6,958 research outputs found

    The sign of the Green function of an n-th order linear boundary value problem

    Full text link
    [EN] This paper provides results on the sign of the Green function (and its partial derivatives) of ann-th order boundary value problem subject to a wide set of homogeneous two-point boundary conditions. The dependence of the absolute value of the Green function and some of its partial derivatives with respect to the extremes where the boundary conditions are set is also assessed.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Almenar, P.; Jódar Sánchez, LA. (2020). The sign of the Green function of an n-th order linear boundary value problem. Mathematics. 8(5):1-22. https://doi.org/10.3390/math8050673S12285Butler, G. ., & Erbe, L. . (1983). Integral comparison theorems and extremal points for linear differential equations. Journal of Differential Equations, 47(2), 214-226. doi:10.1016/0022-0396(83)90034-7Peterson, A. C. (1979). Green’s functions for focal type boundary value problems. Rocky Mountain Journal of Mathematics, 9(4). doi:10.1216/rmj-1979-9-4-721Peterson, A. C. (1980). Focal Green’s functions for fourth-order differential equations. Journal of Mathematical Analysis and Applications, 75(2), 602-610. doi:10.1016/0022-247x(80)90104-3Elias, U. (1980). Green’s functions for a non-disconjugate differential operator. Journal of Differential Equations, 37(3), 318-350. doi:10.1016/0022-0396(80)90103-5Nehari, Z. (1967). Disconjugate linear differential operators. Transactions of the American Mathematical Society, 129(3), 500-500. doi:10.1090/s0002-9947-1967-0219781-0Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-kEloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003Almenar, P., & Jódar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405Almenar, P., & Jódar, L. (2016). Improving Results on Solvability of a Class ofnth-Order Linear Boundary Value Problems. International Journal of Differential Equations, 2016, 1-10. doi:10.1155/2016/3750530Almenar, P., & Jodar, L. (2017). SOLVABILITY OF A CLASS OF N -TH ORDER LINEAR FOCAL PROBLEMS. Mathematical Modelling and Analysis, 22(4), 528-547. doi:10.3846/13926292.2017.1329757Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6Webb, J. R. L. (2017). New fixed point index results and nonlinear boundary value problems. Bulletin of the London Mathematical Society, 49(3), 534-547. doi:10.1112/blms.12055Jiang, D., & Yuan, C. (2010). The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Analysis: Theory, Methods & Applications, 72(2), 710-719. doi:10.1016/j.na.2009.07.012Wang, Y., & Liu, L. (2017). Positive properties of the Green function for two-term fractional differential equations and its application. The Journal of Nonlinear Sciences and Applications, 10(04), 2094-2102. doi:10.22436/jnsa.010.04.63Zhang, L., & Tian, H. (2017). Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations. Advances in Difference Equations, 2017(1). doi:10.1186/s13662-017-1157-7Wang, Y. (2020). The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02549-

    The inverse electromagnetic scattering problem by a penetrable cylinder at oblique incidence

    Full text link
    In this work we consider the method of non-linear boundary integral equation for solving numerically the inverse scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder in three dimensions. We consider the indirect method and simple representations for the electric and the magnetic fields in order to derive a system of five integral equations, four on the boundary of the cylinder and one on the unit circle where we measure the far-field pattern of the scattered wave. We solve the system iteratively by linearizing only the far-field equation. Numerical results illustrate the feasibility of the proposed scheme.Comment: 16 pages, 6 figures. arXiv admin note: text overlap with arXiv:1610.0737

    Domains of analyticity of Lindstedt expansions of KAM tori in dissipative perturbations of Hamiltonian systems

    Full text link
    Many problems in Physics are described by dynamical systems that are conformally symplectic (e.g., mechanical systems with a friction proportional to the velocity, variational problems with a small discount or thermostated systems). Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We provide all details for maps, but we present also the modifications needed to obtain a direct proof for the case of differential equations. We consider a family of conformally symplectic maps fμ,ϵf_{\mu, \epsilon} defined on a 2d2d-dimensional symplectic manifold M\mathcal M with exact symplectic form Ω\Omega; we assume that fμ,ϵf_{\mu,\epsilon} satisfies fμ,ϵΩ=λ(ϵ)Ωf_{\mu,\epsilon}^*\Omega=\lambda(\epsilon) \Omega. We assume that the family depends on a dd-dimensional parameter μ\mu (called drift) and also on a small scalar parameter ϵ\epsilon. Furthermore, we assume that the conformal factor λ\lambda depends on ϵ\epsilon, in such a way that for ϵ=0\epsilon=0 we have λ(0)=1\lambda(0)=1 (the symplectic case). We study the domains of analyticity in ϵ\epsilon near ϵ=0\epsilon=0 of perturbative expansions (Lindstedt series) of the parameterization of the quasi--periodic orbits of frequency ω\omega (assumed to be Diophantine) and of the parameter μ\mu. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the Lindstedt series are analytic in a domain in the complex ϵ\epsilon plane, which is obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin

