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ABSTRACT 
 

 

  Internet-of-Things connects every ‘thing’ with the Internet and allows these 

‘things’ to communicate with each other. IoT comprises of innumerous interconnected 

devices of diverse complexities and trends. This fundamental nature of IoT structure 

intensifies the amount of attack targets which might affect the sustainable growth of IoT. 

Thus, security issues become a crucial factor to be addressed.  A novel deep learning 

approach have been proposed in this thesis, for performing real-time detections of security 

threats in IoT systems using the Bi-directional Long Short-Term Memory Recurrent 

Neural Network (BLSTM RNN). The proposed approach have been implemented through 

Google TensorFlow implementation framework and Python programming language. To 

train and test the proposed approach, UNSW-NB15 dataset has been employed, which is 

the most up-to-date benchmark dataset with sequential samples and contemporary attack 

patterns. This thesis work employs binary classification of attack and normal patterns. The 

experimental result demonstrates the proficiency of the introduced model with respect to 

recall, precision, FAR and f-1 score. The model attains over 97% detection accuracy. The 

test result demonstrates that BLSTM RNN is profoundly effective for building highly 

efficient model for intrusion detection and offers a novel research methodology. 

 

 

 Keywords—Bi-directional Recurrent Neural Network, Deep Learning, Intrusion 

Detection, IoT. 
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Chapter 1  

INTRODUCTION 
 

1.1. The Overview 

  
The Internet, since 1960s, has been playing an important role in connecting 

individuals and putting organization and businesses together. It has collapsed the 

geographical barriers that previously used to exist between peoples and has provided 

an efficient and financially worthwhile way of communications. 

These days, things are changing and opening a completely new dimension of 

communication due to the emergence of smart objects which possess the competency 

of creating and collaborating data through the Internet in a much smarter course. 

Internet of Things (IoT) is the cutting-edge innovation and frameworks which can 

possibly change the way in which we live. IoT can be viewed as an innovation which 

is built upon two fundamental components: “Internet” and “Things”. The “Things” 

simply refers to any kind of device or object that has the capability of perceiving or 

collecting information about itself or the surrounding environment. These smart 

devices or things has the capability of analyzing and acting accordingly with other 

devices by using “Internet” as the backbone network for communication. 

IoT communication systems can reach way beyond the traditional Internet and 

has the potential to improve human life condition. For instance, through IoT, human 

health can be remotely monitored, thus, rejecting the necessity of visiting the hospital 

physically. For example, University of Edinburgh, Scotland, have created minute 

computing gadgets that can be attached to human chest, and can screen and gather 

respiratory information and after that transmit it remotely to the respective specialists 

who can pursue their cases remotely [114]. IoT is being utilized by government 

organizations round the globe for gathering information from various regions and to 

make accessible enhanced facilities in security, health, development and 

transportation.  IoT is employed by enterprises for accommodating enhanced customer 

services and to augment security and safety to employees. IoT can also enhance the 

way of managing day to day life. For instance, Amazon Echo are a bunch of smart IoT 

devices having a linguistic capability. People can interact with the devices and can ask 

for advice regarding weather, schedule alarm or obtain new feed from the Internet.  
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Internet of Things (IoT), originally termed by Kevin Ashton in the year 1999 [2], 

stands for a system of globally recognizable physical devices (or things) which can 

sense the environment around them and behave intelligently.  To construct the IoT 

network, a varied assortment of technologies is required. These techniques support to 

shape a virtual world of objects or things over the physically connected networks 

where things can communicate to each other in an intelligent way, providing 

information to people or taking actions based on individual inputs. IoT is rising at an 

accelerating stride, interconnecting billions of device or ‘Things’. As per Gartner [1], 

about 25 billion distinctively recognizable objects or things are predicted to be a part 

of the worldwide computing system by 2020 [1]. These interconnected devices 

augment regular activities and shape smart solutions. However, the immense prospects 

and conveniences brought by IoT leads to security concerns.  

 

1.2. Motivation 
 

The technique of Deep Learning (DL) essentially imitates the functionality of 

a human brain. For acquiring those functionalities, the DL technique uses powerful 

NN algorithms such as Clustering algorithm, Bayesian Algorithm, Artificial Neural 

Network algorithm. DL algorithms possess high computation ability which makes it 

more appropriate for intricate and composite IoT datasets likened to legacy ML 

techniques. DL application in the IoT sphere, chiefly on IoT network security is still 

in its early research phase and holds an enormous prospective for discovering 

incursions from the IoT system. Recurrent neural networks possess the ability of 

learning from preceding time-steps from input dataset. The information of every time-

step goes under processing, and then reserved for providing input for the succeeding 

time-stamp. The subsequent time-step uses the prior data stored for processing the 

information further. Nevertheless, the recurrent neural network architectures remain 

very complex, yet, hyper-parameters could be tuned for obtaining efficient 

functionality for IoT resolutions. This hypothesis puts motivation for applying DL 

perceptions to the security of IoT network. 

 

1.3. Problem Statement 
 

The relevance of security in contemporary connected world needs analyzing and 

processing a colossal amount of diverse data already; IoT network makes it even more 

complex.  In spite of the several countermeasures proposed by many research studies, 

the IoT environment remains very prone to intruders. This clearly expose that gaps do 



3 
 

still exist on how IoT security concerns are mitigated.  This work’s central objective 

is to examine the use of deep-learning neural network in the detection of network 

intrusion attempts or attacks on a computer network in general and on an IoT network 

in particular. The neural network model to be used in the investigation is called Bi-

directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN). 

Also, this research stretches to inspect and provide an efficient way for implementing 

the deep learning approach and enhance its efficiency to detect intrusions in the IoT 

network infrastructure in competent and timely manner, attaining high degree of 

detection accuracy and low rates of false alarm. 

 

1.4. Research Questions 
 

The research questions of this endeavor are as follows: 

RQ1. Why Deep Learning is efficient in intrusion detection accuracy over IoT 

network than prevailing machine learning techniques? 

RQ2. How efficient is Bi-directional Long Short-Term Memory Recurrent Neural 

Network (BLSTM RNN) in detecting intrusions in an IoT environment? 

RQ3.   What are the parameters essential for BLSTM RNN to generate a low False 

Alarm Rate (FAR) and a high detection accuracy? 

RQ4: What are the efficient ways to implement the BLSTM RNN approach? 

 

1.5. Research Goals 
 

In answering the above-mentioned questions, the subsequent research goals 

would be achieved: 

 

 Determine the key factors that give advantages to Deep Learning (DL) over 

prevailing Machine Learning (ML) techniques in detecting intrusion over IoT 

network. 

 Implement BLSTM RNN approach using TensorFlow framework for 

developing the code for an AI model proficient of detecting intrusions in IoT 

network. 



4 
 

 Determine the probable optimal hyper-parameters required by the proposed 

model to attain the highest detection accuracy and FAR in least time.  

 Evaluate the reported performance of the introduced model. 

 

1.6. Delimitation 
 

This thesis is limited to the detection of intrusions in IoT network layer only. 

Also, the proposed model is restricted to only detecting intrusions and provides no 

prevention mechanism whatsoever.  

 

1.7. Research Contributions 
 

This research work is a multidisciplinary venture that involves Artificial 

Intelligence (AI), IoT and computer network security. Therefore, a considerable 

amount of time is committed in interpreting the complexity of the perceptions in depth. 

We begin with recognizing the attack categories consisted in the intrusion recognition 

dataset. Then, learning the architecture of the IoT network and started assessing ML 

algorithms substantial for the IoT environment. However, we observed that deep 

learning algorithms forms the utmost appropriate methodology for the defined research 

problem. Experiments are performed using Google TensorFlow. The performance 

outcome are then evaluated and discussed. This inclusive interdisciplinary applied 

approach made the research work unique. 

 

The new contributions of this research work are:  

 

 Introducing BLSTM RNN for intrusion detection in IoT network. 

 Design and develop the proposed BLSTM RNN algorithm using Python as 

programming language, and Tensorflow as implementation framework.  

 Provide parameters tuning details that enables a low FAR and an elite 

intrusion detection accuracy.  
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1.8. Outline 
 

The structure of this thesis is in the subsequent order: Chapter 1 - Introduction:  

provides an introduction to IoT and introduces neurons and neural networks. Also 

gives an overview of the deep learning, activation functions and loss functions. This 

chapter also establishes the problem statement, research questions, research goals and 

research contributions along with the research delimitations. Chapter 2 – Literature 

Review: discusses Internet-of-Things (IoT) along with IoT architecture and security 

concerns and the sectors where IoT systems are applied. This chapter also establishes 

the background in Machine Learning (ML), Deep Learning (DL) techniques and their 

implementation in IoT. This chapter also presents the literature review of similar works 

done by other researchers, existing methods and their issues and identify a potential 

research gap. Chapter 3 – Neural Networks: discusses architecture and functionality 

of neurons, Feed-forward Neural Networks, Recurrent Neural Network (RNN), Long 

Short-Term Memory (LSTM) RNN and Bi-directional LSTMs (BLSTMs) along with 

the neural network training procedure, activation function and loss functions. Also 

discusses about neural network implementation framework and UNSW-NB15 training 

dataset. Chapter 4 – Research Methodology: provides the research methodology, data 

flow chart, implementation methodology (Keras and TensorFlow) and evaluation 

parameters. Chapter 5 – Architecture & Implementation: proposes the architectural 

details and hyper-parameter values of the proposed model. Also discusses about the 

implementation of the aforementioned proposed model through Keras library and 

Python programming language. Chapter 6 – Results: shows the simulation outcomes 

and the performance evaluation of the proposed model with various parameters. 

Chapter 7 - Conclusions and Future Work: presents the conclusion drawn out of the 

project including the possible future works that might be accomplished to enhance and 

upgrade the project. 
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Chapter 2  

 

LITERATURE REVIEW 
 

2.1. Introduction 
 

With progressively deep incorporation of human society with the Internet, the 

way people live, work and study is changing. Along with it, numerous security 

concerns are growing more serious. Identifying various network attacks, remains an 

inevitable technical concern. An Intrusion Detection System (IDS) could recognize 

attacks which are ongoing or an invasion that has already happened. As a matter-of-

fact, the mechanism of detecting intrusion is equal to a classification task, including 

multiclass classification or binary classification. Precisely, the key motivation of 

detecting intrusions is to improve the classifier’s detection accuracy in efficiently 

identifying abnormal data patterns. 

 

2.2. Internet of Things  
 

Internet of Things (IoT) could be realized as a persistent network of networks: 

plentiful heterogeneous things or entities, both virtual and physical like sensors, 

people, software and all types of devices) connected with some other entity or number 

of entities over unique addressing protocols and communicating with each other for 

providing services. The development of internet of things by utilizing the new IP 

address (IPv6) version, which drives beyond the confines of IPv4, will revolutionize 

the world of Internet by the connectivity for a huge number of connected smart devices 

nearby 70 billion, may be even more. Thriving this technology is called as the Second 

Economy or the Industrial Internet revolution [108]. 

 

2.3. IoT Definition 
 

In the year 2005, the International Telecommunication Union (ITU) added to 

the conception of IoT and recommended 4 technologies to comprehend IoT: Intelligent 

embedded technology, RFID technology, sensor technology and nanotechnology 

[105]. As per [106] IoT is in yet in early phases and any regular or common standard to 

comprehend IoT hasn’t been established however. There exist various definitions of 

IoT. For example, [104] explain IoT as environment of computing of several RFID 
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entrenched things which intercommunicates to provide smart Information Technology 

(IT) facilities. 

The European Research Cluster on the Internet-of-Things (IERC) specifies IoT 

as: “a dynamic global network infrastructure with self-configuring capabilities based 

on standard and interoperable communication protocols where physical and virtual 

‘things’ have identities, physical attributes, and virtual personalities and use intelligent 

interfaces, and are seamlessly integrated into the information network” [107]. 

 

 

 
 
 

Above figure illustrates IoT characterization proposed by IERC. “Dynamic 

global network infrastructure” refers to the network which is capable of automatically 

delivering and resource allotting in order to fulfill the prevailing and upcoming needs 

of IoT gadgets. This could be applied by using software defined networks (SDN) and 

cloud computing (CC) which allow “self-configuring capabilities” built over “standard 

communication protocols” like UDP and TCP/IP. Moreover, these protocols required 

to be implanted within the things that have “intelligent interfaces”. Intelligent interface 

possesses the capability to perform certain functions as per the need, such as 

connecting to the Internet, exchanging data and information etc. in a “seamlessly 

integrated” way like present personal computers. 

