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ABSTRACT

The performance of optical communication links over atmospheric channels is
severely limited because of the effects of turbulence. One method of recovering some
of the atmospheric fading losses is to match the instantaneous signalling rate to the
channel state. We demonstrate that the data transmitter can extract real-time channel-
state information by processing the field received when a pilot tone is sent from the
data receiver to the data transmitter. Based on these channel measurements, wederive
optimal variable-rate techniques, and show that significant improvements in system
performance are obtained, particularly at low bit error rates.
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I. INTRODUCTION

A confirmed microwave communication engineer might pose the obvious question,

Why would anyone be seriously interested in investigating optical communication sys-

tems? We could give him the following answer.

With the continuing development of compact, powerful lasers, and efficient optical

processing devices, the potential of optical communication systems'for ground-to-

ground, ground-to-space, and space-to-ground links is steadily increasing. The advan-

tages of communicating at optical frequencies are quite persuasive: the large available

bandwidth affords the luxury of transmitting at high data rates, as well as the possibility

of frequency-multiplexing large numbers of parallel channels which is advantageous for

communication-satellite applications. Another desirable feature is the characteristi-

cally large antenna gains that can be realized for optical transmitters with physically

small apertures. From a strictly academic viewpoint, we cannot discount the appealing

challenge of studying a relatively new field of communication theory.

Until very recently, there has been a general reluctance to establish optical com-

munication links through the Earth's atmosphere. Optical communication systems that

are nearly optimal for the free-space channel can suffer severe performance degrada-

tions when used in the atmosphere because of the effects of turbulence. The term

"atmospheric turbulence" refers to the interaction of thermal layers in the air which

produce microscale temperature variations resulting in random spatial and temporal

fluctuations of the optical refractive index. Its effects on optical transmissions through

the atmosphere include antenna beamwidth spreading, the appearance of a beam-pointing

problem, and a decrease in the spatial and temporal coherence of the received field,

because of random amplitude and phase distortion.

We are concerned in this report with digital data transmission through the

turbulent atmosphere. The reliability of such optical communication links is often

unsatisfactory because the atmospheric channel is characterized by deep fading for a

significant fraction of time. We can overcome most of the undesirable effects of atmo-

spheric turbulence on optical communication links by employing certain countermea-

sures. One technique is the use of a diversity-transmission scheme. Under the

assumption that the atmospheric fading over each diversity path is essentially indepen-

dent, deep fades on a particular diversity path will have a reduced influence on the over-

all error rate. For example, when the receiving aperture is large relative to a spatial

coherence area of the received signal field, a spatial diversity approach can be adopted.

This option is not available in a ground-to-space link, however, because the satellite

generally intercepts a single spatial mode of the faded signal field. Another approach

is to employ a temporal diversity scheme of the following form. We transmit

a data stream of K bits, each with baud time T, such that KT exceeds the coherence

time T of the atmospheric channel. We then repeat the entire K-bit transmission

above D-1 more times to establish a D-fold temporal diversity system.



Another method of decreasing the effects of turbulence on the performance of an

optical communication link is to use coding techniques. For example, a practical sys-

tem might transmit binary-coded data and employ two- or three-level receiver quan-

tization corresponding to a binary symmetric channel or a binary erasure channel.

Consecutive code words would be interleaved so that adjacent channel symbols in any

code word are separated by an interval greater than T ; .then the fading for each channelc
symbol in a particular code word is independent. Still another option is the use of trans-

mitter feedback: the optical communication system can be designed to permit the

receiver to request that a particular data transmission be repeated in the event that the

received energy for that bit interval lies below a certain threshold.

One especially promising area of current research involves the development of

optical communication systems that measure the atmospheric channel fading. Channel-

measurement receivers are being studied as a refinement of diversity communication

schemes. These receivers estimate the channel fading over each diversity path, and

then incorporate these estimates into their decision strategy.

Channel-measurement transmitters employing adaptive modulation techniques are

also being investigated. This approach is feasible because the turbulent atmosphere

has two convenient characteristics. The first of these is the point-reciprocal nature
2

of the atmosphere : this permits the atmospheric fading for an optical link to be moni-

tored by the use of a pilot-tone probe sent from the information-signal receiver to the

transmitter. Also, the atmospheric fading has a coherence time T of a millisecond
3 c

or more. Consequently, the channel measurements can be time-averaged over suf-

ficiently long periods to minimize the influence of noise, and the transmitter has time

to employ adaptive countermeasures based on these channel measurements.

There are two basic approaches to the problem of transmitter adaptation. The trans-

mitter can spatially modulate the information signal wavefront according to its channel-
4

state measurements to compensate for atmospheric distortions. Alternatively, we can

consider temporal adaptive modulation. Specifically, the transmitter can use a pilot

tone to monitor the atmospheric fading over the channel and adjust the transmitted data

rate to match the fading. This report will be concerned exclusively with the last tech-,
nique.

The concept of variable-rate, channel-measurement transmitters has been success-

fully applied at microwave frequencies in schemes such as the JANET meteor-burst

communication system. At optical frequencies, however, we have an additional burden

in that spatial variations in our signals are much more important than in the micro-

wave region. Also, for the case of optical direct-detection receivers, we must contend

with Poisson statistics instead of the more familiar Gaussian statistics. Another dif-

ficulty is that optical signals transmitted through the atmosphere are subjected to log-
/ _ Q

normal fading, " and integral expressions involving the log-normal probability density

are often mathematically intractable.

In the rest of this report, we shall focus on the problem of adaptive, variable-rate



optical transmission of binary orthogonal signals over an atmospheric channel. We have

chosen to examine this detection problem for two optical communication links: one

established from the Earth to a synchronous satellite (a ground-to-space link), and one

entirely in the atmosphere (a ground-to-ground link): We shall be primarily concerned

with the single-detector case, in which spatial diversity is either unavailable or ignored

for simplicity. . .

In order to. establish convenient notation, and to provide a reference frame for the

variable-rate results, we shall analyze several nonadaptive, fixed-rate optical com-

munication systems. We shall derive the. relevant atmospheric fading statistics for the

cases of heterodyne- and direct-detection receiver, and then evaluate the performance

of fixed-rate systems for these two cases. To use adaptive-trans miss ion techniques,

we must be able to measure the atmospheric channel fading. We shall examine atmo-

spheric reciprocity and the way in which the relatively long fading coherence time can be

exploited to provide channel-state information through the use of a pilot-tone probe.

Based on these channel measurements, we shall derive some efficient variable-rate

transmission strategies, and compare the resulting performance with that of the fixed-

rate optical communication systems. Finally, we shall conclude by comparing the perfor-

mance of our variable-rate schemes with systems employing adaptive spatial modulation

or spatial diversity techniques.



H. NONADAPTIVE OPTICAL COMMUNICATION THROUGH

THE ATMOSPHERE

2. 1 ATMOSPHERIC FADING

Consider an optical communication link between the Earth and a synchronous satel-

lite, which we call a ground-to-space system. As shown in Fig. 1, the ground and space

antennas are represented by the parallel planar apertures R. and R,, whose axes, are

on a common line. The imaginary, infinite plane RZ is parallel to planes R. and R and

tangent to the "top" of the atmosphere. Propagation between planes R, and R, separated
i C* . •

by a distance d on the order of kilometers, occurs through the clear turbulent atmo-
3.

sphere. Propagation between planes R, and R_, separated by a distance d. of approxi-

mately 40, 000 km, is through free space.
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Fig. 1. Channel model for optical ground-to-space link.

Under the assumptions that our information signals are narrow-band relative to the
9carrier frequency f , and the atmosphere-free space channel is nondepolarizing, if we

communicate with a single transverse polarization component we can represent the elec-

tric field at any point r in space and at some time t by

e (r, t) = Re f -[_E(r, t ) e (1)

where E(r,t) is the complex amplitude or envelope of the field. Henceforth, we shall

deal mainly with complex field amplitudes, suppressing the carrier. We shall assume

that the complex field amplitude of the transmitted information signal can be separated

into the product of a spatial and a time-variant waveform. As a reminder that we are

now concerned with ground-to-space propagation, and to avoid ambiguity when we later

introduce a space-to-ground pilot tone to probe the channel, we shall represent the spa-

tial component of the complex envelope of the field in the R~-plane by U.(r.), i = 1,2, 3,

where the arrow indicates the direction of field propagation in the model of Fig. 1.

Thus the complex field amplitude of the information signal transmitted from the

ground terminal is given by



E t ( r 1 , t )= - U j f r j ) s(t); r e RV t e , (2)

where j7~ is the signal baud of duration T seconds. The expression in Eq. 2 is normal-

ized so that the transmitted energy is simply

1 (3)

To this end, we arrange to have

dt | s ( t ) | 2 = 1 (4)

and choose the spatial modulation to have the form

U, (r ) = -= e ; k = Y , i e R 1 , (5)
1 1 X l l

where A is the area of transmitting aperture R, . The implication of Eq. 5 is that the

signal transmitted by a laser of wavelength X in the ground station is a collimated sec-

tion of a plane wave with a tilted phase front. This tilt is characterized by the direction

cosine vector 6 relative to the optical axis.

Let us now examine the field received at aperture R, . We have previously assumed

that the atmospheric turbulence causes negligible depolarization, and that the trans-

mitted field is linearly polarized. We shall further assume that the coherence bandwidth

of the turbulent channel exceeds the bandwidth of s(t), and that channel multipath can

be neglected. For convenience we shall ignore the fixed channel propagation time

delay from transmitter to receiver. Finally, we shall assume that the signal baud

duration T is less than the coherence time T of the turbulent atmosphere. Then the

complex envelope of the received field can be written in the form

3(r*3) s(t) + Eb(r*3,t); ?3 e R^ t <= &~ (6)
1

Eo(r3'*>

The complex, zero-mean, Gaussian random process E, ( r _ , t ) represents the relevant
12polarization component of the additive noise field, which accounts for background light.

The real and imaginary parts of E , ( r - , t ) are assumed to be statistically independent,

identically distributed, and stationary in time and space. Furthermore, E, (r , t) can

be essentially treated as a spatially and temporally white random process:

* *E ( r 3 , t ' ) = 2Nb\uQ(r3-r3) UQ(t-t' ), (7)



where N, is the radiance of the relevant polarization component of the background light,

X is the wavelength of the optical carrier signal, and u (•) is the unit impulse function.

To .determine U, (r ), we note that the system of Fig. 1 is linear because of the lin-

earity of Maxwell's equations. We can therefore define an impulse response or Green's

function h (r,,'r.) to characterize the propagation of complex amplitudes of electric
~*~d. £* 1

fields through the atmosphere from plane R, to plane R~. Similarly, we define h f(r^,r2)

for propagation through free space from plane R, to plane R,. Then we have

Rl

dr 2_h a(r 2 , TJ) h f(r3 , r2) e ; r3 e R3' (8)

For a satellite at synchronous altitude, d- is generally large enough for typical trans

mitting and receiving apertures that we can accurately approximate the free- space

impulse response by

Just as we ignored the fixed channel propagation time delay in Eq. 6, we shall here-
jkd

after ignore the constant phase delay -j e in Eq. 9. Furthermore, the atmosphere

is point- reciprocal, which means that for a single atmospheric channel state (that is,

within a temporal coherence interval), we have

ha(r2, ?j) = ha(r rr2); . i^ S Rj, . . (10)

where h ( r . , r 7 ) is the impulse response for complex field amplitude propagation through•^a I ^ _. .
the atmosphere from plane R, to plane R. . We can therefore rewrite Eq. 8 in the form

R2

(11)

t 1

The term in brackets in Eq. 11 is the atmospheric perturbation of an infinite plane

wave transmitted from plane R9 to plane R . Statistically, it can be represented by a
14complex log-normal random process of the form

dr? h (r , r~) = Z e = Z exp[x(r ) + j < j > ( r . ) J , (12)
R2 ' .

where v ( r , ) is a complex Gaussian random process whose real and imaginary parts,



X(r ) and 4>(r .) , are assumed to be temporally and spatially stationary and often, for

simplicity, statistically independent, although this last assumption is not well justified

physically. The normalization constant Z can be chosen so that

2,

= 1, which
2 2implies that m = -o- , where m and <r are the mean and variance of the amplitude

X x X X H

term x(r ,)- The phase term <$>(r ) has a sufficiently large variance at any point r so
' 16

that it appears to be uniformly distributed over (0, 2ir). The spatial coherence area

A of x ( r i ) is typically larger than the phase coherence area A , so that A .also

\(?,)
represents a spatial coherence area of e

Therefore, Eq. 11 can be simplified to read

.,

where we have defined the complex random fading parameter with amplitude u and

phase Jj to be

Z e 1 . (14)

1

Equation 13 demonstrates that for typical transmitting and receiving apertures for which

the approximation of Eq. 9 is accurate, the synchronous satellite receives a single spa-

tial mode of the faded signal field at the top of the atmosphere; that is, the received sig-

nal field is spatially coherent over aperture R .

Let us now examine the statistical behavior of the fading parameter ue-' for several

\ ( r j )
special cases: (i) If A <A , then the random process e can be represented over

the entire aperture R, by the random variable e = exp(x + j«J>). By Eq. 14, the ampli-

tude fading parameter is then given>by

u = A^ 1 dr, e Z ex s C(9) Z,ex , . . (15)

so that u is a real log-normal random variable. The phase term fy is uniformly dis-

tributed over (0, 2-rr), since <|> is uniform over (0, 2ir). (ii) If A is slightly larger than

A ,, the random process e has an approximately linear phase tilt over aperture R.:

e

where the tilt is characterized by a random direction cosine vector < f > . - Then we have



dr e Z eX . (17)

the statistical behavior of the amplitude fading parameter u is difficult to evaluate. 17

(iii) Now suppose aperture R, is large enough to contain many spatial coherence areas

of e Stated another way, suppose A » A
*

In this case, it has been demonstrated
18theoretically that u is essentially a Rayleigh random variable. In fact, a similar theo-

retical technique is adopted in Appendix A to show that, for sufficiently large aper-

tures R,, ue^ appears to be a zero-mean, complex Gaussian random variable whose

real and imaginary parts are identically distributed and statistically independent. This

implies that u is Rayleigh, ^ is uniform over (0, 2tr), and u and ty are independent.
19This result is supported by Halme's computer simulation analysis.

From Eqs. 6 and 13, we see that the signal field received at the satellite has complex

envelope

s(t); (18)

The corresponding signal energy received at the satellite aperture EL during a baud

^interval, averaged over the fading is then

= u _ v- u E (19)

where A is the area of receiving aperture R-. Using Eq. 14 and the covariance function

for e we can show that u , and hence the average received signal energy, is maxi-

mized when the transmitted phase front tilt 9 = 0.

Let us now leave the ground-to-space link to consider briefly an optical communi-

cation system that is entirely in the atmosphere, such as a ground-to-ground link. We

shall use a modified version of the channel model of Fig. 1 (see Fig. 2).

i/>

\

APERTURE R, APERTURE R?

(AREA Af) (AREA A,)

OPTICAL AXIS

ATMOSPHERE

u
UJ
e£

r2

Fig. 2. Channel model for optical ground-to-ground link.



The transmitted information signal is assumed to be similar to that defined by

Eqs. 2-5 for the ground-to-space link, except that for simplicity the phase-front tilt ff

relative to the optical axis is set to^O:

j ) s(t); r e R j . t e y , (20)

where

f dt | s ( t ) | 2 = 1 (21)
Jy-

and

v^—; ^eRr (22)

-. Making the same assumptions that led to Eq. 6, we can represent the complex ampli-

tude of the received field by

E (r2 , t) = N U2(r2) s(t) + E . ( 2 , t ) ; 2 <= R , t e . « , (23)
X. "" _ I

EQ(?2.t)

where

t 1

(24)

and h (r , r ) is again the impulse response for complex field amplitude propagation
"•^cl d* \ '

through the atmosphere from plane R, to plane RZ- Analogously to Eq. 12, we can write

U 9 ( r_ ) in the form
"** Ci Ci

1 VfyU ( r ) = — = Z ' e " , r e R (25)

where v(r ) is a complex Gaussian random process with the same general statistical
• L*

properties as ^(r ,) , and, under the assumption that U9(r0) would be a plane wave overi — t. £.
aperture R_ in the absence of atmospheric turbulence, Z1 can again be chosen so

V'(??)
 2 .

that e = 1. .

In the case of the ground-to- space link, we have seen in Eq. 13 that the

received signal field was spatially coherent over the receiving aperture, regard-

less of the aperture size. For the ground-to-ground link, Eq. 25 tells us that the

received signal field is generally incoherent over the receiving aperture, except for

sufficiently small apertures R~.



