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Abstract

This thesis is about designing a multidimensional equalizer for uplink

interleaved division multiple access (IDMA) transmission. Multidi-

mensional equalizer can be classified into centralized and decentral-

ized multidimensional equalizer. Centralized multidimensional equal-

izer (MDE) have been used to remove both inter-symbol interference

(ISI) and multiaccess interference (MAI) effects from the received sig-

nal. In order to suppress MAI effects, code division multiple access

(CDMA) has been used with MDE to minimize the correlation be-

tween users’ signals. The MDE structure can be designed using linear

equalizer (MLE) or decision feedback equalizer (MDFE). Previous

studies on MDE employed adaptive algorithms to estimate filter co-

efficients during the training mode, i.e. the symbol equalization was

not optimal, for two users. In our work, we applied MDE on IDMA

receiver for multipath selective fading channels and also derived new

equations to obtain the optimal filter taps for both types of MDE

equalizers, i.e. MDFE and MLE, based on the minimum mean square

error (MMSE) criterion. The optimal filter taps are calculated for

more than two users. Moreover, we investigated the performance of

the optimal MDFE using both IDMA (MDFE-IDMA) and CDMA

(MDFE-CDMA) detectors.

Generally, the MDE equalizer suffers from residual MAI interference

effects at low signal-to-noise-ratios (SNR) due to the delay inherent

in the convergence of the crossover filter taps. Therefore, a new de-

centralized multidimensional equalizer has been proposed to IDMA

detector. Within design of decentralized equalizer, the convergence



problem has been resolved by replacing the crossover filters with par-

allel interference canceler (PIC) for removing MAI dispersion. The

proposed decentralized multidimensional equalizer shows a higher ef-

ficiency in removing MAI interference when compared with existing

receivers in the literature. However, this is achieved at the expense

of higher computational complexity compared to centralized multidi-

mensional equalization.
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1

Introduction

1.1 Introduciton

With higher demand of using personal communications utilities, the communi-

cations technologies have experienced a significant development in recent years.

To support this upswing of communication systems market, the communication

systems must cope with the formidable challenges that stem from channel fading,

multipath effects and multiaccess interference. The design of channel equalization

and multiaccess techniques has a significant effect in developing low complexity

systems that can eliminate channel disruptions, and in turn, communicate at high

data rate.

Within high-speed transmission in multiaccess communication scenarios, the

equalization process for multipath selective channels is an important issue, such

that, it needs to be able to remove both intersymbol interference (ISI) and mul-

tiple access interference (MAI), simultaneously. The multipath fading character-

istic of the communication channel and the multiuser transmission are the main

reason behind producing ISI and MAI, respectively. ISI is often neglected for

low-rate multiuser systems [1]. However, for high-rate systems, ISI cannot be

ignored. In fact, the ISI with MAI represent the main obstacle to the overall

system performance [2].
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Figure 1.1: A ultiuser transmission scenario in multipath fading channels.

1.2 Literature review

1.2.1 Development of Multiuser Communications

When digital modulated symbols are transmitted through multipath fading chan-

nels, the induced ISI of the received signal is the main reason for the high Bit

Error Rates (BER). However, in multiuser transmission environments, MAI has

an equally significant impact as ISI, thus, both effects should be jointly eliminated

at the receiver.

Within multiuser communications, multiple transmitters are enabled to send

information simultaneously through multipath fading channels as shown in Fig.1.1.

The multiuser communication technique had been firstly invented by Thomas A.

Edison in 1873 to transmit two telegraphic messages in the same direction through

the same wire [3]. Nowadays, there are many types of multiuser communication

systems in which their receivers obtain the superposition of the signals sent by

the active different transmitters occur unintentionally owing to non-ideal effects

[4].

The basic multiuser techniques are frequency division multiple access (FDMA)[5],

2



1.2 Literature review

time division multiple access (TDMA), code division multiple access (CDMA),

and interleaved division multiple access (IDMA). In FDMA, each user employs

a specific frequency band for transmission. This system has been used in 1G

mobile phone systems such as advanced mobile phone systems (AMPS). While in

TDMA, the users are distinguished employing a specific time slot for each user

to prevent interference between users [6]. TDMA is used in 2G mobile commu-

nications known as global system for mobile communications (GSM) .

On other hand, in CDMA systems, each user employs specific spreading code

with good auto-correlation and cross-correlation properties that enables the re-

ceiver to successfully separate the user’s data symbols; for this reason, many

researchers have used this system as a multiuser detection (MUD) in multipath

delay spread channels [7] [8] . This means that all users can utilize the whole

bandwidth and time resources at the same time [9].

Interleave division multiple access (IDMA) is a recent multiple access tech-

nique for new wireless communication systems, which unlike CDMA, it employs

distinct chip-level interleavers to separate each user’s data[6]. The IDMA receiver

uses a simple chip-by-chip iterative MUD strategy for jointly removing ISI and

MAI. Thus the complexity of the MUD in an IDMA system is a linear func-

tion of the number of users [10] and is much simpler than the MUD algorithms

used in CDMA systems . Moreover, within the coded iterative turbo receiver

design, IDMA showed higher performance than CDMA receiver for multipath

fading channels [11].

During last few years, many works have been undertaken around IDMA topic

in terms of the type of channel coding, detection algorithm and equalization tech-

niques. Generally, within IDMA receiver, the symbol detection taken place by

exchanging extrinsic information between Gaussian Chip Detector (GCD) and

Soft Input Soft Output (SISO) decoders, while in [12], Probablistic Data Associ-

ation (PDA) has been employed instead of GCD to provide lower complexity and

faster convergence of the turbo receiver. On other hand, the easily integration

of IDMA receiver with Orthogonal Frequency Division Multiplexing (OFDM)

[13] and Multi Input Multi Output (MIMO) systems [14] to produce parallel flat

fading subchannels in frequency selective channels and higher channel diversity,

3



1. INTRODUCTION

respectively, have encoraged reserachers to propose more techniques and algo-

rithms that can improve system performance regarding to OFDM-IDMA and

MIMO-OFDM-IDMA systems [15] [16].

OFDM-IDMA combines advantes of OFDM and IDMA to jointly mitigating

ISI and MAI interferences, however, it also suffers from high sensitivity to carrier

frequency offsets (CFO) caused by the Doppler shift or the mismatch between the

local oscillators of transmitter and receiver [17]. Especially for uplink OFDM-

IDMA transmission, although the desired user’s CFO can be compensated by a

signle user detector, however, the residual CFOs from other users are still intro-

duce an additional interference. New schemes have been proposed to mitigate

CFO and improve detection in OFDM-IDMA system [18] for multipath fading

channels, however, for fast fading time selective channels, the effect of CFO in-

terference on the received signal grows significantly. Therefore, applying time

domain equalization for jointly removing MAI and ISI in uplink IDMA system is

better solution to prevent CFO and provide higher equalization efficiency.

1.2.2 Equalization

The speed of data transmission over multipath fading channels is usually limited

by channel distortion that causes ISI in single user transmission scenario or both

ISI and MAI in multiuser transmission systems. Practically, the channel impulse

response is unknown. However, training symbols can be utilized for estimating

channel impulse response, and in turn, it could be used to remove channel effects

on the received signal by implementing an inverse filter. This is the aim of using

equalizers.

When more than one version of the transmitted signals arrive to the receiver

with different delay times, it implies that there are several propagation paths

between the transmitter and the receiver, which are referred to as multipath

phenomenon. This phenomenon can be modeled by a finite impulse response

(FIR) filter. The multipath channels have a significant effect on the system

performance, thereby providing another good reason for channel equalization [19].

The objective of the equalizer is to calculate the taps of a filter such that the

convolution of the impulse response of the equalizer filter and the channel impluse

4
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response results in producing 1 at the center tap and have nulls at the other points

within the filter span. The filter coefficients can be formulated by utilizing two

main techniques: automatic synthesis and adaptation [20]. In the first method,

the error signal is obtained by comparing the received training signal with the

stored training signal which is used later to determine the coefficient taps of the

inverse filter. However in the second method, the error signal is calculated by

subtracting the output of the equalizer and the output of the decision device. Al-

though, the training symbols have benefit in determining channel characteristics,

however, it also present main drawback in producing transmission overhead[21].

1.2.3 Adaptive Equalization

Adaptive equalization is an effective process that mitigates the received signal

dispersion caused by signal propagation in multipath channels [22]. Adaptive

filters are the main part within adaptive equalization and they can offer a perfor-

mance improvement over filter designs when a priori knowledge of a process and

its statistics are available. Hence, they have been used in many applications such

as communications, control, robotics, sonar, radar, seismology and biomedical

engineering. In general, the filtering process can be characterized by filtering,

smoothing, prediction and deconvolution processes [23], also according to their

transfer function types they can be categorized as linear and non-linear filters.

1.2.3.1 Linear Filters

A linear adaptive filter has a linear transfer function such that the input and

the output are related with a linear combination at any moment in time between

adaptation operations [24]. There are three types of linear adaptive structures

commonly used

- Transversal

- Lattice predictor

- Systolic array.
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Delay Delay Delay

b(M − 1)

s(n) s(n− 1) s(n− 2) s(n− (M − 1))

b(0) b(1) b(2)

r(n)

Figure 1.2: Transversal filter structure.

Guarantee of stability and global convergence are two good properties of transver-

sal linear filters which made it more popular than the other types. It is sufficient

to say that for a given Mth order FIR filter, given in Fig.1.2, the output sequence

r(n) can be defined as follows

r(n) =
M−1∑

k=0

b(k)s(n− k), (1.1)

where b(k) are fixed filter coefficients, value n represents the current discrete-

time instant, and (n − k) represents the previous kth instant. Whenever the

filter coefficients are known, then the FIR filter can be completely defined. These

coefficients can be determined using optimal solutions or employing adaptive

algorithms.

There is no unique adaptive algorithm for linear filtering problems. However,

based on the problem requirements, various algorithms and approaches have been

proposed such as stochastic gradient approach and least square estimation (LSE)

[25].

Stochastic Gradient Approach - This approach utilizes a transversal struc-

ture. The optimization of transversal weights is taken place by using least

mean square (LMS) algorithm. The LMS algorithm is defined by the fol-

lowing equation

w(k + 1) = w(k) + 2ηe(k)s(k), (1.2)

where

w(k) = [w1, w2, . . . , wp]
T , the tap weight vector,
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s(k) = [s1, s2, . . . , sp]
T , the tap vector,

η is the learning rate parameter and the obtained error e(k) is a scalar error

which is given by

e(k) = s(k)− ŝ(k) (1.3)

where ŝ(k) is the estimated transmitted symbol. The LMS algorithm known

to be slow to converge and dependent on the ratio of the largest to smallest

eigenvalue of the correlation matrix of the tap inputs. Nevertheless, because

of it’s simplicity, it is the most popular algorithm and under right conditions

can perform very adequately.

Least Square Estimation (LSE) - Block estimation and recursive estimation

are the two methods used for formulating LSE algorithm which minimizes

the sum of square errors between the desired and the actual filter output.

In the first method, the blocks of equal time length are constructed from

the input data sequence and processing proceeds block by block. While the

second method uses the idea of state and it could be seen as a special case

of Kalman filter. The general term of Kalman filtering can be defined as

follows [25]

x(k + 1) = x(k) + K(k)i(k), (1.4)

where K(k) is the Kalman gain matrix at instance k, i(k) is the innovation

vector at instance k, and x(k) is the state of instance k. The vector i(k)

consists of the new information that is presented to the filter for instance

k.

1.2.3.2 Non-Linear Adaptive Filter

Non-linearity refers to the lack of linear combination between input and output

at any moment in time [26][27]. The applications of signal processing are often

assuming system linearity, however, in practice, the system performance is lim-

ited by the non-linearity characteristic. Thus, more concern has been given to

design non-linear filters. Volterra filter [28] is an example of nonlinear adaptive

filter which can be seen as a type of polynomial extension to the linear adaptive
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filter. Volterra filter can keep its output linear with respect to high power impulse

responses or system coefficients. Although utilizing nonlinear filters will improve

the learning efficiency, however, this comes at the expense of more complex math-

ematical analysis of the problem.

1.2.4 Multi-Dimensional Equalization

Within multiuser equalization, in addition to using the previously detected sym-

bols of the user of interest, estimates of the current symbols of the remaining

active users are also required to jointly remove both MAI and ISI effects [29] for

the current symbol detection. Blind equalization, which only needs a received

signal and desired output signature, has been used with DFE in such situations

[7].

Multidimensional equalizers are typically proposed to reduce the adjacent

channel interference that can often appear in mobile data transmission [30]. This

method has been exploited with two user transmission for co-channel interference

suppression [8]. In these receivers, referred to as centralized equalizers, the MAI

has been subtracted by using crossover filters in conjunction with CDMA or

IDMA. On the other hand, decentralized equalizers are obtained by removing the

crossover filters.

An IDMA detector with DFE multidimensional equalization has been pro-

posed in [31] for downlink scenarios in underwater acoustic channels. In this sys-

tem, the summation of the users’ data headed by a common sequence of training

symbols constructs the transmitted signal frames to be sent through the channel.

Since the signal frame arriving at a specific user experiences the same channel

characteristics, a single DFE equalizer is sufficient to remove the ISI from the

received signal, while the MAI can be cancelled by IDMA detection. However,

this approach cannot be applied to uplink scenarios, where the transmission of

each user arrives at the base-station via distinct multipath channels.
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1.3 Research Contributions

This work mainly concentrates on the solution to the equalization problems in

multiuser systems for uplink scenario. First we proposed a centralized multi-

dimentional equalizer for two user IDMA uplink system in shallow water acoustic

channels [32]. Within centralized equalization, ISI is eliminated by using feed-

forward and feed-backward filters, while, MAI is removed using crossover filters.

A new mathematical derivation has been derived for calculating the optimal fil-

ter coefficients. Then, the optimal equalizer is applied to the wireless channel

environment for more than two users.

Although the proposed multi-dimensional equalizer provides higher system

performance than usual rake IDMA and traditional CDMA receivers, however,

it suffers from delay in converging filter taps which results in decreasing system

performance, especially, at low SNR values. For this reason, A new decentralized

multi-dimensional equalizer has been designed for uplink multiuser systems by

replacing cross-over filters with parallel interference canceller (PIC) technique. A

comprehensive study on the receiver design, performance analysis, optimization

solutions and complexity comparison are also presented for both the proposed

receivers. More specifically, the contributions can been listed as follows:

- The centralized multidimensional equalizer structure outlined in Chapter

4. The equalizer was employed with CDMA for two-users in shallow water

acqoustic channels and adaptive algorithm has been used for determining

filter taps. This thesis designed an iterative centralized multidimensional

equalizer that uses IDMA. The two-user uplink scenario for shallow water

acoustic channels is considered in [33]. At the receiver, for each user, a

DFE equalizer has been used before IDMA detection. The IDMA detector

iteratively returned the hard limited symbol to the equalizers to optimize

the cost function employed in the adaptive algorithm.

- New derivations for calculating optimal filter taps are also presented in the

Chapter 4. The derivations are given for both linear and DFE equaliz-
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ers. Moreover, that optimal solution could be applied to both IDMA and

CDMA.

- Due to delay in converging filter taps, especially cross-over filters, the cen-

tralized equalization provides low performance at low SNR values. Hence, a

new decentralized multidimensional equalizer is proposed in Chapter 5. A

new IDMA receiver has been applied to wireless multipath fading channels

in [34] and shallow water acoustic channels in [35]. The proposed receiver is

a mixture between Rake IDMA and decentralized multidimensional equal-

izer such that it utilizes a PIC to eliminate MAI impairments, while it

applies DFE equalization to overcome ISI effects for each user. The de-

sign of such a receiver obtain high system performance and lower system

complexity compared to the centralized and Rake receivers.

1.4 Thesis Organization

The remaining of the thesis is organized as follows.

Chapter 2 provides preliminaries on channel models, channel encoding and

fundamentals of equalization techniques. Firstly, the models of both wireless fad-

ing and shallow water acoustic channels have been reviewed. Several characteris-

tics of the channels are elaborated. Two types of channel encoding are presented

which are convolution and trubo coding. Also the fundamentals of linear and

DFE equalization techniques have been described. Moreover, joint equalization

and decoding in an iterative system are illustrated for achieving higher system

performance in multipath fading channels.

Chapter 3 is devoted to multiuser detection schemes, i.e CDMA and IDMA.

The basic structure of both CDMA and IDMA are outlined. The iterative scheme

of CDMA detection has been illustrated. The fundamental equations of IDMA

for both additive white Gaussian noise (AWGN) and multipath selective channels

are also provided.

Chapter 4 develops centralized multidimensional equalizer method to be ap-

plied to iterative CDMA and IDMA receivers. The optimization problem for

centralized multidimensional equalizers employing linear and DFE principles is

10
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also solved, such that the determined filter coefficients give optimal performance.

Comprehensive comparisons between CDMA and IDMA are carried out utilizing

the proposed centralized multidimensional equalizer.

Due to delay in converging filter taps in centralized multidimensional equalizer

schemes, the IDMA detector suffers in performance due to the remaining MAI

effects in crossover filter taps. Thus, Chapter 5 provides a new decentralized

multidimensional equalizer for IDMA detection which totaly depends on PIC op-

eration to remove MAI dispersion. The structure of the proposed IDMA receiver

is presented and its system performance is compared to the centralized IDMA

detector for both wireless and shallow water acoustic channels.

Chapter 6 focuses on applying adaptive algorithms on the two proposed mul-

tidimensional equalizers for IDMA detector. The adaptive receivers are also com-

pared with rake IDMA receiver in terms of complexity.

Finally, conclusions are presented in Chapter 7 and the thesis ends with a

possible line of future work.

11



1. INTRODUCTION

12



2

Preliminaries: Channel Models,

Channel Encoding and

Equalization Techniques

This chapter provides a general introduction to channel models, channel encoding,

MMSE equalization (LE and DFE) , and turbo equalization techniques. Channel

models for both wireless and underwater shallow channels are presented, as the

system performance of the proposed systems in later chapters in this thesis are

evaluated for both channels. The principles of convolution and turbo coding

are then explained. Furthermore, the fundamentals of MMSE equalization are

presented for both LE and DFE. Finally, the turbo equalization technique is

reviewed and the formulas for finding optimal filter taps are derived for both

linear and non-linear MMSE turbo equalizers.

2.1 Communication Channels

The purpose of any communication system is to transmit the information signals

from one point to another. The medium over which the information signals

are transmitted is called communication channel which can be wire line, optical

cable, wireless radio channel or acoustic channel. When data information are

transmitted through the channel, it is subject to an assortment of changes. These
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Receiver

LOSTransmitter Transmitter

Receiver

Figure 2.1: The forms of wireless channel environments: LOS and NLOS

changes could be deterministic, i.e attenuation, linear and non-linear distortion,

or probabilistic, i.e additive noise, multipath fading, etc.

2.1.1 Multipath Fading Channel model

Line-of-sight (LOS) and non line-of-sight (NLOS) are two general forms of wire-

less channels. The absence of the direct line between the transmitter and the

receiver in NLOS is the only characteristic that makes it differ from LOS. The

pobability density function (PDF) follows Rician and Rayleigh distribution in

LOS and NLOS, respectively [36]. Fig. 2.1 depicts these two different environ-

ments. In LOS channels, the antennas receive the signal via direct path and also

via different propagation paths which are created due to reflections, diffraction

and scattering from natural and manmade objects. However, in an urban envi-

ronment, the absence of a direct line propagation due to surrounding obstacles

results in arriving signals only from the multipath propagation paths. These mul-

tipath components, have a randomly distributed amplitudes, phases and angles

of arrival signal such that their combination at the receiver results in a signal

that can vary widely in both amplitude and phase. This phenomenon is called

fading.

The signal reflections, changing of Doppler shifts and delays of multipath

propagation are generally the three main effects of the fading multipath channels

on the transmitted signal . During arrival of a number of the attached symbols

14
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Figure 2.2: Transmitted sequence.
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ISI
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Figure 2.3: Received sequence.

at the same time to the receiver via various multipath propagation, the receiver

simply adding them together at every time instants, which inturn, results in

producing inter symbol interference (ISI). Fig. 2.3 illustrates the effect of ISI on

the transmitted data sequence 10010 shown in Fig. 2.2 over a fading multipath

channel.

A tapped delay line (TDL) can be employed to model the multipath channels

as given in Fig. 2.4 and its characteristics are often specified by a power delay

profile (PDP). The pedestrian and vehicular PDP by ITU are given in Table

2.1, in which each path is distinguished by its relative delay and average power.