 

 

Figure 2.1: IERC definition of IoT [107] 
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2.4. Classification of “Things” in IoT 
 

According to [105] the mapping among “things” over cyber and physical world 

is an inevitable part of IoT infrastructure, where “things” could be categorized into 

two sorts: Physical things and Cyber things. The grouping of “things” in IoT are 

illustrated in the Figure 2.2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 

2.4.1. Physical things 
 

a) Objects: These are tangible things with measurable bodies like Persons, vehicles, 

tablets etc. 

b) Behaviors: It refers to the movements of the objects. For instance, running, driving, 

monitoring and so on. 

c) Tendency: This refers to the trends in physical things, like the tendency of a vehicle 

in a parking is to be stationary. This trend may also occur due to external factors 

like congested traffic or weather becoming cloudy. 

d) Physical events: These are an assortment of all the above-named properties 

integrating to define the events caused by certain situations in the physical world. 

 

 

Figure 2.2: Classification of "things" [105] 
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2.4.2. Cyber Things 
 

a) Entities: refers to the abstract things like code and data. 

b)  Actions: denotes data processing like, transmission of information with in entities. 

c) Events: refers to entity activities like, reporting. 

d) Services: refers to the tasks that are being offered to a thing or by a thing in order 

to perform a specific goal. 

 

For instance, Google’s automated car, exhibit a device which has 

comportments like driving, parking and so forth. The vehicle could have an affinity as 

when it discovers that it has begun to rain, it is likely to take physical activities like 

actuating wipers. The car wiper consists an algorithm which signifies the abstraction 

which process and share data dependent on available services for taking actions and 

reporting events. 

 

2.5. IoT Architecture and Security Concerns 
 

Despite the massive potential of the IoT in numerous spheres, the entire 

communication setup of the IoT network is flawed as per the security standpoint is 

concerned. The rising usage of IoT devices requires a prevailing security against 

probable vulnerabilities or attacks. Therefore, security is essential at every layers of 

IoT infrastructure, primarily for there is no network boundary or perimeter. Security 

constraints that required to be considered in IoT applications could be characterized 

into four key categories [109]: 

 

a)  Confidentiality: Confidentiality encompasses discretion in shielding data secrecy 

from third parties. 

b) Integrity: For the sake of preserving the integrity of the information, the recipient 

of the message needs to authenticate that the received communications remained 

unaltered during the delivery or broadcast. 

c) Authentication: Authentication in the IoT is the process of conforming that the 

communication actually is, from where it claims to be 

d) Availability: It states the ability of accessing the information or any resources in 

the truthful format. An authenticated user could use several services of IoT to 

prevent Denial of Service (DoS) attack and keep the services available. DoS 

attacks remains a major threat to the availability [110].  
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Since IoT is the incorporation of multiple diverse networks, consequently it is 

challenging to accomplish a reliable association between the explicit nodes because of 

the constantly varying characteristics of the nodes. IoT architecture can be broadly 

arranged into three layers: sensing layer, transportation layer and application layer. 

Figure 2.3 below illustrates the security architecture of IoT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Some of the most prominent security concerns are discussed below:  

 

2.5.1. Perception Layer Security Issues 
 

Perception or Sensing layer primarily consists of devices like RFID tag, 

Reader, Smart card, Sensor network etc. These devices remains exposed to subsequent 

vulnerability that may lead to security issues of IOT network like radio interference, 

sensor abnormalities and sensor attacks. [109]. Collecting real-time information needs 

a huge number of terminals are required at the sensing layer. This procedure requires 

data integrity and authentication. Since the nature of the communication is wireless, 

the primary problems occur in sensing or perception terminals comprise tampering, 

confidential information leakage, copying, terminal virus and other issues [110].  

 

Figure 2.3: IoT security architecture [109] 
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2.5.2. Security Issues at Sensor Network  

 

Sensor nodes are accountable for information transmission, collaboration and 

integration. Since they are battery-operated with minimum security defense, they may 

encounter complex security matters like: 

 

 Summoning Malicious Codes: Harmful programs like worm could affect the 

sensor network very easily, as, to execute, the worms do not require any other 

dependent files, which makes it very hard to identify and take action.  

 Tag defect: Due to lack of enough security it is easy for the intruder to 

accomplish illegal usage of legal reader. An invader could effortlessly get the 

tag information and for accessing Radio Frequency Identification (RFID) 

devices devoid of any kind of prior authentication through forging.  

 

2.5.3. Security Issues at Network Layer  
 

IoT network layer chiefly consists of Computers and Wired or wireless 

networks.  The reason for this layer is to transmit data. Nodes move freely in wireless 

networks, i.e. nodes are able to connect or disconnect from the network anytime with 

no prior conformation which make wireless networks exposed to security threats. The 

network layer of IoT ought to have that capability to cope with such malicious 

obliteration. Nonetheless, mechanisms that exist is not adequate to deal with this 

security issue [109]. 

 

2.5.4. Application Layer Security Issues  

 

IoT application layer comprises of diverse applications such as industrial 

monitoring, monitoring services, smart grid or any additional intelligent systems. 

Malicious program or software exposures could be hosted in such exposed systems. 

Additionally, the incorporation of various techniques and professional requirements 

could generate a congestion or bottleneck for processing immense data and on process 

control which might lead to the safety and reliability issues of IoT systems [110]. 
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2.5.5. Network Capacity Limitation  

 

The converging of devices which ascends from the IoT system kindles greater 

claim for a certain grade of Quality of Service (QoS) of the connected network 

infrastructure. Applications that deliver certain services might demand additional 

frequent transfer of small data blocks (sessions) essential for upgrading and 

synchronization. Frequency of the mentioned sessions will generate a significant effect 

on delay and penetrability of the network. This fragment of the infrastructure 

necessarily be securely brought for ensuring secure information flow [111]. 

 

2.6. IoT Challenges 

 

IoT is yet at an early stage of development and encounters numerous 

challenges. Primarily, there exists no standard structural design for IoT networks [11]. 

Due to its initial phase, companies are not eager to manufacture devices which comply 

with other merchant’s devices to accomplish monetary benefit and drive customers 

toward the sellers’ lock-in. Besides, IoT networks are heterogeneous, as a result 

associating, operating, organizing and securing the network is a difficult task. Thirdly, 

IoT devices utilize diverse communication conventions to correspondence over 

various kinds of networks (e.g. Bluetooth, WAN, GSM, and WSN) [11]. Then comes 

privacy and security. Due to different types, and the amount of IoT devices, and their 

restricted equipment capacities, it is relatively difficult to employ host-based 

protection methods for securing IoT objects, which drives to the idea of network based 

security measures along with intrusion detection and protection techniques. 

 

2.7. Machine Learning 

 

Machine learning (ML) is considered as a sub area inside AI which is becoming 

ever more prevalent and is broadly employed in the industry and academia for solving 

various tasks. However, AI isn’t new to computer science. It started back in the year 

1950, after Alan Turing introduced famous interrogation of "Can machines 

think?"[37]. Later, the focus of AI has been distributed around various expanses. With 

the accessibility of enormous capacities of data, data-driven method of ML has become 

so prevalent. Mitchell [38] states ML by: "A computer program is said to learn from 

experience E with respect to some class of tasks T and performance measure P, if its 

performance at tasks in T, as measured by P, improves with experience E"[38]. Taking 
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the classical example of spam filter would put it into the proper context, which is: The 

task ‘T’ represents the prediction of whether an email is a spam or not. The ‘E’ 

represents the experience, that is the training data set, and the performance ‘P’ is 

measured as the ratio between appropriately classified emails.  

 

2.7.1. Types of Learning in ML 

According to [112] “learning” in ML can be categorized in to the following: 

 

a) Supervised Learning: It is a systematization of the concept of learning from 

examples. The learner (commonly, a computer program) is provided with two 

separate data sets. One is called the training-set while test-set is the other one. 

Through the training-set the learner can “learn” the patterns of labelled 

instances and can recognize unlabeled samples in the test dataset with the 

highest possible accuracy [112].  

 

b) Unsupervised Learning: Here, the data is clustered into classes depending on 

the statistical propertied if the input data. Unlike supervised learning, there 

remains no explicit target outputs related to each input. In unsupervised 

learning the learner receives inputs x1, x2… n and determines which aspects of 

the input structure should be considered in the output [112]. 

 

c) Reinforcement Learning: In this sort of learning both marked and unlabeled 

information could be utilized to form the fundamental knowledge. The 

framework gets a reward for every right or wrong forecast. Depending on the 

reward the next forecast could be generated. At the point when new data is 

given to the framework, the framework will endeavor to locate the best 

execution way or join in multiple execution pathway for forecasting and pause 

for the reward. When the obtained reward occurs to be superior with respect to 

the past rewards for the identical input, at that point, this pathway turn out to 

be agreeable Reinforcement learning is utilized in web based games, for 

example, Chess [112]. 

 

2.7.2. Algorithms of Machine Learning 

Algorithms could be defined as an arrangement of rules to be carried out in an 

explicit order for resolving a specified problem [112]. Below are the list of groups of 

ML algorithms:  
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1) Regression Algorithm  

 

It is a technique based on predictive modelling. It examines the correlation in 

between the dependent variable (also called as target) and one or multiple independent 

variables (also called predictor) [121]. Regression algorithms are commonly utilized 

for modelling sequential or time series data. Instances of usage are: forecasting, 

financial modelling including discovery of relations among variables. For instance, 

forecasting of stock prices are best performed using regression. It deals with the 

statistical data analysis and involves indicating significant relationships among a 

dependent variable Y and a set of independent variables X1, X2,…, Xn. Some of the 

most widely used examples are given below: 

 

a) Stepwise regression 

b) Logistic regression 

c) Ordinary lest squares regression (OLSR) 

d) Linear regression 

 

2) Clustering Algorithm  

 

Clustering algorithms are generally apprehensive with recognizing the input 

data patterns and establish them into groups or clusters. The goal is to place similar 

objects (as per specific similarity measure) in a same cluster and allocate unlike data 

to different clusters [121]. Data are generally defined and clustered by utilizing a set 

of values and features. It is an unsupervised form of learning since there exist no pre-

existing data categorization. Some of the widely used clustering algorithms are as 

follows: 

 

a) Expectation Maximization (EM) 

b) K-Medians 

c) Hierarchical clustering 

d) K-Means 
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3) Bayesian Algorithm  

 

Bayesian algorithm employ Bayes’ hypothesis in regression and classification 

problems [121]. It considers the conditional probability of every conceivable reason 

for a certain outcome. Most widely used Bayesian algorithms are as follows: 

 

a) Bayesian Network 

b) Gaussian Naïve Bayes 

c) Naïve Bayes 

d) Multinomial Naïve Bayes 

 

4) Decision Tree Algorithm  

 

Decision tree is a competent nonparametric technique that could be employed 

either to regression or to classification tasks [121]. Most widely used decision tree 

algorithms are as follows: 

 

a) Decision Stump 

b) Classification and Regression Tree (CART) 

c) M5 

d) C4.5 and C5.0 

 

5) Artificial Neural Network Algorithm  

 

Artificial Neural Network (ANN) algorithms mimics the way of the biological 

neurons for complying with classification and regression problems [121]. Some ANN 

algorithm examples are as follows: 

 

a) Radial Basis Function Network 

b) Perceptron 

c) Hopfield Network 

d) Back-Propagation 

 

There are additional ML algorithms, like association rule learning, deep 

learning, regularization and features selection algorithms, and dimensionality 

reduction – just to name a few examples. 

 



16 
 

2.8. Machine Learning versus Deep Learning  

 

Machine learning (ML) is extensively utilized in identifying several types of 

attacks. A ML methodology could assist the network admin to perform required 

actions for averting intrusions. Nevertheless, most customary ML methods reside 

within shallow learning and usually give emphasis to feature engineering and 

selection. With enormous intrusion data that rises in the real-time network 

environment, shallow learning is unable to resolve the classification issue efficiently 

[29]. Deep learning approach possess the potential to extract improved representations 

from the dynamic data-sets, and is capable of creating much efficient prototypes. G. 

