573 research outputs found

    HYBRYDOWY, BINARNY ALGORYTM WOA OPARTY NA TRANSMITANCJI STOŻKOWEJ DO PROGNOZOWANIA DEFEKTÓW OPROGRAMOWANIA

    Get PDF
    Reliability is one of the key factors used to gauge software quality. Software defect prediction (SDP) is one of the most important factors which affects measuring software's reliability. Additionally, the high dimensionality of the features has a direct effect on the accuracy of SDP models. The objective of this paper is to propose a hybrid binary whale optimization algorithm (BWOA) based on taper-shape transfer functions for solving feature selection problems and dimension reduction with a KNN classifier as a new software defect prediction method. In this paper, the values of a real vector that represents the individual encoding have been converted to binary vector by using the four types of Taper-shaped transfer functions to enhance the performance of BWOA to reduce the dimension of the search space. The performance of the suggested method (T-BWOA-KNN) was evaluated using eleven standard software defect prediction datasets from the PROMISE and NASA repositories depending on the K-Nearest Neighbor (KNN) classifier. Seven evaluation metrics have been used to assess the effectiveness of the suggested method. The experimental results have shown that the performance of T-BWOA-KNN produced promising results compared to other methods including ten methods from the literature, four types of T-BWOA with the KNN classifier. In addition, the obtained results are compared and analyzed with other methods from the literature in terms of the average number of selected features (SF) and accuracy rate (ACC) using the Kendall W test. In this paper, a new hybrid software defect prediction method called T-BWOA-KNN has been proposed which is concerned with the feature selection problem. The experimental results have proved that T-BWOA-KNN produced promising performance compared with other methods for most datasets.Niezawodność jest jednym z kluczowych czynników stosowanych do oceny jakości oprogramowania. Przewidywanie defektów oprogramowania SDP (ang. Software Defect Prediction) jest jednym z najważniejszych czynników wpływających na pomiar niezawodności oprogramowania. Dodatkowo, wysoka wymiarowość cech ma bezpośredni wpływ na dokładność modeli SDP. Celem artykułu jest zaproponowanie hybrydowego algorytmu optymalizacji BWOA (ang. Binary Whale Optimization Algorithm) w oparciu o transmitancję stożkową do rozwiązywania problemów selekcji cech i redukcji wymiarów za pomocą klasyfikatora KNN jako nowej metody przewidywania defektów oprogramowania. W artykule, wartości wektora rzeczywistego, reprezentującego indywidualne kodowanie zostały przekonwertowane na wektor binarny przy użyciu czterech typów funkcji transferu w kształcie stożka w celu zwiększenia wydajności BWOA i zmniejszenia wymiaru przestrzeni poszukiwań. Wydajność sugerowanej metody (T-BWOA-KNN) oceniano przy użyciu jedenastu standardowych zestawów danych do przewidywania defektów oprogramowania z repozytoriów PROMISE i NASA w zależności od klasyfikatora KNN. Do oceny skuteczności sugerowanej metody wykorzystano siedem wskaźników ewaluacyjnych. Wyniki eksperymentów wykazały, że działanie rozwiązania T-BWOA-KNN pozwoliło uzyskać obiecujące wyniki w porównaniu z innymi metodami, w tym dziesięcioma metodami na podstawie literatury, czterema typami T-BWOA z klasyfikatorem KNN. Dodatkowo, otrzymane wyniki zostały porównane i przeanalizowane innymi metodami z literatury pod kątem średniej liczby wybranych cech (SF) i współczynnika dokładności (ACC), z wykorzystaniem testu W. Kendalla. W pracy, zaproponowano nową hybrydową metodę przewidywania defektów oprogramowania, nazwaną T-BWOA-KNN, która dotyczy problemu wyboru cech. Wyniki eksperymentów wykazały, że w przypadku większości zbiorów danych T-BWOA-KNN uzyskała obiecującą wydajność w porównaniu z innymi metodami

    Edge-Based Health Care Monitoring System: Ensemble of Classifier Based Model

    Get PDF
    Health Monitoring System (HMS) is an excellent tool that actually saves lives. It makes use of transmitters to gather information and transmits it wirelessly to a receiver. Essentially, it is much more practical than the large equipment that the majority of hospitals now employ and continuously checks a patient's health data 24/7. The primary goal of this research is to develop a three-layered Ensemble of Classifier model on Edge based Healthcare Monitoring System (ECEHMS) and Gauss Iterated Pelican Optimization Algorithm (GIPOA) including data collection layer, data analytics layer, and presentation layer. As per our ECEHMS-GIPOA, the healthcare dataset is collected from the UCI repository. The data analytics layer performs preprocessing, feature extraction, dimensionality reduction and classification. Data normalization will be done in preprocessing step. Statistical features (Min/Max, SD, Mean, Median), improved higher order statistical features (Skewness, Kurtosis, Entropy), and Technical indicator based features were extracted during Feature Extraction step. Improved Fuzzy C-means clustering (FCM) will be used for handling the Dimensionality reduction issue by clustering the appropriate feature set from the extracted features. Ensemble model is introduced to predict the disease stage that including the models like Deep Maxout Network (DMN), Improved Deep Belief Network (IDBN), and Recurrent Neural Network (RNN). Also, the enhancement in prediction/classification accuracy is assured via optimal training. For which, a GIPOA is introduced. Finally, ECEHMS-GIPOA performance is compared with other conventional approaches like ASO, BWO, SLO, SSO, FPA, and POA