The relative delay is an excess delay with respect to the reference time while the

average power for each path is normalized by that of the first path [37].

Several small scale multipath channel parameters such as mean excess delay,

root mean square (RMS) delay spread and excess delay spread which define the

channel time dispersive properties can be obtained from the PDP. Mean Excess

Delay (τ) is the first moment of PDP and is defined as [38]

τ =

∑
l a

2
l τl∑

l a
2
l

=

∑
l τlP (τl)∑
l P (τl)

, (2.1)

where τl denotes the channel delay of the lth path while al and P (τl) denote the

amplitude and power, respectively.
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s(t− τL−1 − ...− τ2 − τ1 − τ0)s(t)

h(t, τ0) h(t, τ1) h(t, τ2)

r(t)

v(t)

τL−1τ0 τ1 τ2

h(t, τL−1)

s(t− τ1 − τ0) s(t− τ2 − τ1 − τ0)s(t− τ0)

Figure 2.4: Tapped delay line channel model.

Table 2.1: Power delay profile examples of ITU channel models.

Tap Pedestrian Vehicular

Relative Delay (ns) Average Power (db) Relative Delay (ns) Average Power (db)

1 0 0 0 0

2 110 -9.7 310 -1

3 190 -19.2 710 -9

4 410 -22.8 1090 -10

5 - - 1730 -15

While, the root of second central moment of PDP is called RMS delay (στ )

and its defined as

στ =

√
τ 2 − (τ)2, (2.2)

where

τ 2 =

∑
l a

2
l τ

2
l∑

l a
2
l

=

∑
l τ

2
l P (τl)∑
l P (τl)

. (2.3)

The characterization of the channel in time domain is defined by employing

delay spread parameters. However, in frequency domain the channel is charac-

terized by the coherence bandwidth (Bc) which is the range of frequencies over

which the signal strength remains more or less unchanged. In general, the relation

between Bc and RMS delay is an inverse proportion, that is [38]

Bc ≈
1

στ
. (2.4)

If a bandwidth with correlation of 0.9 or above is defined for presenting the
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coherence bandwidth, then

Bc ≈
1

50σl
, (2.5)

while if a correlation of 0.5 or above is taken, then the coherence bandwidth is

given as

Bc ≈
1

5σl
. (2.6)

The characteristics of the transmitted signal and the properties of the channel

are the two main factors for identifying the type of channel fading. The channel is

called frequency selective fading channel when the bandwidth of the transmitted

signal is greater than bandwidth over which the frequency response of a mobile

channel has a constant gain and linear phase, i.e Bc < Bs or Ts < στ where Ts

and Bs are the symbol period and bandwidth of the transmitted signal. Thus,

frequency selective fading is a result of the time dispersion of the transmitted

symbol within the channel.

On the other hand, the movement of the transmitter or reciever results in

changing the channel response within a symbol period transmission, thus the

signals transmit through a time-selective fading channel. The rapid variation of

impulse response leads to a spread in the frequency domain which is known as

a Doppler shift. If maximum Doppler shift denotes as (fm), then the Doppler

bandwidth is given as Bd = 2fm. In general, the coherence time is related to

Doppler spread as

Tc ≈
1

fm
. (2.7)

The channel behaves as fast fading under the following conditions:

Ts > Tc and Bs < Bd,

while, it behaves as slow fading when

Ts � Tc and Bs � Bd.

2.1.2 Shallow-Water Acoustic channel Model

The underwater acoustic channel is another example of multipath medium where

the signal transmits through reflections from the surface and the bottom of the
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sea. In addition, it can be a time-varying channel due to the motion of the

transmitter or the receiver during transmission or due to medium variability.

The wave propagation in an underwater channel is mainly affected by channel

variations, multipath propagation and Doppler shift with an adverse impact on

achieving high data rates and transmission robustness. Furthermore, the usable

bandwidth of an underwater channel is typically a few kHz at large distances.

In order to achieve high data rates it is natural to employ bandwidth efficient

modulation.

Most researches on underwater acoustic channels are focused on mathemati-

cal models which are mainly characterized as shallow water multipath and deep

vertical channels [39]. Shallow water channels are presented into two models:

random time-varying filter and random statistical channel model [40], based on

ray theory [41][42]. Most practical applications are preferred ray theory model

over random statistical channel model due to the independency of ray trajectories

on the interested used frequency [43][44].

In a shallow water channel, the acoustic waves travel through a LOS path

also by bouncing from the surface and bottom [45]. The propagation of acoustic

signals can be roughly estimated over a shallow water by simplifying the envi-

ronment parameters. If the surface and bottom of the water are assumed to be

smooth, then the expected propagation paths for the acoustic waves can be geo-

metrically calculated. In general, the parameters which are mainly affecting the

underwater communications are

2.1.2.1 Attenuation

The spreading and absorption are the main losses that attenuate the transmitted

signal in shallow water channels. According to inverse square law, the attenuation

is proportional to 1
L2 , where L is the distance between the transmitter and the

receiver, for LOS propagation. As L increases, propagation occurs via reflection

at the sea surface and floor boundaries where the attenuation is proportional to
1
L

, and this is called cylindrical spreading. The total transmission losses (TL) for

cylindrical spreading can be expressed as [46]

TL(f) = 10log10(L) + a(f)L× 10−3, (2.8)
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where a(f) is the attenuation coefficient in dB/km and can be computed as [47]

a(f) = Af 2 +
Bfo

1 +
(
fo
f

)2 +
Cf1

1 + (f1/f)2 , (2.9)

where

A = 2.1× 10−10(T − 38)2,

B = 2S × 10−5

and

C = 1.2× 10−4

are fresh water attenuation, magnesium sulphate relaxation and boric acid relax-

ation, respectively, S is the salinity in parts per thousand and f is the operating

frequency in KHz. Additionally

fo = 50(T + 1),

f1 = 10
T−4
100 ,

where T is the temperature in Celsius. In practice, absorption losses can be

determined by [48]

a(f) < 10dB. (2.10)

On the other hand, another factor in shallow water channels that has a great

impact on the system performance is ambient noise. The ambient noise exists

in specific places in the background of the sea such as snapping shrimp in warm

waters, and also it comes from rain, breaking waves and distant shipping. The

spectral density of ambient noise decreases significantly over a range of operat-

ing frequencies, hence, it is not white. The comprehensive analysis of different

underwater channels can be found in [49].
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Figure 2.5: Impulse response of shallow water channel.

2.1.2.2 Multipath Propagation

The phenomenon of multipath within an underwater acoustic channel is mainly

produced by the geometry of the water environments. The water environments

include different reflectors and scatters, bottom boundaries, surface reflectors,

and heterogeneity of sea water. The multipath underwater channels are usually

time-varying channels, thus it is impulse responses can be characterized as doubly

spread. Doubly spread referred to delay and Doppler spread. Frequency selective

fading and time dispersion are the two main effects of the delay spread, while

Doppler spread results in creating frequency dispersion and time-selective fading

effects. The multipath delay profile of a shallow water channel depicted in Fig.2.5

is experimentally obtained by sea-trials conducted by Newcastle University in the

North Sea.
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2.1.2.3 Doppler shift

Doppler shift is produced by the movement of the transmitter or receiver and

varying reflections at the surface and bottom of the sea. The reflection and

scattering of sound waves on the surface of the sea is based on the Rayleigh

parameter [47]. Rayleigh parameter can be calculated as

R =
2πρsinφ

λ
, (2.11)

where λ is the wavelength of the sound wave, ρ is the rms roughness wave height,

and φ is the grazing angle. For R << 1 indicates the surface is perfectly smooth

and behaving principally as reflector. In contrast, for rough surface, the Rayleigh

coefficient R >> 1, and the surface acts as a scatterer. The reflection loss can be

computed as

µR = 20log10R. (2.12)

In general, there is a vast difference in complexity between the signal reflec-

tions on the surface of the sea and the seabed. The high changing of the acoustic

properties in the bottom and the gradual changing of the sound velocity and

density due to layered bottom makes seabed more complex than the sea surface.

2.2 Channel Encoding

Within communication systems, the prime requirement of transmitting informa-

tion over multipath channels is reliability. Hence, the channel encoding techniques

have occupied a high interesting by the researchers in modern communication

systems. The detection capability and error correction are the main two charac-

teristics for good coding schemes. In this section, we will give a brief introduction

into the field of channel coding. To this end, we will describe two common chan-

nel encoders which are widely used in communication systems. These encoders

are based on convolution coding and turbo coding which are mainly employed in

our proposed receivers in the following chapters.
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u0

(1, 1, 1)

(0, 1, 1)

(1, 0, 1)

x2

x1

x3

u1 u1 u−1

Figure 2.6: (3,1,3) convolutional encoder.

2.2.1 Convolution Coding

2.2.1.1 Encoder

The convolutional codes generally are specified by

N = number of output bits,

K = number of input bits,

M = number of memory registers.

The efficiency of the code can be measured by the code rate (K/N). Fig. 2.6

depicts a (3,1,3) convolutional encoder with rate 1/3. The module-2 adders are

the generators for the three outputs, and their inputs are selected by a specific

generator polynomial (g) for each output bits, that is

x1=mod2(u1+u0+u−1),

x2=mod2(u0+u−1),

x3=mod2(u1+u−1).

The polynomials can create codes having completely different properties. For any

M order code, there are many choices for polynomial which will not all result in

output codes with good error protection properties. The complete list of these

polynomials can be found in [50].

States are referred to the number of combination bits in the shaded registers

and are defined by
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u1 u1 u−1u0

(0, 1, 1) x2

x1

x3

(1, 0, 1)

Figure 2.7: The systematic (3,1,3)

convolutional encoder.

x1

u1 u1 u−1u0

(1, 1, 1, 1)

x2

u−2

(1, 1, 0, 1)

Figure 2.8: (2,1,4) convolutional en-

coder.

Number of states = 2L,

where L represents the constraint length of the code and it is equal to K(M −1).

The shaded registers in Fig. 2.6 have a constraint length of 2. The convolutional

code could be systematic or non-systematic. In systematic convolution coding,

the known sequence of the input bits are forwarded with the output bits. The

systematic version of Fig. 2.6 is shown in Fig. 2.7. Even though both types of

convolution codes have the same protection properties, however, systematic codes

are preferred over non-systematic due to less hardware requirement for encoding,

quick looking permission and the absence of catastrophically error propagation.

Thus, systematic convolution codes are used in Trellis Coded Modulation (TCM)

and turbo codes.

Table lookup mechanism is usually employed for encoding purpose which con-

sists of the input bits, the output bits and the state of the encoder. Table 2.2

gives the look up table for (2,1,4) convoultional code shown in Fig. 2.8.

State, tree and trellis diagrams are three ways to look at the encoder and

understand the operation of encoding. Trellis diagram is the most preferred over

the others because it represents linear time sequencing of events. Within the

trellis diagram, the x-axis is discrete time and all possible states are shown on

the y-axis. Each horizontal transition indicates arrived bits, and each transmitted

code word has its own trellis diagram. The trellis diagram always starts at state
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Table 2.2: Look up table for the convolutional encoder (2,1,4).

Input Bit Input State Output Bits Output State

0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0

0 0 0 1 1 1 0 0 0

1 0 0 1 0 0 1 0 0

0 0 1 0 1 0 0 0 1

1 0 1 0 0 1 1 0 1

0 0 1 1 0 1 0 0 1

1 0 1 1 1 0 1 0 1

0 1 0 0 1 1 0 1 0

1 1 0 0 0 0 1 1 0

0 1 0 1 0 0 0 1 0

1 1 0 1 1 1 1 1 0

0 1 1 0 0 1 0 1 1

1 1 1 0 1 0 1 1 1

0 1 1 1 1 0 0 1 1

1 1 1 1 0 1 1 1 1

000 and it becomes fully populated after L bits. The transitions then repeat from

this point as it is shown in Fig. 2.9. The encoding process of the incoming bits

is easy using trellis diagram, basically branching up for a 0 and down for a 1 bit.

An example of encoding the sequence (10100) is depicted in Fig. 2.10. The path

taken by the bits of the sequence determines the output code sequence.

2.2.1.2 Decoder

The main objective of the decoder operation is to provide the highest possibility

of estimation for the uncoded transmitted bits from the received coded bits.

The decoder type depends on the type of the demodulator output such that the

decoder is referred to as hard-decision decoding when the demodulator carries out

a binary decision concerning the received bit (i.e hard-decision demodulation).

While, the decoder is referred to as soft-decision decoding when the demodulator
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Figure 2.9: Trellis diagram of (2,1,4) code.

outputs includes multilevel confidence measures concerning the probability of a

binary one and zero (i.e soft-decision demodulation) .

In general, the soft decoder is used in iterative detection due to it’s higher

efficiency than hard decoder. Soft decoding relies on symbol probability decoding

algorithms for the iterative processes. The well-known and widely used algorithm

for soft decoding is called a posteriori probability (APP). The APP algorithm

is also known as BCJR or the forward-backward algorithm. The APP algorithm

was originally invented by [51] to provide the maximum probability of correction

for each symbol, and this referred to as the maximum a posteriori probability

(MAP) algorithm. With the invention of turbo codes, the APP became the prime

representative of the so called soft-in soft-out (SISO) algorithms which is used

for obtaining probability information on the symbols of a trellis code.
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Figure 2.11: Notation.

2.2.2 Soft Input Soft Output Decoding (SISO)

In order to simplify SISO decoding description, we establish a notational con-

vention as in Fig. 2.11. The trellis code shown in Fig. 2.10 consists of five

sections. The transmitted code signal is x = [x0, ..., x4], and the data symbols

are u = [u0, ..., u4]. The purpose of SISO decoder is to compute the a posteriori

probabilities, such as Pr[ur|y] or Pr[xt|y], where y is the output of the demodu-

26



2.2 Channel Encoding

lator. In general, the SISO decoders have three inputs and generate two outputs.

Regarding the notation shown in Fig. 2.12, the systematic part, parity part of

the received codeword and a priori probabilities on information symbols are the

three inputs of the SISO decoder. The outputs of a SISO decoder are APP(ut)

which is an estimate of ut given all observations and given all a priori proba-

bilities, and Ext(ut), is a type of APP(ut) independent of rpt and Π(ut), where

Π denotes the interleaving operation. The a priori probability input is used for

iterative decoding, whereas for non-iterative decoding its values are zeros.

MAP algorithm

Conceptually, the MAP algorithm calculates the probability that the encoder

crossed a specific transition in the trellis, i.e. Pr[st = i, st+1 = j|y], where st is

the state at time t, and i and j are the previous and present states, respectively

[52]. This probability can be computed as the product of three terms

Pr[st = i, st+1 = j|y] =
1

Pr(y)
αt−1(i)γt(i, j)βt(j). (2.13)

The internal variables of the algorithm are given by the values of α and can

be determined by the forward recursion

αt−1(i) =
∑

states l

αt−2(l)γt−1(i, l). (2.14)

Employing previously calculated α values at time t− 2 and the sum over all

states l at time t−2 that connect with state i at time t−1, the estimation of the

α values are obtained during forward recursion at time t − 1. The initial values

for α are

α(0) = 1, α(1) = α(2) = α(3) = 0.

On other the hand, the values of β are calculated by using backward recursion

βt(j) =
∑

states l

βt+1(l)γt+1(l, j), (2.15)

and initialized as β(0) = 1, β(1) = β(2) = β(3) = 0 which enforces the termi-

nating condition of the trellis code. The overall states l summation takes place
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Figure 2.12: SISO decoder.

at time t + 1 to which state j at time t connects. The values of γ are the con-

ditional probabilities which are the inputs to the algorithm, while, γ(j, i) is the

joint probability that the state at time t + 1 is st+1 = j and that yt is received.

This can be calculated as

γt(j, i) = Pr(st+1 = j, yt|sr = i) = Pr[st+1 = j|st = i]Pr(yt|xt). (2.16)

where the first term Pr[st+1 = j|st = i]Pr is the a priori transition probability

which is related to the probability of ut. Hence, this transition probability can

be abbreviated as

pij = Pr[st+1 = j|st = i] = Pr[ut]. (2.17)

While the second term in (2.16) is the conditional channel transition probability,

given that symbol xt is transmitted. Hence, (2.16) can be rewritten as follows

γt(j, i) = Pr[ut]Pr(yt|xt). (2.18)

The output of the iterative decoder can be derived to calculate a priori prob-

ability Pr(ut), while, the joint probability can be computed as

Pr(yt/xt) =
n∏

l=1

Pr(ytl/xtl)

=
n∏

l=1

1√
2πσ2

e
−1

2σ2
(ytl−xtl)2

(2.19)

where xtl and ytl are single transmitter and receiver bits within codewords, re-

spectively; n is the number of bits in each codeword; and σ2 is the noise variance,

for binary phase shift keying (BPSK) modulation and Gaussian channel. The
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ji

Figure 2.13: Transitions corresponding to ut.

summation over all transitions of the a posteriori transition probabilities (2.13)

can be used to compute the a posteriori symbol probabilities Pr[ut|y] regarding

to ut = 1 and ut = 0, separately, that is

p[ut = 1|y] =
1

Pr(y)

∑

solid

αt−1(i)γt(i, j)βt(j), (2.20)

p[ut = 0|y] =
1

Pr(y)

∑

dashed

αt−1(i)γt(i, j)βt(j), (2.21)

where solid transition correspond to ut = 1, and the dashed transitions correspond

to ut = 0 as illustrated in Fig. 2.13. Hence, the output a posteriori LLR can be

determined as

L(ut|y) = log

[
p[ut = 1|y]

p[ut = 0|y]

]

= log

[∑
(i,j)∈A(u) αt−1(i)γt(i, j)βt(j)∑
(i,j)∈B(u) αt−1(i)γt(i, j)βt(j)

]
,

(2.22)

where A(u) and B(u) denote the solid and dash transition states, respectively.

The mathmatical operations of the real numbers involved in the MAP algo-

rithm results in a high complexity in the hardware implementations [51]. Trans-

ferring the algorithm to the logarithm domain leads to reduce the algorithm
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complexity which is called Max-log-MAP algorithm [53][54]. This technique uti-

lizes an approximation which drastically reduces the complexity however, at a

cost of performance degradation. The lower performance problem of Max-log-

MAP algorithm can be solved by using Log-MAP algorithm [55] that corrected

the approximation used in the Max-Log-MAP algorithm.

2.2.3 Turbo Coding

2.2.3.1 Turbo Encoder

According to Shannon, when a message is sent infinite times, each time shuffled

randomly, then the ultimate code can be obtained. This means that the receiver

has infinite copies of the message, which can be used by the decoder to decode

the message sent with near error-free probability. Turbo code, aims to achieve

this performance, albeit with messages being sent only two or three times.

Fig. 2.14 shows the turbo encoder which consists of two recursive systematic

convolutional (RSC) encoders. The output of the two encoders are approximately

statistically independent of each other due to using the interleaver between them.

Although, its possible to utilize more than two components in turbo codes, how-

ever, we concentrate on the standard turbo encoder structure which is using two

RSC codes. Each half rate RSC encoder generated a systematic output which

includes the original and parity information. Half of the parity output bits from

the encoders are punctured so as to produce one half of the overall coding rate.

Hence, after puncturing, the output of the turbo encoder is a multiplexing of the

systematic bits with the punctured parity bits.

2.2.3.2 Turbo Decoder

The turbo decoder employs maximum likelihood detection (MLD), where the re-

ceived signal after modulation is fed to the decoders which work on the signal

amplitude to output soft decision bits. The MLD is known as maximum MAP

when it is used by turbo decoding [56]. Within turbo decoding, the MAP algo-

rithm works iteratively to improve the system performance, where the number of

iterations depends on the SNR value. The higher the SNR, the less iterations are

required.
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Figure 2.14: Turbo encoder.

The SISO decoder is the most important component in turbo decoder, because

it computes a posteriori probabilities on bits. Corresponding to the two RSC

encoders at the transmitter, the turbo decoder includes two SISO decoders that

are connected by interleaver as shown in Fig. 2.15. The number of SISO decoders

is equal to the number of RSC encoder components. During processing of the

received signal, each SISO decoder computes the information about the data bits

and extrinsic information about the coded bits, which in turn is sent to the other

SISO decoder. The key idea of exchanging soft extrinsic bits between these two

SISO decoders can greatly improve the system performance.

