99 research outputs found

    Low-complexity soft-decision feedback turbo equalization for multilevel modulations

    Get PDF
    This dissertation proposes two new decision feedback equalization schemes suitable for multilevel modulation systems employing turbo equalization. One is soft-decision feedback equalization (SDFE) that takes into account the reliability of both soft a priori information and soft decisions of the data symbols. The proposed SDFE exhibits lower signal to noise ratio (SNR) threshold that is required for water fall bit error rate (BER) and much faster convergence than the near-optimal exact minimum mean square error linear equalizer (Exact-MMSE-LE) for high-order constellation modulations. The proposed SDFE also offers a low computational complexity compared to the Exact-MMSE-LE. The drawback of the SDFE is that its coefficients cannot reach the matched filter bound (MFB) and therefore after a large number of iterations (e.g. 10), its performance becomes inferior to that of the Exact-MMSE-LE. Therefore, soft feedback intersymbol interference (ISI) canceller-based (SIC) structure is investigated. The SIC structure not only exhibits the same low complexity, low SNR threshold and fast convergence as the SDFE but also reaches the MFB after a large number of iterations. Both theoretical analysis and numerical simulations demonstrate why the SIC achieves MFB while the SDFE cannot. These two turbo equalization structures are also extended from single-input single-output (SISO) systems to multiple-input multiple-output (MIMO) systems and applied in high data-rate underwater acoustic (UWA) communications --Abstract, page iv

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Expectation propagation as a solution for digital communication systems.