2.2 HETERODYNE -DETECTION RECEIVERS

We shall now analyze the performances of our fixed- rate optical communication links

for the case in which heterodyne -detection receivers are used. Helstrom has argued that

if the optical heterodyne receivers have a sufficiently intense local- oscillator field, the

detection problem is reduced to the familiar form of an IF signal and additive Gaussian
22

noise; for convenience, his arguments are reviewed in Appendix B.

Applying the results of Appendix B to the ground-to- space link, the angular plane-

wave component of U-(r-) with direction cosine vector 4> is given by

/̂A" :. p
= ue>* \ (26)

R3 f R3

using Eq. 13 and Eq. B8. Inserting Eq. 26 into Eq. B14, we find that the output of the

heterodyne processor, conditioned on the atmospheric channel state, reduces to the

standard form

n(t); t e « , (27)

(28)
I-'D °

af~r

and the noise term n(t) is a zero-mean, white Gaussian random process with power

density given by Eq. B18. Also, f, is the frequency offset of the local-oscillator field

from the signal carrier frequency f , and the phase term fy, is uniformly distributed

over (0, 2ir) .because ^ is uniform over (0, 2ir).

The heterodyne receiver extracts the temporal variation of one spatial mode of the

received field. It has a very narrow field of view, and if the local-oscillator field is

a plane wave in the direction <f. it only extracts those plane-wave components of the

received field whose angle of propagation differs from <f> by X/D radians, where X is
23

the wavelength,, and D is the diameter of the (circular) receiving aperture R . Despite

the fading, because of the great distance between the ground and the satellite, essentially

all of the received signal energy is contained in the plane-wave component travelling

along the optical axis. Consequently, the energy parameter E has a sharp maximum at
^^ S

<t> = 0, where E has the value E of Eq. 19, and E is approximately zero elsewhere. Thus
S O S • '

for 4> = 0, the heterodyne receiver recovers all of the signal energy incident on aper-

ture R,. For the sake of generality, we leave 4> explicitly in our calculations, but

because of the considerations above we would always use <f = 0 in practice.

Turning next to Eq. 25 and the ground-to-ground link, we can write

10



_ -jk4>-r ? A
U (<t>) = \ dr. U-(rJ e = —L ueJT, . (29)

JR2 ^
where this time we define a complex fading parameter

id, 1 C - 2 _
ue j t= -jM dr- e ^ Z1 e . (30)

r R2

The statistical properties of ue^ defined in Eq. 30 are analogous to those of the fading

random variable defined in Eq. 14, except that they now depend on the relative sizes of

V(?2)
aperture R_ and the spatial coherence area A ,, of e (which depends on the size

of aperture R , ) . In particular, if A < A ,,, u is log-normal:

U = A L

r
Z1 ex' = C'(40 Z' ex'. (31)

If A » A , u is a Rayleigh random variable. The phase term ^ is always essentially

uniform over (0, 2ir).

Thus, an optical heterodyne receiver in the ground-to-ground link can be arranged

to produce an output r(t) in the standard form of Eq. 27, with an energy parameter

(32)

As in the case of the ground-to-space link, -setting 4> equal to 0 maximizes the average

signal energy u E in r(t). It appears at first glance from Eq. 32 that we should make
S

the transmitting aperture small to increase the average received signal energy, but this

is not the case. For example, if we decrease A , there is an accompanying spread in

the transmitted beamwidth because of diffraction through aperture R . This beamwidth
2

spreading is reflected in a decrease in Z' so that u decreases to more than offset

the increase in E .
S

The single -detector heterodyne- receiver model characterized by Eq. 27 is therefore

valid for both the ground-to- space and the ground-to-ground communication links. We

should note at this time, however, that a single-detector receiver is not optimal for the

ground-to-ground channel when A > A , , so that the received signal field E ( r~ , t ) is
I* C Y - O "

spatially incoherent over aperture R,. As we have said, the heterodyne receiver is
Li

sensitive to only a single spatial mode; consequently, much of the received signal energy

would be lost if E ( r_ , t ) were incoherent over aperture R9. A more optimal receiver
O i-t L*

would use an array of heterodyne detectors to extract signal information from each of

the spatial modes of E (r,, t) over aperture R7, thereby taking advantage of the spatial
O u £j

u



24 25
diversity in the system ' (see Section V).

We shall now consider the binary detection problem for our optical communication

links, using the optimal single-detector model of Eq. 27. We shall treat the case in

which we use equiprobable signals of equal energy. Under each of the two hypotheses,

H, and H,, r(t) will have the following form, modified from Eq. 27, conditioned on the

atmospheric channel state:

' r(t) = -/2IT u|s.(t) | cos
o X

n(t); , H., i = 1, 2,

where

dt s.(t) s. (t) = 5 i_; i, j = 1,2,

and 6.. is the Kronecker delta. The binary decision rule has the form26

j dt r( t) |S l( t) | <
H

V
J

dt r(t)|s2(t)| e
j2irf t

(33)

(34)

(35)

independent of the atmospheric channel fading. The probability of a detection error,

conditioned on the fading parameter ue , is given by

P(€|u,v|0 = P ( € J u ) =7 exp -
u2E

(36)

which depends only on the amplitude fading parameter u. Averaging P(e |u) over the

atmospheric fading, the probability of a communication error on a single transmission is

P(e)= P(e
r-u i ("»
U) = 2 ]

* J0
du p(u) exp I- 2N (37)

where p(u) is the probability density function of u.

Consider first the special case in which u is a Rayleigh random variable, with
2~

second moment u denoted by a

2_ u

p(u) = Q e a u . (u), (38)

where, using Eq. 14 for the ground-to-space case,

~7 7
2 C -

= u
2 = %- - \ dr.

A7 JR,

- j k e - ( r - r ' ) v(r ) v (r! L)
d?. e ' l l e l e l , (39)

12



and u_, (• ) is the unit step function. Then we find that

1

28

P(e) = aEc

~N~

(40)

Now let us consider the case in which u is a log-normal random variable. For the
2

ground-to-space link, using Eq. 15 and the fact that m = or , we have
X X

and

?
u =

P(u) =

? -**
(6),

1

uo- N/~2~irr
X

exp< -

Then we find that

Z2C2(9)
2N

! , 0 ;< r

where the "frustration" function Fr [ . , . ; . ] is defined as29

(41)

(42)

(43)

Fr
po

[a ,p ;c r ]= \
J

dv
(Inv+o-

vtr
exp -

2cr
(44)

I ( •) is the zero-order modified Bessel function of the first kind, and E is given by
O " S

Eq. 28. Similarly, for the ground-to-ground link, using Eqs. 31 and 32, we can show

that P(e) has the same form as in Eq. 43:

P(e ) = •£•:
Z' 2C' 2 (?)E

(45)

Although the frustration function cannot be evaluated explicitly, reasonably tight upper

and lower bounds have been determined for it, and it has been evaluated on the com-
31 32

puter by using numerical integration techniques. '

2.3 DIRECT-DETECTION RECEIVERS

Now let us turn our attention to the case in which our fixed-rate optical

communication systems use direct or energy detection in place of heterodyne

detection. As in Eq. Bl, the complex envelope of the field reaching the receiver

aperture R, for either the ground-to-space case or the ground-to-ground case

has the general form

13



E ( r , t ) = N/e U ( r ) s ( t )+ E. (r, t);r v ^ > "
R, (46)

E0(r.t)

where E (r, t) is the complex envelope of the faded received signal field, and the noise
o

term E, (r, t) is a white Gaussian random process over the spatial and temporal modes

of E (r, t) in aperture R.

E.(T,t

Fig. 3. Block diagram of direct-detection receiver.

The linear field processor shown in the block diagram of Fig. 3 typically contains

temporal and spatial filters designed to limit the background noise while passing essen-

tially all of the signal field, so that we can write

E d ( r , t ) = (47)

where the noise variance | E,, (r, t) | is now finite.

The detector output d(t), conditioned on the atmospheric channel state and the back-

ground noise, is a filtered Poisson process with rate parameter (J.(t) defined by Eq. B5.

Often, after averaging over the Gaussian background noise, d(t) can be treated as a

conditional inhomogeneous Poisson process with rate parameter

(48)

provided that some conditions, which are usually satisfied by practical communication

systems and natural background radiation, are met.

s(t) |H2

•A
T T
2

1 T
2

Fig. 4. Binary PPM signals for optical communication links.
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We shall now determine error probabilities for our optical links for the case of

binary PPM communication. Suppose that under either of two equiprobable hypotheses,

s(t) is real and has the form indicated in Fig. 4. Then, under hypothesis H., i = 1,2,

Eq. 48 reduces to the form

u
T

0 < t <

(49)

where we have used Eqs. 46 and 47 to define

,-M2

R
d? |U(r) | (50)

in terms of a real fading random variable u which will be specified below, and

(51)
R

For the ground-to-space link, substituting Eq. 13 in Eq. 50, we can identify

hvTX
7 ? ' (52)

with u defined by Eq. 14:

_ Z
(53)

As discussed in section 2. 1, u is log-normal if A < A , and u is essentially Rayleigh

when A, » A
t ex

Using Eq. 25 in Eq. 50 for the ground-to-ground link, we can write

hvTA t '
(54)

and

_ 2X'(r2)
r e . (55)

When A < A ., we can deduce from Eq. 55 that u is a log-normal random variable
r ex

given by

15



u = Z' ex . (56)

2
For the case A » A ,, theoretical studies have shown that u , and hence u, is accu-

r c^ 37-39rately approximated by a log-normal random variable.

Let us now determine the probability of a detection error on a single transmission,

conditioned on the fading parameter u. Denote the number of counts registered by the

direct detector in the first- and second-half signal bauds of duration T/2 by n. and n~,

under the Poisson model above, n. and n« are statistically independent with conditional

distributions given by
\

Pr[nj|H.>u]=^[(u2,s6i.+,Jfpexp[-[(u2,s6..+,n)|]|; i. J = 1,2. (57)

J ^ ^

The optimum decision rule is that of a counting receiver:

H l

V< n2

with the event n = n, being decided by the flip of a fair coin. For convenience, we shall
1 <-

introduce the following parameter definitions:

2~ T
K = u H- "T = average signal counts/baud (59)

S £

. ..*-*
"n

K 2 average signal counts/baud

u T ~ 2 ~ '
n average noise counts/baud

Then, using Eqs. 57-59, we can show that the probability of error for a single baud,
40conditioned on u, is .given by

P(e |u) = Pr [n2 >ni | H ru] - | Pr [n: = n2| HL, u]

TC

2 . 1 2A <"TU "' T /K / ,. ^ . ,,n.
- 2" e ^VA" ̂  1+U °/' (60)

41where Q (• , • ) is Marcum' s Q function of radar theory which is defined by

1 , 2 2 '
/"* OO —~ ^~ (X T"3_ I

Q (a, b) = \ dx x e 2 I (ax). (61)
III %J i • O
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43

42This function has been evaluated numerically on a computer and tabulated. In Appen-

dix C, a useful approximation is derived for the Marcum Q function.

The problem of averaging the conditional error probability P(e| u) in Eq. 60 over the

atmospheric fading for the case in which u is Rayleigh has been considered elsewhere.

It is shown that for Rayleigh fading, the probability of a communication error on a single

transmission is given by

(62)

We can use the approximation derived in Appendix C to calculate an accurate approx-

imation for P(e) above. Using Eq. CIO in Eq. 62, we have

1 1 » 0 . 4 , » i , (63)

where Q( • ) is the Gaussian Q function defined by
44

Q(Z)
l C°

= — — \
• J dx e

/?
~x ' (64)

The two restrictions on Eq. 63 can be replaced by the single sufficient condition

» 1- The Taylor series expansion for Q(Z) about Z = 0 is given by

(65)

Then, since N/K/A » 1 and ^KA » 1 imply that K » 1 for any A, we can use Eq. 65 in

Eq. 63 to show that

(66)

It is convenient to rewrite Eq. 66, modifying the form of the restrictions as follows:

_1

N/

P(e) «P(e) =
/ N/2irKA

(67)
1

Equation 67 is an extremely useful approximation for P(e) in the very interesting range

where'the probability of error is reasonably small.

Now let us consider the case in which we have log-normal fading. Unfortunately,

our discussion will of necessity be brief: when u is log-normal, the evaluation of P(£)

17



involves an exceedingly difficult average of P(e| u) over u which has yet to be success-

fully carried out. Bounds on P(e) for the more general case of M-ary signalling have

been attempted: however, even when M = 2 as in our problem, these bounds do not yet

have an explicit form for general signal-to-noise ratios. '

18



III. CHANNEL MEASUREMENT

In Section II, we determined the relevant atmospheric fading parameters for the

optical ground-to-space and ground-to-ground links employing heterodyne or direct

detection receivers. In order to design variable-rate transmitters that can adapt to

the atmospheric channel state, we need to show that we can measure these fading param-

eters at the data-transmitter terminal.

3. 1 GROUND-TO-SPACE LINK

We want to track the atmospheric fading over the optical ground-to-space link of

Fig. 1 by using a satellite beacon to transmit a pilot tone down to the ground terminal.

By exploiting atmospheric reciprocity, we shall show that the received beacon signal

can be processed to yield channel-state information, which will allow us to employ adap-

tive transmission techniques on the uplink. This technique is feasible because all of the

fading occurs in a narrow atmospheric layer (having a width d of the order of kilome-a
ters), which surrounds the Earth. Furthermore, the coherence time T of the atmo-

47 48 *""spheric turbulence is of the order of a millisecond or more. ' Consequently, a

pilot tone can travel over the downlink and be processed by the ground terminal to

determine the atmospheric fading, after which an information signal adapted to the

fading can be sent over the uplink, all within the same atmospheric channel state.

Therefore, although the atmospheric fading is a time -variant random process, we

shall restrict ourselves to a single atmospheric state in our analysis, and treat the

fading as a random variable. The ground terminal transmits the information signal

in the direction 9 relative to the optical axis, as indicated in Eqs. 2-5. For both

the heterodyne and direct detection cases, the relevant complex fading parameter is

ue defined by Eq. 14. The complex envelope U_(r.,) of the spatial term in the signal

field received by the satellite is coherent over aperture R,, and is written in terms of

ue in Eq. 13. Combining Eqs. 8 and 26, we' can represent the angular plane-wave

component of U_(r ) in an arbitrary direction a by

- - - - - j k ( 8 - r - a ' - r )

(68)

We shall show that we can use a pilot tone transmitted from the satellite in the direc-

tion -a to measure the quantity U (a ) at the ground terminal. Equation 68 shows
_». ijlj -j.

us that U (a ) is proportional to ue for any value of a , and there is no reason to
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set a equal to the direction <j> of the local-oscillator field in the heterodyne-detection

case.

Now let us probe the atmospheric channel fading by transmitting a collimated sec-

tion of a plane wave through aperture R in the direction -a at a constant power level

P . The transmitted pilot tone has a complex field amplitude.

(69)

In our analysis, arrows under spatial components of fields will indicate the direc-

tion of propagation in reference to Fig. 1.

Under the same assumptions required to justify the form of the received field in

Eq. 6, we can represent the pilot-tone signal field incident on aperture R. by

where

(71)

In Eq. 71 we have defined the impulse response jif(r r" ) to characterize complex
— *• ^

field amplitude propagation through free space from. R. to R_, and h (r , r . ) for

propagation through the atmosphere from R~ to R,.

Defining U,(p ) to be the angular plane-wave component of U.(r ) over aper-

ture R in the direction (3, we can write

_ -jkp*-r

- ' - _ • - - -Jk(p-r 1 + a . r 3 )

R, 3-a I1 2 -f Z' 3
r L c, 3

Now the free-space channel is point-reciprocal, so that

h f(?3 , r2)= h f(r2 ,r3). (73)

Furthermore, since we are concerned with a single atmospheric channel state, the

atmospheric reciprocity relation of Eq. 10 is applicable. Therefore, we find that
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T y

A, -t

(74)

where U.(-6 ) is the angular plane-wave component of U,(r . ) over aperture R. in the di-

rection -0, which is the reverse of the information transmission direction 9. Finally,

from Eqs. 68 and 74, we can determine the desired relation between the ground-to- space

channel fading parameter uej and the received pilot-tone complex field amplitude

j k e - r
< r i , t ) e

(75)
. _ , _

A N/P I dr pAt p JR 3

Let us make a few comments about these results. The channel measurement scheme

for the ground-to- space link is modelled in Fig. 5. We must emphasize the angular

relationships between the information signal and the pilot tone. At the ground ter-

minal we transmit the information signal in the direction 9. At the satellite, we

can extract the angular plane-wave component U (a ) of the signal field incident on

aperture R«. As shown in Eq. 68, the atmospheric fading over this specific uplink

channel, defined by the transmitter /receiver direction pair (9, a), is characterized

by the random variable ue . To measure this fading parameter, we transmit a

pilot tone through the satellite aperture in the direction -a, and extract the angular

plane-wave component U,(-9 ) of the pilot-tone signal field incident on aperture R] ,

as indicated in Eq. 74.