    A deep learning approach for intrusion detection in Internet of Things using bi-directional long short-term memory recurrent neural network

    Get PDF
    Internet-of-Things connects every ‘thing’ with the Internet and allows these ‘things’ to communicate with each other. IoT comprises of innumerous interconnected devices of diverse complexities and trends. This fundamental nature of IoT structure intensifies the amount of attack targets which might affect the sustainable growth of IoT. Thus, security issues become a crucial factor to be addressed. A novel deep learning approach have been proposed in this thesis, for performing real-time detections of security threats in IoT systems using the Bi-directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN). The proposed approach have been implemented through Google TensorFlow implementation framework and Python programming language. To train and test the proposed approach, UNSW-NB15 dataset has been employed, which is the most up-to-date benchmark dataset with sequential samples and contemporary attack patterns. This thesis work employs binary classification of attack and normal patterns. The experimental result demonstrates the proficiency of the introduced model with respect to recall, precision, FAR and f-1 score. The model attains over 97% detection accuracy. The test result demonstrates that BLSTM RNN is profoundly effective for building highly efficient model for intrusion detection and offers a novel research methodology

    A functional link network based adaptive power system stabilizer

    Get PDF
    An on-line identifier using Functional Link Network (FLN) and Pole-shift (PS) controller for power system stabilizer (PSS) application are presented in this thesis. To have the satisfactory performance of the PSS controller, over a wide range of operating conditions, it is desirable to adapt PSS parameters in real time. Artificial Neural Networks (ANNs) transform the inputs in a low-dimensional space to high-dimensional nonlinear hidden unit space and they have the ability to model the nonlinear characteristics of the power system. The ability of ANNs to learn makes them more suitable for use in adaptive control techniques. On-line identification obtains a mathematical model at each sampling period to track the dynamic behavior of the plant. The ANN identifier consisting of a Functional link Network (FLN) is used for identifying the model parameters. A FLN model eliminates the need of hidden layer while retaining the nonlinear mapping capability of the neural network by using enhanced inputs. This network may be conveniently used for function approximation with faster convergence rate and lesser computational load. The most commonly used Pole Assignment (PA) algorithm for adaptive control purposes assign the pole locations to fixed locations within the unit circle in the z-plane. It may not be optimum for different operating conditions. In this thesis, PS type of adaptive control algorithm is used. This algorithm, instead of assigning the closed-loop poles to fixed locations within the unit circle in the z-plane, this algorithm assumes that the pole characteristic polynomial of the closed-loop system has the same form as the pole characteristic of the open-loop system and shifts the open-loop poles radially towards the centre of the unit circle in the z-plane by a shifting factor α according to some rules. In this control algorithm, no coefficients need to be tuned manually, so manual parameter tuning (which is a drawback in conventional power system stabilizer) is minimized. The PS control algorithm uses the on-line updated ARMA parameters to calculate the new closed-loop poles of the system that are always inside the unit circle in the z-plane. Simulation studies on a single-machine infinite bus and on a multi-machine power system for various operating condition changes, verify the effectiveness of the combined model of FLN identifier and PS control in damping the local and multi-mode oscillations occurring in the system. Simulation studies prove that the APSSs have significant benefits over conventional PSSs: performance improvement and no requirement for parameter tuning