    Get PDF
    In the context of digital communications, a digital receiver is required to provide an estimation of the transmitted symbols. Nowadays channel decoders highly benefit from soft (probabilistic) estimates for each transmitted symbol rather than from hard decisions. For this reason, digital receivers must be designed to provide the probability that each possible symbol was transmitted based on the received corrupted signal. Since exact inference might be unfeasible in terms of complexity for high-order scenarios, it is necessary to resort to approximate inference, such as the linear minimum mean square error (LMMSE) criterion. The LMMSE approximates the discrete prior information of the transmitted symbols with a Gaussian distribution, which causes a degradation in its performance. In this thesis, an alternative approximate statistical technique is applied to the design of a digital probabilistic receiver in digital communications. Specifically, the expectation propagation (EP) algorithm is investigated to find the Gaussian posterior probability density function (pdf) that minimizes the Kullback-Leibler (KL) divergence with respect to the true posterior pdf. Two different communication system scenarios are studied: a single-input singleoutput (SISO) digital communication system with memory channel and a multipleinput multiple-output (MIMO) system with memoryless channel. In the SISO scenario, three different designs of a soft standalone and turbo equalizer based on the EP algorithm are developed: the block or batch approach, the filter-type version that emulates theWiener filter behavior and the smoothing equalizer which proceeds similarly to a Kalman smoother. Finally, the block EP implementation is also adapted to MIMO scenarios with feedback from the decoder. In both scenarios, the EP is applied iteratively, including a damping mechanism and a control to avoid negative values of variances, which would lead to instabilities (specially for high-order constellations). Experimental results included through the thesis show that the EP algorithm applied to communication systems greatly improves the performance of previous approaches found in the literature with a complexity slightly increased but still proportional to that of the LMMSE. These results also show the robustness of the algorithm even for high-order modulations, large memory channels and high number of antennas. Major contributions of this dissertation have been published in four journal (one of them is still under review) and two conference papers. One more paper will be submitted to a journal soon. All these papers are listed below: • Irene Santos, Juan José Murillo-Fuentes, Rafael Boloix-Tortosa, Eva Arias de Reyna and Pablo M. Olmos, "Expectation Propagation as Turbo Equalizer in ISI Channels," IEEE Transactions on Communications, vol. 65, no.1, pp. 360-370, Jan 2017. • Irene Santos, Juan José Murillo-Fuentes, Eva Arias de Reyna and Pablo M. Olmos, "Turbo EP-based Equalization: a Filter-Type Implementation," IEEE Transactions on Communications, Sep 2017, Accepted. [Online] Available: https://ieeexplore.ieee.org/document/8353388/ • Irene Santos, Juan José Murillo-Fuentes, Eva Arias-de-Reyna and Pablo M. Olmos, "Probabilistic Equalization With a Smoothing Expectation Propagation Approach," IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2950-2962, May 2017. • Irene Santos, Juan José Murillo-Fuentes and Eva Arias-de-Reyna, "Equalization with Expectation Propagation at Smoothing Level," To be submitted. [Online] Available: https://arxiv.org/abs/1809.00806 • Irene Santos and Juan José Murillo-Fuentes, "EP-based turbo detection for MIMO receivers and large-scale systems," IEEE Transactions on Vehicular Technology, May 2018, Under review. [Online] Available: https://arxiv.org/abs/1805.05065 • Irene Santos, Juan José Murillo-Fuentes, and Pablo M. Olmos, "Block expectation propagation equalization for ISI channels," 23rd European Signal Processing Conference (EUSIPCO 2015), Nice, 2015, pp. 379-383. • Irene Santos, and Juan José Murillo-Fuentes, "Improved probabilistic EPbased receiver for MIMO systems and high-order modulations," XXXIII Simposium Nacional de la Unión Científica Internacional de Radio (URSI 2018), Granada, 2018.En el ámbito de las comunicaciones digitales, es necesario un receptor digital que proporcione una estimación de los símbolos transmitidos. Los decodificadores de canal actuales se benefician enormemente de estimaciones suaves (probabilísticas) de cada símbolo transmitido, en vez de estimaciones duras. Por este motivo, los receptores digitales deben diseñarse para proporcionar la probabilidad de cada posible símbolo que fue transmitido en base a la señal recibida y corrupta. Dado que la inferencia exacta puede no ser posible en términos de complejidad para escenarios de alto orden, es necesario recurrir a inferencia aproximada, como por ejemplo el criterio de linear minimum-mean-square-error (LMMSE). El LMMSE aproxima la información a priori discreta de los símbolos transmitidos con una distribución Gaussiana, lo cual provoca una degradación en su resultado. En esta tesis, se aplica una técnica alternativa de inferencia estadística para diseñar un receptor digital probabilístico de comunicaciones digitales. En concreto, se investiga el algoritmo expectation propagation (EP) con el objetivo de encontrar la función densidad de probabilidad (pdf) a posteriori Gaussiana que minimiza la divergencia de Kullback-Leibler (KL) con respecto a la pdf a posteriori verdadera. Se estudian dos escenarios de comunicaciones digitales diferentes: un sistema de comunicaciones single-input single-output (SISO) con canales con memoria y un sistema multiple-input multiple-output (MIMO) con canales sin memoria. Para el escenario SISO se proponen tres diseños diferentes para un igualador probabilístico, tanto simple como turbo, que está basado en el algoritmo EP: una versión bloque, una versión filtrada que emula el comportamiento de un filtroWiener y una versión smoothing que funciona de forma similar a un Kalman smoother. Finalmente, la implementación del EP en bloque se adapta también para escenarios MIMO con realimentación desde el decodificador. En ambos escenarios, el EP se aplica de forma iterativa, incluyendo un mecanismo de damping y un control para evitar valores de varianzas negativas, que darían lugar a inestabilidades (especialmente, en constelaciones de alto orden). Los resultados experimentales que se incluyen en la tesis muestran que, cuando el algoritmo EP se aplica a sistemas de comunicaciones, se mejora notablemente el resultado de otras propuestas anteriores que existen en la literatura, con un pequeño incremento de la complejidad que es proporcional a la carga del LMMSE. Estos resultados también demuestran la robustez del algoritmo incluso para modulaciones de alto orden, canales con bastante memoria y un gran número de antenas. Las principales contribuciones de esta tesis se han publicado en cuatro artículos de revista (uno de ellos todavía bajo revisión) y dos artículos de conferencia. Otro artículo adicional se encuentra en preparación y se enviaría próximamente a una revista. Estos se citan a continuación: • Irene Santos, Juan José Murillo-Fuentes, Rafael Boloix-Tortosa, Eva Arias de Reyna and Pablo M. Olmos, "Expectation Propagation as Turbo Equalizer in ISI Channels," IEEE Transactions on Communications, vol. 65, no.1, pp. 360-370, Jan 2017. • Irene Santos, Juan José Murillo-Fuentes, Eva Arias de Reyna and Pablo M. Olmos, "Turbo EP-based Equalization: a Filter-Type Implementation," IEEE Transactions on Communications, Sep 2017, Aceptado. [Online] Disponible: https://ieeexplore.ieee.org/document/8353388/ • Irene Santos, Juan José Murillo-Fuentes, Eva Arias-de-Reyna and Pablo M. Olmos, "Probabilistic Equalization With a Smoothing Expectation Propagation Approach," IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2950-2962, May 2017. • Irene Santos, Juan José Murillo-Fuentes and Eva Arias-de-Reyna, "Equalization with Expectation Propagation at Smoothing Level," En preparación. [Online] Disponible: https://arxiv.org/abs/1809.00806 • Irene Santos and Juan José Murillo-Fuentes, "EP-based turbo detection for MIMO receivers and large-scale systems," IEEE Transactions on Vehicular Technology, May 2018, En revisión. [Online] Disponible: https://arxiv.org/abs/1805.05065 • Irene Santos, Juan José Murillo-Fuentes, and Pablo M. Olmos, "Block expectation propagation equalization for ISI channels," 23rd European Signal Processing Conference (EUSIPCO 2015), Nice, 2015, pp. 379-383. • Irene Santos, and Juan José Murillo-Fuentes, "Improved probabilistic EPbased receiver for MIMO systems and high-order modulations," XXXIII Simposium Nacional de la Unión Científica Internacional de Radio (URSI 2018), Granada, 2018