Hinton et al. [30] introduced the hypothesis of DL in the year 2006, and over years the 

theory underwent spectacular rise in the area of ML. Most recent ML methodologies 

work well because of human-designed representations and inputs features.  

In ML, ‘representation learning’ or ‘feature learning’ represents set of methods 

that makes a system capable of automatically learning the representations required for 

detecting features from the training dataset. DL, on contrary, could be considered as 

establishing both representation learning and machine learning together. DL pursuits 

to together learn essential features along multiple levels of cumulative intricacy and 

abstraction and the concluding prediction. Figure 2.4 illustrates the fundamental 

difference between ML and DL, where traditional ML involves manual feature 

selection and on contrary DL employs automated feature selection.  

 

  

  
Figure 2.4: ML and DL  
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2.9. A Popular ML Algorithm - Deep Learning 

 

Machine learning (ML) is comprised of several approaches, Deep learning 

(DL) is one of them. The basic principle behind every deep learning technique is the 

automated discovery of abstraction. DL comprises of supervised and unsupervised 

learning methods established on multiple layers of ANN. DL is comprised of manifold 

processing layers, where every layer generates a non-linear output from the input layer 

data. The DL functionality is inspired from the signal processing capability of neurons 

of the human brain.  

Compared to other traditional ML approaches, DL models has gained more 

consideration in current years. Figure 2.5 demonstrates the popularity flow of 5 

popular ML algorithms as per Google trends, where deep learning is fetching further 

popularity amid others. The emerging trend for Deep Neural Networks (DNNs) began 

since 2006 after G. Hinton et al. [42] proposed deep belief networks hypothesis. 

Subsequently, this expertise is employed in diverse areas of artificial intelligence 

including search engines, image recognition, natural language processing so on and so 

forth. 

 

 

  

Figure 2.5: Google Trend screening more inclination toward DL in recent times [39] 
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2.9.1. DL Architecture 

 

Deep neural network (DNN) comprises of 3 major layers, namely: the input 

layer, manifold hidden layers and the output layer. The layers are constituted with 

multiple neurons or units. A single neuron is the computational unit which accepts 

some input vectors, computes a weighted summation of the input vectors, then passes 

the resultant sum through the activation function for generating the output. Figure 2.6 

represents the structure of a single neuron, where {X1, X2…Xn} represents the set of 

inputs, {W1, W2 … Wn} represents the weight vector and the bias is represented by b. 

These weights and biases would be optimized through the training course. The 

summation of all the inputs, their respective weights and bias are feed into the 

activation function to generate the output. The purpose of the activation function is to 

help the neuron to learn complex patterns and present a non-linear properties into the 

network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In a typical DL input layer, random weights are allotted to the input data and 

are forwarded to subsequent layer. Every succeeding layer similarly allots weights to 

the respective inputs and generate outputs. Output of former layer contributes as input 

of the subsequent layer. Model’s output layer represents the prediction outcome. The 

accuracy of the model is determined by a loss function that computes the error-rate 

among the actual output (i.e. output generated by the model) and the expected output. 

The loss or error-rate represents the divergence among the actual and expected output. 

The error-rate is then transmitted over the network back to the input layer. This 

Figure 2.6: A neuron with multiple inputs and weights and bias [39] 
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technique of error-rate transmission across the network is termed as Back-propagation 

(BP). The BP is utilized for updating network weights and biases. The DNN again 

iterates the cycle and optimizes the weights of individual neuron in every iteration, till 

the error-rate reduces under an anticipated threshold value. Once it’s attained, the DNN 

is trained and is equipped for operation. Figure 2.7 illustrates the high level working 

of training phase of a typical DL algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9.2. Salient Aspects of Deep Learning 
 

Four main reasons of deep learning resurgence are discussed in the following sections. 

 

2.9.2.1. Representation Learning 
 

Representation learning or feature learning is a mechanism which makes a 

system capable of automatically determining the representations required for 

classification or feature recognition [6]. Handcrafting features is excessively time-

consuming, and features are frequently both incomplete and over-quantified. 

Additionally, effort must be given again for every modality task like text, images, 

databases or even language and domain. In contrary, if ML could learn features 

automatically, then the entire process of learning possibly will be automated more 

simply, and various additional tasks could be resolved. DL delivers one means of 

automated feature learning which substitute hand-crafted feature engineering by 

Figure 2.7: Overall working of DL training [39] 
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making a machine capable of both feature learning and using those features for 

performing an explicit task. 

 

2.9.2.2. Distributed Representations 
 

This signifies many-to-many association amongst two kinds of depictions. For 

example, patterns and neurons, where an individual pattern is represented by several 

neurons and individual neurons partakes in the representation of several patterns [7]. 

Many shallow learning models faces the problem of so-called “curse of 

dimensionality.” Since an index vector over a huge data volume is very sparse, hence, 

the models can simply overfit to the training data. The traditional solutions to this kind 

of issue encompass either hand crafted feature engineering or the procedure of very 

simple target functions like linear models. Deep learning technique generally use 

distributed vector representation as an alternative to discrete vector counts which 

makes the models more robust. DL network could learn in an unsupervised way to 

apprehend distributional resemblances and also can be fine-tuned in a supervised 

manner.  

 

2.9.2.3. Learning Multiple Levels of Representations 
 

Deep learning algorithms are particular cases of representation learning with 

the feature that they learn multiple levels of representation. For instance, deep learning 

architectures like convolutional neural networks (CNN) [31] trained on images are 

capable of learning similar levels of representations as human brain does. The 1st layer 

acquires knowledge on simple edges, the 2nd layer learns primeval shapes and the 

higher layer combines all these to produce objects. 

 

2.9.3. Resent Advances 
 

Neural networks (NNs) are around for several decades [32]. Nevertheless, till 

2006, deep NNs were overtaken by shallow architectures. In the same year, though, 

Hinton and Salakhutdinov [33] proposed a unique technique of pre-training the DNNs. 

The concept was based on employing restricted Boltzmann machines for initializing 

the weights of a single layer at a time. This acquisitive technique initialized the weights 

of the fully connected NN which resulted to enhanced local optima [34]. Vincent et al. 
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[35] exhibited that alike effects could be achieved by utilizing auto-encoders. An auto-

encoder is an ANN employed for unsupervised learning.  

Additional causes have lately facilitated deep learning networks to attain state-

of-the-art performance. For instance, accessibility of big datasets, faster computing 

devices like multi-core CPU and GPU computing architectures. A deep learning 

architecture excludes manual feature engineered training data and hence requires an 

enormous size of data. In this era of ‘big data’, various institutions and researchers can 

inexpensively and easily accumulate huge datasets that might be utilized for training 

DL models with many parameters.  

 

2.10. Implementation of DL in IoT Applications  

2.10.1. Smart Homes 

 

Smart homes incorporates a broad scope of IoT applications which could 

upgrade homes' energy utilization and the quality of living of their occupants by giving 

intelligent services. For instance, for collecting information from fridge interior, 

Microsoft and Liebherr are implementing Cortana DL [56]. These analytics and 

forecasts could profit the home to have a smart and efficient electrical power system, 

and with additional peripheral information, could be utilized for forecasting and 

checking health orientation. Due to continually increasing demand of household 

electricity, the capability to regulate and enhance energy competence and forecasting 

the forthcoming need is becoming a requirement for smart homes. Other instances like, 

forecasting electricity load in a smart home forms the basic applications that employs 

diverse DL algorithms [57]. Manic et al. [57] did an energy load analysis for home 

energy ingesting by employing different DL models, namely, CNN, LSTM and LSTM 

Sequence-to-Sequence (S2S) and showed that LSTM S2S performs a better 

forecasting than DL models. 

 

2.10.2. Smart City 

 

Smart city incorporates a few other IoT areas, to be specific, transportation, 

agriculture, energy and so forth.  Nevertheless, smart city deals with heterogeneous 

data that gets generated from diverse areas and leads toward big data. By means of 

deep learning architecture, analysis of big data could yield high quality performance 

[39]. In order to see the usefulness of DL models over IoT environments, Toshiba 
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conjointly with Dell Technologies has lately developed a DL testbed, and used it in a 

Smart Community Center, Kawasaki, Japan, for evaluating and analyzing the gathered 

information [91]. The big data which fuels the testbed were collected from 

construction management, building security and air conditioning. Another significant 

matter for smart city is prediction of patterns of the crowd movement. Song et al. [58] 

established a mechanism built upon DNNs for resolving the issue on a city level. Their 

proposed model is based on 4-layered LSTM RNN employed to learn from human 

mobility (GPS information), joined with modes of transportation like train, car, 

bicycle, and walk). The authors insist that their approach of deep LSTM RNN attains 

better efficiency than shallow LSTMs. Waste supervision and classification of trash is 

one more correlated job that smart cities should exhibit. A vision-based classifications 

by utilizing deep CNNs might be a way to address the job [59]. Amato et al. [60] 

established a decentralized structure for identifying the occupied and the vacant spots 

in a parking lots by means of smart cameras and deep CNNs. Valipour et al. [61] also 

came up with a detection system for vacant parking areas by employing CNN and 

exhibits better results than SVM network. 

 

2.10.3. Energy 

 

Smart grid refers to a power supply network that utilizes digital 

communications technology for detecting and reacting accordingly to the local 

variations in utilization. Predicting the energy sources like wind, solar and other 

natural resources is evolving as a dynamic research area. DLs are progressively 

employed in various applications of smart grid. For instance, Gensler et al. [62] 

inspects the effect of various DL architectures and their evaluation shows that the 

combination of LSTMs (Auto-LSTM) and AEs (Auto Encoder) and generate the best 

outcome compared to other methods of learning. Muranushi et al. [63], proposes a 

web-based LSTM RNN forecasting system for prediction of the solar power. 

 

2.10.4. Intelligent Transportation System  

 

The Intelligent Transportation System or (ITS) refers to the technology of 

detecting, investigation, control and intercommunication advancements to build 

transportation in order to enhance security, portability and productivity. Ma et al. [64] 

proposed a system built on DL architecture that analyses the transportation network 

by utilizing the GPS data as the model input. The proposed model generates a high 
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accuracy of 88%. Y Tian et al. [65] also conveyed the study on short-term traffic flow 

forecast by means of LSTM RNN model that showed enhanced prediction accuracy in 

comparison with other models like support vector machine (SVM), stacked Auto 

Encoders (AEs) and traditional feed forward NN. In [66], ITS data are fed to an IDS 

built using DNN in order to facilitate in-vehicular network communications security. 

Moreover, it inspires the progress of methodologies used for traffic signs recognition. 

For example, technologies like autonomous driving, mobile mapping and driver 

assistance systems require such mechanisms for providing consistent services. Cires 

et al. [67] introduced a DNN based system of traffic sign recognition and stated 

increased accuracy with the methodology. Additionally, self-driving vehicles utilize 

DNNs to execute various jobs, like detecting pedestrians, obstacles, traffic signs etc. 

 

2.10.5. Healthcare and Wellbeing 

 

Internet-of-things in collaboration with deep learning is utilized for serving 

healthcare solutions and prosperity for societies and individuals. For instance, Liu et 

al. [68] introduced a CNN based image recognition system for recognizing images of 

food and their pertinent facts (like portion and types). In healthcare, Pereira et al. [69] 

utilized the concept of handwritten image identification by employing CNNs which 

helps detecting Parkinson’s disease in its initial stages. In [70], DL have been used to 

recognize cardiovascular diseases from mammograms. The study established a twelve-

layer CNN for identifying the presence of breast arterial calcification (BAC). Their 

outcome shows that the precision of the proposed model is parallel to human experts. 

Lipton et al. [71] studied the performance efficiency of LSTM RNN network for 

analyzing and recognizing multivariate time sequence patterns of medical extents in 

intensive care units (ICUs). A study of DL in the field of health informatics is provided 

in [72]. Researchers have also utilized time sequence medical information for 

forecasting and diagnosis of diseases through RNN based architecture.  