Actually, as we saw in Eq. 68, for the ground-to- space link the same fading

parameter ue ^ applies to the channels specified by the direction pairs (9, a) for

any choice of a. This is because the signal field received by the satellite is coher-

ent over aperture R ; that is, the satellite intercepts only a single spatial mode

of the faded signal field incident on plane R at the top of the atmosphere. In fact,

while it was mathematically convenient in our channel measurement analysis to think

in terms of extracting U (a ) for some arbitrary direction a, this operation is not

ordinarily performed by the satellite. The heterodyne detector extracts the partic-

ular plane-wave component U (cj> ) as shown in Eq. 26, while the direct detector oper-

ates directly on the received field U ( r«) , which is a superposition of plane waves.

For a general optical communication link that possesses spatial diversity, how-

ever, such as the ground-to-ground link for large receiving apertures, the information
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Fig. 5. Channel measurement diagram for optical ground-to-space link.

signal field is incoherent over the receiving aperture. Each independent spatial sig-

nal mode is specified by a different value of a in the direction pair (0 , a ), and is

characterized by a different fading parameter of the form ue . For a system with

spatial diversity, an optimal adaptive transmission scheme requires that we trans-

mit a separate pilot tone in an appropriate direction -a. for each independent spatial sig-

nal mode to measure each relevant fading parameter (see Section V).

Returning to the ground-to-space link, we remarked in section 2. 1 that we would

generally set the transmission direction 0 equal to "0 to maximize the average signal

energy received by the satellite. (An important exception is the adaptive pointing

system discussed below.) Since the direction a in our channel measurement scheme

above is arbitrary, Eq. 75 tells us that we should set a equal to 0 in practice to

maximize the average pilot-tone signal power reaching the ground terminal.

The channel measurement result of Eq. 75 affords the option of introducing adap-

tive pointing at the transmitter terminal to track out some of the atmospherically

induced wavefront distortion, thereby increasing the signal energy received by the
49satellite. This is a limited form of adaptive spatial modulation. In Section V,

we shall discuss a more general technique. In the focal plane RF of the lens in

aperture R, , the field resulting from the received pilot-tone signal E (r , t ) i s given
•L US 1

by

jk

I-' I 2
l r

f l
2f.

f -
Ep f(r f , t) = V r i> t ) e RF'

(76)

where X is the wavelength of the pilot-tone signal, f, is the focal length of the lens

in aperture R, , and we have ignored phase terms that are constant over !{„. Com-
2bining Eqs. 19, 75, and 76, we find that the conditional signal energy u E incident

on aperture R, for a given atmospheric channel state satisfies the relation
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? I -* , ?
V I T7> / f O +\
Vr lEpf (" £M)l

u

PpAt dr, e

2 " (77)

at the point r"f = -f/,6 in the focal plane
*• x~ *? — -

We can clearly maximize u E by observing the point r.
O 1)

Therefore, u E is proportional to the pilot-tone signal-field intensity |E f ( r _ , t ) |

where 6 is the data transmission angle.

in plane R^ where

the pilot-tone signal-field intensity is greatest, and then transmitting the information

signal during that atmospheric coherence interval in the direction 6 = -r, ___.,/£.
I, ITlctX x.

In practice, rf will be near 0 most of the time, so that the problem of scanning

R_ to track the temporal variations of r,. and rapidly adjusting 0 continuouslyr ^ i, max
to match rf should not present any serious mechanical implementation diffi-

culties.

We can define a new amplitude fading parameter v for the adaptive-pointing

scheme, such that the conditional signal energy received by aperture R_ for a given

atmospheric channel state is given by

2,2eX^A r2|Epf(r f jmax,t)|

+
P t

_ -jka • r,
dr e

2 ' (78)

The fading parameter v has a greater second moment than the fading parameter u

characterizing nonadaptive optical systems, so that the adaptive-pointing scheme

obviously results in more reliable communication over the ground-to-space link. The

degree of improvement depends on the probability density function p(v), which is

difficult to evaluate in general. We can approximate p(v) for large -apertures R.

using the following plausibility arguments. Assume that aperture R. is large relative to

a coherence area of e and that it intercepts N independent spatial modes of the

received pilot-tone signal field, where N is proportional to the area A. of aperture R,.

Assume that we can consequently define an array of N points {rf . e R • 1 < i< N} in

focal plane Rp such that the field intensities { |E ,(r, . , t ) | } at these points can be

essentially treated as a set of identically distributed, statistically independent random

variables at any time t. Using Eq. 78, we can correspondingly define a set of N

statistically independent, identically distributed amplitude fading parameters v., where

E P Ato p t
(79]
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Comparing Eqs. 77 and 79, it is clear that the statistical behavior of u is identical to

that of v-, independent of i. As in Section II, we know that when A, » A , corres-1 * PX
ponding to the constraint N » 1, v. is a Rayleigh random variable for each i. The

fading parameter v in Eq. 78 can then be approximated by

v = max [v.]. (80)
1 < i < N 1

Using Eqs. 3.8 and 39 to define the probability density function p(v. ),we can then easily

show that the probability density function of v has the approximate form

N-l2v

P(v) =

2v

1 - e N » 1. (81;

One can presumably determine the improvement in performance of the adaptive -

pointing scheme by using Eq. 81; however, we shall not perform the required cal-

culations at this time.

3.2 GROUND-TO-GROUND LINK

3. 2. 1 Heterodyne-Detection Case

The analysis for the heterodyne-detection/ground-to-ground system is very similar

to that of the previous section with some minor modifications, so we shall briefly review

the mathematical development of the channel-measurement scheme. Recall from Sec-

tion II that the data transmission direction 0 is set to 0 for the ground-to-ground

case. In general, the received signal field E (r t) defined by Eqs. 23 and 24, is

spatially incoherent over receiving aperture R_. The relevant channel fading parameter

ue is defined in terms of the angular plane-wave component U ($ } in Eq. 29, where

4> is the direction of the local-oscillator field in the heterodyne receiver. Combining

Eqs. 24 and 29, we have

_ i P _ f - • - -
U r ( « l » ) = * \ dr dr h (r r )er -v/AT JR 1 JR * • * * 1

_ _ -jk<}>-. iv
dr2 h&

Ll "2

< 8 2 >

To measure the channel fading, we shall transmit a pilot tone through aperture R

in the direction -<j) :

E , \ r n , i) = A / -^ <= = -\ r__ u0ii-0;; i „ e: n (83)
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Then the pilot-tone signal field arriving at aperture R has the form

J j f r j ) ; ^I^K!- (84)

where

_ ^ -JkJjT- r
d r 2 J i ( r , r 2 ) e ; r SR (85)

Extracting the angular plane-wave component U . ( < 3 ) of the received field term U (r, )

over aperture R , we have

— P _* — i P _ p -Jk4> -r ?
U t ( 0 ) = ^ dr^^r^r: \ dr! \ dr

2 ia^l >^2 ) e ' (86)

1 r 1 2

Under the assumption that Eqs. 82-86 refer to a single atmospheric channel state,

Eq. 10 applies, and we conclude that

id; 1 C
"e = \ dr E (r t). (87)

N/P A JR * PS 1
p r 1

3. 2. 2 Direct-Detection Case

For the direct-detection/ground-to-ground system, we want to measure the channel
2 2fading parameter u defined by Eq. 55. Combining Eqs. 24 and 55, we can write u

in the form

9 1

2
Let us try to measure u , using a single plane-wave pilot-tone field transmitted

through aperture RZ along the optical axis; then Eqs. 83-86 hold with c|> = (f. We find

that there is no way to process the received pilot-tone signal field E ( r , , t ) to
2 2 ps i

extract u . For example, since u is proportional to the total information signal

power incident on aperture R9, we might feel instinctively that, because of the recip-
2

rocal nature of the atmosphere, u can be determined by measuring the total pilot-

tone signal power received by aperture R,. Using Eq. 10, however, we find that

the last quantity satisfies :the relation

L (89)
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2
.which resembles the expression for u in Eq. 88. There is, however, no way to

reconcile the differences between the integrals in Eqs. 88 and 89, so that the total
2

pilot-tone signal power is not a sufficient observable for determining u .

We can argue that, in general, it is impossible to measure u by transmitting

a single plane-wave pilot-tone field through aperture R . We have already noted
2 d-

that u is proportional to the total information signal power incident on aperture R2.

The received information signal field is, in most cases, spatially incoherent over

aperture R_, so that the total signal power in the receiving aperture is the sum of

the power in each of the received spatial signal modes. Since each independent sig-
2

nal mode is characterized by a different fading random variable, to measure u we

must use a pilot tone that probes all of these fading parameters. As we remarked in

section 3. 1, a single plane -wave pilot-tone field transmitted in the direction -a only

probes the fading parameter relevant to the received spatial signal mode in the direc-
— • 2tion a, so it is not sufficient to measure u .

2 "
We can measure u , using a single plane-wave pilot tone for the special case which

2
follows. From Eqs. 31 and 56, we see that for the unimodal situation where A <A , u

2 r c*is the same as the parameter u in the heterodyne-detection/ground-to-ground system

for the case where <)> = 0. Therefore, from section 3. 2. 1 , we know that if we transmit

the pilot -tone field

<9 0>

2 —then u is related to the received pilot-tone field E (r. , t) according tos i

R

p s

(91)

2
The fact that we do not yet know how to measure u for the general case in which

we use a single detector in the direct-detection receiver may not be a serious omis-

sion. When A > A , a more optimal direct-detection receiver contains an array ofr C X , 5 1
D detectors, where D is of the order of A /A . In this case, there are D sepa-

2 r ^X
rate fading parameters of the form u to measure, and this can be accomplished by the

use of D different pilot tones, where each measurement is similar to that defined by

Eqs. 90 and 91 (see Section V).
There is a general comment that we should make concerning the channel-

measurement/adaptive transmission scheme for the ground-to-ground link. In the anal-

ysis in sections 3. 1 and 3. 2 it was assumed that if we transmitted a pilot-tone over

an optical channel in one direction, and then sent an information signal in the reverse

direction, both transmissions would be affected by the same atmospheric channel state.

Because of the large distance between the Earth and a synchronous satellite, this
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restriction prevented us from using a ground-to-space pilot-tone probe to establish an

adaptive communication system over the space -to-ground link. In the ground-to-ground

case, however, our results could readily be extended to a two-way adaptive communica-

tion system in which, for efficiency, the information signal transmitted in each direc-

tion becomes the effective pilot tone on which adaptive transmissions in the other

direction are based.

3. 3 CHANNEL-MEASUREMENT NOISE

We have demonstrated that we could determine the atmospheric fading over our opti-

cal communication links (with the exception of the direct detection/ground-to-ground

case when A > A ) by the use of a pilot-tone probe. Ignoring any accompanying

noise, we showed that the received pilot-tone signal field E (r ,t) is related to the
idi(t) Ps

relevant channel fading process u(t) ej v by an expression of the general form

z(t) = u(t) ej4;(t) = B f dr E (r t)e ^ (92)
Jpj L Pb L

where we have extended our earlier results beyond a single temporal coherence inter-

val allowing the atmospheric fading parameter to vary with time. From Eq. 75, the

complex parameter B for the ground-to-space link is given by

\d NfA~
B= - - - - - :r-^-. (93)

From Eqs. 87 and 91, we see that for the ground-to-ground link, with the exception

of the direct-detection system when A > A , the direction 0 is equal to 0, andr GX

B= - — . (94)

Actually, as in Eq. 6, the received pilot-tone field can be written in the form

V?rt) = V?iit) +V?rt)! ?ieRi ' (95)

where the complex, zero-mean Gaussian random process E ,(r , t) represents the

relevant polarization component of the additive background noise field. The real and

imaginary parts of E ,(r , t) are assumed to be independent, stationary, and identi-

cally distributed; also, E ,(r* , t) can be treated as a white random process in time

and space. Then we can write
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[Epb(?l't)] (95)

= 0

t) E 2 ( r « , t « ) = 0

E^r^.-t) E 1 ( r « 1 , t ' ) = E 2 ( r 1 , t ) E 2 ( r ' 1 , t ' )= Nb\ ^(r^rpu^t-t1), (96)

where NJ is the radiance of the relevant polarization component of the background light,

and \ is the wavelength of the pilot tone.

Let us now eliminate the spatial dependence of the observable E (r ,t) which we

want to use to monitor the fading process z(t). Using Eq. 92, we can define a new observ-

able x(t) by extracting the angular plane-wave component of E (r , t) in the direc-

tion -0:

x(t) = \ dr'j E r ( r 1 , t ) e = ^ z(t) + n (t), (97)
Rl ^

where n, (t) is a complex, white Gaussian random process specified by

_ _ jke'-r'
dr E (r t)e L. (98)

Rj 1 pD i

Using Eq. 96, we can show that the real and imaginary parts of n, (t), denoted by

n (t), satisfy the following conditions:

n r( t ) =n2(t) = 0

nj(t) n 2 ( t ' )= 0

n^t) n^t') = nz(t) nz(t') = A^X uQ(t-t«). (99)

Suppose we want to transmit an information signal during the interval (t ,t +T).

We shall assume that the baud time T is less than the atmospheric channel coher-

ence time T so that the relevant fading parameter z(t) ~ z(t ). We could try to
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design a realizable filter that makes an optimal estimate of z(t ), or u(t ) for that

matter, based on the observation of x(t) over the. interval (-°°,t ) and the temporal

covariance function of z(t) or u(t). While this technique appears to be interesting, the

associated mathematics may be rather difficult.

We shall therefore consider an alternative, and much simpler, approach. Define a

new observable r(t), which is a continually updated T -second time average of x(t) over

the interval (t-T , t ) , normalized so that the mean of r(t) is z(t):

R ft
r(t) =T^- \ dt« x(t'). (100)

°Jt-To

Suppose we want to transmit an information signal during the T-second interval

y = (t , t +T), where

T + T « T (101)o c

so that z(t) = z(t ) over the interval (t -T ,t +T). The adaptive transmitter will use

some variable-rate strategy, still undetermined (see Section IV), to adjust the baud

time T according to the observable r(t '). Denoting the random variables r(t ) and z(t )

by r and z, and the averaging interval (t -T ,t ) by $~ ,.for convenience, we have

j_, i f — - J""v x 1r = £- \ _ dt J d i - j E ( i - j . t j e = z + n, (102)

where the noise term n is a complex Gaussian random variable which is independent

of z and is defined by

n = ^J dtnb(t). . (103)

Using Eq. 99, we can show that the real and imaginary parts of n, represented by n]

and n,, satisfy the relations
Lj

nl = n2 =

2
nl

I
2

n 2-

? ?
3 A N' X

t

To

NT
m
2 '

(104)

3.4 CHANNEL-MEASUREMENT STATISTICS FOR RAYLEIGH FADING

For convenience, we shall represent the complex random variables in Eq. 102

in polar form and also in terms of their real and imaginary components:
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r = pea = rl + j r 2 > n = r\e = nl + jn2, • z = ue = z^ + ]z^. (105)

In Eqs. 36 and 60, we showed that the probability of a communication error on a

single transmission, conditioned on the atmospheric channel state, depends only on

the amplitude fading parameter u for both the heterodyne-and direct-detection cases.

Accordingly, our adaptive-transmission strategy for a given signal baud will depend

on our determination of u based on the observable r.

At this point, it is mathematically convenient to restrict ourselves to the case

in which u is Rayleigh and ip is uniform over (0, 2ir). (We shall say more about this

restriction later.) For the Rayleigh fading situation, we shall demonstrate that, given

observable r, p is a sufficient observable for measuring u: that is,

p ( u | P f o ) = p ( u | p ) . (106)

~2
If.u = a as in Eq. 39, z. and z, are zero-mean, independent, jointly Gaussian random

•L f->

variables, 'each with variance a/2. By Eq. 104, n and n~ are zero-mean, independent,

jointly Gaussian random variables, each with variance N /2. Therefore, r, and r«

are zero-mean, independent, jointly Gaussian random variables, each with'variance

(a+N )/2. This implies that p is Rayleigh with probability density function

2
P

2p
P ( P ) = g + N e m u^p), (107)

m

a is uniform over (0, 2ir), and p and a are independent. Also, using a simple trans-

formation of random variables, we can write

p ( p , a u , i p ) = p p I (pcosa ,ps ina |u , i |0
1 ' Z 1

= pp (p cos a -ucos i|j) p (p sin a- u si
nl

p +u 2pu

N. N cos (a-ij

irNm
e mem ; p ^ 0, 0 < a < 2tr. (108)

Integrating p(p,a |u, i j j ) over the phase term a, we find that p(p|u,4j)is independent of <\>:

2TTP TT

P(P l u . i p ) = \ da p(p,a |u»
"n

2 2P +u
2p N /2pu

N o\Nm \ m
) u _ 1 ( p ) = p ( p | u ) . (109)
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Also, averaging p(p, a |u, ^) over ty, we can show that

_ .
p ( p , a | u ) = p ( p , a |u,

2 2
p +u

Nm
irN

i f 2PU 1

-w
Therefore, by Bayes1 rule, we have

p ( u l p . a ) =

0, 0 < a < 2ir. (110)

P ( P , < * I")"

_ P(«0 .