The channel output values are taken by the first SISO decoder which produces

the soft output as its estimate of the data bits during the first iteration. Then

the soft output bits are interleaved and taken as a priori information for the

second SISO decoder. The second decoder employs this a priori data and the

received data bits to obtain the estimate of the data bits. Similarly, the estimated

output bits of the second decoder are deinterleaved, which are treated as a priori

information by the first SISO decoder during second iteration. The exchanging of

a priori information between the SISO decoders in each iteration leads to improve

BER of the system at the next iteration.
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Figure 2.15: Turbo decoder.

2.3 Equalization Principles

The amplitude and phase dispersion of the channels leads to a very high BER

at the receiver due to the effects of ISI. In order to solve the problem of ISI

caused by the multipath channels, in spite of utilizing channel encoders, equalizers

are also required. The receiver design depends on the fact that the channel

transfer function is known. However, in practical communications applications,

the channel transfer function is not known to the receiver to eliminate channel

effects.

The optimum equalizer can be obtained by using maximum likelihood se-

quence detection (MSLE) which depends on the criterion of minimum proba-

bility of error. However, MSLE has high complexity. Alternatively, employing

linear combinations of the received signal symbols to remove ISI is a suboptimal

method of equalization and it is called Linear Equalizer (LE). LE has a good

performance in slow fading channels, however, it has limited performance in fast

fading channels. Therefore, the decision feedback equalizer (DFE) has been de-

signed to mitigate fast fading through using feedback filter to remove the effect

of the ISI caused by previous transmitted symbols.

Having a transmitter as shown in Fig. 2.16, {c}NdRc−1
i=0 denote the user’s

32



2.3 Equalization Principles

Figure 2.16: Transmitter.

Figure 2.17: Linear equalizer structure.

data after error control encoding with Rc and Nd representing the code rate and

number of transmitted data bits, respectively. After encoding, the codeword bits

are mapped to symbols {sk}Ns−1
n=0 , where Ns is the number of the transmitted

symbols, which are taken from a M -ary symbol alphabet: χ , {α1, ..., αM} with

E{χ} = 0 and E{|αq|2} = 1.

We assume L paths channel model, with complex-valued fading coefficients

{h(l)}L−1
l=0 . The received signal can then be represented as

y(n) =
∑

l

h(l)s(n− l) + υ(n), (2.23)

where υ(n) are complex-valued samples of zero-mean AWGN with variance σ2
v =

N0/2.

2.3.1 Linear Equalizer

The simplest suboptimum solution to remove ISI in the received signal is through

the use of LE as shown in Fig. 2.17. This method generally incorporates a

transversal filter (f), and the complexity of the filter linearly depends on the

channel’s transfer function.

Within communication systems, the transmitted data symbols s(n) are re-

ceived in the presence of multipath channel effects and additive noise υ(n). The

signals s(n) and υ(n) are assumed uncorrelated. Due to channel memory, each

received symbol y(n) contains contributions form both s(n) and prior transmitted

symbols. Hence, the received data symbols in (2.23) can be rewritten as follows:

y(n) = h(0)s(n) +
L∑

l=1

h(l)s(n− l)
︸ ︷︷ ︸

ISI

+υ(n),
(2.24)
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where the second term on the right hand side describes the ISI caused by the

prior transmitted symbols.

Assuming that the detected symbols š(n) after the decision device are free

of errors, i.e the š(n − ∆) can be replaced with s(n − ∆), then the criterion

for determining transversal filter coefficients (f) is obtained by minimizing the

variance of the error signal, which can be given as

e(n−∆) = s(n−∆)− ŝ(n−∆). (2.25)

where s(n − ∆) = š(n − ∆) by assuming the correct detection of the equalized

symbol. The received observed symbols can be expressed in column form as

y =




y(n)
y(n− 1)
y(n− 2)

.

.

.

.
y(n−Nf + 1)




, (2.26)

where Nf is the length of transversal filter taps. Moreover, the process s(n−∆)

is jointly wide-sense stationary with y, hence the covariance quantities

Ry = E
[
yyH

]
= HRsH

H + Rv, (2.27)

rsy = E
[
s(n−∆)yH

]
= λsH

H , (2.28)

are independent of n, where

λs = [0 0 . . .︸ ︷︷ ︸
∆

σs . . . 0 0],

is a vector of lengthNf which all its element are zeros except element with position

∆, σs = E[s(n−∆)s(n)∗], (.)H denotes the conjugate transpose operation, H ∈
CNf×(L+Nf−1) is the channel matrix constructed from the estimated channel taps

during training mode, i.e.

H =



h(0) . . . h(L− 1) 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 . . . 0 h(0) . . . h(L− 1)


 , (2.29)
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and Rs ∈ C(Nf+L−1)×(Nf+L−1) is the covariance matrix.

The covariance matrix

R ,

[
σs rsy
rHsy Ry

]
, (2.30)

is assumed to be positive-definite and invertible. The positive-definiteness of R

guarantees that both Ry and the Schur complement of R are positive-definite

matrices too, i.e.

Ry > 0, Rδ , σ − rsyR
−1
y rHsy > 0,

where the Schur complement is denoted by Rδ [25]. The optimal filter taps can

be determined by solving

∆J = min
f
E|ek(n−∆)|2. (2.31)

Moreover, (2.25) can be rewritten as

e(n−∆) = s(n−∆)− ŝ(n−∆)

= s(n−∆)−
lf=Nf−1∑

lf=0

f(lf )y(n− lf ).
(2.32)

By collecting the coefficients of f(lf ) in row form

fH , [f(0) f(1) · · · f(Nf − 1)], (2.33)

the expression in (2.32) can be rewritten in vector form as follows

e(n) = s(n−∆)− fHy. (2.34)

By substituting (2.34) in (2.31), the optimization problem can be written as

follows

∆J = min
f
E|s(n−∆)− fHy|2. (2.35)

The right hand-hand side of (2.35) can be expanded as follows

∆J = min
f
E
[(
sk(n−∆)− fHy

) (
s(n−∆)− fHy

)H]

= min
f
E
[(
s(n−∆)− fHy

) (
s(n−∆)H − yHf

)]

= min
f
E[s(n−∆)s(n−∆)H − s(n−∆)yHf

− fHys(n−∆)H + fHyyHf].

(2.36)
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In turn, with the aforementioned definitions, (2.36) can be rewritten as follows

∆J = min
f

(1− rsyf− fHrHsy + fHRyf)

.
(2.37)

The optimal fH is determined by differentiating ∆J with respect to f and

setting it to be equal to zero.

∂∆J

∂f
= −rsy + fHRy, (2.38)

hence,

fH = rsyR
−1
y . (2.39)

By substituting (2.39) into (2.37), we can find the minimum mean square

error of linear equalizer (MMSELE), that’s

MMSELE = 1− rsyR
−1
y rHsy. (2.40)

2.3.2 DFE Equalizer

Within the DFE structure, in addition to the transversal filter in the feed forward

path, a feedback filter is also employed in order to feedback previous decisions

and utilize them to reduce ISI as shown in Fig. 2.18. The utilization of the

decision device in DFE equalization provides it with nonlinear characteristic.

The decision device tries to determine which symbol of a set of modulation levels

was actually transmitted. After each symbol estimation, the DFE equalizer with

the aid of filter structure can compute the channel effect on following symbols and

compensate the input of the decision device for the next samples. This postcursor

channel removal takes place by using a feedback filter structure.

By defining the returned symbols through the feedback filter as

s =




s(n−∆)
s(n−∆− 1)

.

.

.

.
s(n−∆−Nb)




, (2.41)
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Figure 2.18: DFE equalizer structure.

and using the same definitions for the observed symbols, estimated symbols and

filter taps given in LE section, the covariance matrix

R ,

[
Rs Rsy

RH
sy Ry

]
, (2.42)

is assumed to be positive-definite and invertible, where Rsy ∈ CNb×Nf . The

positive-definiteness of R guarantees that both Ry and the Schur complement of

R are positive-definite matrices too, i.e.

Ry > 0, Rδ , Rs −RsyR
−1
y RH

sy > 0,

where the Schur complement is denoted by Rδ [25].

For the DFE structure, the error signal given in (2.25) can be rewritten as

follows

e(n−∆) = s(n−∆)−
Nf−1∑

lf=0

f(lf )y(n− lf )

+

Nb∑

lb=1

b(lb)s(n− lb).
(2.43)

Moreover, the error signal can be written in vector form as

e(n) = bHs− fHy, (2.44)

where

bH , [1 b(1) · · · b(Nb)], (2.45)
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hence, the optimization problem in (2.31) becomes

∆J = min
f,b

E
[
|bHs− fHy|2

]
, (2.46)

∆J = min
f,b

E
[
(bHs− fHy)(bHs− fHk y)H

]

= min
f,b

(bHE[ssH ]b− bHE[syH ]f− fHE[ysH ]b + fHk E[yyH ]fk).
(2.47)

By substituting Rsy, (2.47) can be rewritten as

∆J = min
f,b

(bHRsb− bHRsyf− fHRH
syb + fHRyf). (2.48)

The optimal fH is determined by differentiating ∆J with respect to f, thats

∂∆J

∂f
= −bHRsy + fHRy (2.49)

Then from (2.49) we can find fH as given below

fH = bHRsyR
−1
y . (2.50)

Substituting this expression into (2.48), we get

∆J = min
b

(bHRsb− bHRsyR
−1
y RH

syb

− bHRsyR
−1
y RH

syb + bHRsyR
−1
y RyR

−1
y RH

syb)

= min
b

(bHRsb− bHRsyR
−1
y RH

syb)

= min
b

(bH
(
Rs −RsyR

−1
y RH

sy

)
b)

= min
b

(bHRδb).

(2.51)

Recall that the leading entry of vector b is unity, so that (2.51) is actually a

constrained problem of the form

min
b

bHRδb subject to bHe0 = 1 (2.52)

where

eo = [1 0 0 . . . 0]T .
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Employing the Gauss-Markov theorem [25] for constrained optimization, we can

find the optimal value of b as

bH =
eTo R−1

δ

eTo R−1
δ eo

. (2.53)

The denominator in (2.53) represents the (1,1) entry of R−1
δ , while the nu-

merator is the first row of R−1
δ . By substituting the above equation of bH into

(2.53), we can calculate the resulting MMSE of the original optimization prob-

lem (2.48), that’s

MMSEDFE =
1

eTo R−1
δ eo.

(2.54)

2.4 Joint Equalization and Decoding in an Iter-

ative system

In the previous sections, all blocks in the receiver system, decoding or equaliza-

tion, were processing the data in a sequential fashion. The bit redundancy and

the channel characteristics have been used in the decoding procedure and the

equalization process to more enhancement in signal quality and data equaliza-

tion, respectively. In this section, a higher efficiency approach will be introduced.

The approach consists of both the equalizer and decoder procedures in a single

receiver were data is processed in an iterative manner. This method was first

proposed by Douillard [57], and it is called turbo equalization (TE) [58] because

of its similarity with turbo coding. Douillard has shown that even for high dis-

persive multipath fading channels the detrimental effects of ISI can be removed

with this approach. The iterative equalization and decoding processes in TE re-

ceiver [59] can obtain impressive performance for receivers that receive data from

a multipath selective channels, i.e. those that suffer from ISI effects.

The original TE includes maximum likelihood (ML) equalizer and a MAP

decoder as depicted in Fig.2.19. In each iteration, number of sequence operations

are executed within two layers. The two layers are separated by an interleaver

and a deinterleaver. The inner layer consists of the channel and ML equalizer

operations, while the outer layer includes an encoder and decoder. The iterative

receivers are exchanging soft information bits between the inner layer and the
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Figure 2.19: ML turbo equalization.

outer layer during detection process. In first iteration, there is no feedback infor-

mation from the outer layer, hence the equalization is done based on the channel

impulse response. While in the later iterations, the equalizer is also using the

decoder feedback soft bits for improving equalization operations. As the number

of iteration increases, the quality of the signal between the equalizer and the de-

coder is improved. This is the principle of TE system. Although, TE can provide

improved BER performance, however, this iterative scheme can be sensitive to

error propagation.

Usually the equalization part of the TE system is based on the Bahl Cock

Jelinek Raviv (BCJR) algorithm [60]. When channel response and a priori in-

formation of the transmitted symbols are available in the receiver, exact APP

values of the transmitted symbols can be calculated by using BCJR algorithm (

i.e. optimal equalizer ). The ideal equalization of BCJR is come in the expense

of high computational complexity which increases exponentially as a function of

symbol mapping type and channel response length.

The high complexity of optimal equalization of BCJR has encouraged re-

searchers to seek and investigate numerous suboptimal solutions which provide

low equalization complexity. A familiar SISO linear equalizer (SISO-LE) [61] is a

notable development along this direction. The SISO-LE has been employed with

MAP decoder for constructing a turbo like equalization system [62], such that

the complexity was reduced from exponential to polynomial. SISO-DFE struc-

ture is another example of turbo like equalization which was proposed in [61]. In

multipath fading channel transmission, DFE usually outperforms LE. However,
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when hard decision bits are fed through feedback filters in iterative equalization

techniques, SISO-LE can provide better performance than SISO-DFE due to er-

ror propagation [62]. For this reason, various techniques have been proposed to

mitigate feedback error propagation so as to improve SISO-DFE performance [63]

[64] [29]. Recently, it has been shown in [65] that the SISO-DFE can outperform

SISO-LE if extrinsic information is reformulated such that it can combat error

propagation more efficiently.

In turbo equalization, the output of the equalizer part, as shown in Fig. 2.20,

is the LLR of s(n)

eeq(s) = ln
Pr(s(n) = +1|y)

Pr(s(n) = −1|y)
− l̃eq(s(n)), (2.55)

where

y = [y(1), y(2), . . . , y(Lt)],

and Lt is the length of the interleaved sequence. The equalizer requires the

information of the a priori probabilities of all input bits affecting y(n) to generate

the a posterior values. These a priori soft bits are provided by the decoder

according to the following formula

l̃eq(s(n)) = ln

(
Pr(s(n) = +1)

Pr(s(n) = −1)

)
. (2.56)

In the first iteration, these a priori bits are not available and are all initially set

to zeros, however, when the turbo iteration ensues, these soft bits are generated

and passed by the outer decoder. The MAP decoder computes the a posteriori

information of c(n)

ede(c(n)) = ln

(
Pr(c(n) = +1/Υ)

Pr(c(n) = −1/Υ)

)
− ln

(
Pr(c(n) = +1)

Pr(c(n) = −1)

)
, (2.57)

where

Υ =
[
l̃de(c(1)), l̃de(c(2)), . . . , l̃de(c(Lt))

]
,
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Figure 2.20: Iterative equalization using SISO and MAP decoder.

and the output of the equalizer is considered to be the a priori l̃de(c(n)) for the

decoder after deinterleaving process. The decoder also computes the data bit

sequence

d̂(m) = argmax{d∈(1,0)}Pr(d(m) = d|Υ). (2.58)

After initial estimation of a block of received symbols, the equalization and

decoding operations are applied to the same set of the received symbols. The

iterative process is then stopped by a suitable termination criterion.

The SISO block consists of two main operations. First, the received signal

is processed by the equalizer filters to generate the estimate ŝ(n) of the original

transmitted signal s(n). This is done by using traditional MMSE criterion with

the deviation that the SISO also makes use of the prior information l̃eq(s(n)),

i.e E(s(n)) and Cov(s(n), s(n)). The MMSE computes ŝ(n) from the received

symbols y(n) by minimizing the cost function (E|s(n)− ŝ(n)|2). The second step

consists of forming the output eeq(s(n)) based on the filtered estimate ŝ(n), the

channel impulse response and the current filter coefficient taps.

The output of the SISO is obtained by utilizing the estimate ŝ(n) instead of

y(n) [66] [67], i.e.

eeq(s(n)) = ln
P(s(n) = +1|ŝ(n))

P(s(n) = −1|ŝ(n))
− ln

P(s(n) = +1)

P(s(n) = −1)

= ln
p(ŝ(n)|s(n) = +1)

p(ŝ(n)|s(n) = −1)
,

(2.59)

which requires p(ŝ(n)|s(n) = s) of ŝ(n) conditioned on s(n) = s, s ∈ {−1, 1}.
The MMSE requires the statistics s(n) = E[s(n)] and v(n) = Cov[s(n), s(n)] of
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Figure 2.21: SISO-LE equalizer structure.

symbols s(n) to produce the estimation symbols ŝ(n). The s(n) are assumed to

be equiprobable and i.i.d, which corresponds to E[s(n)] =0 and Cov[s(n), s(n)]

=1, ∀n. In general, the mean and covariance values of s(n) are determined as

s(n) =
∑

s∈{−1,1}
sP(s(n) = s)

= P(s(n) = +1)− P(s(n) = −1)

=
el̃eq(s(n))

1 + el̃eq(s(n))
− 1

1 + el̃eq(s(n))
= tanh(

l̃eq(s(n))

2
)

, (2.60)

v(n) =
∑

s∈{−1,1}
|s− E[s(n)]|2P(s(n) = s) = 1− s(n). (2.61)

After MMSE equalization, we assume that the probability density functions

(pdf) p(ŝ(n)|s(n) = s), s ∈ {−1, 1}, are Gaussian with parameters µs(n) =

E[ŝ(n)|s(n) = s] and σ2
s(n) = Cov[ŝ(n), ŝ(n)|s(n) = s] [68]

p(ŝ(n)|s(n) = s) ≈ φ(
(ŝ(n)− µs(n))

σs(n)
)/σs(n), (2.62)

where

φ(x) =
e
−x2
2√
2π
. (2.63)

The above assumption enormously simplifies the computation of equalizer output

ŝ(n). Moreover, the output symbols eeq(s(n)) should not depend on the particular

a priori LLR l̃eq(s(n)), hence, it is required that ŝ(n) does not depend on l̃eq(s(n))

which affects the MMSE derivation.
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2.4.1 Linear MMSE Turbo-Equalization

The MMSE equalizer for this approach is SISO-LE , shown in Fig.2.21, which

consists of a length Nf filter with coefficient f(lf ), lf = −N1, 1−N1, . . . , 0, . . . , N2,

where Nf = N1 + N2, which are defined by the linear MMSE estimate ŝ(n) of

s(n)[69]

ŝ(n) = E[s(n)] + Cov[x(n),y]Cov[y,y]−1 (y− E[y]) , (2.64)

given the observation

y , [y(n−N2, y(n−N2 + 1), . . . , y(n+N1)]H

For data transmission over multipath fading channels, (2.64) becomes

ŝ(n) = s(n) + v(n)ȟ
H

(σ2IN + HVHH)−1 (y−Hs) (2.65)

where H is the channel convolution matrix given by (2.29) and

s , [s(n− L−N2 + 1), s(n− L−N2 + 2, . . . , s(n+N1)]H ,

V , Diag(v(n− L−N2 + 1), v(n− L−N2 + 2), . . . , v(n+N1)),

ȟ , H[01×(N2+L−1) 1 01×N1 ]
H .

In (2.65), it is obvious that ŝ(n) depends on l̃eq(s(n)) via s(n) and v(n).

Therefore, to make ŝ(n) independent of l̃eq(s(n)), we set l̃eq(s(n)) to zeros while

computing ŝ(n), yielding s(n) = 0 and v(n) = 1. Hence, (2.65) can be changed

as follows

ŝ(n) = ȟ
H

Cov[y,y]−1(y−Hs + (s(n)− 0)ȟ), (2.66)

where

Cov[y,y] = σ2IN + HVHH + (1− v(n))ȟȟ
H
.

The MMSE equalizer output can be written as

ŝ(n) =

N2∑

lf=−N1

f(lf )(y(n− lf )− E[y(n− lf )]), (2.67)

where
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E[y(n)] =
∑L−1

l=0 h(l)s(n− l).

Consequently, the vector f is set as follows

f , (σ2IN + HVHH + (1− v(n))ȟȟ
H

)−1ȟ. (2.68)

This yields the final formula

ŝ(n) = fH(y−Hs + s(n)sȟ), (2.69)

from which the parameters µ2(n) and σ2(n) of ŝ(n) are determined

µ(n) = fH(E(y|s(n) = s)−Hs + s(n)ȟ)

= sfHȟ,
(2.70)

σ2(n) = fHCov(y,y|s(n) = s)f

= fH(σ2IN + HVHH − v(n)ȟȟ
H

)f

= fHȟ(1− ȟ
H

f).

(2.71)

The output eeq(s(n)) is then follows as

eeq(s(n)) = ln
φ
(
ŝ(n)−µ(s=+1)(n))

σ(s=+1)(n)

)
/σ(s=+1)(n)

φ
(
ŝ(n)−µ(s=−1)(n))

σ(s=−1)(n)

)
/σ(s=−1)(n)

= 2fH
(
y−Hs + s(n)ȟ

)

1− ȟ
H

f
.