    Factor Graph Based Detection Schemes for Mobile Terrestrial DVB Systems with Long OFDM Blocks

    Get PDF
    This PhD dissertation analyzes the performance of second generation digital video broadcasting (DVB) systems in mobile terrestrial environments and proposes an iterative detection algorithm based on factor graphs (FG) to reduce the distortion caused by the time variation of the channel, providing error-free communication in very severe mobile conditions. The research work focuses on mobile scenarios where the intercarrier interference (ICI) is very high: high vehicular speeds when long orthogonal frequency-division multiplexing (OFDM) blocks are used. As a starting point, we provide the theoretical background on the main topics behind the transmission and reception of terrestrial digital television signals in mobile environments, along with a general overview of the main signal processing techniques included in last generation terrestrial DVB systems. The proposed FG-based detector design is then assessed over a simpli ed bit-interleaved coded modulation (BICM)-OFDM communication scheme for a wide variety of mobile environments. Extensive simulation results show the e ectiveness of the proposed belief propagation (BP) algorithm over the channels of interest in this research work. Moreover, assuming that low density parity-check (LDPC) codes are decoded by means of FG-based algorithms, a high-order FG is de ned in order to accomplish joint signal detection and decoding into the same FG framework, o ering a fully parallel structure very suitable when long OFDM blocks are employed. Finally, the proposed algorithms are analyzed over the physical layer of DVB-T2 speci cation. Two reception schemes are proposed which exploit the frequency and time-diversity inherent in time-varying channels with the aim of achieving a reasonable trade-o among performance, complexity and latency.Doktoretza tesi honek bigarren belaunaldiko telebista digitalaren eraginkortasuna aztertzen du eskenatoki mugikorrean, eta faktoreen grafoetan oinarritzen den hartzaile iteratibo bat proposatzen du denboran aldakorra den kanalak sortzen duen distortsioa leundu eta seinalea errorerik gabe hartzea ahalbidetzen duena. Proposatutako detektorea BICM-OFDM komunikazio eskema orokor baten gainean ebaluatu da lurreko broadcasting kanalaren baldintzak kontutan hartuz. Simulazio emaitzek algoritmo honen eraginkortasuna frogatzen dute Doppler frekuentzia handietan. Ikerketa lanaren bigarren zatian, faktoreen grafoetan oinarritutako detektorea eskema turbo zabalago baten baitan txertatu da LDPC dekodi katzaile batekin batera. Hartzaile diseinu honen abantaila nagusia da OFDM simbolo luzeetara ondo egokitzen dela. Azkenik, proposatutako algoritmoa DVB-T2 katearen baitan inplementatu da, bi hartzaile eskema proposatu direlarik seinaleak duen dibertsitate tenporal eta frekuentziala probesteko, beti ere eraginkortasunaren, konplexutasunaren eta latentziaren arteko konpromisoa mantenduz.Este trabajo de tesis analiza el rendimiento de la segunda generación de la televisión digital terreste en escenarios móviles y propone un algoritmo iterativo basado en grafos de factores para la detección de la señal y la reducción de la distorsión causada por la variación temporal del canal, permitiendo así recibir la señal libre de errores. El detector basado en grafos de factores propuesto es evaluado sobre un esquema de comunicaciones general BICM-OFDM en condiciones de transmisión propios de canales de difusión terrestres. Los resultados de simulación presentados muestran la e ciencia del algoritmo de detección propuesto en presencia de frecuencias Doppler muy altas. En una segunda parte del trabajo de investigación, el detector propuesto es incorporado a un esquema turbo junto con un decodi cador LDPC, dando lugar a un receptor iterativo que presenta características especialmente apropiadas para su implementación en sistemas OFDM con longitudes de símbolo elevadas. Por último, se analiza la implementación del algoritmo propuesto sobre la cadena de recepción de DVB-T2. Se presentan dos esquemas de recepción que explotan la diversidad temporal y frecuencial presentes en la señal afectada por canales variantes en el tiempo, consiguiendo un compromiso razonable entre rendimiento, complejidad y latencia