P(u)

p(p)
2 2p +u

2p

N m L

P(p|u) P(u)

Nm j / 2 p u \
1 1 u /

' V m /

-^

P(u)
3)

P(P)

P(P)
( in ;

so that, given r, p is a sufficient observable for measuring u, when u is Rayleigh.
Therefore, during a given signal baud, our adaptive transmitter will adjust the baud
time T according to the observable p defined by Eqs. 102 and 105:

jke-?,
P = [112)

The variable-rate strategy based on p will be determined in Section IV.

Intuitively, we feel that the result of Eq. 106 should hold for log-normal fading as

well. Since 4* and p are again uniform over (0, 2ir), and are independent of u, r\, and

each other, we could probably show that a is uniform over (0 ,2 - r r ) and independent of

u, and that, given p, a adds no information about u. We shall not demonstrate this

here, since p(p |u) appears to be too complicated for us to be able to develop any math-

ematically tractable variable-rate strategy when u is log-normal.

We now prove two mathematical identities that follow trivially from our results

above, and which we shall need later. From Eqs. 38, 107, and 109, we can write

2P

a + N

a+ N.m
m

r> 00
u , ( P ) = P ( P ) = \ d u p ( p | u ) p ( u )

— 1 J n

aNm

"Nm r
Jn

-u

du u e

a + Nm
aNm I

2p

o Nm,
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Rearranging terms and defining

a + N 2p
b = m

aN
> 0, c = — — > o i

m

we find that

J

oo _b 2 1 h
du u e I (cu) = oh e ; b, c > 0.

0

Also, differentiating both sides of Eq. 113 with respect to b, we have

2

(113)

f•J n
+ u

b,c > 0. (114)

3. 5 POINT-AHEAD PROBLEM AND ISOPLANATIC ANGLE

For the ground-to-space link, because of the large transmission distance, we must
52take into account the point-ahead problem. This is indicated geometrically in Fig. 6.

At time t,,the synchronous satellite (assumed for convenience to be in an equatorial orbit)

SYNCHRONOUS
SATELLITE

GROUND
TERMINAL

PHYSICAL PARAMETERS

d =3 .6x 104km

r =6 .4x 103km

c =3 .Ox 105 km/s

u=7 .3x 10 fjrad/s

9p=f =1.6Hrad

6 =f (d+r) = 10.4Hrad

EQUATOR

Fig. 6. Point-ahead configuration for ground-to-space link. Physical
parameters above include: distance d between synchronous
satellite and ground terminal, velocity c of light in a vacuum,
radius r of Earth, angular velocity to of Earth at equator,
pilot-tone point-ahead angle 0 , information-signal point-ahead
angle 9.. p
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transmits a pilot tone down to Earth. Because the Earth and satellite are rotating

in space with approximately the same angular velocity w, the satellite must transmit

its pilot tone in a direction 9 ahead of the optical axis at time t. to ensure that

the pilot tone arrives at the ground terminal at time t_. At time t2, the ground terminal

transmits an information signal at a point-ahead angle 6. relative to the optical axis at

time t so that the information signal reaches the satellite at time t . For simplicity,
L* • J

we have ignored the time the adaptive transmitter requires to adjust the information-

signal baud time according to the received pilot tone.

Therefore, although the total atmospheric propagation time for the pilot-tone/

information signal combination is of the order of 10 jj.s, which is much smaller than the

atmospheric coherence time T , the point-ahead requirement affects our previousc
contention that the pilot tone and the succeeding information signal reflect the same

atmospheric channel state. This condition, which is critical in the operation of our

variable-rate optical ground-to-space link, will still be satisfied, provided the iso-

planatic angle is greater than 20. ~ 21 p,rad. (The isoplanatic angle can be inter-

preted as the maximum angular separation between two infinite plane waves incident

on plane R_ which are characterized by the same atmospheric fading parameter in propa-

gating to aperture R , . ) Fortunately, recent experimental evidence suggests that the

isoplanatic angle is great enough for our channel measurement results so that the
53ground-to-space link is still valid despite the point-ahead issue. We might add that

there is no comparable point-ahead problem for the ground-to-ground link.

33



IV. VARIABLE-RATE ADAPTIVE TRANSMISSION

4. 1 Problem Specification

In Section II, we showed that the probability of a communication error occurring on

a given transmission over the optical links under consideration, conditioned on the atmo-

spheric channel state, depends on a channel-fading parameter u. We saw that for many

cases of interest, u is either a log-normal or a Rayleigh random variable. In Section III,

we demonstrated that the information-signal transmitter can measure u by processing

a received pilot-tone field to produce an observable p, which is equal to u in the absence

of measurement noise. For the case in which u is Rayleigh, we also determined the

statistical behavior of p conditioned on u.

We would now like to develop some adaptive-transmission strategies based on the

observation of p in order to improve the communication performance of our optical links

relative to conventional fixed-rate systems. As in the fixed-rate analysis in Section II,

we shall confine our attention to the continuous transmission of binary, equiprob-

able, orthogonal signals of equal energy. The transmitter will now adjust the signal

baud time T for each transmission according to some preselected mapping T(p) of the

value of p observed immediately prior to the transmission. In order for the results

of Sections II and III to be valid, according to Eq. 101 we should only consider mappings

T(p) with the restricted range

T( P ) <Tc -TQ ; ^ p, (115)

where T is the atmospheric coherence time, and T is the channel-measurement aver-

aging time defined in Eq. 100. To simplify our variable-rate analysis below, for the time

being we shall disregard the restriction of Eq. 115 and assume that any mappings T(p)

that we eventually select will satisfy this restriction most, if not all, of the time.

For convenience we define an instantaneous information bit rate conditioned on the

observable p:

R ( p ) s — — bits/second. (116)
T(p)

Under the assumption that the channel-fad ing process is ergodic, the average signalling

rate is then given by

/too /-»oo

R = R ( p ) p = \ dp R(p) \ du p(p u) p(u) bits/second. (117)avg J 0 J 0

In order to completely define the variable-rate problem, we must introduce a power

constraint. In practice, a laser transmitter is limited by its average and peak short-term

average power output capabilities, denoted by P and P eak> respectively: that is, a

given information signal can be transmitted at a maximum average power level P eav in

general, although the transmitted power averaged over many signals must not exceed
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P . . In the fixed-rate case it is desirable to transmit each information signal at the

fixed average power level P . To be sufficiently general in our variable -rate problem

specification, we should assume that each information signal is transmitted at an average

power level P t(p)» which depends on the observable p, subject to the restrictions

P t<P ) < P peak : V P- (118)

Maintaining this degree of generality, however, would greatly complicate our variable -

rate analysis. To simplify matters, we shall place a more severe restriction on P.(p) =
t

(119)

0; M p 3 R ( p ) = 0.

That is, the information signals in both the fixed-rate and variable-rate cases are trans-

mitted at the same fixed average power level P . We shall show that variable -rate
o

systems based on the power constraint of Eq. 119 represent a marked improvement over

corresponding fixed-rate optical systems. Variable-rate systems based on the more

general power constraint of Eq. 118 should perform even better still

Using Eq. 119, the transmitted energy £ defined in Eq.. 3 now depends on p

according to the prescription

P
avg

I = Pa T(p) = - ! V P 3 R ( p ) * 0 . (120)
avg R(P)

This implies that the energy parameters E in Eqs. 28 and 32 for the heterodyne-s
detection case have the form

T

E =— -, (121)
s R(p)

2
where the power parameter P is independent of p, and u P is the received signal

S S

power averaged over a signal baud and conditioned on u. For the ground-to-space

link, P is specified by
S ,

p =
P A.avg t

(122)s x2d2A

while in the ground-to-ground case, we have

A '
Ps = P v A - : *123)

The conditional probability of error in Eq. 36 for the heterodyne receiver must
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now be modified to read

u2P

P ( e | u . p ) =
2N R(P)

(124)

Similarly, as a consequence of the power constraint of Eq. 119, the signal-rate

parameter (j. defined in Eqs. 52 and 54 for the direct-detection case has the forms

2T]P A .A1 avg t r

hv\
2 2 (125)

for the ground-to-space link, and

Aavg r

hvA (126)

for the ground-to-ground system. Then the conditional probability of error in Eq. 60

for the direct-detection case can be rewritten as

P(e |u ,p ) = Qm
R(p)

Hn(l+u a)

R(p)

2R(p)

R(p)

(127)

. Since we are signalling continuously at the variable information bit rate R(p) , the bit

error rate may be expressed as

= R(p) P(e|u, P)
u> p = f dp R(P) C dup(p|u) p(u) P(e|u, P)

•J n J n
bit errors
second

(128)

which means that the fraction e of bit errors to received bits is given by

_ e' bit errors
~ R received bit'

&

(129)

Our design objective is to select mappings R(p) that are optimal, in the sense that

they maximize R for a given e or e' subject to any limitations we may find it neces-
o

sary to place on the form of R(p) . For the sake of comparison, we reinterpret the fixed-

rate performance results of Section II in terms of the generalized notation that we

have developed in this section. We define
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Ravg (130)

for the fixed-rate case, and note that the error rate e in Eq. 129 is equal to the proba-

bility of error P(e) in Section II. From Eq. 40, for the heterodyne receiver when u is

Rayleigh, we have

<zP

2N
RF=-

2
u = a. (131)

For the heterodyne-detection/ground-to-space link when u is log-normal, Eq. 43 defines

Rp implicitly as a function of e:

ZZC2(Q) P

2NoRF

? ? 2 -*•
u = Z^C (6). (132)

Similarly, from Eq. 45, for the heterodyne-detection/ground-to-ground link when u is

log-normal, we have the implicit relation

1 Fr2 Fl

Z'2C'2(?) Pg

[ 2NoRF '
0; V

2 2 2 -*
u = Z' C1 (133)

Finally, for the direct-detection/ground-to-space link when u is Rayleigh, the approxi-

mation of Eq. 67 implies that

A « 1,

R^ = 2Tru A^e ; e «< (134)

where A is defined in Eq. 59.

4.2 HETERODYNE-DETECTION SYSTEMS

4. 2. 1 Noiseless Channel-Measurement Case

We shall initially develop optimal variable-rate strategy for the special case in which

the channel-measurement noise is sufficiently small that we can effectively set the power

spectral density N , defined in Eq. 104, equal to zero. The mathematical analysis is

greatly simplified for this noiseless channel-measurement case, particularly when the

fading parameter u is log-normal. The variable-rate concepts developed in this sec-

tion will be representative of those later derived for the more general noisy channel-

measurement case.
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When N is zero, the conditional probability density p ( p | u ) = u (p-u), so that
Eqs. 117 and 128 have the modified form

R = \ du p(u) R(u)
<*• v 6 »/Q

(135)
/"•OO

€' = \ dup(u) R(u) P(e|u),
0

where, in general, P(e |u) is simply P(e|u, p) in Eq. 128 evaluated at p = u.
We would like to determine the mapping R(u) which maximizes R for a given e1

&

under the assumption that P and N are fixed. Using the Lagrange multiplier approachs o
with parameter X, we want to find the non-negative function R(u) which maximizes the
expression

poo

• Xe' = \ dup(u) R(u)[l-XP(e|u)]. (136)J0

Since p(u) is non-negative, we can equivalently determine the value R(u) which maximizes
the portion of the integrand in Eq. 136 defined by

f[R(u) ,X] = R(u)[l-XP(e|u)] (137)

at each value of u in the range (0, oo). Since P(e |u) < —, for \ < 2, f[R(u), X] is trivially
maximized when R(u) is infinite for all values of u. This is a singular solution which
is only valid for infinite e1. When X > 2, we can show that there is a unique, nontrivial
maximum that satisfies the constraint

P ( e | u ) + R ( u ) — — P(e|u) =-£- (138)
8R(u)- •

at each value of u.
Note that the constraint above on the optimal R(u) is independent of the statistical

behavior of the channel-fading parameter u, characterized by the probability den-
sity p(u): It is also independent of the actual form of P(e|u). In particular, suppose the
conditional probability of error can be expressed in the form

B(u)

P ( e | u ) = A . e R(u), (139)

where A is independent of u, and B(u) is a function of u but is not explicitly dependent
on R(u). From Eqs. 138 and 139, we find that the optimal mapping R(u) must then satisfy
the condition

38



B(u)

R(u)
1 +

B(u)"

R(u)
(140)

Since the Lagrange multiplier X has the same value for all u, depending only on the

given error rate €', this implies that the optimal R(u) must have the form

R(u) = CB(u); 0 < u < oo,

where C is a constant that depends on the desired bit error rate.

Now for the heterodyne-detection case, we see in Eq. 124 that P(e |u) has the form
2of Eq. 139; therefore the optimal R(u) is proportional to u :

CP

R(u) = 0 < U < 00. (142)

We must stress that this result is independent of p(u), and was a primary motivation

for considering the special case where N =0. Combining Eqs. 129, 135, and 142, and

denoting the average information rate R in this case by RV, we find that

R ~ R

'V ~ avg 2N u , (143)

and

CPs 2 Ce ' = 4 r r u e (144)

which implies that

_j_
- _ 1 _ C (145)

We can rearrange Eqs. 143 and 145 to show that

2N
(146)

In TT

independent of p(u).

Now let us compare the performance of the optimal variable-rate transmission

scheme in the absence of channel-measurement noise with that of the fixed-rate system.
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The improvement in average bit transmission rate may be specified by the quantity

RV/R for a given bit error rate e. From Eqs. 131 and 146, when u is Rayleigh, we

find that

Rv 27 - l
= ' < 1 4 7 >

MzT,
2

which is independent of the value of u . When u is log-normal, we can use Eqs. 132,

133, and 146 to represent RV/RF as a parametric function of e, with parameter a:

RTT-
^-= S (148)
nF -In [Fr ( a , 0 ; c r ) ]

e = -| Fr (o, 0 ; t r ) ,

where <r equals o- for the ground-to-space link-and <r , for the ground-to-ground link.
X X

This last result is independent of the channel-fading normalization constants Z and Z1

and the transmitting and receiving directions 6 and $ defined earlier.

The average rate gain parameter RV/R , specified by Eqs. 147 and 148, is plotted

against € in the graph of Fig. 7. It is evident from this graph that the variable-rate

transmission scheme is a significant improvement over the fixed-rate system. Also,

for the log-normal case, we see that RV/R increases as <r increases, when e is fixed:

variable-rate transmission is clearly more advantageous when the variation of the

channel fading is larger.

Up to this point, we have ignored the channel coherence restriction of Eq. 115 in

the interest of simplicity. The mapping R(u) in Eq. 142 clearly violates this restric-

tion: a reasonable modification of this result which satisfies the coherence restric-

tion is the mapping

R(u) = 4

C'Ps 2
2N- U ;

o

C "P
-2*T V 0 < v ^ u o

(149)

where

UQ= / (150)

and the constant C1 depends on the given bit error rate. We could insert the modified
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Pig. 7. Performance comparison of optimal variable-rate transmission
scheme and fixed-rate optical system for heterodyne-detection
case, ignoring channel-measurement noise. Ry and R_ are the

average information rates in bits/second for the variable- and
fixed-rate schemes, e is the error rate in bit errors/received
bit, u is the channel-fading parameter, and a- is the standard
deviation of Ln u when u is log-normal.

mapping R(u) above into Eqs. 129 and 135 to recalculate R and e, and then use
6

Eq. 131 to evaluate the corresponding variable-rate improvement; however, this will

be left as an exercise for the reader. (When u is log-normal, we find that e must be

expressed in terms of an integral which resembles the frustration function defined in

Eq. 44 and cannot be evaluated explicitly.) Typically, because T is quite large, u isc o
often small enough that the variable-rate results of Eqs. 143-148 are still approximately

valid.