(2.72)

In first the iteration, l̃eq(s(n)) = 0, ∀n, and hence s(n) = 0 and v(n) = 1.

This leads to changing (2.68) to a usual MMSE-LE solution [1]

fNA = (σ2IN + HVHH + (1− v(n))ȟȟ
H

)−1ȟ|l̃eq(s(n))=0

= (σ2IN + HVHH)−1ȟ.
(2.73)

2.4.2 Non-Linear MMSE Turbo-Equalization

The DFE equalizer consists of a length Nf feed-forward filter with coefficients

f(lf ), lf = −N1, 1 − N1, . . . , N2, and a stictly causal length Nb feedback filter
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Figure 2.22: SISO-DFE equalizer structure.

with a coefficients b(lb), lb = 1, 2, . . . , Nb as depicted in Fig. 2.22. A general

expression for MMSE-DFE equalizer is given as follows [61]

ŝ(n) = s(n) +




0∑

lf=−Nf
f(lf ) (y(n− lf )− E[y(n− lf )])




−
(

Nb∑

lb=1

b(lb)(ŝ
b(n− lb)− E[ŝ(n− lb)])

) (2.74)

where ŝb(n) are past decided estimates of ŝ(n) and obtained using appropriate

decision function, that’s

ŝb(n) =

{
1 ŝ(n) > 0

−1 ŝ(n) < 0
, (2.75)

for BPSK modulation. We assume that the feedback estimated symbols ŝb(n)

are error-free, i.e. ŝb(n) = s(n), ∀n. The relation between the feed forward f and

feedback b coefficients [1]

b(lb) =

Nb∑

l=0

h(l)f(lb − l), lb = 1, 2, . . . , Nb (2.76)

can be substituted in (2.74) and the output equation becomes [59]

ŝ(n) = s(n) + fH(y−Hs), (2.77)

where H ∈ CNf×(Nb+Nf−1) is the channel convolution matrix, and
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2.4 Joint Equalization and Decoding in an Iterative system

s , [ŝb(n−Nb + 1), . . . , ŝb(n− 1), s(n), s(n+ 1), . . . , s(n+Nf − 1)]T ,

y = [y(n), y(n+ 1), . . . , y(n+Nf − 1)]T .

In (2.64), applying

fH = Cov[s(n),y]Cov[y,y]−1, (2.78)

to (2.77), we get

ŝ(n) = s(n) + v(n)ȟ
H (

σ2IN + HVHH
)−1

(y−Hs), (2.79)

where

V , Diag(0(1×Nb), v(n), v(n+ 1), . . . , v(n+Nf − 1)),

ȟ , H[0(1×Nb),1,0(1×Nf−1)]
H .

As in MMSE-LE, s(n) and v(n) are replaced with 0 and 1, respectively, to

ensure that ŝ(n) is independent from s(n) which is computed as

ŝ(n) = 0 + ȟ
H
(
σ2IN + HVHH + (1− v(n))ȟȟ

H
)−1

(y−Hs + (s(n)− 0)ȟ).

(2.80)

Having the final expression for feed forward filter coefficients

f , ȟ
H
(
σ2IN + HVHH + (1− v(n))ȟȟ

H
)−1

ȟ,

the MMSE estimate

ŝ(n) = f(y−Hs + s(n)ȟ),

the statistics

µ(n) = sfHȟ, (2.81)

σ2(n) = fHȟ(1− ȟ
H

f), (2.82)

and the output LLR

eeq(s(n)) = 2fH
(y−Hs + s(n)ȟ)

1− ȟ
H

f
, (2.83)
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can be determined as in MMSE-LE section. During first iteration, l̃eqs(n) = 0,

hence, f is computed using usual MMSE-DFE solution, that’s

fNA ,
(
σ2IN + HDiag(0(1×Nb)11×Nf )H

H
)−1

ȟ, (2.84)

and the corresponding output is given by

eeq(s(n)) =
2fNAy

1− ȟ
H

fNA
. (2.85)

The suboptimal solution for MMSE-DFE can also be derived for efficiently

computing f, however, it exhibits inferior performance to the MMSE-LE based

methods. Therefore, we omit the corresponding derivations here.

2.5 Chapter Summary

In this chapter, the basic concepts of communication channels characteristics, en-

coding, decoding and equalization techniques have been introduced. Tapped de-

lay channel and acoustic shallow water channel characteristics have been demon-

strated with details, so as to be applied on the proposed receivers in the later

chapters. Channel encoding is a well-known and efficient technique to overcome

channel corruptions. The concept of two types of a channel encoding have been

presented in this chapter, which are convolution coding and turbo coding.

Furthermore, this chapter depicts non-iterative and iterative equalization tech-

niques which are the key concepts employed extensively in the thesis. Within non-

iterative equalization, the equalization and decoding processes are taken place

separately and the equalizer depends on the channel characteristics to compute

filters taps for equalizing received symbols. LE and DFE are two examples of

non-iterative equalizers given in this chapter. While for iterative equalization

techniques, the equalization and the decoding are processed jointly in iterative

manner such that the apriori information is exchanged between the equalizer and

decoder via interleaver permutation for each iteration, such that, the equalization

process used also the apriori information provided by the decoder for further re-

duction of ISI. Linear and non-linear MMSE based equalization are two iterative

equalization approaches presented in this chapter.
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3

Multiuser Detection Schemes

3.1 Introduction

Iterative detection is a strategy to use estimated data symbols in the current it-

eration to form an estimate of the inter-symbol interference (ISI) or multi-access

interference (MAI), and then subtracting it from received signals before detec-

tion or equalization in next iteration. It has extensively been studied in direct

sequence-code division multiple access (DS-CDMA)[70] [71]. Interleaved division

multiple access (IDMA) [72] [73] is another multiaccess scheme which mainly

depends on the iterative process for constructing the mean and variance of the

total interference from the detected symbols and extracting it from the received

signal in the next iteration. IDMA is another kind of the multiple access scheme

in which each user is differ from the other user by using a specific interleaver

pattern. IDMA can be presented as a special case of CDMA [74] and obtain-

ing many advantages from DS-CDMA. IDMA removes MAI and ISI efficiently

by employing random interleaving and chip by chip (CBC) iterative multiuser

detection which can handle large numbers of users.

In this chapter, we review the widely studied multiuser detection algorithms

based on DS-CDMA and IDMA detection. We briefly explain the detection al-

gorithms used by DS-CDMA systems, and then the iterative detection algorithm

of IDMA is illustrated for both frequency flat and multipath channels. To main-

tain simplicity, only synchronous CDMA and IDMA systems are described in this

chapter.
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3.2 DS-CDMA Detection Schemes

The utilization of DS-CDMA in most applications such as IS-95 and 3G cellu-

lar communication standards (CDMA2000, WCDMA, and TD-SCDMA) makes

CDMA one of the most popular multiple access techniques in recent years [75].

Each user in DS-CDMA defers from other users by using a distinct coded wave-

form. Although DS-CDMA shows a higher system performance than traditional

time division multiple access (TDMA) and frequency division multiple access

(FDMA), its performance is limited by MAI from other users and ISI caused

by multipath fading. Therefore, numerous multiuser and equalization techniques

have been proposed to suppress these two types of interference. The concept of

multiuser detection has been introduced in [4]. After Verdu, various multiuser

detectors have been proposed for DS-CDMA systems, such as optimal multiuser

detectors, linear minimum mean squared error (MMSE)-based multiuser detec-

tor and the decorrelator [76]. Applying turbo principles to multiuser detection

produces a variety of iterative multiuser detection algorithms, such as serial in-

terference cancellation (SIC) [77], parallel interference cancellation (PIC)[78][79],

probabilistic data association (PDA) detector [80], turbo MMSE-based multiuser

detection [81][82] and turbo maximum a posteriori probability (MAP)-based mul-

tiuser detection[83][75].

3.3 Signal Model

The uplink transmission of an uncoded K-user DS-CDMA system is depicted in

Fig. 3.1 over a multipath fading channel. The information symbols {bk}Ns−1
n=0

for user k, where 1 6 k 6 K, are spread by a length S spreading sequence

gk = [gk(1), gk(2), . . . , gk(S)] and the resulting sequence sk is transmitted through

a multiple access channel. To keep our description concise, the vectors sk, gk and

bk are assumed to be real numbered taking values from {−1, 1}, although they

are not restricted to be real.

By assuming a synchronous uplink transmission, the received signal can be
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3.3 Signal Model

Figure 3.1: Diagram of an uplink DS-CDMA system with K users.

expressed as follows

y(n) =
K∑

k=1

hkbk(n)gk + v(n), n = −∞, . . . ,∞ (3.1)

where hk denotes the channel coefficient for user-k, y(n) = [y1(n), y2(n), . . . , yS(n)]

denotes the S-dimensional received signal vector associated with nth symbol, and

v(n) = [v1(n), v2(n), . . . , vS(n)]T is a zero mean independent S-dimensional Gaus-

sian random vector with covariance σ2IS (IS denotes an S × S identity matrix).

For simplicity, we can ignore the index (n) and write (3.1) in matrix form as

follows

y = [GHb + v]T , (3.2)

where H = Diag(h1, h2, . . . , hK) is a diagonal matrix, G = [gT1 ,g
T
2 , . . . ,g

T
K ]T , and

b = [b1, b2, . . . , bK ]T .
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Figure 3.2: Optimum detector for k-user CDMA Gaussian channels.

3.4 Non-Iterative DS-CDMA Detection

3.4.1 Optimal Detector

The block diagram of the optimum receiver is shown in Fig. 3.2 for K users. The

receiver includes a bank of matched filters, where each filter is matched to a spe-

cific user’s spreading signature. The received signal containing MAI is processed

through the matched filters and the resulting outputs r = [r1, r2, . . . , rK ] enter

the decision algorithm that is utilized to approximate the desired decisions.

Feeding the received signal to the bank filters yields

r = GTy = RHb + GTv, (3.3)

where R = GTG is the correlation matrix between users and GTv is a K-

dimensional zero mean vector with covariance σ2R.

A maximum likelihood (ML) sequence detector can be used to implement the

optimal receiver algorithm at the output of the matched filter bank. The ML

detector can be realized by using a dynamic programming algorithm such as the

Viterbi algorithm [4].

3.4.2 Suboptimal Multiuser Detector

The improved system performance obtained by the optimal detection requires

high computational complexity. Theoretically, the complexity of the optimum
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CDMA receiver grows exponentially with the number of users. In practice, to

reduce the complexity of the optimum receiver, suboptimal receivers are employed

with linear complexity. However, this results in over-all performance degradation.

There are many types of suboptimal detection algorithms such as decorrelator

and linear MMSE-based detector. The decorrelator introduced in [84], which

uses a linear tranformation of the matched filter output to completely remove the

MAI. It is asymptotically optimal as the SNR goes to infinity, i.e σ2 goes to zero.

The decorrelator has a computational complexity that increases linearly with the

number of users but with suboptimal performance. The decorrelator multiplies

the outputs of the matched filter bank r by the inverse of the crosscorrelation

matrix, that is

R−1r = Hb + R−1GTv. (3.4)

For a noiseless channel, the second term on the right-hand side of (3.4) be-

comes zero, hence, the approximation of the transmitted sequence can be given

as

b̂k = sign(R−1r) = sign(Hb). (3.5)

On other hand, the linear MMSE multiuser detection substitutes the inverse

crosscorrelation matrix by the matrix M that minimizes the mean-square error

between the actual data and the mapping of the matched filter bank. That is

minM∈RK×KE[||b−Mr||2]. (3.6)

The matrix M is given by [4]

M = [R + σ2H2]−1. (3.7)

Thus, the linear MMSE outputs is given as follows

b̂k = sign(Mr) = sign
(
[R + σ2H2]−1r

)
. (3.8)

In general, the MMSE detector achieves the best performance compared to

the correlator detector, but it needs perfect channel state information (CSI).

Even though the correlator detector does not need CSI, however, it suffers from

a numerical problem when R is nearly singular. Moreover, both detectors need

to know the spreading sequences of all the users. To prevent the requirement of

the CSI and all users’ spreading signature, adaptive MMSE, blind MMSE, and

iterative detectors are proposed [82][85][86][4].
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Figure 3.3: Transmitter structure of coded CDMA system for K users.

3.5 Iterative CDMA Detection

The success of turbo codes as FEC codes, channel estimation and channel equal-

ization resulted in various iterative multiuser detectors [87]-[88]. The output of

the current iteration fed back to the front-end is appropriately used in the next

iteration. PIC, SIC and PDA are three examples of uncoded iterative multiuser

detection. However, the iterative detectors are usually designed for coded re-

ceivers. This is because coding is common for practical systems such as IS-95

and CDMA2000. At the same time, using coding to feed-back information can

greatly reduce the error propagation within the feedback symbols. The coded

iterative detector has a greater complexity than uncoded systems. Therefore,

iterative detectors are alternative solutions.

A coded turbo CDMA system is depicted in Fig. 3.3. The information bits of

each user dk are coded by an FEC encoder, then interleaved and spread before

being modulated and transmitted on a multiple access channel. The utilization

of a different interleaver for each user makes each user’s coded data independent

of others, and meets the requirement of the turbo principle.
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The general iterative receiver for coded CDMA system is shown in Fig. 3.4.

The receiver consists of two major parts, which are the multiuser detector and

the bank of K single user a posteriori probability (APP) decoders (DEC). These

two parts exchange extrinsic information via interleavers and deinterleavers. The

APP performs SISO decoding where its feedback symbols l̃k(s(n)) are used as

a priori information in multiuser detection processes to generate ek(s(n)). The

multiuser detector may use the feedback information in a different manner. In

optimal detection, it is taken as a priori probabilities of +1 or -1 for each coded bit

[89][90]. While in MMSE detectors, the extrinsic information is used to estimate

the mean and covariance of each coded bit [68][91].

The MMSE detection achieves good performance at relatively low complexity,

hence, it becomes prominent among all multiuser detectors. The MMSE computes

e(bk(n)) [68] as

e(bk) =
2hkλ

T
k (Vk + σ2R−1)(R−1r−Hbk)

1− h2
kλ

T
k (Vk + σ2R−1)−1λk

, (3.9)

where

bk = [b1, b2, . . . , bK ]T ,

with bk = tanh(l̃k/2) denoting the mean of bk,

Vk = Diag(h2
1v1, . . . , h

2
k−1vk−1, h

2
k, h

2
k+1vk+1, . . . , h

2
Kvk)

with vk = 1− (bk)
2 denoting the variance of bk and λk is a K-dimensional vector

of all zeros except for the kth element, which is 1.

3.6 IDMA Detection Algorithm

New studies in iterative detection techniques have showed that the complexity

of MUD could be reduced to a level comparable to single user detection. IDMA

is a possible scheme toward this direction. Unlike CDMA which uses spreading

code to provide coding gain, IDMA employs a low coding rate which results in a

notable reduction in complexity. Since IDMA is a chip by chip detector, it has

the same advantages like CDMA such as asynchronous transmission, robustness

against fading and cross-cell interference.
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Figure 3.4: Structure of iterative CDMA receiver.

3.6.1 Signal Model

In this section, the basic principles of IDMA are introduced. Fig.3.5 depicts the

uplink IDMA transmitter of the Kusers. Let {dk} denote the binary message

sequence and {ck}Nd/Rc−1
i=0 denote the user’s data after error control encoding

with Rc and Nd representing the code rate and number of transmitted data bits,

respectively. A specific interleaver pattern for each user (Πk) then permutes the

coded output bits. After interleaving, each group of interleaved coded bits {xk}
are mapped to QPSK symbols {sk}Ns−1

n=0 , where Ns is the number of transmitted

symbols that are taken from a M -ary symbol alphabet: χ , {α1, ..., αM} with

E{χ} = 0 and E{|αq|2} = 1. We use superscripts I and Q or function notation

Re(.) and Im(.) to indicate the real and imaginary parts, respectively. After

symbol mapping, we have

sk(n) = sIk(n) + jsQk (n).

Interleavers are the only means in IDMA detection to separate users’ sig-

nals, therefore, choosing weakly correlated different interleaver schemes is very

important to obtain good IDMA performance. Li Ping [92] proposed a random

interleaver generated randomly and independently. This type of interleaver can

randomize the MAI at the receiver end efficiently. The power interleaver [93],
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Figure 3.5: The transmitter components for the K users.

orthogonal interleaver, pseudo random interleaver [94] and 2-dimensional inter-

leaver [95] are other examples of interleavers that can be used in IDMA systems

for obtaining better performance. In this thesis, random interleavers have been

used in the IDMA transceiver to retain the simplicity of the system.

3.6.2 IDMA on AWGN Channels

Our focus is the detection algorithm for IDMA on noisy channels described in

[73]. For AWGN channels, the received signal can then be represented as

r(n) =
∑

k

sk(n) + υ(n), (3.10)

where υ(n) are samples of additive White Gaussian noise (AWGN) with variance

σ2 = N0/2. An iterative suboptimal receiver structure has been illustrated in

Fig. 3.6. The receiver structure includes an elementary signal estimator (ESE)

and K single-user a posteriori probability (APP) decoders (DECs) such that the

multiple access and coding constraints are considered separately in the ESE and

DECs. The outputs of the ESE and DECs are LLRs of {sIk(n), sQk (n)} defined

below [6][96]
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Figure 3.6: IDMA Reciever for AWGN channels.

e(sIk(n)) ≡ log

(
Pr(sIk(n) = +1)

Pr(sIk(n) = −1)

)
, ∀k, n. (3.11)

We concentrate on detecting the real part, sIk(n), as detection of sQk (n) can be

handled in a similar manner.

A global turbo-type iterative process is then applied to process the LLRs

generated by the ESE (eese) and DECs (edec). The ESE operation can be carried

out in a chip-by-chip manner because of the random interleaver, with only one

sample r(n) used at a time. We can rewrite (3.10) as

r(n) = sk(n) + ζ(n), (3.12)

where

ζ(n) = r(n)− sk(n) =
∑

k′ 6=k
sk′(n) + v(n) (3.13)

is the MAI interference plus noise distortions in r(n) with respect to user k.

ζ(n) can be approximated as a Gaussian variable according to the central limit
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theorem and r(n) can be characterized by a conditional Gaussian probability

density function

p
(
rI(n)|sIk(n) = ∓1

)
=

1√
2πVar[ζ(n)]

exp

(
−
(
rI(n)− (∓1 + E[ζ(n)])

)2

2Var[ζ(n)]

)

(3.14)

where Var[.] and E[.] are the variance and mean, respectively. The chip-by-chip

detection in ESE based on (3.12)-(3.14) can be given in two steps. The first step

estimates the interference mean and variance as follows

E[rI(n)] =
∑

k

E[sIk(n)], (3.15a)

Var[rI(n)] =
∑

k

Var[sIk(n)] + σ2, (3.15b)

E[ζ(n)I ] = E[rI(n)]− E[sIk(n)], (3.15c)

Var[ζ(n)I ] = Var[rI(n)]− Var[sIk(n)], (3.15d)

where (E[rI(n)], Var [rI(n)]) are the real part of the total mean and the total

variance of the received signal, and (E[ζ(n)I ], Var [ζ(n)I ]) are the real part of

the total mean and the total variance of the interference, respectively. Step two

generates the LLR values as given below

eese(s
I
k(n)) = log

(
p
(
rI(n)|sIk(n) = +1

)

p (rI(n)|sIk(n) = −1)

)

= log




exp
(
− (rI(n)−E[ζ(n)]−1)2

2Var[ζ(n)]

)

exp
(
− (rI(n)−E[ζ(n)]+1)2

2Var[ζ(n)]

)




= 2
rI(n)− E[ζI(n)]

Var[ζI(n)]
.

(3.16)

The DECs employ standard APP decoding on l̃dec(ck(i))) to generate a poste-

riori LLRs edec(ck(i))). The output of the DECs are LLRs of ({sIk(n)}, {sIk(n)}).
The real LLRs are defined as

Re{edec(ck)} = log

(
Pr(Γk/Re{sk} = +1)

Pr(Γk/Re{sk} = −1)

)
. (3.17)
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where Γk denotes the equalized and deinterleaved version of the outputs of the

ESE. The equations presented for the real part can also be adjusted accordingly

to obtain the imaginary part Im{edec(ck)} of the extrinsic LLRs. The extrinsic

LLRs of the DEC after interleaving are given by

l̃ese(xk(i)) = eint(xk(i))− eese(xk(i)), (3.18)

however, for a number of users less than 16 [10], equation (3.18) can be approxi-

mated as follows:

l̃ese(xk(i)) = eint(xk(i)). (3.19)

The l̃pic(xk(i)) soft chips are used to generate the statistics as follows

E(sk(n)) = tanh(
l̃ese(xk(i))

2
) + i tanh(

l̃ese(xk(i+ 1))

2
), (3.20a)

Var(sk(n)) =

(
1− (tanh(

l̃pic(xk(i))

2
))2

)
+ i

(
1− (tanh(

l̃pic(xk(i+ 1))

2
))2

)
.