    Statistical and deep learning methods for geoscience problems

    Get PDF
    Machine learning is the new frontier for technology development in geosciences and has developed extremely fast in the past decade. With the increased compute power provided by distributed computing and Graphics Processing Units (GPUs) and their exploitation provided by machine learning (ML) frameworks such as Keras, Pytorch, and Tensorflow, ML algorithms can now solve complex scientific problems. Although powerful, ML algorithms need to be applied to suitable problems conditioned for optimal results. For this reason ML algorithms require not only a deep understanding of the problem but also of the algorithm’s ability. In this dissertation, I show that Simple statistical techniques can often outperform ML-based models if applied correctly. In this dissertation, I show the success of deep learning in addressing two difficult problems. In the first application I use deep learning to auto-detect the leaks in a carbon capture project using pressure field data acquired from the DOE Cranfield site in Mississippi. I use the history of pressure, rates, and cumulative injection volumes to detect leaks as pressure anomaly. I use a different deep learning workflow to forecast high-energy electrons in Earth’s outer radiation belt using in situ measurements of different space weather parameters such as solar wind density and pressure. I focus on predicting electron fluxes of 2 MeV and higher energy and introduce the ensemble of deep learning models to further improve the results as compared to using a single deep learning architecture. I also show an example where a carefully constructed statistical approach, guided by the human interpreter, outperforms deep learning algorithms implemented by others. Here, the goal is to correlate multiple well logs across a survey area in order to map not only the thickness, but also to characterize the behavior of stacked gamma ray parasequence sets. Using tools including maximum likelihood estimation (MLE) and dynamic time warping (DTW) provides a means of generating quantitative maps of upward fining and upward coarsening across the oil field. The ultimate goal is to link such extensive well control with the spectral attribute signature of 3D seismic data volumes to provide a detailed maps of not only the depositional history, but also insight into lateral and vertical variation of mineralogy important to the effective completion of shale resource plays

    Normalization Influence on ANN-Based Models Performance: A New Proposal for Features’ Contribution Analysis

    Get PDF
    Artificial Neural Networks (ANNs) are weighted directed graphs of interconnected neurons widely employed to model complex problems. However, the selection of the optimal ANN architecture and its training parameters is not enough to obtain reliable models. The data preprocessing stage is fundamental to improve the model’s performance. Specifically, Feature Normalisation (FN) is commonly utilised to remove the features’ magnitude aiming at equalising the features’ contribution to the model training. Nevertheless, this work demonstrates that the FN method selection affects the model performance. Also, it is well-known that ANNs are commonly considered a “black box” due to their lack of interpretability. In this sense, several works aim to analyse the features’ contribution to the network for estimating the output. However, these methods, specifically those based on network’s weights, like Garson’s or Yoon’s methods, do not consider preprocessing factors, such as dispersion factors , previously employed to transform the input data. This work proposes a new features’ relevance analysis method that includes the dispersion factors into the weight matrix analysis methods to infer each feature’s actual contribution to the network output more precisely. Besides, in this work, the Proportional Dispersion Weights (PWD) are proposed as explanatory factors of similarity between models’ performance results. The conclusions from this work improve the understanding of the features’ contribution to the model that enhances the feature selection strategy, which is fundamental for reliably modelling a given problem.This work was supported in part by DATA Inc. Fellowship under Grant 48-AF-W1-2019-00002, in part by Tecnalia Research and Innovation Ph.D. Scholarship, in part by the Spanish Centro para el Desarrollo Tecnológico Industrial (CDTI, Ministry of Science and Innovation) through the ‘‘Red Cervera’’ Programme (AI4ES Project) under Grant CER-20191029, and in part by the 3KIA Project funded by the ELKARTEK Program of the SPRI-Basque Government under Grant KK-2020/00049

    Long-Short-Term Memory in Active Wavefield Geophysical Methods

    Get PDF
    The PhD thesis discusses the application of Long Short-Term Memory (LSTM) networks in active wavefield geophysical methods. In this work we emphasizes the advantages of Deep Learning (DL) techniques in geophysics, such as improved accuracy, handling complex datasets, and reducing subjectivity. The work explores the suitability of LSTM networks compared to Convolutional Neural Networks (CNNs) in some geophysical applications. The research aims to comprehensively investigate the strengths, limitations, and potential of recurrent neurons, particularly LSTM, in active wavefield geophysics. LSTM networks have the ability to capture temporal dependencies and are well-suited for analyzing geophysical data with non-stationary behavior. They can process both time and frequency domain information, making them valuable for analyzing Seismic and Ground Penetrating Radar (GPR) data. The PhD thesis consists of five main chapters covering methodological development, regression, classification, data fusion, and frequency domain signal processing.The PhD thesis discusses the application of Long Short-Term Memory (LSTM) networks in active wavefield geophysical methods. In this work we emphasizes the advantages of Deep Learning (DL) techniques in geophysics, such as improved accuracy, handling complex datasets, and reducing subjectivity. The work explores the suitability of LSTM networks compared to Convolutional Neural Networks (CNNs) in some geophysical applications. The research aims to comprehensively investigate the strengths, limitations, and potential of recurrent neurons, particularly LSTM, in active wavefield geophysics. LSTM networks have the ability to capture temporal dependencies and are well-suited for analyzing geophysical data with non-stationary behavior. They can process both time and frequency domain information, making them valuable for analyzing Seismic and Ground Penetrating Radar (GPR) data. The PhD thesis consists of five main chapters covering methodological development, regression, classification, data fusion, and frequency domain signal processing
    corecore