4. 2. 2 Noisy Channel-Measurement Case

We now consider the more general variable-rate optimization problem in which the

channel-measurement noise parameter N is nonzero. Using the Lagrange multiplier

approach as in section 4 .2 .1 , we now want to determine the mapping R(p) which

maximizes R for a given e', with P , N , and N fixed. Using Eqs. 117, 124,
o

and 128, with Lagrange multiplier X, we want to find the non-negative function R(p)

which maximizes the expression
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pOO pOO

' = \ dp R(P) \ d u p ( P | u ) P ( u )
^0 ^0

u2P

X
1 2 (151)

But this is clearly equivalent to maximizing the integrand

~oo

g[R(p) ,X]s R(P) \ d u p ( p | u ) p ( u )
J0

1 -ye

u2P

2 N R ( p )
(152)

at each value of p > 0. If there is a unique, nontrivial value of R(p) which maximizes
g[R(p), X] at a given value of p, it must satisfy the condition

-2ps
9 r°° , x r°° 2N R(p)

g [ R ( p ) , X ] = \ d u p ( p | u ) p ( u ) -y\ d u p ( P | u ) p(u) e °
8R(p)

II

u2P

\P

4NQR(p)

i 2 2N
0

R(P>
du p(p |u)-p(u) u e (153)

III

We noted in section 3.4 that when u is log-normal, the expression for p(p |u) appears

to be too complicated for us to develop any mathematically explicit variable-rate

results. We therefore confine our attention to the case in which u is Rayleigh. From

Eq, 107, we have .

2

2p a + N
(154)

Using Eqs. 38, 109, and 113, we can show that

2fa +
-u m

II =
2XP N

m

aNm

p°°
u , ( p ) \ d u u

1 JQ

aNm

(P+Dp'

m

a + (p+ l )N
(155)

m
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where, for convenience, we have introduced the parameter

aP
p(p) = — . (156)

2NQR(p)

From Eqs. 38, 109, and 114, we find that

2

N
e m

a Nm

pOO .

u (p) \ du u
•i J r,

(P+1)P2

m]3
m u , (p) . (157)

Inserting the results of Eqs. 154-157 into Eq. 153, we can show that the optimal value
of p(p) , which is inversely proportional to the optimal mapping R(p) that we are seeking,
must satisfy the condition

a(a+pP
2)+(3p+2)aN + (p+l)(2p+l)N* (a+N )

23 ^- e
 m m = (158)

[a+(p+l)Nm]3 X<a+N
m>

at each value of p > 0. As a check, we can readily verify that when we set N equal
to zero, which implies that p = u, Eqs. 156 and 158 yield the result of Eq. 142. Unfor-
tunately, for nonzero values of N we are unable to determine a closed-form solu-J m
tion for the optimal mapping R(p), defined implicitly by Eqs. 156 and 158.

Note that in all of our variable-rate analysis thus far, we have implicitly assumed
that the information-signal receiver can maintain perfect bit synchronization despite the
continually varying signal baud times of the data transmissions. There may be a way
to resolve the synchronization problem, provided the baud times are small relative
to the channel coherence time T : in this case, the baud times vary slowly, over many
data bits, so that phase-locked loop techniques should be able to maintain adequate bit

synchronization.
Because we were unable to - explicitly determine the optimal mapping R(p) and evalu-

ate the performance of the corresponding variable-rate scheme above for the general
case where N is nonzero, we shall now examine a suboptimal class of variable-rate
transmission referred to as burst communication, defined as follows. The information-
signal transmitter divides its time scale into consecutive, nonoverlapping, time slots
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of duration T. A single data bit is transmitted in a given time slot if and only if the

observable p sampled at the beginning of that interval exceeds a threshold r]. Otherwise,

no data are sent in that particular time slot, and the information is stored until the next

acceptable transmission interval occurs. We must hope, of course, that the associated

transmitter buffering problem is not too severe. In Appendix D, we examine the buf-

fering problem further and estimate the required storage capacity of the buffer.

One distinct advantage of a burst communication system, relative to the more general

variable-rate schemes, is that the bit-synchronization problem is less difficult to

resolve. Because the time slots have a fixed T-second periodicity, the data receiver

should be able rapidly to acquire bit synchronization and maintain it within satisfactory

operating limits.

The data receiver is now faced with a word-synchronization problem. It must decide

whether an information signal was actually transmitted in a particular time slot. If

it reaches an incorrect decision, a transmitted bit will be lost or an extraneous bit

will be inserted in the decoded data bit stream. When this occurs, a word-

synchronization error is made. To prevent such an error from propagating to subse-

quent words, commas should be periodically inserted in the transmitted word

stream.

We have not yet mentioned how the receiver can decide whether a data signal was

sent in a given time slot. One method of resolving this problem is to transmit a pilot

tone at a fixed power level from the data transmitter to the data receiver. In Section III

we saw how a pilot tone transmitted in the reverse direction could be used to track

the channel-fading parameter u. In like manner, the data receiver can process its

received pilot tone to monitor u. On the basis of this measurement, the data receiver

can form a maximum-likelihood estimate pMT of the observable p associated with each

time slot. Depending on whether PT>/T T is greater or less than the threshold r\, the data

receiver would decide that an information signal was or was not sent in a given time slot.

An alternative and more efficient approach is to extract channel-fading information

directly from the received data-signal carrier instead of using a separate pilot-tone

probe. In either case, if the channel-fading measurements made by the data receiver

are averaged over a sufficiently long time interval, of the order of T in length, the

probability of a word-synchronization error occurring will be quite small. For simplic-

ity, the analysis below disregards word-synchronization errors.

In the context of our variable-rate notation defined earlier, the burst communica-

tion system is characterized by the prescription

R(p) = RU^P-T!), (159)

where R = 1/T bits/second, and we assume that the temporal coherence restriction of

Eq. 115 is satisfied:

T + T < T . (160)
o c
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We would like to determine the mapping R(p) , within the class defined by Eq. 159, which

maximizes R for a given value of e1, when P , N , and N are fixed. Our analysis
cl v g S O IH

is again restricted to the case where u is Rayleigh. From Eqs. 107, 117, and 159, we

can show that

R.vg
a + N

m

'm ^ r|

Also, using Eqs. 38, 109, 113, 124, and 128, we find that

2R
du u

U+l)Nm
aNm

(161)

R

a +
d p p e

R

2U+1)

where, for convenience, we have defined the parameter

aP

(162)

Combining Eqs. 129, 161, and 162, we have

2

= €' _

avg

substituting Eq. 163 in Eq. 161, we can write

2
Tl

aP ~\ m

o avg

(164)

/ , / .-,
(165)

If R , P , N , a, and N are fixed, Eqs. 164 and 165 implicitly define e as a

function of r\.

Now, instead of trying to determine the values of R and TI which maximize RJ £> I

for a given e1, when P , N , and N are fixed, it is mathematically simpler to
S O HI

avg
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equivalently minimize e over r\ for a given R In the nontrivial case, the optimal

value of r| must satisfy the condition

dr| 8-n dt, dt)

We can readily evaluate the derivatives required by Eq. 166:

(166)

( a + N ) [ a + U + l ) N m ]

and

,2 a + N •dr| m

2
Therefore, the optimal value of r\ is specified by

m j

(167)

0; N
m

+ 1

Note that Eq. 167 tells us that when N 5 a, the optimal threshold r) is zero for

all values of t,, which corresponds to the entire range of e. On the other hand,

even if N < a, the optimal threshold r| is zero over the range 0 < t, < N /(a-N ),m i • LLi m
or equivalently (a-N )/2.a < e < — . Of course, when the optimal threshold r\ is

zero, the best burst communication system is simply the fixed-rate scheme with

average information rate Rp defined by Eq. 131. In other words, the burst com-

munication scheme does not buy us anything unless the channel -measurement noise

is small enough, and even then only when we desire a sufficiently small error rate.

Denoting R by R_, and for convenience defining the parameter

(168)
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the optimal burst communication system is characterized by the following parameters:

^s2N

2e

0 < e

2N £, aP

11 =

. (169)

In order to design a burst communication system according to the prescription of

Eq. 169 for the nontrivial case where e < -^ (1-6), one first determines the value of

the parameter £ which yields the desired bit error rate e. The optimal threshold T|

and baud time T then result in an average signalling rate RR, all specified by Eq. 169

in terms of the previously calculated value of £,. The designer must still verify that

the temporal coherence restriction of Eq. 160 is satisfied. Notice that there is a

trade-off between T and T . By Eq. 104, a larger value of T makes N smaller,

which decreases 6 according to Eq. 168. This increased noise immunity for the channel -

measurement operation results in a lower value of £ being required to produce the

desired error rate €, which yields a smaller value of T. One can verify that in this

case RB is increased, so in general we should try to make T as large as possible.

A good starting point in designing a burst communication system is to set T approxi-

mately equal to T , and then check whether the value of T specified in Eq. 169 is much

smaller than .T . If this is not the case, one can try to satisfy Eqs. 160 and 169 with

smaller values of T . There will be situations for which we cannot satisfy these

restrictions for any value of T : this will happen if the desired value of 6 is too
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small for the available signal-to-noise ratios P /N and P /N' (see Eqs. 93, 94, and
S O p D

104) for the information signal and pilot tone, respectively.

Using Eqs. 131 and 169, we can characterize the improvement in average bit trans-

mission rate, for a given bit error rate £, of the optimal burst communication system

relative to the corresponding fixed-rate scheme by

1; 1-6 < £ < i

1-6 (170)

for the case in which u is Rayleigh. When e 1 -6 , Eqs. 169 and 170 define R^/R^ as

a parametric function of e, with parameter £,. The average rate gains R^/R^, plotted

as functions of e for several values of 6 in the graph of Fig. 8, are significantly large

for small values of 6 and e. Comparing RB/RF for the special case where 6 = 0 with

10,-5 10"* 10"" lb"2

e BIT ERRORS/RECEIVED BIT

10 10"

Fig. 8. Performance comparison of optimal burst communication
scheme and fixed-rate system for heterodyne-detection
case and Rayleigh fading. RB and RF are the average infor-

mation rates in bits/second for the burst and fixed-rate
schemes, e is the error rate in bit errors/received bit,
and 6 is a channel-measurement noise parameter (see
Eq. 168). Also, RV is the average information rate for the

optimal general variable-rate system.
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the noiseless channel-measurement result RV/R_ for Rayleigh fading, reproduced from

Fig. 7, it is evident that the optimal burst communication system performs almost as

well as the general optimal variable -rate scheme in this case.

Remember that the burst communication strategy developed above is optimal with

respect to the power constraint of Eq. 119, which can be rewritten in the form

avg

0;

> ri'

p < TJ.

(171)

For the nontrivial case wherein the threshold T| specified in Eq. 169 is nonzero, we

can combine Eqs. 107, 168, 169, and 171 to show that the average transmitted power

is given in terms of t, (which depends on e) and 6 by

Therefore, in this case we are not using all of the available transmitter power.

Even though the burst communication scheme above represents a dramatic improve-

ment over the fixed-rate system, indicated by the large average rate gains

RB/R-p shown in Fig. 8, we could do even better by modifying the power restric-

tion of Eq. 171 for the burst communication scheme so that P , (p ) is given

by

m i n l P . . P
P

0; p < T,, (173)

which satisfies the more general power constraint of Eq. 118. If we make the assump-

tion that

.peak avg
{174)

the average transmitted power for the modified burst communication system is

simply P , as in the fixed-rate case. When Eq. 174 is valid, the modified

burst communication system is specified by Eq. 169 with P replaced every-s
where by
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s

Denoting the average information rate for this modified burst communication scheme

by R' , we can use Eqs. 131 and 169 to write

= ; 0 * e « , (175)
RF ^ 2

where 6 is still given by Eq. 169. For the special case where 6 = 0, we find that the

modified burst communication scheme, subject to the assumption of Eq. 174, performs

better than the general variable -rate scheme which is optimal for the power constraint

of Eq. 119. Yet both systems have an everage transmitted power of P . For example,

when 6 = 0, we can use Eqs. 147, 169, and 175 to show that at e = 10 bit

errors/received bit, Rg/Rp = 5. 33 X 103 while Ry/RF = 4. 62 X 103.

4. 3 DIRECT-DETECTION SYSTEMS

The conditional probability of error defined in Eq. 127. for the direct-detection case

is more complex than the equivalent expression in Eq. 124 for the heterodyne -detection

case. Consequently, the development of optimal variable -rate direct-detection systems

presents a more difficult mathematical problem. To illustrate these difficulties, we

shall try to determine the optimal variable -rate system for the relatively simple case

where the channel -measurement noise is insignificant so that N is essentially zero.

The optimization analysis proceeds initially as in the heterodyne -detection case of

section 4. 2. 1 using the Lagrange multiplier approach with parameter \. As before,

the optimal mapping R(u) must satisfy the constraint of Eq. 138 at each value of u,

where X > 2. In the discussion that followed Eq. 138, we showed that if P(e|u) could

be expressed in the form of Eq. 139, the optimal R(u) would be given by Eq. 141.

Consider for a moment the Chernoff upper bound on P(e |u) for the direct -detection
54case, which is given by

P ( e | u ) ^ e 2R(U) , (176)

where the parameters n and a are defined in Eqs. 51, 52, 54, and 59. When this bound

becomes sufficiently tight that it accurately reflects the functional dependence of P(e |u)

on u, Eqs. 139 and 141 suggest that the optimal R(u) has the approximate form

(177)
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where the constant C depends on the given bit error rate. Furthermore, over the range
o

u » 1/VtT, Eq. 177 yields the familiar result that the optimal R(u) is proportional to u

as in the heterodyne-detection case (see Eq. 142).

Let us now try to solve Eq. 138 for the optimal R(u) using the exact conditional prob-

ability of error for the direct-detection system. Modifying Eq. 127 for the special

case where p = u, we have

P(€ u) = Q.m

H-n(l+u a)

R(u)
1 . 2R(u)
2 e Zo

|i v 1 +u a

R(u)
• (178)

Inserting Eq. 178 into the constraint of Eq. 138, we find that the optimal R(u) satisfies

the condition

1 + n

2R(u)
Qm

2R(u)

R(u)

Hn(2+u2a)~

2R(u) IQ

_

IJL V 1 +u a

R(u)

2R(u)

-yR(u) J

|JL ^+U a)

2R(u) j

d
/ 2

u V 1 +U2arn

R(u)

^n
2 2R(u)x x e

X

Z n

R(u) = ' <1 7 9>

R(u)

The Lagrange multiplier X is specified by the constraint of Eq. 135 on bit error rate e1.
Then Eqs. 135, 178, and 179 implicitly determine the optimal mapping R(u) for a given
value of e1.

Although we have considered the relatively simple case where N =0, we cannot
explicitly determine the optimal variable-rate direct-detection system. It may be pos-
sible to evaluate approximately the optimal R(u) over some range of u, p. , and a by
approximating the terms in Eqs. 135, 178, and 179. Rather than considering a com-
plicated approximation problem, we shall now turn our attention to determining the

optimal burst communication system in the hope that the associated mathematical anal-

ysis will be less difficult and provide more insight. As in the heterodyne-detection
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case, the analysis below ignores the word-synchronization problem; a practical direct-

detection, burst communication system will therefore not perform quite as well as the

idealized system considered below. We note, however, that the data receiver can achieve

a significant measure of word synchronization by estimating p as in the heterodyne-

detection case.