(3.20b)

The real and imaginary parts of sk(n) are assumed to be uncorrelated due

to the interleavers. The ESE uses E(sk(n)) and Var(sk(n)) to update the in-

terference mean and variance in (3.15a)-(3.15d). Initially, E(sk(n)) = 0 and

Var(sk(n)) = I for all k, n, implying no information is fed back from the DECs.

3.6.3 IDMA Over Multipath Selective Channels

In this section, the detection algorithm for IDMA scheme in complex multipath

fading channels is introduced [97]. We assume a channel model with Lk paths

for the kth user, with complex-valued fading coefficients {hk(l)}Lk−1
l=0 . Hence, the

received signal is given as follows

r(n) =
∑

k,l

hk(l)sk(n− l) + υ(n). (3.21)

We concentrate on sIk(n) detection for the kth user from path l. Rewriting (3.21)

as

r(n+ l) = hk(l)sk(n) + ζk,l(n), (3.22)
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3.6 IDMA Detection Algorithm

where ζk,l(n) consists of MAI, ISI and noise dispersions and we denote h∗k(l)

as complex conjugate of hk(l). The phase shift due to hk(l) is cancelled out by

h∗k(l)r(n+l), which means that Im(h∗k(l)r(n+l)) is not a function of Re(h∗k(l)r(n+

l)). Hence, by generating

r̃(n+ l) = h∗k(l)r(n+ l) =| hk(l) |2 sk(n) + ζ̃k,l(n), (3.23)

the total interference ζ̃k,l(n) = h∗kζk,l(n) can be approximated as a Gaussian

variable. This is employed to generate LLRs for sk(n) by ESE detection

eese(s
I
k(n))l = log

(
p
(
r̃I(n+ l)|sIk(n) = +1

)

p (r̃I(n+ l)|sIk(n) = −1)

)

= log




exp
(
− (r̃I(n+l)−E[ζ̃k,l(n)]−|hk(l)|2)2

2Var[ ˜ζk,l(n)]

)

exp

(
− ( ˜r+l

I
(n)−E[ζ̃k,l(n)]+|hk(l)|2)2

2Var[ ˜ζk,l(n)]

)




= 2 | hk(l) |2
r̃I(n+ l)− E[ζ̃Ik,l(n)]

Var[ ˜ζk,l
I
(n)]

,

(3.24)

and

eese(s
I
k(n)) =

Lk−1∑

l=0

eese(s
I
k(n))l. (3.25)

For determining eese(s
I
k(n))l in (3.24), the calculations to find E[ ˜ζk,l

I
(n)] and

Var[ ˜ζk,l
I
(n)] should be considered. Defining the covariance matrix as

Cov =

(
Var[αI ] E[αQαQ]− E[αI ]E[αQ]

E[αQαQ]− E[αI ]E[αQ] Var[αQ]

)
, (3.26)

then according to (3.23), we have

E[ζ̃k,l(n)] = h∗k(l)ζ̃k,l(n), (3.27a)

Var[ζ̃k,l(n)] = RT
k (l)Cov(ζk,l(n))Rk(l), (3.27b)

where

Rk(l) =

(
hIk(l) −hQk (l)
hIk(l) hIk(l)

)
. (3.28)

61



3. MULTIUSER DETECTION SCHEMES

Then by (3.22), we obtain

E[ζk,l(n)] = E[r(n+ l)]− hk(l)E[sk(n)], (3.29a)

Cov(ζk,l(n)) = Cov(r(n+ l))−Rk(l)Cov(sk(n))RT
k (l). (3.29b)

In (3.29a) and (3.29b), the mean and variance of the received signal are estimated

as follows

E(r(n)) =
∑

k,l

E[sk(n− l)], (3.30a)

Cov(r(n)) =
∑

k,l

Rk(l)Cov(s− k(n− l))RT
k (l) + σ2I, (3.30b)

where I is a 2×2 identity matrix. The outputs of the ESE are used by the DECs

to generate extrinsic LLRs for sIk(n) and sQk (n) which in turn return back to the

ESE to generate the following statistics

E[sk(n)] = tanh(
l̃ese(xk(i))

2
) + itanh(

l̃ese(xk(i+ 1))

2
), (3.31a)

Cov(sk(n)) =

(
1− (tanh( l̃ese(xk(i))

2
))2 0

0 1− (tanh( l̃ese(xk(i+1))
2

))2

)
. (3.31b)

3.6.4 Chapter Summary

This chapter focuses on CDMA and IDMA transmission systems. The optimal

and sub-optimal multiuser detection for CDMA system based on MMSE crite-

ria have been explained with mathematical equations. Moreover, the general

components of iterative CDMA receiver and the fundamental concepts of itera-

tive chip-by-chip IDMA detection are demonstrated for sake of comparing their

performances in multipath fading channels when the proposed multidimensional

equalization systems are applied on them in later chapters.
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4

Optimization and Analysis of

Centralized Multi-dimensional

Equalizers

4.1 Introduction

Employing interleaving schemes in a rake IDMA receiver and special spreading

sequences in CDMA detection are examples of traditional multiuser detection

schemes for selective channels. Alternatively, utilizing MDE with MUD is an-

other method for combating channel effects and successful symbol detection. The

structure of MDE and MUD schemes depends on the transmission scenario. For

a downlink scenario, since all users are transmitting signal over same channel

characteristics, one equalizer could be used with IDMA detection [31][98]. The

situation is further worsened for uplink transmission. In spite of MAI in the re-

ceived signal, different ISI disruption occurs in each user signal due to different

channel effects. Therefore, using MDE with MUD for uplink requires a special

design to combine symbol equalization and detection techniques. In this chapter,

we introduce MDE for mitigating MAI and ISI on multipath selective channels.
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MDE

MDE

r(n) šk(n)

šK(n−∆)

ŝK(n−∆)

š1(n−∆)

ŝ1(n−∆)

Figure 4.1: Centralized MDE structure.

4.2 Optimal Centralized MDE-IDMA Receiver

Fig 4.1 depicts the centralized MDE receiver structure. The sequence {sk}Ns−1
n=0

is the kth user transmitted symbols, where Ns is the number of the transmitted

symbols, which are taken from a M -ary symbol alphabet: χ , {α1, ..., αM} with

E{χ} = 0 and E{|αq|2} = 1. We assume a channel model with Lk paths for

the kth user, with complex-valued fading coefficients {hk(l)}Lk−1
l=0 . The received

signal can then be represented as

r(n) =
∑

k,l

hk(l)sk(n− l) + υ(n), (4.1)

where υ(n) are complex-valued samples of zero-mean AWGN with variance σ2
v =

N0/2.

The MDEs are responsible for jointly removing MAI and ISI effects. For

each iteration the extrinsic LLRs, for some integer delay ∆ > 0, are exchanged

between the MDE and the decoders. The MDE equalizer can be designed as

MLE or MDFE. Assuming that the feedback symbols from the DECs are free of

errors, i.e the šk(n − ∆) can be replaced with sk(n − ∆), and the criterion for

designing the MDE equalizer coefficients is obtained by minimizing the variance

of the error signal, which can be given as

64
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Figure 4.2: MLE structure.

ek(n−∆) = sk(n−∆)− ŝk(n−∆). (4.2)

4.2.1 Multi-dimensional LE (MLE)

The MLE structure is shown in Fig.4.2. The received data symbols r(n) in (4.1)

can be rewritten as follows:

r(n) = hk(0)sk(n) +

l=Lk−1∑

l=1

hk(l)sk(n− l)
︸ ︷︷ ︸

ISI

+

l=Lk−1∑

k′,l=0

hk′(l)sk′(n− l)
︸ ︷︷ ︸

MAI

+υ(n), ∀j ∈ [0, Ns)

(4.3)

where 1 6 k′ 6 K and k′ 6= k.

By expressing the received observed symbols and the returned feedback sym-
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Ξk , E




sk(n−∆)

s1(n−∆)
...

sk′(n−∆)
...

sK(n−∆)

y







sk

s1

...

sk′
...

sK

y




H

,




λk rsks1 · · · rsksk′ · · · rsksK rsky

rs1sk λ1 · · · rs1sk′ · · · rs1sK rs1y
...

...
. . .

...
. . .

...
...

rsk′sk rsk′s1 · · · λk′ · · · rsk′sK rsk′y
...

...
. . .

...
. . .

...
...

rsKsk rsKs1 · · · rsKsk′ · · · λK rsKy

Rysk Rys1 · · · Rysk′ · · · RysK Ry




(4.5)

bols in column form as

y =




r(n)
r(n− 1)
r(n− 2)

.

.

.

.
r(n−Nf + 1)




, sk′ =




sk′(n−∆)
sk′(n−∆− 1)
sk′(n−∆− 2)

.

.

.

.
sk′(n−∆−Nc + 1)




, (4.4)

where Nf and Nc are the lengths of feed forward filter and cross-over filter

taps, respectively, the covariances and cross-covariances of y and sk′ (Ξk) can be

obtained as given in (4.5), where

λk = [0 0 . . .︸ ︷︷ ︸
∆

1 . . . 0 0],

is a vector of length Nc, and (.)H denotes the conjugate transpose operation.

By assuming low correlation between users’ data sequence, the cross-covariance

values can be assumed to be zero, that is

Ξk ,




λk 0 · · · 0 · · · 0 rsky
0 λ1 · · · 0 · · · 0 rs1y
...

...
. . .

...
. . .

...
...

0 0 · · · λk′ · · · 0 rsk′y
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · λK rsKy

Rysk Rys1 · · · Rysk′ · · · RysK Ry




(4.6)
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hence,

Ξk =

[
Ξσ Ξsky

Ξysk Ry

]
, (4.7)

where Ξsky ∈ CK×Nf and Ξysk ∈ CNf×NcK denotes the last column and last row

of the matrix Ξk, respectively, Ξσ ∈ CK×NcK is the remaining elements of matrix

Ξk, and (.H) denotes the conjugate transpose.

Moreover, the processes sk(n − ∆) and sk′ are jointly wide-sense stationary

with y so the the quantities

Ry = E
[
yyH

]
=
∑

k HdkRskH
H
dk

+ Rv,

rsky = E
[
sk(n−∆)yH

]
= ΛskH

H
dk
,

rsk′y = E
[
sk′y

H
]

=
∑

k′ Rck′H
H
dk
′ ,

are independent of n, where

Λsk = [0 0 . . .︸ ︷︷ ︸
∆

1 . . . 0 0],

Hdk is the channel matrix of size (Nf × Lk + Nf − 1) which is constructed from

the estimated channel taps during training mode

Hdk =



hk(0) . . . hk(Lk − 1) 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 . . . 0 hk(0) . . . hk(Lk − 1)


 , (4.8)

and Rsk and Rck′ are the covariance matrices of the kth user and interfered

users’ data symbols of sizes (Nf +Lk− 1×Nf +Lk− 1) and (Nc×Nf +Lk− 1),

respectively.

The covariance matrix for each user

Rk ,

[
σk rsky

rHsky Ry

]
, (4.9)

is assumed to be positive definite and invertible. This assumption also makes Ry

positive-definite and invertible. The positive-definiteness of Ry guarantees that

both Ryk and the Schur complement of Rk with respect to Ry are positive-definite

matrices too, i.e
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Ry > 0, Ξδk , Ξσ −ΞsyR
−1
y Ξys > 0,

where the Schur complement is denoted by Ξδk [25].

The optimal filter taps for the kth user can be determined by solving

∆J = min
fk,ck′

E|ek(n−∆)|2. (4.10)

where fk and ck′ are the kth user feed-forward and crossover filters, respectively.

Moreover, (4.2) can be rewritten as

ek(n−∆) = sk(n−∆)−
lf=Nf−1∑

k,lf=0

f ∗k (lf )r(n− lf ) +
lc=Nc−1∑

k′,lc=0

c∗k′(lc)sk′(n−∆− lc).

(4.11)

By collecting the coefficients of f ∗k (lf ) and c∗k′(lc) in row form

fHk , [f ∗k (0) f ∗k (1) · · · f ∗k (Nf − 1)],

cHk′ , [c∗k′(0) c∗k′(1) · · · c∗k′(Nc − 1)],

the expression in (4.11) can be rewritten in vector form as follows

ek(n−∆) = sk(n−∆)− fHk y +
∑

k′

cHk′sk′ . (4.12)

By substituting (4.12) in (4.10), the optimization problem can be rewritten

as follows

∆J = min
fk,ck′

E[|sk(n−∆)− fHk y +
∑

k′

cHk′sk′ |2]. (4.13)

Furthermore, (4.13) can be rewritten as follows
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∆J = min
fk,ck′

E



(
sk(n−∆)− fHk y +

∑

k′

cHk′sk′

)(
sk(n−∆)− fHk y +

∑

k′

cHk′sk′

)H



= min
fk,ck′

E

[(
sk(n−∆)− fHk y +

∑

k′

cHk′sk′

)(
sk(n−∆)H − yHfk +

∑

k′

sHk′ck′

)]

= min
fk,ck′

E[sk(n−∆)sk(n−∆)H − sk(n−∆)yHfk + sk(n−∆)
∑

k′

sHk′ck′

− fHk ysk(n−∆)H + fHk yyHfk − fHk y
∑

k′

sHk′ck′

+
∑

k′

cHk′sk′sk(n−∆)H −
∑

k′

cHk′sk′y
Hfk +

∑

k′

cHk′sk′s
H
k′ck′ ].

(4.14)

With the aforementioned definitions (4.14), becomes

∆J = min
fk,ck′

E[1− rskyfk + 0

− fHk rysk − fHk Ryfk + fHk
∑

k′

ΞH
sk′y

ck′

+ 0−
∑

k′

cHk′Ξsk′yfk +
∑

k′

cHk′Ξσck′ ]

= min
fk,ck′
{1− rskyfk − fHk rHysk + fHk Ryfk − fHk ΞH

sk′y
c− cHΞsk′yfk + cHIc}

(4.15)

where

c = [cH1 . . . cHk′ . . . cHK ]H ,

and

ΞH
sk′y

=
[
Rys1 . . .Rysk′ . . .RysK

]
.

of sizes (K − 1)Nc × 1 and Nf × (K − 1)Nc, respectively.

The optimal fHk is determined by differentiating ∆J with respect to fk and

setting it equal to zero.

∂∆J

∂fk
= −rsky + fHk Ry − cHΞsk′y, (4.16)
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hence,

fHk =
(
rsky + cHΞsk′y

)
R−1

y . (4.17)

On the other hand, the optimal cH is also determined by differentiating ∆J

with respect to ck.
∂∆J

∂ck
= −fHk ΞH

sk′y
+ cHI, (4.18)

and by substituting (4.17) in (4.18), we have

∂∆J

∂ck
= −

(
rsky + cHΞsk′y

)
R−1

y ΞH
sk′y

+ cHI

= −rskyR
−1
y ΞH

sk′y
+ cH

(
I−Ξsk′yR

−1
y ΞH

sk′y

)
.

(4.19)

Then the optimal c filter taps can be calculated by setting (4.19) to be equal to

zero.

cH = rskyR
−1
y ΞH

sk′y
(I−Ξsk′yR

−1
y ΞH

sk′y
)−1

= rskyR
−1
y ΞH

sk′y
R−1
δk′
,

(4.20)

where

Rδk′ , I−Ξsk′yR
−1
y ΞH

sk′y
> 0. (4.21)

At the first iteration, šk′(n − ∆) = 0 for all k′, n, implying no information

is fed back from the other users. For the next iteration, each user returns the

soft encoded bits from the DECs to remove MAI effects. The error propagation

in the feedback bits is reduced as the number of iterations is increased. On

the other hand, an increase in the number of users leads to a reduction in the

correlation property between the users’ data symbols and hence results in lower

system performance.

4.2.2 Multi-dimensional DFE (MDFE)

Within the MDFE structure, each user utilizes its own estimated symbols to feed

the CMD equalizer, bk, consisting of Nb taps as shown in Fig. 4.3. Using the

same definitions for the observed symbols, estimated symbols and filter taps, the

covariances and cross-covariances for the CDFE can be obtained as given
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Ξk , E




sk
s1
...

sk′
...

sK
y







sk
s1
...

sk′
...

sK
y




H

,




Rsk Rsks1 · · · Rsksk′ · · · RsksK Rsky

Rs1sk Rs1 · · · Rs1sk′ · · · Rs1sK Rs1y
...

...
. . .

...
. . .

...
...

Rsk′sk Rsk′s1 · · · Rsk′ · · · Rsk′sK Rsk′y
...

...
. . .

...
. . .

...
...

RsKsk RsKs1 · · · RsKsk′ · · · RsK RsKy

Rysk Rys1 · · · Rysk′ · · · RysK Ry




.

(4.22)

The assumption of low correlation between users’ signals simplifies (4.22) to

Ξk ,




Rsk 0 · · · 0 · · · 0 Rsky

0 Rs1 · · · 0 · · · 0 Rs1y
...

...
. . .

...
. . .

...
...

0 0 · · · Rsk′ · · · 0 Rsk′y
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · RsK RsKy

Rysk Rys1 · · · Rysk′ · · · RysK Ry




(4.23)

As in the linear case, the utilization of distinct interleavers for each user results

in

Ξk =

[
Ξσ Ξsky

Ξysk Ry

]
, (4.24)

where Ξσ ∈ C(Nb+1)K×NcK , Ξsky ∈ C(Nb+1)K×Nf and Ξysk ∈ CNf×(Nb+1)K are

matrices constructed from Ξk by taking its diagonal, last column and last row

elements, respectively.

The error signal given in (4.2) can be rewritten as follows

ek(n−∆) = s(n−∆)− ŝk(n−∆)

= bHk sk +
∑

k′ 6=k
cHk′sk′ − fHk y, (4.25)

where

ŝk(n−∆) =

Nf−1∑

k,lf=0

f ∗k (lf )y(n− lf )−
Nb∑

k,lb=1

b∗k(lb)sk(n− lb)−
Nc−1∑

k′,lc=0

c∗k′(lc)sk′(n− lc),

(4.26)
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Figure 4.3: MDFE Structure.

sk =




sk(n−∆)
sk(n−∆− 1)
sk(n−∆− 2)

.

.

.

.
sk(n−∆−Nb)




,

and

bHk , [1 b∗k(1) · · · b∗k(Nb)],

hence, the optimization problem in (4.10) becomes

∆J = min
fk,bk,ck′

E

[
|bHk sk +

∑

k′

cHk′sk′ − fHk y|2
]
, (4.27)
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∆J = min
fk,bk,ck′

E

[
(bHk sk +

∑

k′

cHk′sk′ − fHk y)(bHk sk +
∑

k′

cHk′sk′ − fHk y)H

]

= min
fk,bk,ck′

[bHk E[sks
H
k ]bk + bHk

∑

k′

E[sks
H
k′ ]ck′ − bHk E[sky

H ]fk

+
∑

k′

cHk′E[sk′s
H
k ]bk +

∑

k′

cHk′E[sk′s
H
k′ ]ck′ −

∑

k′

cHk′E[sk′y
H ]fk

− fHk E[ysHk ]bk − fHk
∑

k′

E[ysHk′ ]ck′ + fHk E[yyH ]fk).

(4.28)

Using the definition of c and Rysk′ , (4.28) can be rewritten as

∆J = min
fk,bk,ck′

bHk Rskbk + bHk Rsksk′c− bHk Rskyfk + cHRsk′skbk + cHΞsk′c− cHΞsk′yfk

− fHk RH
sky

bk − fHk Ξysk′c + fHk Ryfk.
.

