objectives of the experiment was to collect measurements for a large variety of 

emission and azimuthal angles and distances between the seismic source and receivers. In the initial 

experimental design, ship tracks were equally spaced, separated by a fixed distance of 160 m. In order to 

get equal emission angle separation (Figure 4.17), the position of each hydrophone on the mooring string 

(Figure 4.18) was calculated by using ray tracing. For the proposed configuration: 1) the number of 

received shots for given azimuthal and emission angles (i.e., a given solid angle); 2) the closest shot travel 

distance along the emitted ray, for the given solid angle; 3) the covered shot field plots for individual 

hydrophone depths; and 4) final summations of all received shots are calculated and have been analyzed 

by the PSG for quality control. To plot three-dimensional distributions, color polar plots are used.  
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Figure 4.17 Uniform angular filling 

 

Figure 4.18 Hydrophone string configuration for uniform filling 
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Figure 4.19 Color plots coordinate system 

The coordinate system is shown in Figure 4.19. On color polar plots, the emission angle is plotted radially 

with zero degrees at the center of the figure. This means overhead shots are at the center and near surface 

arrivals are near 90 degrees on the outer ring. The azimuthal angle is plotted counterclockwise as seen 

from below the seismic exploration array.  

The angular shot density distribution for the initial configuration is shown in Figure 4.20 using 

the coordinate system described above. The color bar corresponds to the number of shots received 

according to the simulations for given emission and azimuthal angles. The dark blue color corresponds to 

emission angles with no data received. After a number of simulations adjusting hydrophone location to 

try to reduce the dark blue area of no data and due to existing cabling system limitations, a new 

configuration was proposed (Figure 4.21). The corresponding angular shot density for the arrangements 

of Figure 4.21 is shown in Figure 4.22. The empty space in the angular shot density distribution is due to 

the fixed separation between lines and the limited amount of available hydrophones and buoys. To fill in 

missing data, additional shots were planned to be done by and auxiliary vessel.  

The experiment was scheduled to be conducted during the Summer 2005, but due to a mooring 

breakdown during the equipment deployment onsite, it was rescheduled to a future date.  Even without 

the breakdown, the success of the experiment was problematic due to weather delays in the shooting 

schedule, since the EARS buoys recorded automatically and could not be delayed. 

 After investigation of the reasons for the initial experiment failure, and taking into account the 

importance of this experiment, a new experiment with a dedicated source vessel was proposed to the PSG. 

This time the source vessel towing the air gun array would follow an optimal path determined from 

experiment simulations and our experience from the initial experiment design. This allowed variations of 

line lengths and spacing between lines in addition to variations in hydrophones depths.  
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Figure 4.20 Angular shot density for initial configuration 

 

 

Figure 4.21 Configuration of available equipment 
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Figure 4.22 Angular shot density for available equipment 

At that point LADC had two arrays with 200 m spacing between hydrophones, 4 arrays with 14 m 

spacing between hydrophones, and 4 arrays with 7 m spacing between hydrophones. Collocation of 

ambient and desensitized hydrophones gave flexibility in the measurement of the source array in the near 

field by spreading the hydrophone depths from 100 meters up to 1200 meters along the mooring's main 

line.  Simulation results suggested hydrophones placed at 100m, 300m, 531m(including an extra 31 m for 

flotation), 731m, 920m, 934m, 948m, and 962m on one of the long moorings, and at 1150m, 1157m, 

1171m,  and 1163m, on a short deep water mooring. The long mooring used the two long arrays and two 

of the 14 m. spacing arrays. The deep mooring used the two 7 m. spacing arrays. The PSG supported the 

purchase of two additional 200 m. spacing arrays to be used with the two remaining 14 m. arrays to make 

an additional mooring for redundancy. The entire second mooring was deployed with a slight vertical 

shift by 50 meters, giving a total of 16 independent hydrophone depths on the long moorings. The short 

deep water mooring was used to fill in the close-to-vertical emission angles with enough data. In addition 

to the bottom moorings, eight hydrophones (giving 4 hydrophone depths) were deployed from the deck of 

the auxiliary ship used for equipment deployment and retrieval and environmental and positioning 

measurements. 