 

2.10.6. Agriculture 

 

Disease identification in plants by means of DNN models proved to be an 

effective measures. Sladojevic et al. [73], proposed a disease identification system for 

plants which is built on the cataloging of the leave pictures by using CNN model coded 

by the Caffe framework. Such identification model could be employed as a mobile app 

for the agriculturalists to recognize plant disease by clicking leave images. DL has also 
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been applied in remote sensing for crop and land recognition and gradation [74] [75] 

[76]. Another instance, DL has been used for predicting and detecting in the area of 

automatic farming. Steen et al. [77] introduced a DL based model of deep CNNs to 

detect obstacles in the agricultural land. This approach helps the autonomous 

machineries to operate safe and sound over the field. Furthermore, in automated 

harvesting, detecting the stage of fruit (ripe or raw) is crucial. Sa et al. [78] employed 

a variant of deep CNNs called Region-based CNN for studying the fruit images. 

 

2.10.7. Education 

 

IoT combined with DL are capable of contributing to the effectiveness of the 

current education system. Enhanced reality technology united with mobile devices 

forms potential implicating area for DL techniques. The combined technologies of IoT 

and DL would help to keep students encouraged, studies and trainings to be 

stimulating, and making means of learning to be competent [39]. Additionally, DL 

could be utilized as a customized recommendation unit [79] to endorse more pertinent 

contents to the instructor. The utilization of DL in supplementary areas, like 

summarization of text and translation of natural language, will be beneficial for smart 

education. Yang et al. [80] used a technique for grade prediction of students in MOOCs 

(Massive Open Online Courses). The authors have utilized the clickstream data 

gathered from lecture videos while students were interacting with the videos while 

watching. Those clickstream data were then fed into a DNN model which learns from 

both clickstream data and former performance. Moreover, Piech et al. [81] used LSTM 

and RNN architecture for predicting educators’ answers to quizzes and exercises, 

based on their former actions and communications over MOOCs. Monitoring 

classroom occupancy is one more application studied by Conti et al. [82]. In their 

investigation, the authors introduced twofold approaches intended for estimation of 

density estimation and head detection. Both the proposed approaches are constructed 

on CNN for calculating the student number in a specific classroom. 
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2.10.8. Industry 

 

In industry, cyber-physical systems (CPS) and IoT forms the central essentials 

to advance manufacturing technologies delivering high-accuracy and intelligent 

systems [39]. Luckow et al. [83] investigates a visual inspection by using CNN 

network with AlexNet and GoogLeNet. In this study, various images of vehicles along 

with their explanations are fed to a DL model. The system uses TensorFlow framework 

and shows that the best efficiency acquired is accuracy of 94%. Shao et al. [120] 

employed DNNs in a fault identification system aimed for extracting important 

features by utilizing denoising auto encoder (DAE) and contractive auto encoder 

(CAE) and. In another study, Lee [46] proposed a model in combination with IoT and 

cloud platform for sustenance of error recognition of defect categories in car headlights 

in automobile manufacturing and the outcome established the better efficiency of the 

DBN model over SVM and RBF (Radial Basic Function). In [11], the authors has 

proposed stacked denoising auto-encoders (SdA) for two purposes: one, sensory data 

noise reduction that happened due to electrical and mechanical turbulences. Second, 

for performing classification of faults. They experimented their proposed approach in 

wafer samples of a photolithography process and the reported outcome revealed that 

in noisy situation, the proposed system generates 14% higher accuracy with respect to 

other methods including SVM and K-Nearest Neighbors.  

 

2.10.9. Government 

 

Governments could fetch inordinate potential benefits by utilizing intelligent 

and enhanced connectivity that originates from the merging IoT with DL. For 

occurrence, the prediction and recognition of natural disasters like forest fire, landslide 

etc. and ecofriendly monitoring is of high priority. Optical remote sensing imageries 

were provided as input into a deep AEs model along with softmax classifiers to 

forecast environmental landslides were introduced by Liu et al. [124] in 2016 with a 

reported accuracy of 97.4%, consequently beating SVM and ANN models. Another 

investigation done in [84], employs LSTM RNN for the earthquake prediction by using 

the US Geological Survey website data for the training purpose. Their experiment 

reported 63% accuracy with 1-Dimentional input and 74% accuracy with 2-

Dimentional input. Also, Liu et al. [85] introduced a model based on CNN for extreme 

climate events recognition (like weather fronts, atmospheric rivers and tropical 

cyclones). They fed the system with picture patterns of weather events. The system is 
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implemented in Neon framework with an accuracy of 89%- 99%. Additionally, [86] 

addresses the issue of road damage detection by utilizing DNN architectures which 

gathers its data from crowd-sourcing empowered by IoT devices. The study is 

performed through a deep CNN and evaluations shows a damage identification 

accuracy of 81.4%. 

 

2.10.10. Sport and Entertainment 

 

Sports analytics are drastically evolving. However, DL is very new in this 

sector and very few studies have been conducted using DNNs. In [87], a DL approach 

is proposed for creating an intelligent basketball ground. The system uses SVM for 

choosing the finest camera for real-time propagation and provide basketball energy 

images to a CNN network henceforth delivering correct online score and fascinating 

highlight clips with an accuracy of 94.59%. In another study [89], Wang et al. presents 

an RNN for doing grouping of invasive basketball plays over NBA games which uses 

SportVU3 dataset with 80% accuracy. Kautz et al. [90] examined players’ action 

identification in volleyball. A CNN architecture along with wearable sensor data were 

used in this study and achieved classification accuracy of 83.2%. Group activity 

identification forms another exciting course for sport teams. In [91] Ibrahim et al. 

studied this by employing hierarchical model based on LSTM RNN in volley ball 

team. In their study, to derive the events for every player they constructed a single 

LSTM network, along with a top-level LSTM network to sum-up the discrete models 

for overall team conduct identification. In comparison with the other models, 

introduced hierarchical architecture attained enhanced outcomes. 

 

2.11. Related Works  

 

A recent work by B. A. Tama and K. H. Rhee [4] proposes a DNN methodology 

where instead of employing outdated datasets, like NSL-KDD and KDDCup 99, the 

authors have evaluated the DNN performance over three contemporary IoT related 

benchmark datasets, namely:  GPRS, CIDDS-001 and UNSW-NB15. The accuracy 

measure of the model is tabulated in Table 2.1. The study also reports an occurrence 

of bias results in CIDDS-001 dataset due to data imbalance issue, which is the 

distribution of one class in CDDS-001 dataset is compellingly lower than the 

supplementary class [4]. The study also remains unable to observe the performance 

differences between DNN and other algorithms. In this study, UNSW-NB15 
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benchmark dataset is chosen for evaluating our proposed BLSTM RNN model for 

detecting intrusions in the IoT network.  

 

Table 2.1: Corresponding dataset and reported accuracy 

Dataset Accuracy 

UNSW-NB15 94.04% 

CIDDS-001 99.99% 

GPRS-WEP 82.74% 

GPRS-WPA2 92.48% 

 

 

In recent years, deep learning has developed progressively, and has become 

functional for detecting intrusions and outperforming conventional methods. Studies 

reveals that DL entirely outperforms conventional shallow learning methods. In [12], 

a deep learning method has been used by employing a DNN for flow-based anomaly 

recognition. The outcome reveals that the proposed technique could be used for 

detecting anomalies in software-defined systems. In [13], a deep learning technique 

has been proposed where the authors use a self-taught-learning (STL) algorithm over 

NSL-KDD dataset. When relating the performance with former studies, the approach 

has proved to be more efficient. However, their studies emphasize only on the feature 

reduction capability of DL techniques. Fu et al. [5] introduces a novel technique for 

intrusion detection intended for the IoT systems established upon anomaly extraction. 

In their study, the authors assert that anomalies are detectable by analyzing the patterns 

of the data of the IoT sensor layer, like the temperature, humidity or anything that an 

IoT object sensor could collect and report. The study uses an unsupervised algorithm 

for data-mining for identifying normal patterns. For performance evaluation, Intel Lab 

Project dataset was employed, but no detected accuracy was reported to the designed 

system. Another study conducted by M. Sheikhan et al. [20] claims that RNNs can be 

viewed as reduced-sized neural networks (NNs). The paper introduces a 3-layer RNN 

architecture having 41 input features and 4 intrusion classes as outputs for a misuse-

based intrusion detection system. Nevertheless, the RNN units of layers remain partly 

connected. As a result, the proposed RNNs does not exhibit the capability of DL to 
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produce high dimensional features. Moreover, performance evaluation of the proposed 

approach in terms of binary classification has not been reported.  

With the consistent growth of big data along with the increase in computational 

power, the deep learning technique has become popular rapidly, and is increasingly 

utilized in numerous fields. This thesis work introduces a unique DL to detect 

intrusions over IoT network by employing a bidirectional LSTM (BLSTM) recurrent 

neural network (RNN). Related with former works, we have used the BLSTM-based 

model aimed at binary classification and excluding pre-training. In addition, we have 

used two distinct data sets for training and testing purposes (namely, UNSW-

NB15_training-set.csv and UNSW-NB15_test-set.csv) for evaluating the performance 

of the proposed model. 

 

2.12. Improvement to Existing Identified Research Gaps  

 

There exist several research gaps within the prior related works. Foremost, no 

studies has been conducted using both BLSTM RNN and TensorFlow implementation 

framework in order to detect intrusion in the IoT network. Second, most of the previous 

work has used the traditional RNN that has the exploding and vanishing gradient [15] 

problem, which gets resolved by LSTM RNN. But, LSTM network has a major 

limitation, that, it cannot be trained in both positive and negative time direction [28]. 

As a result, during training phase, the LSTM network needs to search for “optimal-

delay” (another extra parameter needed for training) of the network. Eventually, while 

the delay becomes so big that nearly none of the vital data could be saved, then the NN 

congregates to the probable optimal resolution depending on the prior information 

[28]. Bidirectional LSTM (BLSTM) RNN resolves the problem of optimal delay, since 

the BLSTM architecture propagates the existing data in both forward and backward 

direction in time [28]. We have attended this research gap in our work by proposing a 

novel Bidirectional LSTM RNN architecture for intrusion detection. Third, most of 

the prior works used benchmark dataset like KDD’99, NSL-KDD etc. which remain 

highly criticized. In [20] the authors’ express that the KDD dataset is obsolete and 

endures with data redundancy data which may prompt to partial detection accuracy. In 

[27] the authors insist that the NSL-KDD dataset comprises of redundant occurrences 

and it is not appropriate to be used for the accurate training of NN models. Fourth, a 

very limited amount of work has been done to detect intrusion in the IoT network using 

deep learning technique. This piece of work contributes to the literature of IoT network 

intrusion detection mechanism. This research work uses UNSW-NB15 dataset, which 
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according to the literature forms to be the most recent and effective dataset published 

for intrusion detection research work purpose.  
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Chapter 3  
 

NEURAL NETWORKS 
 

3.1. Artificial Neurons 
 

An artificial neural network (ANN) is a widely used ML architecture inspired 

by the functioning and structure of human cerebrum. Any neural network consists of 

basic computational components termed as neurons. Essentially, neurons take input 

vectors, multiplies the input vectors with their respective weights, then sum up all the 

multiplications, and then employs a non-linear mathematical function termed as 

activation function, which is to compute neuron output. Figure 3.1 illustrates the 

operation of a single neuron. 

 

 

 

 

A neuron output can be calculated mathematically by (1.1), where, Yk denotes 

output of the neuron, f() signifies the activation function, W represents weight of each 

input(s),   represents element-wise multiplication, X represent input vector and b 

stands for the neuron bias. Xi represents the input vectors where, i = 1, 2, ...,, n. The 

input signals are multiplied by corresponding weight Wki where k represents the neuron 

number, i represents the input signal number. Vk represents the net input and is 

Figure 3.1: Working of a single neuron [113] 
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calculated by summing up all the input vectors. Moreover, another input called bias 

(bk) is also feed into the network. The computation of the net input vector Vk is shown 

in (3.1). 

 






n

XWU

i

ikik

0

 

(3.1) 

Where, X0 = 1 and Wk0 = bk. The output of the neuron Yk is calculated by (3.2). 

To perform the computation an activation function  (·) is employed on the net input 

Vk: 

 

 )( kk VY   
(3.2) 

 

3.2. Feed Forward Neural Networks 
 

Feed forward neural network (FFNN) is a multi-layered structure made up of 

many neurons or units. A neuron of a FFNN remains fully connected to each other. 