    Channel detection on two-dimensional magnetic recording

    Get PDF
    Two-dimensional magnetic recording (TDMR) coupled with shingled-magnetic recording (SMR) is one of next generation techniques for increasing the hard disk drive (HDD) capacity up to 10 Tbit/in2 in order to meet the growing demand of mass storage.We focus on solving the tough problems and challenges on the detection end of TDMR. Since the reader works on the overlapped tracks, which are even narrower than the read head, the channel detector works in an environment of low signal-to-noise ratio (SNR), two-dimensional (2-D) inter-symbol interference (ISI) and colored noise, therefore it requires sophisticated detection techniques to provide reliable data recovery. Given that the complexity of optimal 2-D symbol detection is exponential on the data width, we had to choose suboptimal solutions.To build our research environment, we use an innovative Voronoi grain based channel model which captures the important features of SMR, such as squeezed tracks, tilted bit cells, 2-D ISI, electronic and media noise, etc. Then we take an in-depth exploration of channel detection techniques on the TDMR channel model. Our approaches extend the conventional 1-D detection techniques, by using a joint-track equalizer to optimize the 2-D partial-response (PR) target followed by the multi-track detector (MTD) for joint detection, or using the inter-track interference (ITI) canceller to estimate and cancel the ITI from side tracks, followed by a standard BCJR detector. We used the single-track detector (STD) for pre-detecting the side tracks to lower the overall complexity. Then we use pattern-dependent noise prediction (PDNP) techniques to linearly predict the noise sample, so as to improve the detection performance under colored media noise, and especially the data dependent jitter noise. The results show that our 2-D detectors provide significant performance gains against the conventional detectors with manageable complexity

    Non-iterative joint decoding and signal processing: universal coding approach for channels with memory