For the general case of noisy channel measurement (N =£0) we would like to deter-x m
mine the mapping R(p) , restricted to the form of Eq. 159, which maximizes R for

a given value of e', when p. , a, and N are fixed. For mathematical simplicity, we

again confine our attention to the case in which u is Rayleigh. As in the heterodyne-

detection case, R is given by Eq. 161. Using Eqs. 38, 109, 128, and 159, we have
o

4R
aNm

dp p e
N p°

m \
J

du u e m Te l
2pu

m
P(e|u, P). (180)

From Eqs. 127 and 159, we note that P(c|u, p) is independent of p when p > TJ:

P ( e | u , p ) = Qm ^ER '

H^U+u a)

R
2R

R

= P ' (e |u) ; p > T!. (181)

Inserting Eq. 181 in Eq. 180 and interchanging the order of integration, we have

e1 =

2 , 2p +u

~N

- (182)

Letting x = pV 2/N in Eq. 182, and using the definition of the Marcum Q function of

Eq. 61, we find that

00

(183)

where for convenience we have defined a new channel-measurement noise parameter

Nm
2 '

(184)

Unfortunately, we cannot explicitly solve Eq. 183 for e1 in general; however, for

the case wherein the channel-measurement noise is sufficiently small, we can determine
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a perturbation solution for e'. In the remaining analysis, we assume that Y is nonzero

but small. Using Eq. C3, we have the approximation

Q Jt. dx
m Y

Then, letting y = XY, we have

(u^2)> (185)

2where N (u, Y ) is the probability density function of a Gaussian random variable y with
y j • 2mean u and variance -y :

(y-u)2

Ny(u, Y) = - - - e Y . (186)

2For small values of -y, N (u, \ ) is a very narrow pulse centered at y .= u. In fact,
•7

in the limiting case,

2
N (u, Y ) - •• u (y-u),

y -

so that

u

Inserting Eq. 187 into Eq. 183, we find that

2u
:• ^ iR C d u u e a P ' ( € | u ) s e ' ,

Y-0 a J7! °
(188)

where-e 1 is the zero-order perturbation solution for e1 about \ = 0, which is the

value of e1 in the absence of channel-measurement noise. Using Eqs. 181 in

Eq. 188, we have
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° v * ~ H

pOO

\ duu

u
a

Qm
ri

R '

jin(l+u a)

R

du u e 2R . I ̂ n V l + U c

o\ R

n
Using Eq. 61, we can rewrite the first integral in the form

2 V-

I =-3. du 2uet e

2 .

l+u2c
aa

__ _J: /

dx x e 2 e 2R I I x
o\

Hn(l+u a)

R

Letting y = 1 + u a in Eq. 190, we can write

(189)

-51 . (190)

R 2A f ~ ~2A C
= 2A6 J , d y e J

- — - — / /—\, 2 2A T f fT\
d x x e e M X V A / ' (191)

where A is defined in Eq. 59, and for mathematical convenience we have introduced

two new parameters:

TJ ~ R ~ U 2 ' = VI + T1
2«z. (192)

The parameter J is the average number of signal counts per baud when TI is equal to

zero. We note, however, that for the general burst communication system, J does not

represent either the average number of signal counts per baud, or that quantity con-

ditioned on the event p > t| (that is, on an information signal having been sent in the baud

interval).

Interchanging the order of integration in Eq. 191, we find that

i v T AV • v

2AI = R e2A , 2 2Adx x e e / /f\ f J , 1
( x */"A" ) \ dy oTv v A; j * 2A

= R e 2A

_ v _ x
2A 2Je - e

x2(J+l)

, 2J 2A Tdx x e e I ( /^}> V x v A J -
(193)
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Let y = xN/(J+l ) / J , then Eq. 193 reduces to

I = He * 2 A ' Q / /T /J\ /_JR\ 2A(J+Ij
mVV A' V ATj-trnj6

„
Qm

J /J + 1, v

(194)

To solve the second integral in Eq. 189, we can let x = y (J+l)(l+u a)/A; then we show

that

m

Therefore, the zero-order perturbation solution for e' about \ = 0 is given by

1
\ TA/ / /T" ' /rT" \ 1 / O T J _ I \ 9 A

e' = Ro

(195)

(196)

Continuing now with the general perturbation problem, we can combine Eqs. 183,

185, and 186 to give

€'
pOOS-J , d y du f(u) N (y, Y),u

(197)

where

f(u) = ̂ fu e a P '(e |u) (198)

and N (y, Y ) is the probability density function of a Gaussian random variable u with
u 2 2

mean y and variance Y • Functionally, N (y, Y ) is the same mathematical expression
2 2 u

as N (u, Y ) in Eq. 186. Since N (y, Y ) is a narrow pulse centered at u = y, we will

approximate f(u) in Eq. 197 by the first three terms of its Taylor series expansion about

u = y:

€' = f(y)
pO

\
J n

(u-y) (u-y)'

pOC

'(y) \Jo
du (u-y)

+ 4 f " l du (u-y)
2 e

(u-y)

"̂ 7

2trY

2

(199)
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It is a simple exercise, which will be left to the reader's initiative, to demonstrate that
2 2 2

to order Y • if Y « TI . Eq. 186 reduces to

?R r>°
= a J

R r»°o
J .dy N/7 f"(y) = ej, (200)

Ae!

where e! is the desired first-order perturbation solution for e' about \ = 0, and Ae' is

the corresponding first-order correction term.

We shall now try to evaluate Ae! near \ = 0. Note that f(y) and f (y) vanish rapidly

as y gets large; therefore, integrating by parts twice, we have

Y2R 00

-T\ dyy %)
*) v

in

(201)

From Eq. 198, we can write

3/2

2\TrT U=i

(202)

Furthermore, using Eqs. 181 and 192, we find that

J(v 2 +l)

2A
f) «,(£)• (203)

Then, combining Eqs. 181, 192, 198, and 201-203, we have

A- v

(J-l)(v -1)

2A e ^ 2A -e

J (v 2 +l )

2A
IoV A

2T/ ^- 1

J(V -1 2A
^r ) - HI (204)

We cannot evaluate the integral labelled III in Eqs. 201 and 204 exactly, but we shall

now derive a condition under which III can be neglected, and later show that

this condition can be met in practice. Using Eqs. 200 and 201, we can bound

III as follows:
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00 ,-.00
dy — "Sy %) < —2

TI y 4t|
(205)

2R

Introducing the parameters A and v defined in Eqs. 59 and 192, and using Eq. 196 to

upperbound e1 , the bound in Eq. 205 implies that

0 < III <
v̂ .12A

4R(v -1) 4(v2-l) m A'
(206)

Comparing the upper bound for III in Eq. 206 with the first term inside the square

brackets in Eq. 204, it is clear that a sufficient condition under which we can neglect

III in the expression for Ae' is given by

2 2 2
^ «4 (v -1) . (207)

After we select a suitable value of v, we show that the constraint of Eq. 207 is satisfied

for any value of A. For the time being, we simply assume that III can be neglected in

the expression for Av'

Combining Eqs. 168, 184, 196, 200, and 204, and neglecting III, we can express

the first-order perturbation solution for £' about ~y = 0 by

= R e * 2 A ' Qm A' VV A 1 +
6(v2-l)

~2A

1 .

1 /2J+1X 2A(J+1)
2 \J.+ 1 J e

6(v -1) -^
J (v 2 +l)

2A
4Av (208)

From Eqs. 59, 161, 168, and 192, we find that

v2-!

R -Re 2A(l + 6) =_Vl 2A(l+6)
avg ~ J (209)

Finally, using Eqs. 129, 208, and 209, we deduce that our burst communication

57



system has a bit error rate given by

6(v2-l)

m
J
A '

_ 1 /2J+1\ 2A(l + 6) 2A(J+1)
2 \ J + l ) e e

6(v2-l)
1 +- 2A

6(v2-l)

4Av
2A(l+6)

J(v2+l)
2A~~

(210)

Thus R is parametrically expressed as a function of € in Eqs. 209 and 210. Now,

instead of optimizing our burst communication system over the initial parameters R

and r| we equivalently optimize over J and v. Rearranging Eq. 209, we can write

v 2 - !

2 A<1 + 6>
R

(211)
avg

We assume that p. , A, and 6 are fixed system parameters that we must work with. Then
Eqs. 210 and 211 implicitly define e as a function of R and v. Our optimization
problem is to determine that value of v which minimizes e for a given R . One
soon discovers that even for the special case where 6 = 0 (corresponding to noiseless
channel measurement), we cannot explicitly evaluate this optimal value of v.

We assume that we are interested in reliable communication systems characterized
by a small bit error rate 6. Now when J gets very large, e becomes very small, and
Eq. 210 can be approximated by a relatively simple expression. We can then use this
expression together with Eq. 211 to determine the value of v which is optimal in the
limit as e approaches zero. Inserting this value of v into Eqs. 209 and 210 will then
completely'idefine a burst communication system. While it will not be the optimal burst
communication system over the entire range of e, it should be nearly optimal in the
interesting case where e is small.

We will need several approximations to simplify Eq. 210. Note from Eq. CIO
that

ab » 1, b » 0. 4, b ^ a. (212)

Furthermore, when (b-a) is large, we can approximate the Gaussian Q function



in Eq. 212,55 so that

(b-a)'

ab » 1, b » 0.4, b - a » 1.
(b-a)

Finally, as a generalization of Eq. C2, we have

(213)

I t \ *^
Q(Z) =

~ e

'2lTZ

z » 1. (214)

Using the approximations of Eqs. 213 and 214, we find that for sufficiently large

values of J, Eq. 210 reduces to

6(v2-l)
J(v-l) '

\TvA~
e = + 6

(J-l)(v-l) (v-1)

J large.

(215)

If J » 1, Eq. 215 further simplifies to

2
C / 1 \ Oo( v —1) T, , ><r

J(v-l)

e =
2A(l + 6) 2A

+ 6
,.

J » 1.

(216)

In Eq. 216, the terms in the square brackets constitute the first-order correction por-

tion of the approximation for e, valid for small values of 6 and large values of J (cor-

responding to small values of e). Clearly, for large J, the second of these terms

dominates the first. Retaining only the dominant terms in the first-order perturbation

approximation for e for small 6 and large J, Eq. 216 becomes

J(v-l)
—

/ ,iv .r~*- 2A 2A(l + 6)(v+1) V vA e e

2N/lfn :J3/ '2(v-l)2

V. J

J2(v-l)3 (v+1)
I t r ,

2
2Av

(217)

where e is the zero-order perturbation approximation of e about 6 = 0 for large
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values of J.
We now want to determine the value of v which minimizes e for a given value of

R in Eqs. 211 and 217. The desired value of v must satisfy the constraint
o

9e 8e dJ
3v * 9J dv ~ '

We find that

9e
0

9v

, F J

1 -

2
+ 6 2A

J2(v-l)3 (v+1)
c-,

2
2Av

3(v-l)2 (v+1) (v-1)3 2(v-l)3 (v+1)

2 2 3
V V V

where

8v
1 Vv + IT 2v Vv - 1

J(v-l)
- 6

A(1+6)J

To order 6 and to dominant order in J, we then have

(218)

€.

Also,

9e

9J
1 + 6

J2(v-l)3

2Av

where

j(v-ir (v+ i )
AAv

eo'

(219)

9J 2A 2J

Therefore, retaining only the dominant terms as in Eq. 219, we have

(v-1)2
9 £ 'N'

9j = 2A e'

Finally, from Eq. 211 we can show that

9v

(220)

(221)
l + 6)
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Fig. 9. Performance improvement of burst communication system
over fixed-rate scheme for direct-detection case with
Rayleigh fading. The following p a r a m e t e r s appear
above: RR and RF are the average information rates in

bits/second for the burst and fixed-rate schemes, e is the
error rate in bit errors/received bit, 6 is a measure of
the channel-estimation noise, and A is a measure of the
ratio of average signal counts to average noise counts in
the detector.

Combining Eqs. 218-221, we find that to dominant order in J and to order 6, the

desired value of v is specified by

1
(222)

Eqs. 209, 210, and 222 now completely define our direct-detection burst communication

system for small 6.

Let us show that the restriction of Eq. 207 is satisfied for v given by Eq. 222.
2

Since 6 and A are non-negative, we can lowerbound v as follows:

(223)
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This implies that the value of v specified in Eq. 222 satisfies the condition in Eq. 207

over the entire range of A.

Denoting R by R_ for our burst communication system specified by Eqs. 209, 210,

and 222, and using Eq. 134, we can characterize the improvement in average bit trans-

mission rate, for Rayleigh fading, by

RB ~ e

A ? 1.

(224)

Eqs. 210, 222, and 224 define RR/Rp as a parametric function of e, with parameter J.

The average rate gain R^/R,-, is plotted against e in Fig. 9, and we see that the

improvement is again impressive for small € despite the fact that the value of v in

Eq. 222 is not in general optimal.
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V. ALTERNATIVE TECHNIQUES FOR COMBATTING

ATMOSPHERIC TURBULENCE

Thus far we have confined our attention to deriving variable-rate strategies for

optical communication systems through the turbulent atmosphere for the special case

of single-diversity transmission with no spatial modulation.. We shall now compare the

performance of our variable-rate schemes with alternative systems employing adaptive

spatial modulation or spatial diversity techniques. We shall also try to combine,our

variable-rate concepts with systems incorporating these techniques.

5. 1 ADAPTIVE SPATIAL MODULATION

We have noted that channel-measurement transmitters generally fall into one of two

categories, namely, those employing adaptive temporal modulation and those using

adaptive spatial modulation. This report has been concerned primarily with the develop-

ment of variable-rate strategies for optical communication systems used in the turbulent

atmosphere which fit into the first classification above. Optical communication sys-

tems employing adaptive spatial modulation techniques have been investigated by

Shapiro. Since these two approaches represent alternative methods of combatting the

effects of atmospheric fading, it is informative to compare them and consider their

respective merits. We shall define an adaptive spatial modulation system for an

optical ground-to-space/hererodyne-detection link based on Shapiro's work in this area,

using the notation of our previous sections. Then we shall consider a hybrid variable-

rate/adaptive spatial modulation system to determine the additional improvement pro-

vided by incorporating variable-rate techniques in an optical link of the adaptive spatial

modulation variety.

In our mathematical analysis, we restrict ourselves to a single atmospheric channel

state, suppressing the temporal variations of the atmospheric fading. Referring again

to the model of the optical ground-to-space link in Fig. 1, we measure the channel

fading by transmitting a pilot tone at a constant power level P along the downlink,

as in Eq. 69, with direction a = 0 for simplicity:

< 2 2 5 >

Then, according to Eqs. 70 and 71, the pilot -tone signal field incident on aperture R,

is given by

/ p p ^ p _ _ - - -
En=; ( r l ' t ) = / A~ \ dr2 V d r3£a

( rl ' r2 )-f ( r2' ra ) ; r i e R r ('226)
ps 1 y A

r JR2
 2 J R 3 3-a I ^ -l ^ a

Finally, using Eqs. 9 and 12, and ignoring constant phase delay terms, Eq. 226 becomes
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PA , >
P r Y ( r , )

Z i.
eXd (227)

1' .where e is the log-normal random process characterizing the atmospheric fading

and Z is the associated normalization constant.

As in our previous work, we transmit an information signal Ejr- . t ) with energy £,

defined by Eqs. 2-4:

s(t);

(228)

• dt s(t) = 1,

where &~ is the signal bawd of duration T seconds. Whereas before the spatial term

U , ( r , ) was uniform and invariant over aperture R, as in Eq. 5, we shall now try to

match U , ( r . ) to the measured channel state. Ignoring channel-measurement noise,

Shapiro has shown that we can maximize the signal energy incident on the satellite aper-

ture by arranging to have

* .—

»/V

A

P A J,p r wl

e

a dr,

^ d^l

-* 2

e

>

V ( r j )
e

2
(229)

In Eq. 229, U , ( r , ) has been normalized to be consistent with Eq. 228. There are

two assumptions implicit in the prescription of Eq. 229:

(i) The ground terminal can measure the received pilot-tone signal field E ( r , , t )^ p s j.
at each point r, within aperture R .1 -l * -*

(ii) The ground terminal can transmit the complex conjugate field E ( r , , t ) within
_k P ^

an atmospheric coherence time of measuring E (r . , t) .ps i
Both of these assumptions represent gross idealizations which can only be approximated

by any practical transmitter in general.

The field received at the satellite has the form of Eq. 6 with signal component
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EQ(r3 , t ) = s(t); , t (230)

Using Eqs. 8, 9, 10, and 12, we have

= -£- A drXdf V JR, l
r3 e RS. (231)

Then the average received signal energy over a baud interval is given by

E
L ^1 dt ^V' 2

3 y
z eAtAr

X2d2

— 2

e have used the fact that e =1.

(232)

= 1. This is equal to the maximum average

received signal energy for our optical ground-to-space link in the absence of turbulence,

that is, it is a diffraction-limited result.

It is interesting to compare the result in Eq. 232 with the same quantity defined in

Eq. 19 for the nonadaptive transmission case. The gain G in average received signal

energy of the adaptive spatial modulation system over the nonadaptive system is

given by

G = Z2/u2, (233)

where u is the random fading parameter for the nonadaptive case, defined in Eq. 14.

