105 research outputs found

    Wireless Multimedia Communications and Networking Based on JPEG 2000

    Get PDF

    Forward Error Correction applied to JPEG-XS codestreams

    Full text link
    JPEG-XS offers low complexity image compression for applications with constrained but reasonable bit-rate, and low latency. Our paper explores the deployment of JPEG-XS on lossy packet networks. To preserve low latency, Forward Error Correction (FEC) is envisioned as the protection mechanism of interest. Despite the JPEG-XS codestream is not scalable in essence, we observe that the loss of a codestream fraction impacts the decoded image quality differently, depending on whether this codestream fraction corresponds to codestream headers, to coefficients significance information, or to low/high frequency data, respectively. Hence, we propose a rate-distortion optimal unequal error protection scheme that adapts the redundancy level of Reed-Solomon codes according to the rate of channel losses and the type of information protected by the code. Our experiments demonstrate that, at 5% loss rates, it reduces the Mean Squared Error by up to 92% and 65%, compared to a transmission without and with optimal but equal protection, respectively

    A Robust Content-Based JPWL Transmission Over a Realistic MIMO Channel Under Perceptual Constraints

    No full text
    International audienceThis paper proposes a global approach of JPWL (ISO/IEC 15444-11) image transmission over a realistic wireless channel able to ensure the best Quality of Service (QoS). In order to exploit the channel diversity, we consider a Closed-Loop MIMO-OFDM scheme with different precoder designs. In particular, the high flexibility of QoS precoder allows taking into account the scalability of JPWL jointly with the instantaneous MIMO channel status. This increases the visual quality of received images. The monitoring of the quality is made by a reduced-reference metric (QIP) based on object's saliency and interest points, both linked to human perception. It is performed in association with a robust JPWL decoder to determine the optimal decoding configuration in terms of PSNR. The proposed scheme provides very good results and its performance is shown through a realistic wireless channel

    JPWL - an Extension of JPEG 2000 for Wireless Imaging

    Get PDF
    In this paper, we present an overview of the JPWL standardization activity. JPWL is an extension of JPEG 2000 for the efficient transmission of JPEG 2000 images over an error-prone wireless network. More specifically, JPWL supports a set of tools for error protection and correction, including Forward Error Correcting codes (FEC), Unequal Error Protection (UEP), data partitioning and interleaving

    Optimized Scalable Image and Video Transmission for MIMO Wireless Channels

    Get PDF
    In this chapter, we focus on proposing new strategies to efficiently transfer a compressed image/video content through wireless links using a multiple antenna technology. The proposed solutions can be considered as application layer physical layer (APP-PHY) cross layer design methods as they involve optimizing both application and physical layers. After a wide state-of-the-art study, we present two main solutions. The first focuses on using a new precoding algorithm that takes into account the image/video content structure when assigning transmission powers. We showed that its results are better than the existing conventional precoders. Second, a link adaptation process is integrated to efficiently assign coding parameters as a function of the channel state. Simulations over a realistic channel environment show that the link adaptation activates a dynamic process that results in a good image/video reconstruction quality even if the channel is varying. Finally, we incorporated soft decoding algorithms at the receiver side, and we showed that they could induce further improvements. In fact, almost 5 dB peak signal-to-noise ratio (PSNR) improvements are demonstrated in the case of transmission over a Rayleigh channel

    JPWL: JPEG 2000 for Wireless Applications

    Get PDF
    In this paper, we present the current status of the JPWL standardization work item. JPWL is an extension of the JPEG 2000 baseline specification in order to enable the efficient transmission of JPEG 2000 codestream over an error-prone network. In particular, JPWL supports a set of tools and methods for error protection and correction such as Forward Error Correcting (FEC) codes, Unequal Error Protection (UEP), and data partitioning and interleaving. We then evaluate the performance of the JPWL Error Protection Block (EPB) tool. We consider two configurations of EPB: to protect the Main and Tile-part headers, or to protect the whole codestream using UEP. Experimental results show a significant quality improvement when using EPB compared to baseline JPEG 2000