(4.29)

The low correlation between users’ data sequences provided by different ran-

dom interleaver sequences produces zero values of cross-covariance matrices be-

tween kth user and k′ users, therefore, (4.29) become as follows

∆J = min
fk,bk,ck′

(bHk Rskbk − bHk Rskyfk + cHΞsk′c− cHΞsk′yfk − fHk RH
sky

bk

− fHk Ξysk′c + fHk Ryfk).
(4.30)

Next, the optimal fHk is determined by differentiating ∆J with respect to fk

and equalling it to zero,

∂∆J

∂f
= −bHk Rsky − cHΞsk′y + fHk Ry (4.31)

then from (4.31) we can find fHk as given bellow

fHk =
(
bHk Rsky + cHΞsk′y

)
R−1

y . (4.32)

By substituting fHk into (4.30), we get

73



4. OPTIMIZATION AND ANALYSIS OF CENTRALIZED
MULTI-DIMENSIONAL EQUALIZERS

∆J = min
bk,ck′

(bHk Rskbk − bHk RskyR
−1
y Ryskbk − bHk RskyR

−1
y Ξysk′c + cHk′Ξsk′c

+ cHΞsk′yR
−1
y Ryskbk − cHΞsk′yR

−1
y Ξysk′c− bHk RskyR

−1
y Ryskbk

− cHΞsk′yR
−1
y Ryskbk − bHk RskyR

−1
y Ξysk′c− cHΞsk′yR

−1
y Ξysk′c

+
(
bHk Rsky + cHΞsk′y

)
R−1

y RyR
−1
y

(
Ryskbk + Ξysk′c

)
)

∆J = min
bk,ck′

(bHk Rskbk − bHk RskyR
−1
y Ryskbk − bHk RskyR

−1
y Ξysk′c + cHk′Ξsk′c

+ cHΞsk′yR
−1
y Ryskbk − cHΞsk′yR

−1
y Ξysk′c−

[(
bHk Rsky + cHΞsk′y

)
R−1

y

(
Ryskbk + Ξysk′c

)]

+
[(

bHk Rsky + cHΞsk′y
)
R−1

y

(
Ryskbk + Ξysk′c

)]

∆J = min
bk,ck′

(bHk Rskbk − bHk RskyR
−1
y Ryskbk − bHk RskyR

−1
y Ξysk′c

+ cHk′Ξsk′c + cHΞsk′yR
−1
y Ryskbk − cHΞsk′yR

−1
y Ξysk′c).

(4.33)

Moreover, (4.33) can be rewritten in terms of Schur complements as follows

∆J = min
bk,ck′

(bHk Rδkbk + cHk′Ξδk′c− bHk RskyR
−1
y ΞH

sk′y
c− cHΞsk′yR

−1
y RH

sky
bk),

(4.34)

where, Rδk′ , Rsk′ −Rsk′yR
−1
y RH

sk′y
and Ξδk′ , Ξσ − Ξsk′yR

−1
y ΞH

sk′y
. The cost

function in (4.34) can also be expressed in matrix form, that is

∆J = min
bk,ck′

[
bHk cH

]
Mk

[
bk
c

]
, (4.35)

with a Hermitian center matrix Mk defined as

Mk =

[
Rδk −RskyR

−1
y ΞH

sk′y

−Ξsk′yR
−1
y RH

sky
Ξσ

]
(4.36)

and with unknown vectors bk and c. Now given any Hermitian matrix of the

form

M =

[
A B
BH C

]
, (4.37)

with A = AH , C = CH , and C invertible, it can be verified by direct calculation

that Mk is positive-definite and invertible too. Furthermore, the cost function

can be further simplified as follows

∆J = min
pk

pHk Mkpk, (4.38)
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Figure 4.4: The IDMA and CDMA transmitter components of the kth user.

where pHk = [bHk cH ]. We recall that the leading entry of pk is unity, so that

(4.38) is a constrained problem of the form

min
pk

pHk Mkpk, subject to pkeo = 1, (4.39)

where eo ∈ C(Nb+(K−1)Nc)×1 is the first basis vector given as

eo , col{1, 0, 0, . . . , 0}. (4.40)

Using Gauss-Markov theorem for constrained optimization, the optimal value

for pHk and minimum mean square error (mmse) are given by

pHk =
eTo M−1

k

eTo M−1
k eo

, (4.41)

mmse =
1

eTo M−1
k eo

. (4.42)

4.3 MDE and Multiuser detection

As mentioned in previous sections, the MDE depends on the low correlation

property between the users’ data signals for obtaining efficient equalization. This

property can be achieved by using unique code signatures in CDMA, while for

IDMA the interleavers are used for distinguishing users’ symbols and providing

low signal correlation.

Fig. 4.4 depicts transmitter structures of the kth user for IDMA and CDMA

systems. Let {dk} denote the binary message sequence and {ck}NdRc−1
i=0 denote
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Figure 4.5: The general multiuser MDE structure.

the user’s data after error control encoding with Rc and Nd representing the code

rate and number of transmitted data bits, respectively. For IDMA, a specific in-

terleaver pattern for each user (Πk) then permutes the coded output bits. These

interleavers are generated pseudo-randomly and independently. After interleav-

ing, each group of interleaved coded bits {xk} are mapped to symbols {sk}Ns−1
n=0 .

While in CDMA, the coded bits are mapped and then the generated symbols are

spread (C) using a unique spreading code for each user.

The general centralized mutliuser MDE receiver is shown in Fig. 4.5. In this

figure, the equalized symbols ŝk(n − ∆) and the estimated symbols šk(n − ∆)

are exchanged between the MDE and the DEC for each user through mapping

and demapping operations. The function of the mapper and the demapper is to

decide whether the detection is based on IDMA or CDMA as shown in the figure.

Furthermore, it can be noted that the MDE efficiency directly depends on the

error propagation in the estimated feedback symbols šk. Hence, the type and the

code rate of the DECs have a considerable effect on the equalization process.
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4.4 Iterative Channel Estimation for Optimal

MDE-MUD Receivers

The optimal MDE receiver depends on the estimated channel taps that are uti-

lized in the MAI elimination processes. The accuracy of the estimated channel

impacts significantly the receiver performance. Therefore, an iterative channel es-

timator has been designed to estimate channel taps during training mode prior to

the start of the decision-directed mode. The estimated channel taps are used for

constructing the covariance and cross-covariance quantities in the MDE-MUD re-

ceivers and hence, they determine the feed-forward, feedback and crossover filter

taps. Furthermore, they are used to compute the covariance and cross-covariance

matrices in MDE-IDMA and MDE-CDMA detections to obtain the filter taps for

each of the MDE equalizers.

The iterative channel estimator is depicted in Fig. 4.6. Given the error signal

in (4.2), the solution of the optimization problem is obtained by substituting (4.2)

in the (4.10) which results in producing a least square (LS) equation [25]. Hence,

the kth user channel taps could be estimated as follows

ĥk =
(
HH
tk

Htk

)−1
HH
tk

rpk , (4.43)

where Htk is the rectangular Toeplitz data matrix of size (Lk×Nt + 1) and given

as follows

Htk =




pk(0) 0 0 . . .
pk(1) pk(0) 0 . . .
pk(2) pk(1) 0 . . .

...
...

...
. . .

pk(Nt) pk(Nt − 1) pk(Nt − 2) . . .



,





︸ ︷︷ ︸
Lk

Nt + 1 (4.44)

and

rpk = [rpk(q) rpk(q − 1) . . . rpk(q −Nf + 1)]T ,

is the observed training symbols, where

rpk(q) = rt(q)−
∑

k′ 6=k
ĥk′(lb)pk′(q − lb). (4.45)
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∑
k′ 6=1 ĥk

′ (l)pk′ (q − l)

LS

rt(q)
p1(q)

ĥ1

pK(q)

rp1(q)

rpK (q) ĥK

∑
k′ 6=K ĥk

′ (l)pk′ (q − l)

LS

Figure 4.6: The iterative channel estimator structure.

Initially, the values of ĥk are set to zeros. Therefore, rpk(q) contains both MAI

and ISI in the first iteration for the first user, while for the second user the amount

of MAI is decreased and for the last user the lowest MAI is obtained. However, for

the second iteration the performance of channel estimation is noticeably improved

since all users have obtained initial channel taps in the first iteration. Increasing

the number of iterations results in improved channel estimation performance. It

is worth mentioning that the channel estimation iterations need not be the same

as the number of iterations. In practice, only a few iterations are necessary to

obtain accurate channel information provided the training symbols of the users

are uncorrelated.

4.5 Simulation Results and Performance Com-

parisons

In this section, the performance of MDE is examined and compared for both

CDMA and IDMA multiuser detection. Eb/N0 is the SNR per bit, which is equal

for all users. The users are transmitting QPSK symbols through frequency se-

lective channels. For wireless transmission, 6-tap channel coefficients are utilized
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Figure 4.7: Impulse and frequency response of the channels used in the simula-

tions.

based on the ITU-B channel standard. A length of 10 taps is chosen for feed-

forward, feed-backward and crossover filters and 12 iterations have been used for

iterative detection. On other hand, for underwater shallow channels, two different

multipath channels have been used which are experimentally obtained by seatri-

als conducted by Newcastle University in the North Sea. Channel 1 and channel

2 have 29 and 49 taps, respectively, as shown in Fig. 4.7. Hence, the filter taps

are chosen to be 40 for efficient equalization. The signature sequences in CDMA

are generated using the Walsh algorithm such that they have low auto-correlation

properties, which helps provide an efficient symbol equalization, while for IDMA

the interleaver patterns are generated randomly and independently.

While there is no closed form expression for finding ∆ in this thesis, a solution

is presented that yields an algebraic interpretation of ∆. The impact of ∆ on

equalization performance is shown in Fig. 4.8 for both MLE-IDMA and MDFE-

IDMA detectors. ∆ corresponds to the channel time delay, and MLE has given

1dB of SNR higher than CDFE for . A closer look at Fig. 4.8 reveals that the

minimum BER is achieved for a ∆ value between 5 and 19, hence, ∆ = 12 has
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Figure 4.8: Optimal MLE-IDMA and MDFE-IDMA performances for various ∆

values, where each 1 delay of ∆ equals one symbol duration (Ts).

been used in the simulations.

4.5.1 Selective Fading Wireless Channels

4.5.1.1 MLE-MUD

It is obvious from Fig. 4.5 that utilizing lower code rates give better perfor-

mance due to decreasing bit error propagation through feedback filters, and hence,

obtaining higher equalization performance. The simulation examples shown in

Fig. 4.9 are plotted using FEC encoder with a 1/64 code rate for both MLE

and MDFE equalization employing 8 and 16 users. For a fair comparison be-

tween CDMA and IDMA detectors, we used 1/8 convolution coding employing

octal generators (275, 275, 253, 371, 331, 235, 313, 357)8 and 1/8 repetition coding

for IDMA, while for CDMA rate 1/2 convolution and rate 1/32 spreading have
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Figure 4.9: Performance of MLE-MUD receiver for different number of users in

frequency selective channels.

been used. The reason behind using higher spreading coding than convolution

coding in CDMA is to provide as low as possible correlation between users signal.

In general, it can be noted from Fig. 4.9 that the performance of MLE-IDMA

is higher than MLE-CDMA. This is because the high coding rate is not only

increasing the efficiency of the decoder, it also provides longer interleaver schemes

which generates a very low correlation property between users data compared to

the correlation obtained with the 32 spreading chips in CDMA.

The influence of ISI on the MLE performance for four users is small enough

so that it can be resolved by the linear filter and hence obtains a high error

correction within the DECs. However, the ISI effect is more aggressive when

higher number of users are employed. The unresolved ISI in each user produces

high BER after decoding. Propagating these bit errors iteratively from a specific

user to the other users’ MLE equalizers through cross-over filters results in more
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Figure 4.10: The improvement of SINR in crossover feedback filters within MLE-

IDMA iterations.

equalization and detection errors.
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The amount of average signal to interference and noise ratio (SINRB) that

exists in the feedback crossover filters has an extensive effect on the MLE equalizer

performance. Within each iteration, the error propagation through the crossover

filters is decreased as SINR improves. The crossover SINR for user k can be

calculated as follows

SINRb
k =

1

K − 1

K∑

k′=1

šk′ š
H
k′

E[ek(n)]
. (4.46)

In contrast to the higher performance of MLE-IDMA, the improvement of SINRB

during IDMA iterations is illustrated in Fig. 4.10 for 16 users. It is obvious from

the figure that the second user suffers from MAI effects more than other users

as at the beginning of each iteration, the second user equalization takes place

when other users’ feedback symbols have not been updated yet except user 1.

In contrast, the 16th user utilizes the full updated feedback symbols and thus

experiences reduced error propagation. In turn, the SINRB value achieved by the

16th user is greater than the other users. It is worth mentioning that the receiver

algorithm starts by processing the users sequentially and arbitrarily from user 1

to 16.

4.5.1.2 MDFE-MUD

Utilizing the same transmitter and receiver parameters employed for evaluat-

ing MLE performance, Fig. 4.11 depicts the performance of MDFE-IDMA for

different user numbers and at the same time it is compared to MDFE-CDMA

performances on selective fading channels. It can be seen that both systems are

slightly different in performance when two users are used. This is because of uti-

lizing an efficient decoding that almost eliminates the difference in performance

that comes from the amount of ISI suppression by using feedback filters in the

MDFE. Moreover, the MDFE-IDMA appears more robust to channel interference

than MLE-IDMA due to the feedback filters that significantly improve symbol

equalization by subtracting ISI from the received signal and hence decreasing the

error rate of the symbols propagating via cross-over filters as shown in Fig. 4.12.
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Figure 4.11: Performance of MDFE-MUD receiver for different number of users

in frequency selective channels.

4.5.1.3 Impact of Encoder Type

The elimination of error propagation is the main challenge in designing DFE

equalizers. In practice, error correction in communication systems is an impor-

tant operation to achieve reliable coverage. The employment of delay free hard

decision for removing ISI and MAI in MDE generates error that are bursty in na-

ture. The production of bursty errors in MDE receivers is the major obstruction

regarding to improvement of system performance and limits the coding gain. In

turn, the reduction of the coding gain creates more error propagation in feedback

symbols from the decoder outputs such that higher degradation in equalization

performance is obtained. In order to remedy this problem and improve overall

iterative detection, more efficient decoding has to be employed.

Fig. 4.13 shows the performance of the MDFE equalizer for 16 users when the
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Figure 4.12: The improvement of SINR in crossover feedback filters within cen-

tralized MDFE-IDMA iterations.
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Figure 4.13: Effect of lower coding rate on MDFE performance.
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IDMA receivers employing 1/8 convolution coding.
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Figure 4.15: Impact of FEC on MLE-IDMA systems performances.

rate of repetition coding in IDMA and the spreading code in CDMA is increased

to 1/4 and 1/16, respectively. As shown in the figure, both MDFE-IDMA and

MDFE-CDMA performances are affected by the higher coding rate which results

in higher feedback error propagation and increased correlation between users’

data in IDMA and CDMA, respectively.

In contrast to the higher performance of IDMA over CDMA, and for the

sake of simplicity, the performance of MLE-IDMA and MDFE-IDMA systems

are compares utilizing rate 1/8 convolution coding as depicted Fig. 4.14. The in-

terference suppression for MDFE-IDMA is significantly higher than MLE-IDMA

at low coding rates, such that the high residual interference in the crossover filters

of the MLE results in collapsing MLE-IDMA performance when the number of

users exceeds 10 users.

Turbo codes have been shown to provide a powerful error detection and cor-

rection properity on both AWGN channel [56] [99] and Rayleigh fading channels

[100]. In Fig. 4.15 the performance of MLE-IDMA system is compared when
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Figure 4.16: Impact of FEC on MDFE-IDMA systems performances.

convolution and turbo coding are used for 2, 6 and 8 users. For all cases, It

could be noted that, for low SNR, convolution coding performs higher than turbo

codes and the amount of this outperformance becomes larger as number of users

increased. This is because, in first iteration, the turbo code performance is more

affected by a poor equalization process of MLE than convolution coding, which

results in producing higher error propagation symbols through crossover filters

for remaining iterations. However, for higher SNR, turbo code show a significant

improvement in performance compared to convolution code when it resolved the

problem of feedback error propagation.

On other hand, the turbo decoder still outperforms the convolutional coding

in the MDFE-IDMA system when user numbers are increased as illustrated in

Fig. 4.16. Employing feedback filters in MDFE equalizers removes the ISI related

to user k and MAI related to the other users. The amount of ISI and MAI

reduction at the MDFE equalizers outputs leads to significant reduction in error
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Figure 4.17: CLE-IDMA performance for perfect channel assumption and LS

channel estimations.

propagation of the decoder inputs, and hence, maintaining the advantage of turbo

codes over convolutional coding.

4.5.1.4 Impact of Channel Estimation

Reducing error propagation from a specific user to the other users is very im-

portant for obtaining better performance, hence, utilizing more powerful encoder

can improve the system performance. However, this is not the only factor that

affects the MD equalizers. The accuracy of channel estimation is also another

reason behind system performance degradation.

In order to illustrate the effect of channel estimation on MLE-IDMA and

MDFE-IDMA system performances, iterative LS channel estimation is applied

to 511 training symbols and the system performance is compared with perfect
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Figure 4.18: MDFE-IDMA performance for perfect channel assumption and LS

channel estimations.

channel estimation. The training symbols are generated with an m-sequence gen-

erator which provides low autocorrelation properties that enable efficient channel

estimation. Fige. 4.17 and Fig. 4.18 show the effect of estimated channel taps

on the MLE-IDMA and MDFE-IDMA performances, respectively. The imperfec-

tion of the estimated channel taps increases the probability of symbol errors, and

hence produces higher BER. The imperfect channel estimation effect on the sys-

tem performance is more perceptible as the number of users is gradually increased

for both systems.

4.5.2 Performance Comparison in Underwater Shallow Chan-

nels

The two-user uplink transmission shallow water acoustic scenario is shown in

Fig. 4.19. Both users transmit data packets to the receiver over two distinct
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Figure 4.19: Underwater shallow water transmission scenario.
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Figure 4.20: Normalized channel

impulse response for user one.

Figure 4.21: Normalized channel

impulse response for user two.

multipath fading channels simultaneously. User 1 and user 2 are positioned at a

distance of 1 km and 3 km from the receiver respectively, so that their arriving

signals form an angle of 45o between them at the receiver. Two different multipath

fading channels have been used in the simulations experimentally obtained by

seatrials conducted by Newcastle University in the North Sea. The normalized

impulse response channels for channel 1 and channel 2 are given in Fig. 4.20
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Figure 4.22: Impact of feedback delay ∆ on MLE-IDMA and MDFE-IDMA

performances.

and Fig.4.21, respectively. The multipath delay spread of channel 1(49 taps) is

longer than that of channel 2 (29 taps). Accordingly, channel one is more time

selective compared to channel 2. The length of the filter taps has a significant

effect on removing ISI and MAI impairments. Therefore, to produce an efficient

MD equalizer, all filters have 40 taps.

As mentioned before, underwater channels exhibit time selective fading, hence,

the performance generally is worse than wireless channels. Fig. 4.22 shows BER

versus decision delay, for values of ∆ in the interval [0,45]. The optimal decision

delay is 20 for both CLE-IDMA and CDFE-IDMA, but a nonoptimal choice

of feedback delay can lead to a significant performance loss. Fig. 4.23 shows

the performance comparison between CLE-IDMA and CDFE-IDMA for both

convolution and turbo coding using QPSK mapping. As expected, CDFE-IDMA

with turbo decoding can significantly remove MAI and ISI effects due to the
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Figure 4.23: Impact of FEC on MLE-IDMA and MDFE-IDMA performances.

power of turbo coding in detecting and correcting bit errors, which results in

less error propagation in feedback data symbols through feedback and crossover

filters.

4.6 Chapter Summary

In this chapter, new equations are derived for determining the optimal filter

coefficients for both CLE-IDMA and CDFE-IDMA equalizers. The absence of

feedback filters in CLE leads to a degraded performance, while CDFE-IDMA

shows higher efficiency in separating and detecting users due to jointly removing

MAI and ISI impairments. Using numerical results, it has been shown that

CDFE-IDMA can significantly outperform CLE-IDMA when the number of users

increased. The type of encoder can increase system performance due to decreasing
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error propagating in feedback symbols. The delay in feedback symbols ∆ and the

channel estimation effects on system performance are also given for CLE-IDMA

and CDFE-IDMA systems. The same performance analysis has been carried out

on the proposed systems over underwater shallow water channels.
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5

Decentralized Multi-Dimensional

Equalization

5.1 Introdution

In the previous chapter, centralized MDE has been presented for multiuser de-

tection. In centralized schemes, crossover and feedback filters are used for jointly

eliminating MAI and ISI effects. The low correlation between users’ data im-

prove the equalization performance, can be obtained by employing unique codes

and different interleaver schemes in CDMA and IDMA systems, respectively.

The absence of crossover filters in MDE results in producing decentralized MDE

(DMDE). Therefore, the process of mitigating MAI in DMDE depends on MUD

characteristics.