We have noted in section 2. 1 that u is maximized when the transmission direction 6

is set to 0. Then

u = (234)

We now examine G for very small and very large transmitting apertures, A,. Recall

that A and A , »denote the spatial coherence areas of the amplitude and phase
C

terms in e , and A , is the smaller of the two.
c<t> - -

(i) If A, < A ., we see from Eq. 234, or Eq. 15 with 6 = 0, that u is log-normal:

-^ u = Z ex. (235)

~2 " 2This implies that u = Z , so that G = 1. Thus, when the transmission aperture is of

the order of a coherence area of e or smaller, adaptive spatial modulation does

not increase the average energy transfer behavior of an optical ground-to-space link.
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(ii) If A, » A , we have noted in section 2. 1 that u is essentially a Rayleigh ran-
T CX

doni variable. From Eq. 234, we have

-o 72 r _ r _ Y(rJ V (r!)
u = •£=• \ dr. \ dr; e e l . (236)

We can determine an approximate expression for u by assuming that the covariance

Yfr j )
of e has the approximate form

(237)

where r is the coherence length of the atmospheric turbulence from the structure func-
57 58tion of the phase. ' The parameter r is roughly equal to the diameter of a circular

phase coherence area, so that

2
irr

Since A, » A > A , , we can use Eqs. 237 and 238 to writet ex c 9

-" * -*
Yd-j ) Y (rp ^

e e = "

. — — r~ri~ ri <T

_ r_
0; r,-r' > y

dr^J e e ~A ,; V r. e R (239)
O.V.J 1 C<|> 1 1

Inserting Eq. 239 in Eq. 236, we have

JL\. , I-*

' Y
where we have defined N, to be the number of phase coherence areas of e contained

in aperture R . From Eqs. 233 and 240, we see that

G = N ,, (241)
9

so that the average received energy is greatly increased when adaptive spatial modula-

tion is used in the case wherein the data transmitting aperture R, is very large relative

V ( r j )
to a coherence area of e

Now, for a heterodyne-detection receiver, the parameter of interest is the
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angular plane-wave component of U,(r,) in some direction (j> as in Eq. 26. Using Eq. 231,~^ j j
we have

U (*) = f
r JR.

= TTT / f d?. eY FI fxdf V JR, ] JR,
(242)

Then, combining Eqs. B14 and 242, the output of a heterodyne receiver in an optical

ground-to-space link employing adaptive spatial modulation has the form of Eq. 27:

r(t) = V2E u | s ( t ) | cos n(t); (243)

where the energy parameter E is given bys

Es '72T2
X d f A r

- 2

(244)

as in Eq. 28. Unlike the nonadaptive case, however, the random fading parameter u

is now specified by

u =
f
 r

L dri (245)

(i) If A. < A , it is clear that u is log-normal:

u = Z ex; u2 = Z2. (246)

(ii) If A. » A , we can show theoretically that u is essentially a log-normal random
T CX cq t,

variable of the formD V"D i

u = Z e, (247)

where u is a real Gaussian random variable with mean in and variance tr . From
V- . V-

Eq. 245, we have

? 2
u = Z",

which implies that

(248)

m = -<r .
V- V-

(249)

67



2 2
To determine o- , we examine the variance of u defined in Eq. 245:

ir / 2. 4 / 2\Var (u ) = u - (u 1

74 C - C
= -^j- \ dr \ dr!

A ^ Jr> * Jr? -1 Cov (250)

As in Eq. 237, for simplicity we can approximate the covariance of the intensity

e by

Cov
Y ( r j )

e

2

t eY(r i )

2

z: •<

E)
Var (e2x); ^-^ < -^

n
(251)

0;

62where D is the intensity coherence length of the turbulence. The intensity coherence

area A T can be written

TTD

A T =cl ~ 4 '

For A. » A T> Eqs. 251 and 252 yield the approximate result

T dr'
JR, i

Cov Var (e2x);

(252)

(253)

From Eqs. 250 and 253, we find that

A 4
Var (u2) = Z4 -j£i Var (e2x) = §- Var (e2x),

A
(254)

where we have defined N.-to be the number of intensity coherence areas of e

tained in aperture R,. Using Eqs. 247, 249, and 254, and recalling that m
•^ X

can show that

con-

-or , we
X

4cr 4<r (255)

For N, » 1, or is therefore significantly smaller than cr .
•*• H1 X
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Let us now evaluate the performance of the fixed-rate optical ground-to-space/

heterodyne-detection system employing adaptive spatial modulation, restricting ourselves

,„, and using Eq. 132 with

we have

to the interesting case of large N . Denoting R by
—A. * * O

C(9) = 1 since 6 = 0, and replacing <r by o-
X

Z2Pg

2NoRSF
0; (256)

Note that as A,, and therefore N-, gets very large, Eq. 255 tells us that a approaches

zero; then Eq. 256 becomes

2NoRSF (257)

Let us compare these results with those of our optimal variable-rate scheme for

the noiseless channel-measurement case. For large A,, the channel-fading parameter u

is Rayleigh, and we can combine Eqs. 143, 145, and 240 to show that

2N R,.N,
° V (258)

Clearly, as A and hence N , gets large, we see from Eqs. 257 and 258 that for

any given 6, ROT^ will eventually become larger than R This implies that the adaptive

spatial modulation system is inherently better than the variable-rate system for large

transmitting apertures. We must note that the adaptive spatial modulation system is gen-

erally much more complex than the variable rate system. Shapiro shows that to yield

the performance levels above, a practical adaptive spatial modulation system must use

an array of roughly N, heterodyne detectors, each with a different local-oscillator field,

to measure fully all of the spatial modes in the pilot-tone signal field received by the

ground terminal. Furthermore, to modulate the information signals accurately, as in

Eq. 229, the ground terminal must use a Taylor series array of approximately N, trans-

mission elements. If system complexity is an important consideration, the variable -

rate system may be more attractive than the adaptive spatial modulation system.

Let us compare the variable-rate system characterized by Eq. 258 with the adaptive

spatial modulation system of Eq. 256. We can use Eqs. 238, 240, 252, and 254 to show

that N, and NT are related according to the expression

(259)
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Combining Eqs. 256, 258, and 259, we can represent the rate gain RgF/Rv as a para-

metric function of e, with parameter (3 in terms of D , r , and N-.:

/D y
• T, NTI — I li

RSF l \ roi
Rv ' P

€ = - | - F r ( p , 0 ; o - ) . (260)

/ o
Fried has found that D = 2. 86 cm, and r is typically of the order of a centimeter.

Suppose we consider the case a = 0. 5, and to maintain a reasonably low level of com-

plexity for the adaptive spatial modulation system let us set NT = 5. Equations 255 and

259 then imply that N, =* 41 and o- ' = 7 . 5 . Substituting these values of D , r , and

NT in Eq. 260, we can show that at e = 4. 5 X 10~ , Rom/R^r^ 7- 3- Therefore, at thei oi1 V
cost of a higher level of complexity, the adaptive spatial modulation system will per-

form moderately better than'the variable-rate scheme.

As a final exercise, let us see what can be gained by using variable-rate strategy

on the adaptive spatial modulation system when A, is large. We saw that the adaptive

spatial modulation system is characterized in this case by a log-normal channel fading

parameter u defined by Eq. 247. For the noiseless channel-measurement situation,

we can simply apply the log-normal variable-rate results of section 4. 2. 1. Denoting

R for the hybrid variable-rate/adaptive spatial modulation system by RqV> Eq. 148

is valid with o- = a : that is, the rate gain R0Tr/RQ-~ is specified parametrically in terms
, M- o V o.f

of e, with parameter a by

RSV _
RSF -In [Fr (a ,0 ;c r

=-|Fr (a, 0 ; « r ).

(261)

Suppose we consider the case N,. = 5 and cr = 0. 5; then by Eq. 255, a =" 7. 5 as before.

Then RC,./RC is represented graphically by the <r = 0. 5 curve for log-normal u in
O V O.T .

Fig. 7. Therefore variable-rate techniques provide nominal improvements in per-

formance when applied to the adaptive spatial modulation system. Note that we can use

Eqs. 252 and 254 to express the diameter D of aperture R, in terms of N- and

Do =

D = D NfNT. (262)
t o 1

For the example above, it is interesting to discover that the transmitting aperture

diameter D, must be 6. 4 cm.
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5. 2 SPATIAL DIVERSITY TRANSMISSION

Still another method of combatting the effects of atmospheric turbulence on optical

communication systems is the use of spatial diversity techniques, provided this option is

available. To illustrate the relevant principles, we consider "aTD -fold spatial diversity

system for the ground -to -ground /direct -detection case. We show that within an atmor-.

spheric coherence interval, the channel fading for such a system is characterized

by a D -dimensional random vector u. For variable -rate purposes, we demonstrate that

u can be measured by transmitting D separate pilot tones simultaneously from the

data receiver to the data transmitter. We then set up the variable -rate problem for

this operation, but because of mathematical difficulties we shall not complete the

analysis at , this time.

Referring to the channel model of Fig. 2, we again transmit a collimated section

of a plane wave through aperture R, in some direction 0, so that Eqs. 2-5 are appli-

cable. The field incident on receiver aperture R? is then specified by Eq. 46:

2 ( 2 ) s(t) + E b ( 2 , t ) ; 2SR2 , t e . . ' (263)

For convenience, we do our data processing in the focal plane RF of the data receiver,

which is separated from the aperture plane R- by the focal length f .. As in Eq. 76, the

received field in the focal plane has the form

E f(r f , t ) = > / T U f(r f) s(t) +E b ( r f , t ) ; r f eR F > te^, (264)

\

where

£ dr2 U2(r2) e x ; rf S RF; (265)
R2

and

r
J

. . _
dr2 Eb(r2' t ) e ; rf e R

F- (266)

The noise term E' (rf, t) is a white Gaussian random process over the spatial modes

of U f(r f) in the focal plane Rp and the temporal modes of s(t) in the baud inter-

val y. Using Eqs. 25 and 265, we can write ~

71



where we have defined a sufficient fading statistic

D

V (277)

k=l '

By our earlier work and previous assumptions, the u, 's are identically distributed, sta-
2

tistically independent Rayleigh random variables, each with u, equal to some param-

eter a. This implies that v is a central Chi-square random variable with 2D degrees

of freedom, and probability density function

P<v) = ~ §—FT- (278)

(D-l)! au

As in Eq. 60, we can show that the probability of error for a single baud, conditioned

on the atmospheric fading, is given by

" (279)

where the parameters K, a, and A are defined in Eq. 59. The problem of averaging

P(e|v) over -v is mathematically difficult and will not be attempted here.

In order to use variable-rate techniques with the spatial diversity system above, we

must be able to measure u, whose components u, correspond to the D independent spa-

tial signal modes. In the notation of section 3. 1, each u, is associated with a direction

pair (6, a,) where a, = r f/f, for some central point rf in the focal coherence region R, .

As we pointed out, we can measure each u, by transmitting a pilot tone in the direc-

tion -a, from the data receiver to the data transmitter, and extracting the angular

plane-wave component of the pilot-tone field incident on aperture R, in the direction -6.

We can separate the simultaneous channel measurements by using different carrier

frequencies for each pilot tone and by using frequency-selective filters at the data

transmitter. Having measured u, we can then determine the relevant fading param-

eter v.

Notice that although the spatial diversity system is characterized by a random fading

vector u, the probability of a communication error conditioned on the fading depends

only on a single parameter v as shown in Eq. 279. And since we know how to mea-

sure v, we can derive variable-rate strategies in a manner analogous to section 4. 3.

For example, a burst communication scheme would have the usual prescription

R(v) = RU_,(V-TI) (280)

as in Eq. 159, where R = 1/T and r\ is a threshold to be determined later. Just as it

was mathematically difficult to average P(e|v) over the fading parameter v, it is even

more difficult to analyze the performance of a burst communication system, so that task

will not be performed in this report.
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VI. CONCLUSION

Let us briefly summarize the major accomplishments of the research reported

herein, and suggest some areas wherein further work is warranted.

The principal reason for undertaking this research was to demonstrate that variable-

rate transmission techniques could be applied to optical communication links over atmo-

spheric channels to significantly reduce the effects of turbulence on system performance.

To simplify our analysis, we restricted our attention to the binary communication

problem. We considered ground-to-ground and ground-to-space communication sys-

tems employing either heterodyne- or direct-detection receivers.

To provide a basis for comparing our variable-rate results, in Section II we

analyzed the performance of fixed-rate optical systems in the turbulent atmosphere. For

the ground-to-space link, we showed that the atmospheric fading is log-normal when

the area At of the transmitting aperture is smaller than AC ,, and Rayleigh when At is

very much greater than A ; A and A , are the amplitude and phase coherence areas
ex ex c <p

of the signal field that would be received by the ground terminal if an infinite plane-

wave field were transmitted from the top of the atmosphere. These results are valid

whether heterodyne or direct detection is used. For the ground-to-ground/heterodyne-

detection case, we demonstrated that the atmospheric fading is log-normal when the

area A of the data-receiving aperture is smaller than the phase coherence area A ,,

of the received data signal field; however, we showed that the fading is Rayleigh when

A is very much greater than the amplitude coherence area A ,. The Rayleigh results
r ex

are of considerable importance, since they disputed a widespread initial belief that the

atmospheric fading statistics were always log-normal. Finally, for the ground-to-

ground/direct-detection case, we found that the atmospheric fading is log-normal

whether A ^ A , , o r A »A ,
r c<t> r ex

These results are summarized in Table 1.

Table 1. Atmospheric fading statistics.

-

Heterodyne

Detection

Direct

Detection

Ground -to-Space Link

A, < A ,t ccf>

Log -normal

Fading

Log-normal

Fading

A. » A
t ex

Rayleigh

Fading

Rayleigh

Fading

Ground -to -Ground Link

A « A x.r C(j>'

Log -normal

Fading

Log -normal

Fading

A »A .
r ex1

Rayleigh

Fading

Log -normal

Fading

We made use of previously established results in Section II in presenting the per-

formance of fixed-rate optical systems employing heterodyne-detection receivers when

the atmospheric fading is log-normal or Rayleigh; however, the performance analysis
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for the direct-detection/Rayleigh fading case was an original piece of work. Mathemati-

cal difficulties deterred us from determining the system performance for the direct-

detection/log-normal fading case: for completeness, this situation should eventually be

rectified by approximating any integrals which cannot be explicitly evaluated.

In order to establish a variable-rate transmission system, it was necessary to first

demonstrate that a pilot tone transmitted from the data receiver to the data transmitter

could be used to provide the data transmitter with real-time channel-state information.

In Section III, we initially ignored any background noise accompanying the received pilot-

tone field and showed that the data transmitter could measure the relevant atmospheric

fading parameter for systems employing single-detector receivers in every situation

except the ground-to-ground/direct-detection case when A >A ,. For the Rayleigh

fading cases in Table 1, we then extended these results to include the effects of channel-

measurement noise. Additional work is required to derive noisy channel measurement

results for the log-normal fading case. We also briefly discussed an adaptive-pointing

scheme for an optical ground-to-space link in Section III, and we considered the point -

ahead problem and the concept of an isoplanatic angle to verify that channel measure-

ment is in fact possible for the ground-to-space link.

Section IV represents the heart of this report and contains all of the variable-rate

analysis for the case where no adaptive spatial modulation is used on the transmitted

information signal and a single-detector receiver is employed. The problem we con-

sidered was how to vary the transmitted data rate based on channel-state measurements

to maximize the average signalling rate for a given bit error rate subject to a power

constraint. We can briefly encapsulate our results as follows:

(i) For the heterodyne-detection case, ignoring channel-measurement noise, we

determined the optimal variable-rate scheme subject to the criterion above, for both

log-normal and Rayleigh fading.

(ii) For the heterodyne-detection/Rayleigh fading case, for which noisy-channel

measurement statistics had been derived in Section III, we determined the optimal burst

communication system.

(iii) For the direct-detection/Rayleigh fading case, we derived an efficient burst

communication system for the case where the channel-measurement noise is small; this

scheme becomes the optimal burst communication system in the limit as the bit error

rate becomes very small.

In each of the cases above, a comparison of variable- and fixed-rate performance

indicated that adaptive, variable-rate techniques could significantly improve the per-

formance of optical communication systems over atmospheric channels, particularly

when the desired bit error rate is low. Additional variable-rate analysis is desirable

for the log-normal fading case. The buffering and word-synchronization problems for

burst communication systems should also be examined in greater detail.

Finally, in Section V we briefly considered adaptive spatial modulation and spatial

diversity systems as alternative approaches to the problem of reducing the effects of
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atmospheric turbulence on optical communication links. It would be beneficial to derive

variable-rate strategies for the spatial-diversity case, and at the end of Section V

we suggested one possible burst-communication approach to this problem.
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APPENDIX A

Atmospheric Fading Statistics for Optical Ground-to-Space Links

with Large Transmitting Apertures

We shall examine the statistical behavior of the complex fading parameter ue-*

defined in Eq. 14 for the case where aperture R, is large enough to contain many spa-

tial coherence areas of e . To do this we use a mathematical technique which

demonstrates whether a probability density function p (a) converges to an arbitrary

probability density function p (a), provided only that lower order moments for both x
64 x

and y can be determined.