 Because of limited variations in shot line spacing and the limited variability of hydrophone depths 

on the mooring cables, the resulting emission angles received on the hydrophones are no longer equally 

spaced and the emission angle distribution is no longer uniform. In order to get an emission angle  



   

49 
 

 

Figure 4.23 Uniform angular spacing for reference depth  

 

Figure 4.24 Optimal reference depth estimation 
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Figure 4.25 Proposed experimental separation of source ship tracks 

distribution close to uniform, further numerical simulations were conducted. The main purpose of these 

simulations was to generate positions of ship tracks for a given uniform angular spacing for one reference 

depth (Figure 4.23) and to simulate received emission angles on hydrophone depths other than the chosen 

reference depth (Figure 4.24).  By repeating the simulation for other reference depths we find the depth 

for which the overall emission angle distribution is close to uniform. After a series of simulations, a 

reference depth of 920 m was selected.  

 Due to overpopulation of the resulting angular shot density distribution for emission angles close 

to the horizontal, it was decided to save experimental time by dividing the experimental area into three 

different shot patches, a 0.5 degree patch, a 1 degree patch, and a 3 degree patch. The largest (9 km by 9  

km) 3 degree patch covers emission angles from 0 to almost 90 degrees, with 3 degree spacing between 

emission angles received at the reference depth. The middle (2.5 km by 2.5 km.) 1 degree patch covers 

emission angles from 0 up to almost 60 degrees, with 1 degree spacing between emission angles received 

at the reference depth. The smallest patch (1 km by 1 km) covers emission angles from 0 up to 30 degrees 

with 0.5 degree spacing between emission angles received at the reference depth. Further analysis led to 

splitting the 3 degree area into two parts – 3 degree even-numbered lines and 3 degree odd-numbered 

lines. The 3 degree even line patch corresponds to a 6 degree patch.  The 3 degree odd line patch has 

trapezoidal cutouts which result in reduced redundancy of overpopulated lines in the sail direction and 
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Figure 4.26 Angular shot density for proposed experimental source ship tracks 

 

Figure 4.27 Angular space binning and shot density of shots from proposed ship tracks 
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thus save significant additional experiment time. All patches (including ship tracks for the 3 degree patch) 

are shown in Figure 4.25.  

 Angular shot density for 12 hydrophone depths (8 depths for one of the two long moorings and 4 

depths for the deep water shot mooring) is shown in Figure 4.26. The color corresponds to the number of 

shots received for given emission and azimuthal angles calculated from simulation. The dark red color 

corresponds to angles with 10 or more received shots.  

 After long discussions with the PSG, due to uncertainty in array positioning systems and for 

purpose of statistical analysis, the existing solid angle domain was divided into angular bins with a 3.3 

degree step for emission angles and a 10 degree step for azimuthal angles. The resulting distribution is 

shown in Figure 4.27. The color bar and numbers within bins correspond to estimated number of shots 

received on the hydrophones.  
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Conclusions and future research 
 

The planned experiment was conducted in the northwestern part of the Gulf of Mexico September 

2 – September 22, 2007.  Three M/V were used during the experiment: the Fairfield Endeavor and the 

Veritas Vantage as a seismic array source ships, and the Cape Hatteras as an auxiliary ship for equipment 

deployment and retrieval and environmental and positioning measurements. For redundancy and for more 

near-vertical emission angle coverage, two additional moorings were deployed. An active tracking system 

and current profilers were used during the experiment to precisely log the three-dimensional positions of 

all individual hydrophone depths. Two additional hydrophone strings were ship deployed for shallow 

water measurements. Twenty four hydrophone depths with two collocated hydrophones at each depth (a 

sensitive hydrophone for ambient noise recording and a desensitized one for power shots) ranging from 

10 meters (for ship-tethered hydrophones) to 1300 meters (for deep water buoys) were covered. The 

bottom depth for the experiment area varies from 1500 to 1600 meters. About 12 days of continuous 

acoustical broadband (up to 25 kHz) recordings and other auxiliary data measurements (sound speed 

profiles, bathymetry, etc.) were collected during the experiment. In addition, two long distance 

propagation lines (needed for propagation model validation) were collected. The total amount of data 

collected is about 3.6 terabyte.  

All collected data were checked for errors and misreading. By using a simple propagation model 

based on ray tracing, primary shot arrivals from the seismic exploration array were extracted and at the 

present time are being analyzed. Acoustical equipment used in the experiment is being post calibrated. 

Results of post calibration and visual data checks will be published in the near future. After an uncertainty 

analysis of the positioning equipment, the angular domain is divided into angular bins, with 3.3 degree 

bin width for emission angles and 10 degree bin width for azimuthal angles. Collected data will be 

analyzed on a single line basis and within angular bins. The large amount of data measurements allows 

statistical analysis. In the case of missing coverage, data necessary for a three-dimensional 

characterization will be modeled using techniques described in Chapter 3. Results will be presented in 

three-dimensional visualizations. 
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