    Climb-dash real-time calculations

    Get PDF
    On-board rear-optimal climb-dash energy management, optimal symmetric flight with an intermediate vehicle model, and energy states are presented

    Numerical methods for computing Casimir interactions

    Full text link
    We review several different approaches for computing Casimir forces and related fluctuation-induced interactions between bodies of arbitrary shapes and materials. The relationships between this problem and well known computational techniques from classical electromagnetism are emphasized. We also review the basic principles of standard computational methods, categorizing them according to three criteria---choice of problem, basis, and solution technique---that can be used to classify proposals for the Casimir problem as well. In this way, mature classical methods can be exploited to model Casimir physics, with a few important modifications.Comment: 46 pages, 142 references, 5 figures. To appear in upcoming Lecture Notes in Physics book on Casimir Physic

    On the Structure of Advective Accretion Disks At High Luminosity

    Full text link
    Global solutions of optically thick advective accretion disks around black holes are constructed. The solutions are obtained by solving numerically a set of ordinary differential equations corresponding to a steady axisymmetric geometrically thin disk. We pay special attention to consistently satisfy the regularity conditions at singular points of the equations. For this reason we analytically expand a solution at the singular point, and use coefficients of the expansion in our iterative numerical procedure. We obtain consistent transonic solutions in a wide range of values of the viscosity parameter alpha and mass acretion rate. We compare two different form of viscosity: one takes the shear stress to be proportional to the pressure, while the other uses the angular velocity gradient-dependent stress. We find that there are two singular points in solutions corresponding to the pressure-proportional shear stress. The inner singular point locates close to the last stable orbit around black hole. This point changes its type from a saddle to node depending on values of alpha and accretion rate. The outer singular point locates at larger radius and is always of a saddle-type. We argue that, contrary to the previous investigations, a nodal-type inner singular point does not introduce multiple solutions. Only one integral curve, which corresponds to the unique global solution, passes simultaneously the inner and outer singular points independently of the type of inner singular point. Solutions with the angular velocity gradient-dependent shear stress have one singular point which is always of a saddle-type and corresponds to the unique global solution. The structure of accretion disks corresponding to both viscosities are similar.Comment: 20 pages, 6 figures, submitted to Ap

    Einstein equations in the null quasi-spherical gauge III: numerical algorithms

    Get PDF
    We describe numerical techniques used in the construction of our 4th order evolution for the full Einstein equations, and assess the accuracy of representative solutions. The code is based on a null gauge with a quasi-spherical radial coordinate, and simulates the interaction of a single black hole with gravitational radiation. Techniques used include spherical harmonic representations, convolution spline interpolation and filtering, and an RK4 "method of lines" evolution. For sample initial data of "intermediate" size (gravitational field with 19% of the black hole mass), the code is accurate to 1 part in 10^5, until null time z=55 when the coordinate condition breaks down.Comment: Latex, 38 pages, 29 figures (360Kb compressed

    A primer on noise-induced transitions in applied dynamical systems

    Full text link
    Noise plays a fundamental role in a wide variety of physical and biological dynamical systems. It can arise from an external forcing or due to random dynamics internal to the system. It is well established that even weak noise can result in large behavioral changes such as transitions between or escapes from quasi-stable states. These transitions can correspond to critical events such as failures or extinctions that make them essential phenomena to understand and quantify, despite the fact that their occurrence is rare. This article will provide an overview of the theory underlying the dynamics of rare events for stochastic models along with some example applications

    Multiparameter spectral analysis for aeroelastic instability problems

    Full text link
    This paper presents a novel application of multiparameter spectral theory to the study of structural stability, with particular emphasis on aeroelastic flutter. Methods of multiparameter analysis allow the development of new solution algorithms for aeroelastic flutter problems; most significantly, a direct solver for polynomial problems of arbitrary order and size, something which has not before been achieved. Two major variants of this direct solver are presented, and their computational characteristics are compared. Both are effective for smaller problems arising in reduced-order modelling and preliminary design optimization. Extensions and improvements to this new conceptual framework and solution method are then discussed.Comment: 20 pages, 8 figure
    corecore