For instance, in Figure 3.2, each and every neurons of the input layer remains 

connected to each and every neurons of the hidden layer. The connections between 

neurons are referred to as edges. Every edge or connection is associated with respective 

weights. The foremost FFNN layer is termed as the input layer, as input to the network 

is received through this layer. The last layer of the FFNN is termed as the output layer 

since it delivers the network output. Rest of the network layers are conjointly stated as 

hidden layers. FFNN are useful for performing supervised learning tasks [5]. Figure 

3.2 shows a FFNN architecture where each and every neuron remains connected with 

all other subsequent layer neurons. This type of architecture is termed as fully 

connected NN.  

 

 

Figure 3.2: Feed-forward Neural Network [115] 
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3.3. Recurrent Neural Networks  
 

Recurrent Neural Network (RNN) is comprised of several layers with feedback 

loops and is able to propagate past information onward to the present time. An RNN 

consists of loops and these loops allow the information to persist. The hidden layers of 

the RNN act as information storage like computer memory. RNNs form a class of 

powerful DNNs that use its internal memory along with loops for dealing with 

sequence data [47]. Figure 3.3 illustrates an RNN neuron where, xt is the input and ht 

the output. The loop (denoted by the recurring arrow) lets the information to pass from 

one step to the next step of the network. 

 

 

 

 

RNN hidden layers act as a memory unit. Precisely, the RNN output of time 

t−1 effect the output of time t. The RNN neurons are armed with feedback loops which 

yields the present output as the input for the subsequent step. The neurons of an RNN 

could be expressed like an internal memory which preserves the computational 

information from input in the previous step. For training an RNN, a variance of the 

back-propagation algorithm, termed as Back-Propagation-Through-Time (BPTT) is 

employed.  Fundamental component of BPTT algorithm is a procedure called 

unrolling.  Figure 3.4 illustrates the assembly of an RNN and the idea of unrolling. 

RNN can be unfolded in a graph without any cycles as presented in Figure 3.4, where,  

(X(t), X(t+1), …) represents multiple input time steps, (u(t), u(t+1), …) is multiple  

internal state time steps, and (y(t), y(t+1), …) as multiple time steps of outputs. When 

unrolling the RNN structure, and the internal state (u(t)) and the output (y(t)) of the 

prior time step are delivered as inputs to the subsequent time step. 

 

Figure 3.3: An RNN neuron 
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RNN forms a class of powerful DNN that uses its internal memory along with 

loops for dealing with sequence data [48]. The unfolded architecture of RNNs in the 

Figure 3.5 represents the calculation procedure of an RNN unfolded (or unrolled) in 

time.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Unfolded RNN structure with T time steps [48] 

 

In the above figure, during each iteration at time T, the hidden state of the 

hidden layer, ℎT, gets updated depending on the current input XT, and prior hidden state, 

ℎT−1, through the following equation: 

 

 )( 1 hthhtxht bhWXWh h    
(3.3) 

 

Figure 3.4: Unrolling of RNN architecture 
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Where, 𝑊𝑥ℎ represents the input layer to hidden layer weight matrix, 𝑊ℎℎ 

denotes the weight matrix amongst two consecutive hidden states (ℎ𝑡−1 and ℎ𝑡), 𝑏ℎ is 

the bias vector of the hidden layer, and 𝜎ℎ denotes the activation function to generate 

the hidden state. The network output could be calculated as: 

 

 )( ythyyt bhWY   
(3.4) 

  

Where 𝑊ℎ𝑦 denotes hidden layer to output layer weight matrix, 𝑏𝑦 denotes the 

bias vector of the output layer, and 𝜎𝑦 represents the output layer activation function. 

 

3.4. Long Short-Term Memory RNN  
 

Long Short-Term Memory (LSTM) is an extension of RNNs. LSTM employs 

the idea of gates for its units. One major issue with RNNs is that it is unable to learn 

the context information across a prolonged span of time due to the vanishing gradient 

problem, which is, during a long temporal gap (i.e. time from when an input is obtained 

to the time when the input is used to make a prediction). Therefore, RNNs are 

incapable of learning from long-distance dependencies [28]. One answer to the 

problem of vanishing gradient is an LSTM design [28]. It averts the issue of the 

vanishing gradient and thus permits the retention of the elongated period of context 

information. Figure 3.6 shows an LSTM cell or neuron.  

 

 

Since LSTM is an extension of RNN, the only additional component between 

RNN and LSTM architecture is the hidden layer [48] which is also referred as LSTM 

Figure 3.6: LSTM cell [48] 
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cell. In Figure 3.6, at each time reiteration, 𝑡, the LSTM cell has input 𝑥𝑡, and the output 

ℎ𝑡. During the training phase, the LSTM cell also considers the cell input state, 𝑪̃t, the 

cell output state, 𝐶𝑡, and the previous cell output state, 𝐶𝑡−1. The gated structure allows 

LSTM to deal with aforementioned long-distance dependencies [48]. LSTM cell 

comprises of 3 gates, namely: input gate, output gate and forget gate. Figure 3.6 depicts 

the input gate, the output gate and the forget gate are denoted as 𝑖𝑡, 𝑜𝑡 and 𝑓𝑡 

respectively at time 𝑡. All the three gates and the input cell state are denoted by colored 

boxes in Figure 3.6, are calculated by the following equations iterated from t = 1 to T: 

 

 )( 1 ftftfgt bhUXWf    
(3.5) 

 )( 1 ititigt bhUXWi    
(3.6) 

 )( 1 ototogt bXUXWO    
(3.7) 

 )tanh(
~

1 ctctct bhUXWC    
(3.8) 

 

     Where 𝑊𝑓, 𝑊𝑖, 𝑊𝑜, and 𝑊𝐶 denotes the weight matrices which maps the input 

of the hidden layer with the 3 gates and the input cell state, whereas the 𝑈𝑓, 𝑈𝑖, 𝑈𝑜, and 

𝑈𝐶 represents the weight matrices connecting the previous cell output state to the three 

gates and the input cell state. The 𝑏𝑓, 𝑏𝑖, 𝑏𝑜, and 𝑏𝐶 are the bias vectors. The 𝜎𝑔 denotes 

the activation function of the gates, and the tanh denotes the hyperbolic tangent 

function. Based on the results of four above equations, at each time iteration 𝑡, the cell 

output state, 𝐶𝑡, and the layer output, ℎ, can be calculated as follows: 

 

 
ttttt CiCfC

~
** 1   

(3.9) 

 )tanh(* ttt COh   
(3.10) 

 

  
The last output of a LSTM layer would be a vector of all the outputs:  𝒀𝑇 = 

[ℎ𝑇−𝑛,…,ℎ𝑇−1]. 
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3.5. Bi-directional Long Short-Term Memory RNN  
 

The concept of Bi-directional Long Short-Term Memory (BLSTM) originates 

from bidirectional RNN [44] that processes sequence data in both frontward and 

backward directions using two distinct hidden layers. BLSTMs join these hidden 

layers with the same output layer. One inadequacy of traditional RNNs is that they are 

only capable of using the previous context. BRNNs [47] fix this by dispensing data in 

both directions. A BLSTM network computes the forward hidden layer sequence 

output , the output sequence of the backward hidden layer and the output layer y by 

reiterating the forward layer starting t =1 to T, backward hidden layer since t = T to 1, 

and then the final output is upgraded by the following equations:  

 

 
)( 1 hthhthxt bhWXWHh 


   

(3.11) 

 
)( 1 hthhthxt bhWXWHh 


   

(3.12) 

 
ytyhtyht bhWhWy 

 
 

(3.13) 

 

Both the output of the forward and backward layers are calculated by means of 

the standard LSTM equations, Equations (3.5) - (3.10). The BLSTM layer produces 

an output vector, 𝒀𝑇, which is calculated by the equation: 

 

 ),( ttt hhy


  
(3.14) 

 

Where 𝜎 function combines both the output sequences. The 𝜎 function could 

be of four kinds: concatenating, summation, average and multiplication function. 

Incorporating BRNNs with LSTM neurons results a bidirectional LSTM recurrent 

neural network (BLSTM RNN) [45]. The BLSTM RNN is capable of accessing long-

term context data in both the backward and forward directions. The combination of 

both the forward and backward LSTM layers is considered as a single BLSTM layer. 

It has been shown that the bidirectional models are considerably better than regular 

unidirectional models in various domains like phoneme classification and speech 

recognition [48]. Figure 3.7 illustrates a bidirectional LSTM structure with three 

consecutive time steps. 
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A thorough search of the relevant literature yielded no relevant paper which 

employs BLSTM for intrusion detection in IoT network. To fill this gap, a BLSTM 

RNN structure with the capability to deal through both frontward and backward 

dependences is introduced in this study. The BLSTM RNN architecture permits the 

integration of both previous and impending context through bidirectional optimization 

process.  

 

3.6. Training Neural Networks 
 

The implementation of neural network goes over two major stages: Training 

and Testing. During training, the NN is feed with knowledge (data) and the network is 

required to learn from its input data. The learning procedure is performed through an 

optimization (error minimization) process. Optimization algorithms are mathematical 

functions which help to reduce the loss function by fine-tuning the neural network 

parameters. The loss function computes the variance among the expected output and 

the actual output. Hence, minimizing the loss makes the network model generate 

optimal output. The optimization algorithm which is used for training the NNs is 

termed as Gradient Descent. The Gradient descent algorithm calculates the gradients 

or the slopes of the loss function with regard to the NN parameters (biases and 

weights). The technique which is used to calculate the gradients is termed as Back-

Propagation (BP) [116]. The gradient is the amount of the alteration that occurs in the 

loss function due to the variation in the network parameters. Depending on the gradient 

the network parameters are updated by means of a scalar value called learning rate. 

Figure 3.7: Unfolded BLSTM RNN structure with three consecutive time steps [48] 
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This mechanism is performed via iterations by allowing several repetitions over the 

training data. One surpass over the training data is known as an epoch. Since each 

epoch, the parameter values move nearer to the optimal value resulting in the loss 

function convergence. For a large dataset computing the loss and gradient for the full 

dataset might be computationally infeasible. Hence, a variance of the gradient descent 

known as Stochastic Gradient Descent (SGD) is widely in use. In SGD algorithm, the 

total input is distributed into smaller subsets of input termed as batches. NN parameters 

are then updated by computing the loss function of single batch at a time. There are 

several other popular variants, namely: RMSprop, AdaGrad and Adam [117].  

Training the NN is often associated with the problem of overfitting, which is, 

when the network is characterized with high accuracy over the training-set but 

generates poor accuracy when evaluated on a new test data. Several counter measures 

can be applied for preventing overfitting. One is Early-Stopping, where the loss 

function of a validation set (a small sub-set of training set) is calculated after each 

epoch. If the value of the loss function over validation set starts increasing, despite the 

decreasing loss of the training set, it could be a sign of overfitting. In that case the 

training should be stopped. Another technique is dropout regularization, which is 

frequently used in deep learning where a certain ratio of neural network connections 

are eliminated randomly over each epoch. The network weights and biases gets 

updated by the training algorithm like Back-Propagation (BP), Back-Propagation-

Through-Time (BPTT) etc. Parameters like dropout, decay, batch size, learning rate 

etc. are the optimization algorithm parameters which are generally determined by the 

researcher over trial-and-error. All these parameters are collectively called as hyper-

parameters. 

 

3.7. Activation Function 
 

Neurons are the building blocks an ANN. Neurons take inputs from the 

preceding neurons, multiply the input values with weights, generate a sum of products, 

and pass the summation through an activation function to generate the final output 

(3.16). Mathematical illustration of the neuron is presented in (3.15).  

 

 

   biasweightinputY )(*)(  
(3.15) 
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)(YfOutput   

 

(3.16) 

 

Firing a neuron actually means activating it. The similarity between biological 

neurons and artificial neurons is illustrated in Figure 3.8.  

 

 

 

                                       Figure 3.8: Biological neuron and artificial neuron [122] 

 

In the above Figure 3.8., the dendrites carry the electrical signals to the neuron 

body and act as the neuron inputs. Similarly, in an artificial neuron, the inputs in1, 

in2,…, inn resembles the dendrites. The activation function resembles the cell body, 

and the propagated output resembles biological axon.  The artificial neurons imitates 

a similar functioning logic as that of a biological neuron. 

