376 research outputs found

    Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures

    Get PDF
    Clinical acoustic voice recording analysis is usually performed using classical perturbation measures including jitter, shimmer and noise-to-harmonic ratios. However, restrictive mathematical limitations of these measures prevent analysis for severely dysphonic voices. Previous studies of alternative nonlinear random measures addressed wide varieties of vocal pathologies. Here, we analyze a single vocal pathology cohort, testing the performance of these alternative measures alongside classical measures.

We present voice analysis pre- and post-operatively in unilateral vocal fold paralysis (UVFP) patients and healthy controls, patients undergoing standard medialisation thyroplasty surgery, using jitter, shimmer and noise-to-harmonic ratio (NHR), and nonlinear recurrence period density entropy (RPDE), detrended fluctuation analysis (DFA) and correlation dimension. Systematizing the preparative editing of the recordings, we found that the novel measures were more stable and hence reliable, than the classical measures, on healthy controls.

RPDE and jitter are sensitive to improvements pre- to post-operation. Shimmer, NHR and DFA showed no significant change (p > 0.05). All measures detect statistically significant and clinically important differences between controls and patients, both treated and untreated (p < 0.001, AUC > 0.7). Pre- to post-operation, GRBAS ratings show statistically significant and clinically important improvement in overall dysphonia grade (G) (AUC = 0.946, p < 0.001).

Re-calculating AUCs from other study data, we compare these results in terms of clinical importance. We conclude that, when preparative editing is systematized, nonlinear random measures may be useful UVFP treatment effectiveness monitoring tools, and there may be applications for other forms of dysphonia.
&#xa

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.

Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.

Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.

Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.
&#xa

    Introducing non-linear analysis into sustained speech characterization to improve sleep apnea detection

    Get PDF
    We present a novel approach for detecting severe obstructive sleep apnea (OSA) cases by introducing non-linear analysis into sustained speech characterization. The proposed scheme was designed for providing additional information into our baseline system, built on top of state-of-the-art cepstral domain modeling techniques, aiming to improve accuracy rates. This new information is lightly correlated with our previous MFCC modeling of sustained speech and uncorrelated with the information in our continuous speech modeling scheme. Tests have been performed to evaluate the improvement for our detection task, based on sustained speech as well as combined with a continuous speech classifier, resulting in a 10% relative reduction in classification for the first and a 33% relative reduction for the fused scheme. Results encourage us to consider the existence of non-linear effects on OSA patients' voices, and to think about tools which could be used to improve short-time analysis

    Introducing non-linear analysis into sustained speech characterization to improve sleep apnea detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-25020-0_28Proceedings of 5th International Conference on Nonlinear Speech Processing, NOLISP 2011, Las Palmas de Gran Canaria (Spain)We present a novel approach for detecting severe obstructive sleep apnea (OSA) cases by introducing non-linear analysis into sustained speech characterization. The proposed scheme was designed for providing additional information into our baseline system, built on top of state-of-the-art cepstral domain modeling techniques, aiming to improve accuracy rates. This new information is lightly correlated with our previous MFCC modeling of sustained speech and uncorrelated with the information in our continuous speech modeling scheme. Tests have been performed to evaluate the improvement for our detection task, based on sustained speech as well as combined with a continuous speech classifier, resulting in a 10% relative reduction in classification for the first and a 33% relative reduction for the fused scheme. Results encourage us to consider the existence of non-linear effects on OSA patients’ voices, and to think about tools which could be used to improve short-time analysis.The activities described in this paper were funded by the Spanish Ministry of Science and Innovation as part of the TEC2009-14719-C02-02 (PriorSpeech) project

    Exploring the impact of data poisoning attacks on machine learning model reliability

    Get PDF
    Recent years have seen the widespread adoption of Artificial Intelligence techniques in several domains, including healthcare, justice, assisted driving and Natural Language Processing (NLP) based applications (e.g., the Fake News detection). Those mentioned are just a few examples of some domains that are particularly critical and sensitive to the reliability of the adopted machine learning systems. Therefore, several Artificial Intelligence approaches were adopted as support to realize easy and reliable solutions aimed at improving the early diagnosis, personalized treatment, remote patient monitoring and better decision-making with a consequent reduction of healthcare costs. Recent studies have shown that these techniques are venerable to attacks by adversaries at phases of artificial intelligence. Poisoned data set are the most common attack to the reliability of Artificial Intelligence approaches. Noise, for example, can have a significant impact on the overall performance of a machine learning model. This study discusses the strength of impact of noise on classification algorithms. In detail, the reliability of several machine learning techniques to distinguish correctly pathological and healthy voices by analysing poisoning data was evaluated. Voice samples selected by available database, widely used in research sector, the Saarbruecken Voice Database, were processed and analysed to evaluate the resilience and classification accuracy of these techniques. All analyses are evaluated in terms of accuracy, specificity, sensitivity, F1-score and ROC area

    Bulbar ALS Detection Based on Analysis of Voice Perturbation and Vibrato

    Full text link
    On average the lack of biological markers causes a one year diagnostic delay to detect amyotrophic lateral sclerosis (ALS). To improve the diagnostic process an automatic voice assessment based on acoustic analysis can be used. The purpose of this work was to verify the sutability of the sustain vowel phonation test for automatic detection of patients with ALS. We proposed enhanced procedure for separation of voice signal into fundamental periods that requires for calculation of perturbation measurements (such as jitter and shimmer). Also we proposed method for quantitative assessment of pathological vibrato manifestations in sustain vowel phonation. The study's experiments show that using the proposed acoustic analysis methods, the classifier based on linear discriminant analysis attains 90.7\% accuracy with 86.7\% sensitivity and 92.2\% specificity.Comment: Proc. of International Conference Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA 2019

    Improved Algorithm for Pathological and Normal Voices Identification

    Get PDF
    There are a lot of papers on automatic classification between normal and pathological voices, but they have the lack in the degree of severity estimation of the identified voice disorders. Building a model of pathological and normal voices identification, that can also evaluate the degree of severity of the identified voice disorders among students. In the present work, we present an automatic classifier using acoustical measurements on registered sustained vowels /a/ and pattern recognition tools based on neural networks. The training set was done by classifying students’ recorded voices based on threshold from the literature. We retrieve the pitch, jitter, shimmer and harmonic-to-noise ratio values of the speech utterance /a/, which constitute the input vector of the neural network. The degree of severity is estimated to evaluate how the parameters are far from the standard values based on the percent of normal and pathological values. In this work, the base data used for testing the proposed algorithm of the neural network is formed by healthy and pathological voices from German database of voice disorders. The performance of the proposed algorithm is evaluated in a term of the accuracy (97.9%), sensitivity (1.6%), and specificity (95.1%). The classification rate is 90% for normal class and 95% for pathological class
    • …
    corecore