Parallel processing of multiuser interference simultaneously removes from each

user the interference produced by the remaining users accessing the channel [101].

Employing parallel interference cancellation (PIC) with DMDE creates a new

structure of decentralized receiver, which can provide higher performance com-

pared to DMDE and MDE performances. In this chapter, we proposed a new

receiver that depends on both PIC and DDFE for joint MAI and ISI mitigation

and it is called PIC-DDFE-IDMA. The proposed detector relies on iterative man-

ner for estimating transmitted symbols. Next DMDE is introduced, afterwards,

the components of PIC-DDFE-IDMA receiver are demonstrated. Finally, both
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Figure 5.1: The general multiuser DMDE structure.

systems’ performances are compared to centralized MDE system for both wireless

and underwater shallow channels.

5.2 Iterative DDFE-MUD System

The objective of this section is to illustrate the performance of DMDE-MUD

and comparing it with centralized MDE-MUD system for the multipath selec-

tive channels. The structure of DMDE is shown in Fig. 5.1. The DMDE can

be constructed by using linear (DMLE) or DFE (DDFE) equalizers. In contrast

of higher performance of DFE over LE, DFE has been chosen to be applied to

DMDE schemes for demonstration purpose. Although, DDFE-MUD provides

lower complexity than MDFE-MUD, however, this comes at the expense of lower

performance as in Fig. 5.2. In addition to this, it is clear from the figure that

DDFE performance significantly decreases when number of users increases from

8 to 16 users. This is due to the higher unresolved MAI in the equalizer out-

puts which results in more error propagation through feedback symbols. Also,

Fig. 5.2 shows that DDFE-IDMA is less affected by the MAI than DDFE-CDMA

when it compared to MDFE-IDMA and MDFE-CDMA, respectively. It can be

deduced that the IDMA is more resistible than CDMA against MAI effects due

to providing lower correlation between users’ signals.
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Figure 5.2: BER vs. Eb/N0 performance of optimal DDFE-MUD system for 8

and 16 users in frequency selective channels.

As mentioned before, the existence of unresolved MAI in DDFE structure

leads to an inefficient equalizer operations. Therefore, we designed a new DDFE

equalization for IDMA detection employing PIC operation such that the PIC

removes MAI effects before equalizer takes place. The structure of PIC-DDFE-

IDMA is presented in next section.

5.3 Iterative PIC-DDFE-IDMA Detection

The MDFE-IDMA structure depends on crossover filters to mitigate the MAI

effects. Hence, these filters are not able to accomplish this task until their taps

are fully converged. The delay in convergence of filter taps results in inefficient

IDMA receiver which leads to poor performance during low SNR values. There-

fore, the PIC-DDFE-IDMA receiver has been designed to minimize this error as
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Figure 5.3: The proposed iterative PIC-DDFE-IDMA receiver structure.

shown in Fig. 5.3. It consists of PIC to remove MAI instead of crossover filters.

Within PIC-DDFE-IDMA iterative process, PIC and DECs exchange extrinsic

information, thus, the multiple access and coding constraints are considered sepa-

rately. PIC-DDFE-IDMA receiver provides a suboptimal detection. During each

iteration, the MAI impairments removed in PIC then the ISI removal occurred

in DDFE equalizers for each user.

In the rake IDMA receiver, the received signal is first multiplied by the conju-

gate of the channel taps to cancel the phase shift produced by the channel between

the real and imaginary part of the received symbols [10] . However, PIC-DDFE-

IDMA compensates the channel dispersion by using embedded DFE inside IDMA

iteration loop for each user. Generally, the PIC-DDFE-IDMA receiver consists

of the following components:
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5.3.1 PIC

The main function of PIC is to remove the MAI effects on the received signal

according to a specific user. The detection of the sk symbols from y(n) in (2.23)

can be rewritten as

y(n+ l) = hk(l)sk(n) + ηk,l(n), (5.1)

where

ηk.l(n) =
∑

k′ 6=k,l
hk′(l)sk′(n) + υ(n), (5.2)

represents the distortion, including residual MAI and ISI plus AWGN. The output

of the PIC for the kth user (sk(n)) is given by

epic(sk(n)) =
y(n)− E{ηk(n)}

Var{ηk(n)} , (5.3)

where E{ηk(n)} and Var{ηk(n)} are the total mean and total variance of the

interference, respectively.

The complex values of the total mean and total variance of ηk can be deter-

mined as

E{ηk(n)} = E(y(n+ l))− ĥk(l)E(sk(n)), (5.4)

Var{ηk(n)} = Cov(y(n+ l))−Rk(l)Cov(sk(n))RT
k (l), (5.5)

where ĥk is the estimated channel taps provided by the channel estimation process

taken place during training mode period, Cov(sk(n)) is given in (5.8), and also

Rk(l) =

(
Re{ĥk(l)} −Im{ĥk(l)}
Im{ĥk(l)} Re{ĥk(l)}

)
. (5.6)

where, Re{.} and Im{.} denote the real and imaginary parts. In (5.4) and

(5.5), mean and variance can be estimated [6] [102] as follows:

E(r(n)) =
∑

k,l

ĥk(l)E(s(n− l)), (5.7a)

Cov(r(n)) =
∑

k,l

Rk(l)Cov(sk(n− l))RT
k (l) + σ2I, (5.7b)

where I is the identity matrix. The extrinsic LLRs from the PIC, epic(sk(n)),

are then fed to the DFEs.
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Cov(sk(n)) =

(
V ar(sIk(n) E(sQk (n)sQk (n))− E(sIk(n))E(sQk (n))

E(sQk (n)sQk (n))− E(sIk(n))E(sQk (n)) V ar(sQk (n))

)
(5.8)

5.3.2 APP-DEC

The DECs employ standard APP decoding on l̃dec(ck(n)) to generate a posteriori

LLRs edec(ck(n)). The output of the DECs are the log likelihood ratios (LLR)s

of {sIk(j), sQk (j)}. The real LLRs are defined as

edec(s
I
k(j)) = log

(
Pr(y/s

I
k(j) = +1)

Pr(y/sIk(j) = −1)

)
. (5.9)

where y denotes the equalized and deinterleaved version of the outputs of the

PIC. The equations presented for the real part can also be adjusted accordingly

to obtain the imaginary part edec(s
Q
k (j)) of the extrinsic LLRs. The extrinsic

LLRs of the APP-DEC after upsampling and interleaving are given by

l̃pic(xk(n)) = l̃dec(xk(n))− edem(xk(n)), (5.10)

however, for a number of users less than 16 [10], equation (5.10) can be approxi-

mated as follows:

l̃pic(xk(n)) = l̃dec(xk(n)). (5.11)

The l̃pic(xk(n)) soft chips are used to generate the statistics given in (5.7a)

and (5.7b). The hard symbols of E(sk(j)) are also fed to the feedback filters of

the DFE equalizers to minimize the error signal in the next IDMA iteration.

The real and imaginary parts of sk(j) are assumed to be uncorrelated due to

the interleavers, and thus the off-diagonal entries of Cov(sk(j)) are zeros. The

PIC uses E(sk(j)) and Cov(sk(j)) to update the interference mean and variance

with the aid of the channel estimated DFE filter taps, which are used in the next

iteration. Initially, E(sk(j)) = 0 and Cov(sk(j)) = I for all k, j, implying no

information is fed back from the DECs.

5.3.3 Optimal DFE Equalizer

The function of DFE equalizer is mainly to estimate the channel impulse response

by using received symbols and known training symbols during the training mode
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and equalizing the PIC output symbols during decision mode. The optimal filter

taps for the kth user can be determined by solving

∆J = min
fk,bk

E|ek|2, (5.12)

for both modes.

In decision mode, by assuming sk(n) and ŝk(n) are jointly wide sense station-

ary with epic(sk(n)) so that the covariance quantities

Ry = E
[
epice

∗
pic

]
= HdkRskH

∗
dk

+Rv,

and

Rskypic = E
[
sky

∗
pic

]
= RskH

∗
dk
,

are independent of n, where

epic = [epic(0), epic(1), . . . epic(Nf − 1)]T ,

sk = [ŝk(n)ŝk(n− 1) . . . ŝk(n−Nb)]
T ,

and Hdk is a data matrix of size (Nf×Lb+Nf−1) given in (3.17), the optimal filter

taps are determined by substituting (4.2) in (5.12) and solving the optimization

problem [25], that is

f∗opt = f∗optRskypicR
−1
y , (5.13)

and

b∗opt =
eT0R

−1
δk

eT0R
−1
δk
eT0
, (5.14)

where Rδk is the Schur complement of covariance matrix for kth user and it gived

as follows

Rδk , Rsk −RskypicRyRypicsk > 0. (5.15)

The BER performance of optimal PIC-DDFE-IDMA detector is depicted in

Fig. 5.4 for different numbers of users employing 1/8 convolution code, 8-IDMA

iterations and assuming perfect channel estimation. The performance of the
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Figure 5.4: BER vs. Eb/N0 performance of optimal PIC-DDFE-IDMA system

for different number of users in frequency selective channels.

PIC-DDFE-IDMA system is slightly decreased as the number of users is grad-

ually increased from 2 to 8. However, when 16 users are transmitting simulta-

neously, higher reduction in the decentralized receiver performance is obtained.

The sudden reduction in performance with 16 users is due to, firstly, the absence

of feedback symbols from DECs to both PIC and DFEs. Secondly, the absence

of MAI removal in the PIC in the first iteration. In turn, lower DFE efficiency

leads to extensive error propagation in the feedback symbols during the second

iteration. Therefore, in this case, the PIC-DDFE-IDMA needs higher SNR to

completely remove MAI and ISI during detection iterations.

The effect of user population on the PIC-DDFE-IDMA performance is also

investigated, where the theoretical MMSE curve is compared with the estimated

MMSE as shown in Fig. 5.5. The estimated and theorietical MMSE can be

calculated as
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Figure 5.5: MMSE curve for PIC-DDFE-IDMA for different number of users.

mmse =
1

Ns

(ŝk − sk)(ŝk − sk)H , (5.16)

mmse =
1

eT0R
−1
δk
eT0
. (5.17)

It can be seen from Fig. 5.5 that increasing of the users’ number results in more

deviation of theoretical and estimated curves due to effects of higher MAI and

ISI interference on the performance of both PIC and DDFE equalizer.

On other hand, by obtaining the SINRb
k performance for PIC-DDFE structure

as shown in Fig. 5.6, the improvement of the system performance during IDMA

iteration is quite obvious when it compared to the SINRb
k performance for MDFE

as given in Fig. 4.12. This means that the ability of removing MAI of the proposed

decentralized system is gradually increased as the number of iterations increased,

while in centralized receiver the MAI removal basically depends on the filters taps’

convergence during IDMA iterations which results in a sudden enhancement of

the system performance once the filter taps are completely converged.
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Figure 5.6: The improvement of SINR in crossover feedback filters within cen-

tralized PIC-DDFE-IDMA iterations.
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Figure 5.7: The iterative channel estimator structure.

5.4 Iterative Channel Estimation

The proposed decentralized IDMA receiver depends on the estimated channel taps

for MAI eliminations processes. Hence, the accuracy of the estimated channel

values has superior effect on the receiver performance. Therefore, an iterative

channel estimator has been designed to estimate channels taps during training

mode before IDMA detection starts at the decision mode. The estimated channel

taps are used for determining the covariance and cross-covariance matrices, hence

obtaining the feed-forward and feed-backward filter taps for each DFE equalizer.

At the same time, the estimated channel taps are utilized by PIC processes for

MAI suppression aim.

The iterative channel estimator is depicted in Fig. 5.7. Given the error signal

ek(n−∆) = sk(n−∆)− pk(n−∆). training mode (5.18)

where pk is the kth block of training symbols, the solution of the optimization

problem is obtained by substituting (5.18) in (5.12) which results in producing

a least square (LS) equation [25]. Hence, the kth user channel taps could be

estimated as

ĥk =
(
H∗tkHtk

)−1
H∗tkrpk , (5.19)
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where Htk is the rectangular Toeplitz data matrix of size (Lk×Nt + 1) and given

as follows

Htk =




pk(0) 0 0 . . .
pk(1) pk(0) 0 . . .
pk(2) pk(1) 0 . . .

...
...

...
. . .

pk(Nt) pk(Nt − 1) pk(Nt − 2) . . .



,





︸ ︷︷ ︸
Lk

Nt + 1 (5.20)

and

rpk = [rpk(q) rpk(q − 1) . . . rpk(q −Nf + 1)]T ,

is the observed training symbols, where

rpk(q) = rt(q)−
∑

k′ 6=k
ĥk′(lb)pk′(q − lb). (5.21)

Initially, the ĥk is set to zero. Therefore, rpk(q) contains both MAI and ISI in

the first iteration for the first user, while for the second user the amount of MAI

is decreased and for final user the lower MAI is obtained. However, for the second

iteration the performance of the channel estimation is noticeably improved, since

all users have obtained initial channel taps in the first iteration. As long as the

number of iteration increased, better channel estimation performance is obtained.

It’s worth mention that the channel estimation iteration not necessarily to be

equal to the IDMA iteration. Few iterations enough to get accurate channel taps

when the training symbols of the users have low auto-correlation property.

As in MDFE-IDMA, the iterative LS channel estimation is applied to 511

training symbols and the PIC-DDFE-IDMA system performance is compared

with perfect channel estimation assumption. The training symbols are generated

with m-sequence generator which provides a good correlation property that sup-

ports efficient channel estimation process. Fig. 5.8 shows the effect of estimated

channel taps on the PIC-DDFE IDMA performance. The imperfection of the es-

timated channel taps increases the probability of symbol errors, hence produces

higher BER. The channel estimation imperfection effect on the system perfor-

mance is more perceptible as the number of users is gradually increased. It is
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Figure 5.8: BER vs. Eb/N0 optimal PIC-DDFE-IDMA performance for LS and

perfect channel estimations.

clear in the above figure that, decentralized equalization is less affected by MAI

interference than centralized equalization for IDMA while increasing the number

of users.

5.5 Performance of PIC-DDFE-IDMA and Com-

parison with MDFE-IDMA

In this section, the performance of PIC-DDFE-IDMA is presented for different

rates of encoding by using convolutional and repetition codes for selective fading

channels. The performance of the proposed system is also compared to MDFE-

IDMA performance, which stated in the previous chapter. The same channel

characteristics used in chapter four are employed in the simulation for this section.

The symbols are modulated with QPSK mapping before transmitting through

multipath channels.
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The PIC-DDFE-IDMA performance generally depends on the equalizer per-

formance and the decoding efficiency. The amount of feedback errors which re-

turned back to the PIC have a significant effect on equalization process. Hence,

the type and the rate of the decoder are two important factors that have to be

properly chose to obtain higher system performance.

The improvement of PIC-DDFE-IDMA’s performance is illustrated in Fig. 5.9

by employing higher coding rate. It can be noticed from the figure that the

1/16 rate, using 1/8 convolution and 1/2 repetition coding, is almost better than

only using 1/8 convolution. The amount of improvement comes from the higher

error correction and also from the higher correlation provided by 1/2 repetition

code. Moreover, utilizing 1/8 convolutional coding produces approximately the

same performance as 1/16 rate using 1/2 convolution and 1/8 repetition code.

This is because the efficiency of error correction obtained by 1/8 convolution

coding is higher than 1/2 convolution coding, which in turn compensate the

higher correlation provided by 1/8 repetition coding.

The differences between MDFE and PIC-DDFE equalizers are given in Fig. 5.10

when 1/8 convolutional code is applied to the transmitted bits and IDMA prin-

ciples are used for providing low correlation property between users’ signals. Al-

though they have some superficial similarities with two users, however, the DDFE

still outperforms the MDFE when large numbers of users. This is because the

difference between PIC and crossover filters comes to light when high amount of

intereference exists in the received signal. In addition, the higher MAI suppres-

sion in DDFE can be more obvious by comparing the mmse curves as shown in

Fig. 5.11.

Furthermore, the effects of shallow water selective fading channels on both

PIC-DDFE-IDMA and MDFE-IDMA perfromances are shown in Fig. 5.12. As it

was expected, both systems show higher performance for 1/8 convolution coding

due to higher error correction among feedback chips provided by 1/8 convoltional

coding.
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Figure 5.9: Effect of coding rate on PIC-DDFE-IDMA receiver for 8 users.
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Figure 5.11: mmse vs SNR Performance comparison between centralized and

decentralized IDMA receivers for 1/32 convolution code, 8 users.
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5.6 Chapter Summary

This chapter presents a new model of decentralized multidimentional equaliza-

tion for IDMA system by utilizing both PIC and DFE equalizer based on MMSE

approach. The PIC-DDFE equalization taken place by exchanging a proiri data

symbols between the MAP decoder and the decentralized equalizer through in-

terleavers permutation such that the ISI and MAI are removed by DDFE and

PIC operations, respectively. The delay in convergence, which crossover filters in

MDFE equalization were suffering from, has been removed by using MAI. The

absence of crossover filters in PIC-DDFE equalization lead to a rapid conver-

gence of the DFE equalizers filters’ taps which in turn resulted in reducing the

feedback error propagation. Consequently, for both wireless channels and shal-

low water acoustic channels, PIC-DDFE-IDMA showed higher performance than

MDFE-IDMA.
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6

Complexity and Performance

analysis of Adaptive

Multi-dimensional Equalizers

Adaptive equalization is an effective process that mitigates the received signal

dispersion caused by signal propagation in multipath channels. As it was men-

tioned in Chapter one, there is no unique adaptive algorithms. However, based on

the problem requirements, various algorithms have been proposed such as LMS

and RLS algorithms.

Statistical formulation can be used to progress the stochastic gradient adap-

tive filters. The main objective of LMS adaptive filters is to provide a solution

for the MMSE estimation problem by employing an approximate gradient search.

The statistics of input signals are the main factor for the adaptation process of

these filters, thus they limited to be used in some applications. This problem

encouraged the researchers to design a new adaptive algorithm that can replace

LMS adaptation such as RLS filters. RLS filters are proposed to obtain higher

adaptation efficiency than LMS by utilizing a weighted sum of the squared esti-

mation error in a recursive manner. One of the important feature of RLS filters

is that they can obtain the exact solutions to the optimization problems within

iterations which provides better performance than LMS filters.

Both centralized and decentralized multidimensional equalizers, which are pro-

posed in previous chapters, are designed by using optimal filters. However, the

113



6. COMPLEXITY AND PERFORMANCE ANALYSIS OF
ADAPTIVE MULTI-DIMENSIONAL EQUALIZERS

optimal solutions are not practical due to the high complexity required for inverse

matrix computation. Therefore; in this chapter, the optimal values for filter taps

are implemented by utilizing adaptive algorithms. Both LMS and RLS algorithms

have been applied to the proposed systems for comparison purpose in terms of

system performance and complexity.

6.1 Adaptive Centralized Mulit-Dimensional Equal-

izer

The LMS algorithm provides slow convergence and poor tracking properties. This

often makes the algorithm to be unstable. The normalized least mean square

(NLMS) algorithm is a variant of LMS that solves this problem by normalizing

with the power of the input data. The NLMS algorithm can be summarized by

modifying 1.2 as

w(k + 1) = w(k) +
2ηe(k)s(k)

s(k)Hs(k)
. (6.1)

The performance of adaptive equalizer depends on the employed adaptive

algorithm. Therefore, it is worth to utilize both NLMS and RLS algorithms for

illustrating adaptive MDFE-IDMA performance. Fig. 6.1, Fig. 6.2 and Fig. 6.3

show the performance of MDFE-IDMA for 2, 4 and 8 users, respectively, using 1/8

convolution and 1/4 repetition coding in wireless channels. As it was expected,

each of these figures shows the obvious out-performance of RLS over NLMS.

It can be noticed that when the number of users is increased, RLS performance

remains stable and close to the optimal performance, while NLMS tends to diverge

from the optimal performance. This is because the filter taps can not be fully

converged due to the higher effects of MAI dispersion, which in turn, results in a

lower trucking behavior.

For the sake of more illustration about the efficiency of adaptive algorithms

in the multidimensional equalizers, the ability of adaptive filters in jointly re-

moving ISI and MAI dispersion can also be presented by plotting MMSE curves.