Formally, we can expand p (a) in terms of any p (a) as follows:y x

pj«) = Pjc)x "

<-*J

I*.' (Al)

where

k=0

D.(a) =

m

m,

m.

m,.

m.

m.

m2i-l

m

m

m.

m ,

mi

m.
1

m2i-l

-= y -mk = x
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and C. , is the cofactor of a in D.(a).
1) K. 1

If p (a) is specified by two independent parameters of our choosing, we can arrange
X

to have m. = S. , and m- = £~. so that r,(c) is then the first nonvanishing correction term

in the expansion of Eq. Al:

D ( G )

(A2)

Let us use Eqs. 12 and 14 to rewrite ue^ in terms of its real and imaginary parts:

ue-' = a + jb,

where

z f J-" x(ri' ,-,a = -T— \ dr, e cos |J.(r.)
At JR1

 X l

(A3)

b = — \ dr} e ^
" *'\

and

We note that at any point r , the random variable p(r.) is uniformly distributed over

2ir), since 9 is deterministic and <|>(r ) is assumed to be

By demonstrating that an arbitrary linear combination

(0, 2ir), since 9 is deterministic and <|>(r ) is assumed to be uniform over (0, 2rr).

I = Aa + Bb; . A2 + B2 # 0 (A4)

converges to a Gaussian random variable for large A , we shall show that a and b con-

verge to jointly Gaussian random variables as A gets large. We cannot determine a
I

sufficient number of lower order moments of I using the integral expressions of Eq. A3

required to use the probability density expansion technique above. Therefore we will

assume that these integrals can be approximated by finite sums of n identically dis-

tributed independent random terms:

79



I = In = Aan + Bbn, (A5)

where

n

a = — ; e cosn n

n
z

£=1

In Eq. A5, the Gaussian random variables x« are each N(m , cr ), the h^'s are uniformly
-*- X X *-

distributed over (0, 2ir), and the x« ' s and V-n ' s are statistically independent. The number
of terms n is a measure of the size of A,: n is the number of degrees of freedom

of e over aperture R,, and can be interpreted as the number of spatial coherence

areas of e contained in aperture R, (assume A « A . here)
Finally, for convenit

mean and unit variance:

2

Finally, for convenience, we shall normalize I so that our test variable y has zero

-(m +a , „ ?
A. + B # 0. (A6)

The first four moments of y are then given by

(A7)
3 \e

3 4 2n

We want to expand p (a) in terms of the normalized Gaussian probability density
i/

?
•i t* Iry

Px(c) = -^= e~a I , (A8)

which has lower order moments

m = 0 m9 = 1 m_ = 0 m. = 3
1 £> j Q

mc = 0 m, = 15 m_ = 0 m0 = 105.5 6 7 8

(A9)

Using Eq. A2, we find that r-(c) = 0, so that the lowest order correction term
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in the expansion is

4\
r 4 ( a ) = 6 ~ Z (a4-6c2+3), (AlO)

which is independent of A, B, and m . If we pursue this approach further and evaluate
A.

higher order correction terms, we shall find that they are all dominated by r .(c) for

large n. Since Eq. AlO holds for arbitrary linear combinations of a and b , we can

conclude that a and b converge to jointly Gaussian random variables as n gets large,

and Eq. AlO provides an indication of the rate of convergence:

p (a) « p (a); ty a, n3 | r . (a) | « 1 . (Al l )
y x ^

We can also show that

"a = b = 0,n n

a b = 0,n n

~2 K 2 Ze * Xa = b =n n 02n

therefore, provided the approximation of Eq. A5 is valid, ue-' appears to be a zero-

mean, complex Gaussian random variable whose real and imaginary parts are identically

distributed and independent for large A . The conclusions above are borne out by
/ (- T

Halme's computer- simulation analysis.
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APPENDIX B

Optical Heterodyne Detection

The notation will be generalized to apply to both the optical ground-to-space link and

the ground-to-ground link. We have seen in Eqs. 6, 7, and 23 that the complex field

amplitude arriving at receiver aperture R consists in a signal E ( r , t ) and incoherent

Gaussian noise radiation E,(r , t):

E r ( r . t ) = Eo(F,t) + E b ( r , t ) ; R, t

where

E 0 ( r , t ) = \TI U ( r ) s(t)

E b ( r , t ) = 0 ( B l )

Eb(r ,t) Eb(r ' , t ' ) ~ 2NbX2uQ(r-r ') uQ(t-t').

Helstrom has shown that in this situation an optical heterodyne receiver with a

strong local-oscillator field reduces the detection problem to the familiar form of
22an IF signal and additive Gaussian noise. We shall now use a similar approach

to demonstrate this by way of review.

E ( T , t )

LOCAL-OSCILLATOR FIELD

Fig. B-l. Optical heterodyne receiver.

As indicated in Fig. B-l, in the heterodyning process a strong local-oscillator

field is added to the field received over aperture R, and their sum is fed to an

energy detector. The local-oscillator field is a plane wave over aperture R, with

a tilted phase front characterized in general by the direction cosine vector cj>, and

a frequency offset f, from the signal carrier frequency f ; its complex envelope

is therefore

Eh(r , t) = Eh exp(jk<)> • T) exp(-j2irfht); ,r S R.

The complex envelope of the detector input field is then

(B2)
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E d ( r , t ) = E (r ,t) + E b ( r , t ) ; r S R , te , (B3)

where

E ( r , t ) = E (r , t) + E, (r , t ) ; r e R, te. (B4)
S o i l

Under the assumption that the energy detector is an ideal photon detector, the output d(t) ,

conditioned on the atmospheric fading and background noise, is a filtered Poisson pro-

cess with rate parameter

dr | E d ( r \ t ) | , (B5)
R

where T| is the quantum efficiency of the detector, h is Planck's constant, and v is

the central frequency of the photon radiation. For simplicity, we have assumed that

our fields are normalized so that the characteristic impedance of free space is unity.

Before considering the statistical behavior of the detector output, we should eval-

uate the mean and covariance of |JL(t) for a given atmospheric channel state. All

expectations below are over the noise field E, (r*,t), conditioned on the fading pro-

cess U(r ).

2
dr |U(?)r + A

r!
EJ

R

+ 2N/1 Re [U ($)E h s( t )exp( j2 i r f . t ) ] + A I I, (B6)L-i.r h h r bl

where we have defined the noise current

= T~ \ dr |E ( r , t ) | 2 (B7)
r JR

and

P • ~ * ' ~ " '
UJ4>) s \ dr U( r ) e~^ ' r (B8)
*r JR

is the angular plane-wave component of U ( r ) with direction cosine vector <j>.

.2 r

r' | Ed(?, r)

'—

C o v L n ( T ) n ( < r ) J = l— 1 \ dF \ d? | |E d (F , r ) r |E (F ' - , f f ) r - |E ( F , T ) | 2 |E (F' , .a) '2

;R JR i
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After much algebraic manipulation, including the use of the moment factoring theorem,

we find that the covariance of n(t) reduces to

2

R JR

_

Cov [^(T)H(O-)] = (1^7) J d? \ d?' i |Eb(r ,T)E*(r \<r)

* _
+ 2 Re E s ( r , T ) E s ( r ' , < r ) E b ( r , T ) E b ( r '

We have noted that the background noise field is approximately white in time and space

as represented by the form of the covariance function in Eq. Bl. Similarly, we can

make the approximation •

UO(T-(T), (B9)E b ( r , T )E b ( r ' ,< r )

where N,_ is some appropriate constant. Then the covariance of n(-t) simplifies to

o
= 4N \ u u (T-

'p
\ dr \V(
JR

7
+ A r |E h p+ 2^Re[U r(?)Ehs(T)exp(j2irfhT)] j.. ^ (BIO)

We now turn our attention to the mean and covariance of the detector output d(t).

Note that here d(t) is not a complex envelope — it is a real function of time. We assume

for simplicity that the detector produces a deterministic, causal current pulse h ,(t-r) in

response to an electron emitted at time T from its photosensitive surface. Then we

have

d ( t j =

Let us assume, furthermore, that (i(t) is slowly varying relative to the current pulse

width; that is, the detector is wideband relative to ^(t). Then the mean of the detector

output is approximately

d(t) = (t Hd(0),

where H , ( f ) is the Fourier transform of h , ( t ) . Under the assumption that the local-

oscillator field is sufficiently strong, we need only retain terms in (i(t) containing E, .

? / ^ X
r l E h l Hd ( 0 ) + 2 h7 ^ H d (0 )Re [U r(*)Ehs(t)exp(j21rfht)]. (B l l )
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Using a similar approach for the covariance of d(t), this time only retaining terms
i 1 2containing | E | , we find that •

f\ oo r> oo p oo
Cov[d(t)d(t ')] = \ dt jl(7j h , ( t - T ) h , ( t ' - T ) + \ d-r \ do- Cov [fx(-r)n(o-)]hd(t-r)hd(t'-(r)

J-oo J-oo J-oo

Typically, we have

so that the covariance of d(t) reduces to

Cov[d(t)d(t ')] ~ r dr hd(T)hd(t-t '+T). (B12)

Finally, let us process the detector output d(t) to get our results in the desired form.

Use a bandpass filter centered at frequency f, to eliminate the DC term in d(t), and use

d( t ) r ( t )

Fig. B-2. Detector output processor.

a multiplier to normalize the output. Then the mean of the receiver signal r(t)

is given by

E,

E,
, (B13)

We can now approximate r(t) by the sum of its mean and a noise term n(t):

E,
r(t) ~A / — Re

r E,
s(t) exp(j2irfht) n(t); (B14)

where the • correlation function of n(t) is
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/°° d T h . ( T ) h,(t-t '+T) X

R (t-f ) ~ Cov [r(t)r(t')] ~ -^ - - - f - - (B15)
n

This implies that n(t) has a power density function

| H , ( f ) | 2

S ( f ) ~ - 2 • <B16)
n 2(T, /hv)H d (0)

Since the current pulse h , ( t ) is typically very narrow, we can generally make the approx-

imation

H d ( f )*H d (0 ) ; | f | <W, (B17)

where W is large enough to include the frequency range of r(t). Therefore, over the

bandwidth of the signal portion of r(t) , n(t) is essentially a white random process with

power density function

N
S ( f ) = - - - s-2. . (B18)n

22 ^Helstrom examines cumulants of arbitrary order for r(t) and concludes that, if

the local-oscillator field is sufficiently intense, the moment-generating function for r(t)

approaches that of a Gaussian random process. There is little advantage to be gained

by repeating his arguments here, so we simply accept his conclusion that r(t) is a

Gaussian random process. This completes the proof of our initial hypothesis.
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APPENDIX C
-̂ s

Approximation for the Marcum Q Function

41
We shall now derive a useful approximation for the Marcum Q function defined by

1 2 2
• poo • - - (x +a )

Q (a,b) s V d x x e * I (ax), (Cl)m Jb o

where I ( • ) is the zero-order modified Bessel function of the first kind. The large-

argument asymptotic approximation for the Bessel function is given by

I (z) = -^ - ; z » 1. (C2)
N/ 2irz

Using Eq. C2 in Eq. Cl, -we have

1 / x2
i p°° - "T (x-a)

Q (a, b) ~ — — \ d x V x ' e ; ab » 1. (C3)
m J

If b 5* a, we can try to approximate the integral in Eq. C3 by replacing */x with the

first two terms of its Taylor series expansion about x = b:

- f (*-a)
Qm(a,b) = A/^ \ dxe

1 . .2poo - ~ (x-a)
+ —-£= \ dx (x-b) e ; b »a, ab » 1. (C4)

2 N/ 2irab Jb

II

We can easily determine that

I = y/^ Q(b-a) (C5)

and

- z (b~a) (b-a)
II =^ — Q(b-a), - (C6)

2\ /ab

where Q( •) is the Gaussian Q function defined by
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/"*oo 2 /
\ dx e~ X /2. (C7)
Ja

In order for the approximation of Eq. C4 to be accurate, we must satisfy the con-

dition I » II. This restriction will be met if and only if we have

b » |- f (b-a), (C8)

where

e .
f(x) = -== -- x. (C9)

•N/I^ Q(x)

It can be readily verified that f(x) decreases monotonically with increasing x for x > 0,

and that f(0) ~ 0. 4. Therefore a sufficient condition for satisfying the restriction of

Eq. C8 when b > a is that b » 0.4. Then Q (a, b) is approximately equal to I:

Q (a, b) = A/- Q(b-a); - ab » 1, b » 0.4, b 3* a. (CIO)m * 3.
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APPENDIX D

Buffering Problem for Optical Burst Communication Links

over an Atmospheric Channel

As developed in Section IV, a burst communication system operates according to the

following prescription. When the data transmitter senses that the channel is suitable

for communication, it transmits information at a rate R bits per second; this event

occurs with probability p. With probability 1-p the data transmitter decides that the

channel fading is too severe for reliable communication and transmits no information,

as long as the channel remains in that condition. Under the assumption that the channel-

fading process is ergodic, these probabilities also represent the fractions of time that

the channel is suitable or unsuitable for communication.

The data transmitter therefore sends information at an average rate

R = R.p bits/second. (Dl)

The data source typically emits information at a fixed rate. Under this assumption, the

source rate must be R bits per second. To accommodate the differences between

the fixed data-source rate and the variable data-transmission rate, a buffer must be

inserted between the data source and the data transmitter.

In order for the burst communication system to operate continually without inter-

ruption, the buffer storage capacity must be large enough to satisfy the following

requirements:

(i) The buffer must always contain enough bits of information so that it can emit

data at a net rate of R - R without emptying whenever the channel is suitable for com-
6

munication.

(ii) The buffer must be able to store data at rate R without saturating, as long

as the channel is unsuitable for communication.

If the burst communication system must be operated indefinitely, the buffer storage

capacity must be infinite to fulfill these requirements. In any practical situation, how-

ever, we only demand that the system be able to sustain continuous operation over a

finite interval of time. For this case, the following analysis provides some insight into

the problem of deciding what the buffer storage capacity should be.

In lieu of a complete statistical representation of the temporal variations of the

channel-fading process, we shall use the following model. We partition our time scale

into consecutive, nonoverlapping intervals of length T seconds, where T is the atmo-

spheric coherence time. We assume that over each of these intervals the channel fading

remains constant, but that different intervals have independent fades.

As a starting point, suppose the buffer contains z information bits when the com-

munication system is initially turned on. During the i succeeding interval of duration TC
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the buffer incurs a net gain of g. bits. Using Eq. Dl, we can say that with probabil-

ity 1-p, the random variable g. given by

gi = RavgTc = RPTc " a: .

with probability p, we have

g i=-(R-B a v g)T c=-B(l-p) Tcs-b . (D3)

By our assumption of independent channel fades, the g.'s for different intervals are

statistically independent random variables.

Suppose the buffer has a storage capacity of N bits. As we have noted, the burst

communication system can operate without interruption until the buffer overflows or is

completely emptied. Let us denote the expected duration of this continuous operation

period, conditioned on the initial storage of z bits in the buffer, by D seconds. Wez
shall determine D in the analysis, as well as the value of z which maximizes D .z . z

We have essentially a classical random-walk problem of the sort investigated by
AT

Feller, and the analysis that follows is adapted from his work. After the first interval

of length T , the buffer contains either z+a or z-b bits, and therefore we must have

T ; 0 < z < N (D4)

with the boundary conditions

D = 0; z ^0 or z 3*N. (D5)
Z

Since Eqs. D2 and D3 imply that pb = (l-p)a, a particular solution of the nonhomogeneous

difference equation in Eq. D4 is given by

- 2"
+ (l-p)a*

(D6)

It is evident that the difference A of any two solutions of Eq. D4 satisfies the homo-
Z

geneous difference equation

0 < z < N . (D7)

Equation D7 has two complementary solutions:

A = 1, z. (D8)
Z

It follows that all solutions of Eq. D4 are of the form

z2T
D = -- 5 - - - 5 + Az + B, (D9)
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where A and B are arbitrary constants. To satisfy the boundary conditions of Eq. D5,

we must have

NT
A= — 5 - ~ - 2: B = 0. (D10)

pb + (l-p)a

Therefore, the required solution D which satisfies the boundary conditions is givenz
by

z(N-z)T
D = — 5 - £-5; 0 < z < N. (D l l )

z pb^ + (l-

We can clearly maximize D by setting z equal to N/2. Then the expected duration
Z

of the continuous operation period is simply

. n , 2 'pb + (l-p)a
(D12)

where a and b are defined in Eqs. D2 and D3. Replacing a and b with the burst com-

munication system parameters R and p, we can write Eq. D12 in the form

pN2

(D13)

To summarize the results above, suppose we have a burst communication system

that transmits data at a average information rate R bits per second over an atmo-

spheric channel that has a coherence time T seconds. The channel is suitable for com-

munication with probability p, and a buffer with a storage capacity of N bits is inserted

between the data source and the data transmitter. In order to maximize the expected

duration of the period over which the burst communication system operates satisfac-

torily, we must load the buffer with N/2 source bits before turning on the system. Then

the expected duration of the continuous operation period is given in Eq. D13. This pro-

vides some indication of the buffer storage capacity required for reliable communication

over any given period.
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