 

3.7.1. Step Function  

 

It is a NN activation function which receives f(x) as input. Figure 3.9 illustrates 

the Step function diagram, where X represents the threshold value. If f(x) exceeds a 

definite given value (called threshold), the step function output is fired (i.e. activated), 

else the output of the Step function remains non-activated [123].  
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Figure 3.9: Step function [123] 

 

There are several step functions that are widely used in machine learning. For 

instance: Sigmoid function, Tanh (hyperbolic tangent) function and Rectified Linear 

Unit (ReLU) function. Among these, ReLU is the most popular step function in the 

area of RNN. A brief discussion of ReLU step function is provided in the following 

section.  

 

3.7.1.1. Rectified Linear Unit (ReLU)   

 

This function is the most broadly employed solution for vanishing gradient 

issue of LSTM RNN. The mathematical representation is shown in (3.17). 

 

 ),0max()( xxfY   (3.17) 

 

When the input remains smaller than 0, then output remains 0. When the input 

is greater than 0, then the input and output becomes equivalent. The ReLU function is 

more efficient for a binary classification problem, and we employ it as hidden layer 

activation functions in our proposed model.  

 

3.8. Deep Learning 
 

Neural network layers are comprised of neurons. The number of units or 

neurons that constitute the input layer (i.e. the first layer of the network) would be 

equivalent to the amount of data-set features [53], it’s not mandatory though. The 

output layer should consist of only one neuron along with an activation function while 

solving a binary classification problem [53]. The third type of layer that neural 

networks have are called hidden layers, which is placed in the middle of the input and 

output layer. The quantity of hidden layers determines the depth of the NN. A NN with 
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lots of hidden layers are termed as Deep Neural Network (DNN) and Deep Learning 

(DL) represents the learning algorithm of the DNN. Salient features of DL is that it 

can learn the features by itself, thus there is no need of hand crafting the features. This 

DL property facilitates the learning procedure and makes DNN more efficient and 

robust in comparison to the shallow learning [53]. 

 

3.9. Dropout Regularization 
 

Deep neural network (DNN) models have numerous parameters and have the 

ability to model highly composite functions. This capacity is a boon and a bane. Such 

prototypes would frequently overfit on the training-set and would drop accuracy and 

generalizability over the test-set [56]. Regularization in ANN terminology speaks of 

the procedure of regulating neural network layers for preventing the over-fitting. 

Dropout (also known as dropout probability or dropout rate) is the most widely utilized 

regularization technique in DL. During the learning process the hidden layer(s) 

neurons are selected randomly and are discarded depending on the dropout rate. 

Precisely, randomly selected neurons are dropped-out i.e. dropped out neurons could 

not update weights any more, thus helping the learning process to evade the problem 

of overfitting [55].  

 

3.10. Deep Learning Loss Function 
 

In a NN, the corresponding neuron weights are tuned via back-propagation 

algorithm. Mathematical representation of BP is shown in (3.18). 
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(3.18) 

 

Where, Wt represents the weight change of a specific edge at time t. Wt-1 

represents the weight change of the prior iteration. The learning rate is denoted by . 

And ∆𝑤𝑡 signifies the total weight difference at time t. The ∆𝑤𝑡  is computed by 

employing a loss function. There are several loss functions that are used to calculate 

the loss. In the following sections some of the popular loss functions are discussed. 
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3.10.1. Mean Squared Error   
 

MSE or Mean Squared Error loss function remains one of the most widely 

used in the area of DL. The mathematical function of MSE is presented in (3.19).  
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Where, Yi forms the learning procedure output, iŶ  is the expected output and n 

is number of output classes. 

 

3.10.2. Cross Entropy Loss  
 

Also termed as CEL, is one more widely used loss function which is frequently 

chosen for regression or classification issues. Mathematical representation of CEL is 

presented in (3.20).  
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Where, i denotes the amount of training instances, iŶ  is the expected outcome 

and Yi is the learning output [56]. CEL and MSE are extensively employed in 

classification problems. 

 

3.11. Deep Neural Network Implementation Frameworks 
 

Use of deep learning architectures has grown fast, and this growth has been 

sustained by various deep learning frameworks in current years. Every DL framework 

has their own strength and weakness depending on the optimization algorithms, DL 

architectures, and convenience of deployment and development [92]. Many of these 

DL frameworks has been widely used in research work for proficient implementation 

of DNNs. In the subsequent sections some of the frameworks are reviewed. 
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3.11.1. H2O  
 

H2O framework supports interfaces for Java, JSON, Python, 

CoffeeScript/JavaScript, R and Python [93]. It is capable of executing in several 

different modes like on Hadoop, on Spark Cluster and standalone mode. H2O is 

capable of accommodating both ML algorithms and DL algorithm. 

 

3.11.2. Torch  

 

Torch provides an easy to access platform for ML comprising a variety of deep 

learning algorithms which facilitates easy deployment of deep neural network models 

[95]. It is an open source light weight DL framework based on Lua programming 

language and supports faster training of the ML models. It also supports ML model 

development for both GPUs and CPUs, and provides efficient parallelization packages 

in order to train the DNNs.  

 

3.11.3. TensorFlow  
 

TensorFlow was originally intended for Google Brain project. It is employed 

by various Google merchandises like Google Translate, Google Search, Google Maps 

and YouTube. It is an open source library for ML implementation which uses several 

types of DNNs [94]. Tensorflow implements graph representations for building NN 

models. TensorFlow also comes with a visualization package called TensorBoard, 

where, NN models and their learning procedure could be observed.  

 

3.11.4. Caffe  
 

Caffe is a C++ based DL algorithm which supports CUDA for GPU 

computation. Caffe is open source and also supports Matlab and Python interfaces.  

Model representation and implementation are separated in Caffe. It defines models by 

configuration rather than hard coding in the source code, which in turn makes the 

switching between the platforms possible (for example, GPU to CPU or other mobile 

devices) [97].  
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3.11.5. Theano  
 

It is a competent ML framework based on Python programming language for 

that supports GPU and CPU compiling. Theano employs graph representations and 

utilizes the CUDA library for code optimization on GPUs. It is an open source ML 

framework that permits parallelism on CPUs. Several wrapper libraries like keras, 

Pylearn2 and Lasagne convey simpler programming interface over Theano [96]. 

 

3.11.6. Neon  

 

Neon is a Python-based open source DL framework that exhibits high 

efficiency for contemporary DNNs like AlexNet, GoogleNet and VGG. It supports the 

development of various widely used NNs, like AEs, RNNs, CNNs and LSTMs [98]. 

Neon is capable of operating on both GPUs and CPUs and also offers easy shifting of 

the backend platform of hardware. A study done by Bahrampour et al. [99] shows 

comparative investigation of the previously mentioned frameworks. In spite of the fact 

that the productivity of each framework varies depending upon situations, Theano and 

Torch showed better overall performance. A summary of comparison of several DL 

implementation frameworks are presented in Table 3.1. 

 

Table 3.1: Assessment of different DL implementation framework [39]. 

Framework Core 

Language 

Interface Pros Cons 

TensorFlow C++ C, Java, 

C++, 

Python 

and Go 

• Fast on LSTM 

training procedure  

• Supports 

visualizing 

networks 

• Slower training 

process related to 

other Python-

based frameworks 

H2O Java R, 

Python, 

Scala, 

REST 

API 

• Extensive range 

of interfaces 

• Number of 

supported models 

are restricted. 

 • Nonflexible 

Torch Lua C++ and 

C 

• Supports several 

models  

• Upright 

documentation  

• Learning a new 

programing 

language 
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• Comprehensive 

error debugging  

Theano Python Python • Several models 

are supported  

• Rapid training of 

LSTMs over 

GPUs 

 Various 

low level 

APIs 

Neon  Python Python • Quick training 

time  

• Platform 

switching is easy 

• Provisions 

modern 

architectures like 

GAN 

• Not supportive 

for CPU multi-

threading 

Deeplearning4j  Java Python, 

Scala, 

Clojure 

• Models get 

imported from 

leading 

frameworks (such 

as Theano, Caffe, 

Torch and 

TensorFlow)  

• Provides 

visualization 

interface. 

• Extended 

training time 

related to other 

tools 

Caffe C++  Python, 

Matlab 

• Offers a bunch 

of models as 

reference 

• Elementary 

platform swapping  

• Excellent for 

CNN 

 Not very 

good for 

RNN 
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3.12. Training Dataset and Feature Identification: UNSW-NB15 
 

Machine learning (ML) and the techniques of data mining are extensively 

utilized for advance detection of intrusion in contemporary years which makes it 

probable to automate intrusion detections in IoT network. One of the major research 

difficulties that IoT intrusion detection research face is the inaccessibility of a 

comprehensive network-based dataset which mirrors modern network traffic 

environment [23]. Several current researches exhibited that for the present network 

threat scenario, those datasets do not conclusively reflect modern network traffic and 

contemporary low footprint attacks. In [20], Bajaj and Arora express that the KDD 

dataset is obsolete, recommending that the NSL-KDD dataset is most appropriate for 

analyzing current networks. They also stress that, KDD 99 dataset endures with 

redundant information that leads to biased outcome of intrusion detection. This results 

in inappropriate feature classification. They also claim that intrusion detection studies 

would likely generate results that do not characterize the real network scenarios due to 

the use of KDD 99 datasets [20]. However, the absence of alternatives is the reason 

the dataset is still being used. However, answering the unobtainability of network 

benchmark dataset encounters, in the year 2015, Moustafa and Slay [23] came up with 

their studies and produced UNSW-NB15 dataset. The authors claim that the introduced 

dataset comprises a fusion of the contemporary real network traffic and synthesized 

threat actions. The authors castigated that NSL-KDD dataset and KDD’99 dataset 

don’t characterize the up-to-date interventions in IDS and presented a comprehensive 

and all-inclusive dataset called the UNSWNB15. This dataset encompassed several 

features from KDD’99 dataset [24]. They further inspected the features of UNSW-

NB15 dataset and KDD’99 dataset and the results attained exhibited that the actual 

KDD’99 dataset attributes are less effective compared to UNSW-NB15 features. The 

new UNSW-NB15 intrusion dataset that includes diverse attributes or features 

including those in the KDD’99 dataset. This newly generated UNSW-NB15 intrusion 

dataset forms the most up-to-date dataset, published in 2015 to facilitate intrusion 

detection research works.  

Another challenge that this area of research face is obtaining the labeled input 

dataset for the purpose of intrusion detection in IoT [5]. Fu et al. [5] recognizes out 

this difficulty that majority of the independent researchers face in the field of IoT 

security. For overcoming the challenge, UNSW-NB15 dataset have been employed in 

this research work. Moustafa and Slay (in 2015) [23] suggested that the NSL-KDD 

dataset and KDD‘99 dataset did not characterize the up-to-date features for intrusion 
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detection, and presented a comprehensive and all-inclusive dataset called the 

UNSWNB15. This dataset encompassed several features from KDD‘99 dataset. In [9], 

they further analyzed the features of the UNSW-NB15 and KDD‘99 dataset. Results 

demonstrated that actual KDD‘99 dataset features were less representative as 

compared to the features of UNSW-NB15 intrusion dataset. The UNSW-NB15 dataset 

contains 45 features [23]. The dataset is further split into separate training and testing 

set containing all the current attack types. T. Janarthanan and S. Zargari [26] performed 

an extensive study on the UNSW-NB15 dataset for extraction of most competent 

features and thus proposed a feature subset which dramatically increased the intrusion 

detection efficiency. In this thesis, the dataset subset in the file UNSW-NB15_training-

set.csv will used for training the proposed model, while the UNSW_NB15_test-set.csv 

will be utilized for testing the proposed model. Both the dataset files can be obtained 

from: https://www.unsw.adfa.edu.au/australian-centre-for-cyber-

security/cybersecurity/ADFA-NB15-Datasets/ 

The data set file UNSW-NB15_training-set.csv contains 175,341 records for 

training, while the test set file UNSW-NB15_testing-set.csv contains 82,332 records. 

the UNSW-NB15 dataset has 9 attack types in total, out of which 5 types are often 

present in IoT attacks (Analysis, Backdoor, Denial-of-Service, Worms, and 

Reconnaissance) [118][119]. Hence, we extracted only these 5 types of attack samples 

along with the 'normal' samples to prepare our training-set. In [4], the authors have 

used UNSW-NB15 dataset for conducting IoT research because unlike previous 

benchmark datasets, UNSW-NB15 exhibits contemporary attack patterns and modern 

normal traffic patterns. Moreover, since UNSW-NB15 has separate training-set and 

testing-set, data distribution remains different [4]. Again, in [31], the authors points 

out that: “It encompasses realistic normal traffic behavior and combines it with the 

synthesized up to date attack instances”. Also, [35] points out that previous benchmark 

data sets like KDD‘99 and NSL-KDD could not meet the current network security 

research needs as they does not comprehend the present-day network security 

circumstances and the latest attack features.  