    Get PDF
    A non-iterative receiver is proposed to achieve near capacity performance on intersymbol interference (ISI) channels. There are two main ingredients in the proposed design. i) The use of a novel BCJR-DFE equalizer which produces optimal soft estimates of the inputs to the ISI channel given all the observations from the channel and L past symbols exactly, where L is the memory of the ISI channel. ii) The use of an encoder structure that ensures that L past symbols can be used in the DFE in an error free manner through the use of a capacity achieving code for a memoryless channel. Computational complexity of the proposed receiver structure is less than that of one iteration of the turbo receiver. We also provide the proof showing that the proposed receiver achieves the i.i.d. capacity of any constrained input ISI channel. This DFE-based receiver has several advantages over an iterative (turbo) receiver, such as low complexity, the fact that codes that are optimized for memoryless channels can be used with channels with memory, and finally that the channel does not need to be known at the transmitter. The proposed coding scheme is universal in the sense that a single code of rate r; optimized for a memoryless channel, provides small error probability uniformly across all AWGN-ISI channels of i.i.d. capacity less than r: This general principle of a proposed non-iterative receiver also applies to other signal processing functions, such as timing recovery, pattern-dependent noise whiten ing, joint demodulation and decoding etc. This makes the proposed encoder and receiver structure a viable alternative to iterative signal processing. The results show significant complexity reduction and performance gain for the case of timing recovery and patter-dependent noise whitening for magnetic recording channels

    Optimization of multidimensional equalizers based on MMSE criteria for multiuser detection

    Get PDF
    PhD ThesisThis thesis is about designing a multidimensional equalizer for uplink interleaved division multiple access (IDMA) transmission. Multidimensional equalizer can be classified into centralized and decentralized multidimensional equalizer. Centralized multidimensional equalizer (MDE) have been used to remove both inter-symbol interference (ISI) and multiaccess interference (MAI) effects from the received signal. In order to suppress MAI effects, code division multiple access (CDMA) has been used with MDE to minimize the correlation between users' signals. The MDE structure can be designed using linear equalizer (MLE) or decision feedback equalizer (MDFE). Previous studies on MDE employed adaptive algorithms to estimate filter co-effi cients during the training mode, i.e. the symbol equalization was not optimal, for two users. In our work, we applied MDE on IDMA receiver for multipath selective fading channels and also derived new equations to obtain the optimal filter taps for both types of MDE equalizers, i.e. MDFE and MLE, based on the minimum mean square error (MMSE) criterion. The optimal filter taps are calculated for more than two users. Moreover, we investigated the performance of the optimal MDFE using both IDMA (MDFE-IDMA) and CDMA (MDFE-CDMA) detectors. Generally, the MDE equalizer suffers from residual MAI interference effects at low signal-to-noise-ratios (SNR) due to the delay inherent in the convergence of the crossover filter taps. Therefore, a new decentralized multidimensional equalizer has been proposed to IDMA detector. Within design of decentralized equalizer, the convergence problem has been resolved by replacing the crossover filters with parallel interference canceler (PIC) for removing MAI dispersion. The proposed decentralized multidimensional equalizer shows a higher efficiency in removing MAI interference when compared with existing receivers in the literature. However, this is achieved at the expense of higher computational complexity compared to centralized multidimensional equalization

    Adaptive iterative decoding : block turbo codes and multilevel codes

    Get PDF
    New adaptive, iterative approaches to the decoding of block Turbo codes and multilevel codes are developed. Block Turbo codes are considered as they can readily provide high data rates, low decoding complexity and good performance. Multilevel codes are considered as they provide a moderate complexity approach to a high complexity code and can provide codes with good bandwidth efficiency. The work develops two adaptive sub-optimal soft output decoding algorithms for block Turbo codes. One is based on approximation and the other on the distance properties of the component codes. They can be used with different codes, modulation schemes, channel conditions and in different applications without modification. Both approaches provide improved performance compared to previous approaches on the additive white Gaussian noise (AWGN) channel. The approximation based adaptive algorithm is also investigated on the uncorrelated Rayleigh fiat fading channel and is shown to improve performance over previous approaches. Multilevel codes are typically decoded using a multistage decoder (MSD) for complexity reasons. Each level passes hard decisions to subsequent levels. If the approximation based adaptive algorithm is used to decode component codes in a traditional MSD it improves performance significantly. Performance can be improved further by passing reliability (extrinsic) information to all previous and subsequent levels using an iterative MSD. A new iterative multistage decoding algorithm for multilevel codes is developed by treating the extrinsic information as a Gaussian random variable. If the adaptive algorithms are used in conjunction with iterative multistage decoding on the AWGN channel, then a significant improvement in performance is obtained compared to results using a traditional MSD
    corecore