Fig. 6.4, Fig. 6.5 and Fig. 6.6 reports the MMSE curves versus noise variance

for two, four and eight users, respectively. From the figures, the optimal solution
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Figure 6.1: Adaptive MDFE-IDMA performances for two users.
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Figure 6.2: Adaptive MDFE-IDMA performances for four users.
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Figure 6.3: Adaptive MDFE-IDMA performances for eight users.

almost coincides with theoretical MMSE. NLMS performance is remained stable

alongside RLS and optimal performances for two and four users. However for

eight users, NLMS efficiency in calculating accurate filter coefficients is reduced

due to the higher interference effects on the received signal, which makes system

performance almost unstable. The NLMS algorithm is expected to lose more

stability when more users are employed. Although RLS tends to give insufficient

performance when there is high noise variance for 8 users, however, it is approxi-

mately providing the same performance as optimal solution, which in turn, unlike

NLMS, can give a stable performance while increasing the number of users.
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Figure 6.4: MMSE performance of adaptive MDFE-IDMA for two users.
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Figure 6.5: MMSE performance of adaptive MDFE-IDMA for four users.
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Figure 6.6: MMSE performance of adaptive MDFE-IDMA for eight users.

For shallow water acoustic channels, user 1 and user 2 are positioned at a

distance of 1 km and 3 km from the relay, respectively, so that their arriving

signals forming an angle of 45◦ between them at the relay as depicted in Fig. 6.7

and thier impulse responses are given in Fig. 4.7. The performance of the uplink

IDMA system is evaluated using DLE, DDFE and MDFE equalizers, where DLE

stands for using just forward filters and DDFE stands for the absence of the

crossover filters. In contrast of higher performance of RLS over NLMS, RLS

has been used as an adaptive algorithm to determine the optimal filter taps

during iterative detection. The performance of the aforementioned three schemes

according to their bit error rates vs. the Eb/N0 in dB are given in Fig. 6.8. All

filters have the same length, which is 40 taps, to enable the equalizers to overcome

the ISI and MAI completely during the iterative process. The use of the previous

estimated symbols for next symbol detection in DFE leads to the elimination of

the ISI effects. Therefore, it was expected that DDFE will have better resistivity

against channel impairments than DLE as shown in Fig. 6.8.
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Figure 6.7: Two-user uplink transmission scenario.
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path fading channels.
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Nevertheless, the convergence of the MSE error for both systems has a trivial

difference as depicted in Fig. 6.9. This is because, the existence of the MAI

generates wrong decisions at the output of the equalizers. However, in spite of

both equalizers approximately have similar MSE error, the approximate 4 dB

gain in Eb/N0 at BER=10−5 of DDFE results from the absence of the ISI which

provides more support to the IDMA detection performance.

The 3.5 dB of the difference in Eb/N0 performance between DDFE and MDFE

in Fig. 6.8 emphasizes the extensive reduction of the effect of MAI on the received

signal due to using cross feedback filters. At the same time, the convergence

and tracking properties of the MDFE equalizer exhibits lower squared error at

decision mode as shown in Fig. 6.9. The dramatic drop in average square error of

MDFE interprets the amount of MAI suppression at the output of the equalizer.

The scatter plots for both users in Fig. 6.10 demonstrates the amount of the

residual interference of the equalized symbols. In spite of the higher frequency

selectivity of channel 2, the corruptions of the constellation points of both users

are approximately identical due to the proper equalization of adaptive MDFE to

cope the MAI and ISI impairments.

6.2 Adaptive PIC-DDFE-IDMA

In this section, the performance of adaptive PIC-DDFE-IDMA is examined in

frequency selective multipath fading channels, and at the same time, its perfor-

mance is compared to MDFE-IDMA performance. The simulation examples are

implemented using 1/8 convolutional coding. A length of 10 taps is chosen for

feed-forward, feed-backward, and crossover filters and 12 iterations have been

taken for IDMA detection.

Fig.6.11 depicts the PIC-DDFE-IDMA performance for 4 users and its perfor-

mance compared to the MDFE-IDMA detector. It shows that PIC-DDFE-IDMA

still outperforms MDFE-IDMA for both RLS and NLMS adaptations. On other

hand, Fig. 6.12 depicts the performance of two users PIC-DDFE-IDMA system in

shallow water acoustic channels for optimal, NLMS and RLS adaptation, at the

same time its performance compared with MDFE-IDMA performance when RLS

is used for adapting filter coefficients. Also, It could be noticed that PIC-DDFE
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Figure 6.10: Scatter plot of the equalized symbols for both users using MDFE at

Eb/N0=10 dB.

with NLMS adaptation is achieved a performance almost coincides to the per-

formance obtained by MDFE with RLS adaptation when SNR is become higher

than 5 dB. The lower feedback error propagation in PIC-DDFE-IDMA compared

to MDFE-IDMA is the main reason behind the absence of difference between

NLMS and RLS adaptations.
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Figure 6.11: BER vs. Eb/N0 performance comparison of PIC-DDFE-IDMA and

MDFE-IDMA using optimal and adaptive algorithms.
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6.3 Complexity Analysis

In this section, the computational complexity of PIC-DDFE-IDMA and MDFE-

IDMA is compared to the rake IDMA system on the basis of the number of

arithmetic operations. The three receivers have the same operation numbers in

the APP-DEC, repetition, down-sampling, interleavers, and deinterleavers func-

tions. Therefore, their complexity is not taken into account within comparison

procedure. However, the receivers can be compared according to the total oper-

ations taken place within PIC (or ESE), DFE equalizer, and channel estimation

blocks.

For rake IDMA receiver, the operation number is determined base on the

equations given in [10]. The ESE processes include jointly MAI and ISI elimi-

nation for all users’ signal when channel coefficients are provided. For making

a fair comparison between the proposed receivers and the rake IDMA receiver,

the same iterative channel estimation technique in PIC-DDFE-IDMA has been

adapted for providing ESE with the channel coefficients. The ESE in rake IDMA

receiver treats the first Nt training symbols and the remaining Ns data symbols

in each received block in a different manner. The received training symbols are

extracted from MAI interference based on the equations in PIC processes and

then fed to the channel estimation process. While the data symbols are first mul-

tiplied by the conjugate of the estimated channel coefficients and then extracted

from the effect of the both MAI and ISI interferences simultaneously based on

the equations given in [10].

Table 6.1 summarizes the total computational complexity of PIC-DDFE-

IDMA, rake IDMA and MDFE-IDMA receivers for NLMS adaptive algorithm.

The off diagonal entries of covariance matrix has been set to be zeros without

calculation so as to reduce unnecessary mathematical operations. One complex

multiplication costs 4 real multiplications and 2 real additions. One complex

addition/subtraction costs 2 real additions. Table 6.1 generated based on the fol-

lowing parameters; K=8 users, L=16 paths, it=8 IDMA iterations, itc=4 chan-

nel estimation iteration, and Nf = Nb = Nc = 16 filter taps. Obviously, the

MDFE-IDMA has a lower complexity than rake IDMA and PIC-DDFE-IDMA

123



6. COMPLEXITY AND PERFORMANCE ANALYSIS OF
ADAPTIVE MULTI-DIMENSIONAL EQUALIZERS

using NLMS adaptive algorithm. This is because there is no complex interfer-

ence cancellation in cross-over filters to remove MAI as its exit in both PIC and

ESE processes. At the same time, the channel estimation operation is taken

place just one time before IMDA detection in MDFE-IDMA, whereas for the

other two receivers the channel estimation is processed for itc iterations. More-

over, the MD equalizer complexity rises linearly with the number of the users in

MDFE-IDMA, therefore, for the higher number of users the complexity difference

between MDFE-IDMA and PIC-DDFE-IDMA will be reduced. On other hand,

PIC-DDFE-IDMA provides lower complexity than rake IDMA receiver. In spite

of DFE equalizers operations in PIC-DFE-IDMA, the absence of multiplying the

channel conjugate with the received symbols, total mean and total covariance of

the interference in PIC-DDFE-IDMA makes it lower complex than rake IDMA

detection.

The same complexity comparison can be applied by using RLS algorithm. The

amount of improvement in BER signal utilizing RLS significantly increases the

complexity of the channel estimations and DFE equalizer operations as shown

in Table 6.2. Although, MDFE-IDMA became more complex by using RLS,

however, it still has lower complexity than the other two receivers. Moreover, it

is obvious from the table that there is a hug difference in computation number

between MDFE-IDMA and PIC-DDFE-IDMA using NLMS decreases noticeably

when RLS is used. This difference in computational complexity becomes lower

when higher number of users are employed.

Fig. 6.13 gives another example of comparison between MDFE-IDMA and

PIC-DDFE-IDMA for different number of users. A rate 1/2 convolutional code

and rate 1/4 spreading code has been used such that the total rate becomes

1/8. As mentioned before, the crossover filters in MDFE-IDMA are need to be

fully converged for efficiently removing MAI effects, while the MAI elemination is

taken place in PIC processes within PIC-DDFE-IDMA detection. Consequently,

PIC-DDFE-IDMA shows higher performance than MDFE-IDMA. It is also clear

from the figure that the increase in the number of users has lower effects on

PIC-DDFE-IDMA compared to MDFE-IDMA, this shows the power of PIC in

reducing feedback error propagation produced by larger number of users.

124



T
a
b
le

6
.1
:

C
om

p
le

x
it

y
co

m
p

ar
is

on
b

et
w

ee
n

ra
k
e

ID
M

A
,

M
D

F
E

-I
D

M
A

an
d

P
IC

-D
D

F
E

-I
D

M
A

fo
r

K
=

8,
L

=
16

,
It

=
8,

It
c
=

4,
N
f
=
N
b
=
N
c
=

16
u

ti
li

zi
n

g
N

L
M

S
al

go
ri

th
m

.

R
ak

e
ID

M
A

O
p

er
at

io
n

E
S
E

D
F

E
C

h
an

n
el

E
st

im
at

io
n

N
u
m

b
er

of
co

m
p
u
ta

ti
on

s

ad
d
./

su
b
.

22
×

L
×

K
×

It
-

(N
f
+
N
b
+

1)
×

6×
It
c

23
32

0

m
u
lt

ip
li
ca

ti
on

46
×

L
×

K
×

It
-

(N
f
+
N
b
+

1)
×

8×
It
c

48
16

0

d
iv

is
io

n
2
×

L
×

K
×

It
-

2
×

It
c

20
56

ta
n
h

2
×

K
×

It
-

-
12

8

to
ta

l
73

66
4

M
D

F
E

-I
D

M
A

O
p

er
at

io
n

C
ro

ss
-o

ve
r

F
il
te

r
D

F
E

C
h
an

n
el

E
st

im
at

io
n

N
u
m

b
er

of
co

m
p
u
ta

ti
on

s

ad
d
./

su
b
.

(K
−

1)
×
N
c
×

6
×

It
(N

f
+
N
b
+

1)
×

6×
It

(N
f
+
N
b

+
(K
−

1)
×
N
c
+

1)
×

6
78

30

m
u
lt

ip
li
ca

ti
on

(K
−

1)
×
N
c
×

8
×

It
(N

f
+
N
b
+

1)
×

8×
It

(N
f
+
N
b

+
(K
−

1)
×
N
c
+

1)
×

8
10

44
0

d
iv

is
io

n
2
×

It
2
×

It
2

32

ta
n
h

-
-

-
-

to
ta

l
18

30
2

P
IC

-D
D

F
E

-I
D

M
A

O
p

er
at

io
n

P
IC

D
F

E
C

h
an

n
el

E
st

im
at

io
n

N
u
m

b
er

of
co

m
p
u
ta

ti
on

s

ad
d
./

su
b
.

16
×

L
×

K
×

It
(N

f
+
N
b
+

1)
×

6×
It

(N
f
+
N
b
+

1)
×

6×
It
c

18
76

0

m
u
lt

ip
li
ca

ti
on

24
×

L
×

K
×

It
(N

f
+
N
b
+

1)
×

8×
It

(N
f
+
N
b
+

1)
×

8×
It
c

27
74

4

d
iv

is
io

n
2
×

L
×

K
×

It
2
×

It
2
×

It
c

20
72

ta
n
h

2
×

K
×

It
-

-
12

8

to
ta

l
48

70
4

125



T
a
b
le

6
.2
:

C
om

p
le

x
it

y
co

m
p

ar
is

on
b

et
w

ee
n

ra
k
e

ID
M

A
,

M
D

F
E

-I
D

M
A

an
d

P
IC

-D
F

E
-I

D
M

A

fo
r

K
=

8,
L

=
16

,
It

=
8,

It
c
=

4,
N
f
=
N
b
=
N
c
=

16
,
N
o

=
N
f

+
N
b
,
N
•

=
(K
−

1)
N
c

+
N
o

u
ti

li
zi

n
g

R
L

S
al

go
ri

th
m

.

R
ak

e
ID

M
A

O
p

er
at

io
n

n
u
m

b
er

s
E

S
E

D
F

E
C

h
an

n
el

E
st

im
at

io
n

N
u
m

b
er

of
co

m
p
u
ta

ti
on

s

ad
d
./

su
b
.

22
×

L
×

K
×

It
-

(N
2 o

+
3
×
N
o
)×

It
c

27
00

8

m
u
lt

ip
li
ca

ti
on

46
×

L
×

K
×

It
-

(N
2 o

+
5
×
N
o

+
1)
×

It
c

51
84

4

d
iv

is
io

n
2
×

L
×

K
×

It
-

2
×

It
c

20
56

ta
n
h

2
×

K
×

It
-

-
12

8

to
ta

l
81

03
6

M
D

F
E

-I
D

M
A

O
p

er
at

io
n

n
u
m

b
er

s
C

ro
ss

-o
ve

r
F

il
te

r
D

F
E

C
h
an

n
el

E
st

im
at

io
n

N
u
m

b
er

of
co

m
p
u
ta

ti
on

s

ad
d
./

su
b
.

(K
−

1)
×
N
c
×

6
×

It
(N

2 o
+

3
×
N
o
)×

It
(N

2 •
+

3
×
N
•)

27
67

4

m
u
lt

ip
li
ca

ti
on

(K
−

1)
×
N
c
×

8
×

It
(N

2 o
+

5
×
N
o

+
1)
×

It
(N

2 •
+

5
×
N
•

+
1)

30
21

5

d
iv

is
io

n
2
×

It
2
×

It
2

32

ta
n
h

-
-

-
-

to
ta

l
57

92
1

P
IC

-D
D

F
E

-I
D

M
A

O
p

er
at

io
n

n
u
m

b
er

s
P

IC
D

F
E

C
h
an

n
el

E
st

im
at

io
n

N
u
m

b
er

of
co

m
p
u
ta

ti
on

s

ad
d
./

su
b
.

16
×

L
×

K
×

It
(N

2 o
+

3
×
N
o
)×

It
(N

2 o
+

3
×
N
o
)×

It
c

29
82

4

m
u
lt

ip
li
ca

ti
on

24
×

L
×

K
×

It
(N

2 o
+

5
×
N
o

+
1)
×

It
(N

2 o
+

5
×
N
o

+
1)
×

It
c

38
79

6

d
iv

is
io

n
2
×

L
×

K
×

It
2
×

It
2
×

It
c

20
72

ta
n
h

2
×

K
×

It
-

-
12

8

to
ta

l
68

95
0

126



6.4 Chapter Summary

0 2 4 6 8 10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
E

R

 

 
MDFE (2 users)

MDFE (6 users)

MDFE (10 users)

PIC−DDFE (2 users)

PIC−DDFE (6users)

PIC−DDFE(10 users)

Figure 6.13: BER vs. Eb/N0 of PIC-DDFE-IDMA and MDFE-IDMA for differ-

ent numbers of users.

Fig. 6.14 and Fig 6.15 state the performance comparison of PIC-DDFE-IDMA,

MDFE-CDMA and rake IDMA detectors for a 4-users wireless and 2-users shal-

low water acoustic channels, respectively. From Fig. 6.14, although the process

of MAI elimination in MDFE-IDMA requires high values of Eb/N0 to enable the

crossover filter taps to converge during training mode, however, it can outperform

MDFE-CDMA performance which uses longer training sequence due to spread-

ing by a factor of 4 after modulation. The worse performance of MDFE-CDMA

detector comes from the short CDMA codes which provides low auto-correlation

property among users’ signal. In addition, PIC-DDFE-IDMA outperforms the

other three receivers due to the efficient RLS equalizer which results in converge

faster at low values of Eb/N0. The same results can be noticed from the perfor-

mance comparison between the four detectors in shallow water acoustic channels

as depicted in Fig 6.15.
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Figure 6.14: Performance comparison of optimal multiuser detectors for wireless

channels.
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Conclusions

Previous equalization techniques for IDMA detection were focused on downlink

transmission, where the same channel characteristics was assumed for all users.

In turn, it implies that the ISI can be removed with just one DFE equalizer.

However, this approach cannot be applied for uplink transmission where the

transmitted data for each users arrives at the receiver through different chan-

nel characteristics.

The motivation behind this research was to design an equalizer which can

be used in conjunction with IDMA detection for uplink transmission. The main

objective was to employ a multidimensional equalization with IDMA detection.

Multidimensional equalizer basically was designed to remove co-channel interfer-

ence in the received signal. Then, it employed in conjunction with CDMA to

overcome MAI impairments for two users. Moreover, the filter taps of these mul-

tidimensional equalizers were determined by using adaptive filters during training

mode, hence, there were no derived equations to calculate the optimal filter co-

efficients.

In this thesis, two types of multidimensional equalizers have been designed for

IDMA receiver which are centralized multidimensional equalization and decen-

tralized multidimensional equalization. The centralized multidimensional equal-

izer depends on crossover filters to remove MAI. However, PIC has been used

with decentralized equalizers to eliminate MAI interference in decentralized mul-

tidimensional equalizers. Moreover, new equations are derived for centralized
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multidimensional equalizers to determine the optimal filter taps. These equa-

tions rely on the low correlation property between users’ signal, and to this end,

it can be used with both IDMA and CDMA detectors.

Centralized multidimensional equalizer is structured as linear and decision

feedback equalizer, i.e. MLE and MDFE. The absence of feedback filters in MLE

result in a considerable performance degradation, while MDFE shows a consistent

efficiency in separating and detecting users’ data due to jointly removing MAI

and ISI impairments. Simulation results demonstrate improved performance of

MDE-IDMA over MDE-CDMA on wireless and shallow water acoustic channels,

which is primarily attributed to the use of long interleaver sequence in IDMA that

provides lower correlation than the spreading sequence in CDMA. Moreover, the

improvement of SINR in crossover filters results in a significant reduction in er-

ror propagation during iterative detection that leads to increase the ability of

MDE-IDMA in removing MAI effects. Although, the crossover filters provide

MDFE with an efficient MAI mitigation, however, these filters are not converged

completely during low SNR values. Therefore, an iterative decentralized multidi-

mensional equalizer PIC-DDFE-IDMA has been proposed to resolve this problem.

The proposed PIC-DDFE-IDMA receiver depends on the PIC operations for

removing MAI interference. Employing DFE in subtracting ISI and PIC in elim-

inating MAI provides efficient data detection against channel impairments. The

PIC operations require accurate channel coefficients for efficiently removing MAI.

For optimal PIC-DDFE-IDMA, LS channel estimation was used for providing

the PIC with estimated channel taps, whereas for adaptive equalization the es-

timated channel taps were obtained by employing RLS and NLMS algorithms

during training mode. Although, PIC-DDFE-IDMA was shown to be more ro-

bust to the multipath frequency selective channels compared to MDFE-IDMA,

MDFE-CDMA and rake IDMA systems, however, it has a higher computational

complexity for both NLMS and RLS adaptive algorithms than MDFE-IDMA.

Also, the systems robustness against MAI is analyzed by increasing the number

of users, PIC-DDFE-IDMA provides higher performance than the other men-

tioned receivers for up to 10 users. For more than 10 users, the performance of

PIC-DDFE-IDMA distinctly decreased as the number of users increased, this is
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due to the higher error propagation in feedback filters which significantly affects

the efficiency of both PIC and DFE equalizers.

The performance of PIC-DDFE-IDMA could be noticeably improved if further

reduction of error propagation through the feedback symbols is obtained. This

can be achieved by employing higher coding efficiency such as turbo or LDPC

code which results in a significant reduction in the MAI effects.

The processes of equalization and decoding were taking place separately and

the feedback symbols from the decoders to the equalizers are converted to hard

version symbols before being used by the PIC and the equalizers. However, better

performance can be achieved if a soft symbols are returned back to the PIC and

the equalizers, such that, the error propagation minimized by using a combination

of soft decisions and delayed tentative decisions to cancel ISI at the equalizer and

MAI at the PIC. This approach can also be applied to MDFE-IDMA equalizers

to provide more reduction in interference effects at the outputs of the equalizers.

This idea can be implemented in future works.
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