1,608 research outputs found

    A Type-Safe Model of Adaptive Object Groups

    Full text link
    Services are autonomous, self-describing, technology-neutral software units that can be described, published, discovered, and composed into software applications at runtime. Designing software services and composing services in order to form applications or composite services requires abstractions beyond those found in typical object-oriented programming languages. This paper explores service-oriented abstractions such as service adaptation, discovery, and querying in an object-oriented setting. We develop a formal model of adaptive object-oriented groups which offer services to their environment. These groups fit directly into the object-oriented paradigm in the sense that they can be dynamically created, they have an identity, and they can receive method calls. In contrast to objects, groups are not used for structuring code. A group exports its services through interfaces and relies on objects to implement these services. Objects may join or leave different groups. Groups may dynamically export new interfaces, they support service discovery, and they can be queried at runtime for the interfaces they support. We define an operational semantics and a static type system for this model of adaptive object groups, and show that well-typed programs do not cause method-not-understood errors at runtime.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Formal Semantics for Java-like Languages and Research Opportunities

    Get PDF
    The objective of this paper is twofold: first, we discuss the state of art on Java-like semantics, focusing on those that provide formal specification using operational semantics (big-step or small-step), studying in detail the most cited projects and presenting some derivative works that extend the originals aggregating useful features. Also, we filter our research for those that provide some insights in type-safety proofs. Furthermore, we provide a comparison between the most used projects in order to show which functionalities are covered in such projects. Second, our effort is focused towards the research opportunities in this area, showing some important works that can be applied to the previously presented projects to study features of object-oriented languages, and pointing for some possibilities to explore in future researches

    An Assertional Proof System for Multithreaded Java - Theory and Tool Support

    Get PDF
    Besides the features of a class-based object-oriented language, Java integrates concurrency via its thread classes, allowing for a multithreaded flow of control. The concurrency model includes shared-variable concurrency via instance variables, coordination via reentrant synchronization monitors, synchronous message passing, and dynamic thread creation. To reason about safety properties of multithreaded Java programs, we introduce a tool-supported assertional proof method for JavaMT ("Multi-Threaded Java"), a small sublanguage of Java, covering the mentioned concurrency issues as well as the object-based core of Java. The verification method is formulated in terms of proof-outlines, where the assertions are layered into local ones specifying the behavior of a single instance, and global ones taking care of the connections between objects. We establish the soundness and the completeness of the proof system. From an annotated program, a number of verification conditions are generated and handed over to the interactive theorem prover PVS.IST project Omega (IST-2001-33522) NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2)UBL - phd migration 201

    Using Graph Transformations and Graph Abstractions for Software Verification

    Get PDF
    In this paper we describe our intended approach for the verification of software written in imperative programming languages. We base our approach on model checking of graph transition systems, where each state is a graph and the transitions are specified by graph transformation rules. We believe that graph transformation is a very suitable technique to model the execution semantics of languages with dynamic memory allocation. Furthermore, such representation allows us to investigate the use of graph abstractions, which can mitigate the combinatorial explosion inherent to model checking. In addition to presenting our planned approach, we reason about its feasibility, and, by providing a brief comparison to other existing methods, we highlight the benefits and drawbacks that are expected

    Visual iconic object-oriented programming to advance computer science education and novice programming

    Get PDF
    Learning how to program a computer is difficult for most people. Computer programming is a cognitively challenging, time consuming, labor intensive, and frustrating endeavor. Years of formal study and training are required to learn a programming language\u27s world of algorithms and data structures. Instructions are coded in advance before the computer demonstrates the desired behavior. Seeing all the programming steps and instruction code is complicated. There exists a tremendous gap between the representations the human brain uses when thinking about a problem and the representations used in programming a computer. Often people are much better at dealing with specific, concrete objects than working with abstract ideas. Concrete and specific programming examples and demonstrations can be very useful. When cleverly chosen and properly used, programming examples and demonstrations help people understand the abstract concepts. Programming by example or demonstration attempts to extend these novel ideas to novice programming

    Implicit Invocation Meets Safe, Implicit Concurrency

    Get PDF
    Writing correct and efficient concurrent programs still remains a challenge. Explicit concurrency is difficult, error prone, and creates code which is hard to maintain and debug. This type of concurrency also treats modular program design and concurrency as separate goals, where modularity often suffers. To solve these problems, we are designing a new language that we call Panini. In this work, we focus on Panini\u27s asynchronous, typed events which reconcile the modularity goal promoted by the implicit invocation design style with the concurrency goal of exposing potential concurrency between the execution of subjects and observers. Since modularity is improved and concurrency is implicit in Panini, programs are easier to reason about and maintain. The language incorporates a static analysis to determine potential conflicts between handlers and a dynamic analysis which uses the conflict information to determine a safe order for handler invocation. This mechanism avoids races and deadlocks entirely, yielding programs with a guaranteed deterministic semantics. To evaluate our language design and implementation we show several examples of its usage as well as an empirical study of program performance. We found that not only is developing and understanding programs significantly easier compared to standard concurrent object-oriented programs, but also performance of Panini programs is comparable to their equivalent hand-tuned versions written using Java\u27s fork-join framework

    Multiparty interactions in dependable distributed systems

    Get PDF
    PhD ThesisWith the expansion of computer networks, activities involving computer communication are becoming more and more distributed. Such distribution can include processing, control, data, network management, and security. Although distribution can improve the reliability of a system by replicating components, sometimes an increase in distribution can introduce some undesirable faults. To reduce the risks of introducing, and to improve the chances of removing and tolerating faults when distributing applications, it is important that distributed systems are implemented in an organized way. As in sequential programming, complexity in distributed, in particular parallel, program development can be managed by providing appropriate programming language constructs. Language constructs can help both by supporting encapsulation so as to prevent unwanted interactions between program components and by providing higher-level abstractions that reduce programmer effort by allowing compilers to handle mundane, error-prone aspects of parallel program implementation. A language construct that supports encapsulation of interactions between multiple parties (objects or processes) is referred in the literature as multiparty interaction. In a multiparty interaction, several parties somehow "come together" to produce an intermediate and temporary combined state, use this state to execute some activity, and then leave the interaction and continue their normal execution. There has been a lot of work in the past years on multiparty interaction, but most of it has been concerned with synchronisation, or handshaking, between parties rather than the encapsulation of several activities executed in parallel by the interaction participants. The programmer is therefore left responsible for ensuring that the processes involved in a cooperative activity do not interfere with, or suffer interference from, other processes not involved in the activity. Furthermore, none of this work has discussed the provision of features that would facilitate the design of multiparty interactions that are expected to cope with faults - whether in the environment that the computer system has to deal with, in the operation of the underlying computer hardware or software, or in the design of the processes that are involved in the interaction. In this thesis the concept of multiparty interaction is integrated with the concept of exception handling in concurrent activities. The final result is a language in which the concept of multiparty interaction is extended by providing it with a mechanism to handle concurrent exceptions. This extended concept is called dependable multiparty interaction. The features and requirements for multiparty interaction and exception handling provided in a set of languages surveyed in this thesis, are integrated to describe the new dependable multiparty interaction construct. Additionally, object-oriented architectures for dependable multiparty interactions are described, and a full implementation of one of the architectures is provided. This implementation is then applied to a set of case studies. The case studies show how dependable multiparty interactions can be used to design and implement a safety-critical system, a multiparty programming abstraction, and a parallel computation model.Brazilian Research Agency CNPq
    • …
    corecore