640 research outputs found

    'THz Torch' wireless communications links

    Get PDF
    The low-cost 'THz Torch’ technology, which exploits the thermal infrared spectrum (ca. 10 to 100 THz), was recently introduced to provide secure low data rate communications links across short ranges. In this thesis, the channel model for 'THz Torch’ wireless communications links is redeveloped from a thermodynamics perspective. Novel optimization-based channel estimators are also proposed to calibrate parameters in the channel model. Based on these theoretical advances, a cognitive 'THz Torch’ receiver, which combines conventional digital communications with state-of-the-art deep learning techniques, is presented to achieve cognitive synchronization and demodulation. The newly reported 'THz Torch’ wireless link is capable of bypassing the thermal time constant constraints normally associated with both the thermal emitter and sensor, allowing truly asynchronous data transfer with direct electronic modulation. Experimental results obtained in both laboratory environments and field trials demonstrate step-change improvements in channel range, bit rate, bit error rate and demodulation speed. This work represents a paradigm shift in modulation-demodulation with a thermal-based physical layer and offers a practical solution for implementing future ubiquitous secure 'THz Torch’ wireless communications links. The cognitive receiver concept also has wide-ranging implications for future communications and sensor technologies, making them more resilient when operating in harsh environments.Open Acces

    Phase locked loop synchronization for direct detection optical PPM communication systems

    Get PDF
    Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency

    Equalizer State Caching for Fast Data Recovery in Optically-Switched Data Center Networks

    Get PDF
    Optical switching offers the potential to significantly scale the capacity of data center networks (DCN) with a simultaneous reduction in switching time and power consumption. Previous research has shown that end-to-end switching time, which is the sum of the switch configuration time and the clock and data recovery (CDR) locking time, should be kept within a few nanoseconds for high network throughput. This challenge of low switching time has motivated research into fast optical switches, ultra-fast clock and amplitude recovery techniques. Concurrently, the data rate between server-to-server and server-to-switch interconnect is increasing drastically from the current 100 Gb/s (4×25 Gb/s) to 400 Gb/s and beyond, motivating the use of high order formats such as 50-GBaud four-level pulse-amplitude modulation (PAM-4) for signalling. Since PAM-4 is more sensitive to noise and distortion, digital equalizers are generally needed to compensate for impairments such as transceiver frequency rolloff, dispersion and optical filtering, adding additional time for equalizer adaptation and power consumption that are undesired for fast optical switching systems. Here we propose and investigate an equalizer state caching technique that reduces equalizer adaptation time and computation power consumption for fast optical switching systems, underpinning optically-switched DCNs using high baud rate and impairment-sensitive formats. Through a proof-of-concept experiment, we study the performance of the proposed equalizer state caching scheme in a three-node optical switching system using 56 GBaud PAM-4. Our experimental results show that the proposed scheme can tolerate up to 0.8-nm (100-GHz) instantaneous wavelength change with an adaptation delay of only 0.36 ns. Practical considerations such as clock phase misalignment, temperature-induced wavelength drift, and equalizer precision are also studied

    Optical Communication with Semiconductor Laser Diode

    Get PDF
    Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type

    Variable-rate optical communication through the turbulent atmosphere

    Get PDF
    It was demonstrated that the data transmitter can extract real time, channel state information by processing the field received when a pilot tone is sent from the data receiver to the data transmitter. Based on these channel measurements, optimal variable rate techniques were derived and significant improvements in system perforamnce were obtained, particularly at low bit error rates

    Advanced Equalization Techniques for Digital Coherent Optical Receivers

    Get PDF

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity
    • …
    corecore