The UNSW-NB15 data set have been chosen for this research purpose as it 

covers modern attack patterns, consists of modern normal traffic patterns, and contains 

only two classes (“attack” and “normal”). Since we are performing binary 

classification task, this class distribution facilitates the approach that has been 

proposed. Secondly, UNSW-NB15 forms a comprehensive data set that presents 5 

types of IoT attacks. Thirdly, UNSW-NB15 is a sequential dataset, which is very 

appropriate for training recurrent neural networks. 
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3.13. Dataset Format Conversion 
 

The training set is named as NSW-NB15_training-set.csv. The training set has  

9 types of attack, out of which 5 types of attack are often present in IoT attacks 

[118][119]. In order to make the dataset suitable for this research work, samples of 

only those 5 attack types are extracted. The UNSW-NB15 training-set has 45 features 

in total. For this research purpose, the attribute sub-set proposed by [9], namely, 

service, sbytes, sttl, smean, ct_dst_sport_ltm are considered as it reduces the problem 

of overfitting, reduces training time and improves the accuracy [9].  Hence, the 

training-set which is used for this research work consists of 5 attack types and 5 

features. A total of 5450 samples of data are randomly selected from UNSW-

NB15_training-set.csv and placed it in a new .csv Microsoft Excel file named 

UNSW_NB15_training-set_5450.csv. The approach of Fu et al. [5] is followed by 

manually manipulating the training dataset, where, the authors has followed the 

approach of manually adding some abnormal samples within the dataset for making 

the dataset fit for their research purpose. It is the advantage of the approach that the 

input dataset would be appropriate for intrusion detection, which would fit the goal of 

the research. Moreover, the approach helps in managing the issue of procuring labeled 

intrusion datasets at a high cost. Here, the approach of manual manipulation is 

followed and the above mentioned 5 features (service, sbytes, sttl, smean, 

ct_dst_sport_ltm) along with 5 attack types (Analysis, Backdoor, DoS, 

Reconnaissance and Worms) are extracted manually. Thus, the resulting training-set 

(UNSW_NB15_training-set_5450.csv) consists of 5 types of attacks, 5 features and 

two class labels: “Attack” and “Normal”. Table 3.2 shows the resulting data-set 

structure of the training-set. 

 

 
Table 3.2: Data-set structure after extracting the features manually 

service sbytes sttl smean ct_dst_sport_ltm attack_cat label 

- 4238 31 59 1 Normal 0 

- 3752 31 208 1 Normal 0 

- 1280 254 52 1 DoS 1 

smtp 37310 31 718 1 Normal 0 

- 168 254 84 1 Reconnaissance 1 

 

 

Table 3.2 shows five rows of the dataset after format conversion. First five 

columns represent the five selected features proposed by [9] and their corresponding 
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values. Column six (attack_cat) shows the category of attack including normal 

samples, and the last column shows the dataset label, where, value 0 is equivalent to 

normal samples and value 1 represents attack samples. 
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Chapter 4  
 

RESEARCH METHODOLOGY 
 

4.1. Introduction 
 

This chapter discusses the research methodology of this project. It comprises 

of the description of the data preprocessing methodology and implementation 

methodology. This chapter also describes the methods we have followed to develop 

our proposed BLSTM RNN classification model. This chapter also defines the 

evaluation criteria, i.e. the conditions by which the model’s detection accuracy in IoT 

could be measured. 

 

4.2. Model Design Methodology 
 

The proposed model aims to detect intrusions at the transport layer of the IoT 

architecture. In order to detect intrusions in the data at the IoT transport layer, a process 

design is required which would accept IoT data as input, perform the processing and 

generate a two-fold classification: “attack” or “normal”. A high level model design 

view is shown in Figure 4.1. 

 

 

Figure 4.1: Intrusion Detection Process (IDP) – high level view 

 

The Intrusion Detection Process (IDP) is responsible for the intrusion 

classification task. It consists of three stages. Figure 4.2 illustrates IDP in further 

depths. 
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1. Preprocessing Input Data: This phase deals with the conversion of input data 

in an acceptable data structure permitted by the simulation framework. 

2. Training: This phase includes fitting the NN model with the training data for 

classification.  

3. Detection: In this stage the trained NN model performs the detection of 

intrusions. 

 

 

 

 

 

In Figure 4.2 above, during the preprocessing stage the training-set data 

samples are encoded and normalized and fit into a data structure compatible to the 

Figure 4.2: IDP Flowchart 
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TensorFlow framework. After preprocessing, the whole dataset will be divided into 

two subsets: Training subset and validation subset. The former one, which is the 

training subset is used for training the BLSTM RNN network, and the validation subset 

is used for validating the already trained network. After the completion of the 

validation process a separate testing dataset is used for testing the model classification 

accuracy and other performance measures. 

 

4.3. Implementation Methodology 

4.3.1. Keras Library 
 

In this thesis, Python programming language and Keras library will be used for 

the implementation purpose. Keras is a neural network library which is open source 

and offers a high-level Application Programmer Interface (API) for implementing 

DNNs. Keras executes atop several other DL frameworks such as TensorFlow1 and 

Theano2. In this research work, we will be using Keras atop TensorFlow. Keras is 

chosen as Keras API enables rapid prototyping of neural network models in research. 

Keras also permits modular configuration of NNs, i.e. it allows to combine parameters 

like activation functions, loss functions and optimizers. Moreover, the Keras API is 

easy to learn and use, and has the added advantage of easily porting models between 

frameworks. Since Keras is self-contained, it can be used without having to interact 

with the back-end NN framework, which is TensorFlow in our case. This approach 

minimizes the complication and need for programming the back-end framework and 

enables fast experimentation. We have chosen Keras, primarily, for the following 

advantages: 

 

 Better user experience for deep learning algorithms: The Keras API is user 

friendly. The API is well designed, object oriented, and flexible. Researchers can 

define new deep learning models without needing to work with potentially 

complex back ends, resulting in simpler and leaner codes [40]. 

 Persistent Python integration: Keras is a native Python package, which allows easy 

access to the entire Python data science ecosystem. For example, the Python Scikit-

learn API can also use Keras models [40].  

                                                           
1 https://sheffieldml.github.io/GPyOpt/ 

 
2 http://deeplearning.net/software/theano/ 
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 Portability: Keras allows researchers to port from Tensorflow back-ends to other 

back-ends like Theano. In addition, Keras makes many learning resources, 

documentation, and code samples freely available [40]. 

 We have used Keras library as it takes into account simple and quick prototyping 

through modularity, extensibility and user friendliness extensibility [40]. 

 

4.4. Evaluation Methodology 
 

To characterize the efficiency and detection accuracy of the proposed model, 

confusion matrix would be utilized. The confusion matrix is a 2-dimensional matrix 

representing the correlation amongst the detected and actual values as shown in Figure 

4.3. True Positive (TP) specifies the count of anomalous or unusual samples that are 

accurately identified by the model. False Positive (FP) signifies the count of samples 

that are labeled as normal in the dataset but are recognized as anomalies by the model. 

True negative (TN) signifies the amount of normal samples that are detected as normal 

by the system. False Negative (FN) refers to the amount of attack samples which have 

been labeled as normal by the model. 

 

 

                    Figure 4.3: Confusion Matrix. 

 

The overall accuracy of the model, could be precisely defined as – how 

frequently the model is correct. The overall accuracy of the model is computed by 

(4.1): 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑋
 

4.1 

 

 

Where, X denotes total number of samples present in the input dataset. 
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The model’s misclassification rate could be defined as – how frequent the 

model is wrong. Misclassification rate is the percentage of wrong detections and can 

be calculated by using the formulae in (4.2): 

 

 

 𝑚𝑖𝑠𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =  
𝐹𝑃 + 𝐹𝑁

𝑋
 

4.2 

 

 

False Positive Rate (FPR), calculated by (4.3), is the percentage at which the 

system incorrectly classifies normal samples as anomaly: 

 

 

 

NormalX

FP
FPR   

 

4.3 

Where, XNormal is the number of actual normal samples in X. 

 

Other parameters for evaluating the proposed model includes recall, precision, 

and f1-score values Precision is calculated as the ratio of correct positive detections to 

the total actual positive detections, as shown in (4.4): 

 
 

FPTP

TP
precision


  

4.4  

 

Recall is the ratio of correct positive detections to the number of actual 

abnormal samples, as presented in (4.5):  

 
 

FNTP

TP
recall


  

4.5  

  

In (4.6), F1-Score denotes the harmonic mean of recall and precision. F1-Score 

is calculated by the weighted average of precision and recall by taking both the FP and 

FN into account. 

 
 

precisionrecall

precisionrecall
scoref


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)*(2
1  

4.6  
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These metrics are employed to evaluate the proposed model in the testing phase 

of the model simulations. 

 

4.5. Hardware and Software Used  
 

Google’s TensorFlow framework will be used to perform the neural network 

experiments. A powerful python library called Keras will be used to build and 

implement our proposed BLSTM RNN model. The experiments are conducted in the 

below mentioned environment:  

 

CPU: Intel ® Core ™ i7-7500U CPU @ 2.70 GHz  

RAM: 16GB  

OS: Windows 10  

Programming Language: Python  

Libraries used: numpy, scikit-learn, keras, pandas, and Tensorflow. 
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Chapter 5  
 

ARCHITECTURE & IMPLEMENTATION 
 

The model architecture is discussed in this chapter, along with the 

implementation of the proposed BLSTM RNN intrusion detection model. The 

proposed model would be implemented through Python programming language and 

Tensorflow as the back-end implementation framework. Keras, the neural network 

library written in Python is used, which operates atop the Tensorflow framework. The 

use of Keras makes the implementation process scalable, fast and straightforward. 

Several other libraries are also utilized, namely: Pandas and NumPy. The model will 

be implemented in Spyder (a scientific interactive development environment for 

Python language) using the Tensorflow library. The whole implementation process is 

divided into three major phases: data pre-processing phase, model training phase and 

lastly, model testing phase. This chapter is organized as: Section 5.1 explains the 

architecture of the proposed model. In Section 5.2 programming language and libraries 

used in implementing the model is discussed. It is followed by the details of 

implementation in section 5.3. 

 

5.1. System Architecture 
 

As depicted in the Figure 5.1 below, the proposed classifier is a layered 

BLSTM RNN architecture with one input layer, three hidden layers which are densely 

connected, and one output layer. The input layer comprises of five BLSTM units. The 

first, second and third hidden layer of the proposed architecture has 220,240, and 260 

BLSTM units respectively, and the dense output layer consists of 1 neuron. The model 

will employ Adam as network optimizer with a decay of 0.99, a learning rate of .05, 

and a batch size of 132. The model will be iterated for 100 epochs. To avoid the model 

to overfit the training data because of excessive training epochs, the dropout 

regularization technique have been used (mentioned in Section 3.9). Other hyper-

parameters of the proposed architecture is shown in Table 5.1. 
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Figure 5.1: System Architecture 

 

Table 5.1: Design parameters of the proposed model 

Epoch 100 

Hidden Layers 3 

Activation function Sigmoid 

Optimizer Adam 

Classification engine binary_crossentropy 

Learning Rate 0.001 

Class size 2 

One hot encoder Yes 

Weights Random 

Biases Random 

 
 

5.2. Technical Knowhow – Programming Language, Development 

Environment, Backend Framework and Libraries 
 

The Python programming language have been used for implementation 

purpose, as Python provides superior quality data science libraries with expedient 

development environment: Spyder - which is a scientific interactive development 

environment and is great for easy and fast visualization. It has many integrated features 

that facilitates RNN implementation, and it is super easy to install. Spyder provides 
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many advanced Graphical User Interface (GUI) functionalities that assist for RNN 

implementation. For instance, the “Variable Explorer” GUI helps to visualize the 

variables (data and values) used in the implementation. We have used this functionality 

to visualize and analyze the dataset values, confusion matrix threshold values, 

prediction metrics, etc. Moreover, it facilitates the running and debugging of the 

python code through syntax coloring and breakpoints. Spyder IDE also supports 

parallel-run, i.e., multiple neural networks can be trained and/or tested simultaneously. 