    High Speed S-band Communications System for Nanosatellites

    Get PDF
    3Cat-3 is a nanosatellite based on the 6 unit cubesat standard. Its payload is an optical multispectral imager that imposes stringent downlink requirements for a nanosatellite. This TFG is based on the experience gained in 3Cat-1 and 3Cat-2 communications systems to develop a "high speed" (goal >= 5 Mbps) downlink for nanosatellites based on the TI CC3200.In order to accomplish the objectives of the next generation of nanosatellites high-speed downlinks have to be designed. This goal faces stringent design constraints as nanosatellites are limit in power, processing capabilities and dimensions. In the quest for higher bit rates the widely used VHF band has to be replaced for higher frequency bands and the link budged margin tightened, decreasing the SNR at reception. The proposed solution uses COTS 2.4 GHz WiFi adapters as transceivers. Range limitations imposed by the default 802.11 mode of operation are bypassed by using packet forging and injection at transmission jointly with monitor mode at reception. A loss-resilient unidirectional downlink is achieved by using application-layer encoding by means of LPDC-Staircase codes. This solution has been already implemented in 3CAT-2, a 6 unit cubesat GNSS-R mission to be launched in July 2016. In addition, bursts of errors are combated by using Reed-Solomon. The system has been tested under Doppler shift and scintillation effects, and a 188Km link between Barcelona and Mallorca has been performed, showing satisfactory results

    Le code à effacement Mojette : Applications dans les réseaux et dans le Cloud

    Get PDF
    Dans ce travail, je présente l'intérêt du code correcteur à effacement Mojette pour des architectures de stockage distribuées tolérantes aux pannes. De manière générale, l'approche par code permet de réduire d'un facteur 2 le volume de données stockées par rapport à l'approche standard par réplication qui consiste à copier la donnée en autant de fois que l'on suppose de pannes. De manière spécifique, le code à effacement Mojette présente les performances requises pour la lecture et l'écriture de données chaudes i.e très régulièrement sollicitées. Ces performances en entrées/sorties permettent par exemple l'exécution de machines virtuelles sur des données distribuées par le système de fichier RozoFS. En outre, j'effectue un rappel de mes contributions dans le domaine des réseaux auto-organisés de type P2P et ad hoc mobile en présentant respectivement les protocoles P2PWeb et MP-OLSR. L'ensemble de ce travail est le fruit de 5 encadrements doctoraux et de 3 projets collaboratifs majeurs

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Robust Transmission of Images Based on JPEG2000 Using Edge Information

    Get PDF
    In multimedia communication and data storage, compression of data is essential to speed up the transmission rate, minimize the use of channel bandwidth, and minimize storage space. JPEG2000 is the new standard for image compression for transmission and storage. The drawback of Compression is that compressed data are more vulnerable to channel noise during transmission. Previous techniques for error concealment are classified into three groups depending on the Approach employed by the encoder and decoder: Forward Error Concealment, Error Concealment by Post Processing and Interactive Error Concealment. The objective of this thesis is to develop a Concealment methodology that has the capability of both error detection and concealment, be Compatible with the JPEG2000 standard, and guarantees minimum use of channel bandwidth. A new methodology is developed to detect corrupted regions/coefficients in the received Images the edge information. The methodology requires transmission of edge information of wavelet coefficients of the original image along with JPEG2000 compressed image. At the receiver, the edge information of received wavelet coefficients is computed and compared with the received edge information of the original image to determine the corrupted coefficients. Three methods of concealment, each including a filter, are investigated to handle the corrupted regions/coefficients. MATLAB™ functions are developed that simulate channel noise, image transmission Using JPEG2000 standard and the proposed methodology. The objective quality measure such as Peak-signal-to-noise ratio (PSNR), root-mean-square error (rms) and subjective quality Measure are used to evaluate processed images. The simulation results are presented to demonstrate The performance of the proposed methodology. The results are also compared with recent approaches Found in the literature. Based on performance of the proposed approach, it is claimed that the Proposed approach can be successfully used in wireless and Internet communications
    corecore