While conducting our experiment, this feature have been used to train and test several 

RNNs simultaneously. Spyder IDE integrates the essentials libraries for developing 

RNN, like, NumPy, SciPy and Matplotlib.  

For implementing the BLSTM RNN, the high level neural network library 

called Keras [116] have been employed. The Keras Sequential class is utilized for 

instantiating the RNN object. Other Keras classes like LSTM and Bidirectional ia being 

used for implementing the proposed BLSTM model. Dropout is another class that 

belongs to Keras library which have been used for preventing network overfitting.  In 

our implementation, we use the Google TensorFlow as backend neural network 

framework. For manipulating the matrices effectively, the NumPy and Pandas [117] 

libraries are employed. NumPy is primarily used to create the Tensorflow data 

structure. NumPy also allows to use much less memory for matrices than the default 

python lists, and it also makes the matrix operations much more efficient. Pandas is 

built on top of NumPy and it provides higher level interface for manipulating datasets 

with named rows and columns (the input datasets are required to be Pandas 

dataframes). We have used Pandas library to import the values from training-set and 

test-set (which are .csv files) and store them as data frames. For measuring the 

performance of the detection system, some helper functions have been used from the 

library sklearn [115] namely: confusion_matrix and classification_report.  

 

5.3. Code Structure 
 

Since python is an object oriented programming language (OOP), objects 

(classes) have been employed to implement the functionality of the layers described in 

section 5.1. Figure 5.2 below depicts the interaction among the classes and their 

respective methods. The build() method of the IDS class instantiates the other four 

classes (Data class, Classifier class, FitModel class and Detection class), so that they 

can be later used in the method execute(). The methods are called in the order as the 
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arrows suggest. The ‘param’ signifies the function parameter. X_train and Y_train  are 

the training-set matrix. X_test is the test-set matrix.  

 

 

 

Figure 5.2: Scheme of Implementation. 

 

As in Figure 5.2, five different classes have been developed, i.e., IDS, Data, 

Classifier, FitModel, and Detection, in order to implement our system architecture. 

Table 5.2 summarizes functions of all the used classes. In the following sections, the 

classes and their respective methods are described in detail. 
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Table 5.2: Classes and their respective functions 

Class 

Name 

Description 

IDS The IDS class is the parent class which instantiates and encapsulates 

other four classes and their respective methods. 

Data The Data class deals with the data preprocessing mechanism. 

Classifier This class builds the code for the BLSTM RNN architecture. 

FitModel This class is responsible for two tasks: The first task is to compile our 

model, and the second task is to train the model with the preprocessed 

data produced from the Data class. 

Detection This class performs the intrusion detection task and generates the 

evaluation metrics. 

  

5.3.1. IDS Class  
 

The IDS class is the parent class which encapsulates rest of the four functioning 

classes and respective methods. It has two methods: build() and execute().  The build() 

method is responsible for instantiating all the other four classes with their respective 

methods. The execute() method just reuses the previously instantiated classes with a 

separate set of arguments. The two green branches in Figure 5.2 (above) represents the 

reuse functionality and the param represents the arguments. In the first green line 

param=test-set, which means the Data class is re-used by providing test-set as new 

argument. Similarly, the second green line (where param=X_test) signifies that the 

Detection class is re-used with X_test as argument. X_test has been discussed in detail 

in Section 5.3.2.1.3.  

 

5.3.2. Data Class  
 

The Data class deals with the data preprocessing mechanism and consists of 

only one method called preprocess().The preprocess() method deals with data 

preprocessing and consists of a four sub-functions, including importDataset(), 

normalizeData(), dataStructure() and reshape(). Details of the preprocess() method 

and its sub-functions are described in the following sections.  
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5.3.2.1. preprocess Method 

 

The preprocess method takes the dataset (as a .csv file) as input parameter and 

reconstructs the data samples into a TensorFlow neural network compatible structure 

that can be used for training and testing purpose. The preprocess() method is being 

called twice: in the first time, it is called by the build() method in the IDS class for 

processing the training-set and in the second time by the execute() method in the IDS 

class for processing the test-set. In the first instance, the parameter passed to the 

preprocess() method is the 'UNSW_NB15_training-set_5000.csv' file which contains 

the training dataset, and in the second instance the 'UNSW_NB15_testing-set.csv' file, 

which contains the testing dataset. The preprocess() method encapsulates 4 sub-

functions for performing the data pre-processing task. The processed files are returned 

to the main IDS classes and are used in the training and testing phases, respectively. 

The details of the sub-functions of the preprocess() method are presented in the 

following sections. 

 

5.3.2.1.1. importDataset Method  
 

This method imports the training-set for training the neural network. The 

training-set is imported as Pandas data-frame (a 2-dimensional labeled data structure). 

This is because, training a neural network requires a NumPy array format; and to 

generate a NumPy array out of the .csv file format, Pandas data-frame is essential.  The 

read_csv method from Pandas library is used in order to import the training-set as 

data-frame format. Figure 5.3 below is a snapshot of the Spyder IDE ‘Variable 

Explorer’ showing the structure of the data-frame format. While importing data it’s 

important to note that, it is necessary not only to select the exact columns (which are 

service, sbytes, sttl, smean, ct_dst_sport_ltm), but also to convert them into an array 

of numbers, because only numbers can be the input of neural networks. The data-frame 

is named as dataset_train. Below is the line of python statements which import the 

training set from a .csv file and convert it to a data-frame. 
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In (I), first the Pandas library class is imported with pd as its object. Then 

pd.read_csv (where pd is an object of the Pandas class and read_csv is an inbuilt 

method from Pandas class) is employed to read the training set and import the values 

as data frame and store them in dataset_train.  

 

Figure 5.3: A view of the training-set as data-frame format taken from Spyder IDE  

 

Next, the columns from the training-set are selected and stored as a NumPy 

array by (II):  

 

 

In (II), a new NumPy array variable called training_set is introduced. This 

training_set variable contains the training samples from the dataset for training our 

proposed BLSTM RNN. To obtain the relevant training samples, relevant columns 

 import Pandas as pd 

dataset_train = pd.read_csv('UNSW_NB15_training-set_5000.csv') 

 

I 

 training_set = dataset_train.iloc[:, [3,7,10,27,35]].values II 
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need to be selected from the dataset. To do that, we have used the iloc() method to get 

the right index of the columns we want. The data-frame (dataset_train) and the iloc() 

method is used to specify the column numbers that we want. Essentially, the columns 

pointed to by these column numbers contain the features that we intend to select. The 

UNSW_NB15_training-set_5451.csv file (i.e. the training set) consists of 45 features 

in total (i.e. 44 columns, since index number of the Pandas dataframe starts from zero, 

hence 45 features is projected as 0 to 44 columns in the dataframe). For this research 

purpose, we have selected the feature sub-set proposed by [9] (discussed in Section 

3.13). These 5 features are located in the 4th, 8th, 11th, 28th and 36th columns in the 

original dataset. The index of the iloc() method (3,7,10,27,35) are actually the 

dataframe column index of those features. As we have discussed before that the index 

number of the dataframe starts from zero, hence column 1 in the original dataset is 

index 0 in iloc() method, column 4 is index 3, column 8 is index 7, so on and so forth. 

Since we have 5 features and 5000 training samples, hence, the training_set consists 

of 5 columns and 5000 rows where each row corresponds to a sample.  

 

5.3.2.1.2. normalizeData Method  
 

This sub-function deals with the data normalization. The input of this sub-

function is the output of the importDataset() method (dataset_train). Normalization 

refers to rescaling real numbers by the use of the formulae in (5.1) 

 

 

 
𝑋𝑛𝑜𝑟 =

𝑋 − min (𝑋)

max(𝑋) − min (𝑋)
 

(5.1) 

 
 

In (5.1), X refers to the value of each data sample. Xnor is the normalized value, 

min(X) is the minimum of all the values in the training-set and max(X) is maximum 

of all the values in the training-set. To perform the data normalization, we introduce a 

new variable called training_set_scaled which will store the new normalized values, 

because it is recommended to keep the original non-normalized training-set separate 

from the normalized one. The normalizeData sub-function returns a normalized 2D 

array (called training_set_scaled) of real numbers in the range of 0 and 1. The 

normalization process is carried out by the following Python statements in (III). 
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In (III), the MinMaxScalar class (imported from the sklearn.preprocessing 

class) is responsible for data normalization.  We have implemented data normalization 

by creating an object of the MinMaxScalar class called sclr, where a feature range 

between 0 and 1 is defined to specify the minimum and maximum range of normalized 

values. In other words, it means that the values of the normalized training-set should 

be within the range of 0 to 1. The fit_transform() method of the MinMaxScalar class 

is used to perform the data normalization process. The original un-normalized training-

set (training_set) is passed as a function argument. Since heterogeneous data-type is 

not supported by Python, the non-numeric data entries (also called categorical data) 

are converted to numeric values. The process of converting categorical data into 

numeric values is called Encoding. For instance, the dataset features such as ‘service’ 

highlighted (yellow) in Table 5.3, is an example of categorical data. Table 5.4 shows 

the corresponding encoded values of the categorical data. Last four columns of Table 

5.4 shows the normalized values. The fit_transform() method performs the encoding 

operation and converts the categorical data into numeric values. Both the 

normalization and encoding process are performed within this normalizeData() sub-

function. 

 
 

Table 5.3: Example of categorical data (marked yellow) and other un-normalized data 

service sbytes sttl smean ct_dst_sport_ltm 

- 530 254 53 1 

ftp 7954 254 568 1 

http 794 254 397 1 

smtp 2516 254 252 1 

- 816 62 82 1 

ftp 534 254 53 1 

 

 from sklearn.preprocessing import MinMaxScaler 

 

sclr = MinMaxScaler(feature_range = (0, 1)) 

training_set_scaled = sclr.fit_transform(training_set) 

 

 

III 
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Table 5.4: Categorical to numeric conversion (marked yellow) other normalized data 

service sbytes sttl smean ct_dst_sport_ltm 

0 4.97482e-05 1 0.144928 0 

0.3 0.000189706 1 0.581781 0 

0.5 0.000112984 1 0.342305 0 

0.8 9.4411e-05 1 0.284334 0 

0 0.000229947 1 0.707384 0 

0.3 8.1587e-05 1 0.244306 0 

 

5.3.2.1.3. dataStructure Method 
 

In order to feed data into an RNN, a TensorFlow data structure is required for 

storing the features and labels. To transform the dataset into a TensorFlow data 

structure, two separate entities are created. The first entity will be X_train, which is 

the input of the RNN and then the second entity will be Y_train, which will contain 

the expected output of the RNN. So, technically, X_train will contain the prior 

observations (from time t-1 till time t), and Y_train will contain the expected 

observation at time t+1. Important to note here is that the RNN neuron takes the 

X_train, learns the correlations between the observations in the data samples, and 

generates a prediction out of the learning. This generated prediction is the actual output 

of the RNN neuron at time t. To calculate the efficiency of the neurons, this actual 

output is compared with Y_train containing the expected output. The data structure is 

created by (IV). 

 

 

In (IV), two newly introduced variables X_train and Y_train are initialized as 

empty lists. Then, these two entities X_train and Y_train are populated with the traffic 

observations from our training-set by using a for-loop (where i represents the time t) 

 X_train = [] 

Y_train  = [] 

for i in range(1, 5451): 

         X_train.append(training_set_scaled[i-1:i, 0]) 

         Y_train.append(training_set_scaled[i, 0]) 

X_train, Y_train  = np.array(X_train), np.array(y_train) 

 

IV 
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ranging from 1 to the last index of our training-set i.e. 5451. The X_train is appended 

with observations ranging from time i-1 to time i by using the append() function. 

Y_train is similarly appended with the observation at time t+1. Since both X_train and 

Y_train are lists, converting them to NumPy arrays is crucial, so that they can be 

accepted by our BLSTM RNN model. This conversion is implemented by using 

np.array() function (where np is an object of NumPy class).  

To summarize, the dataStructure() method builds the compatible data structure 

required to train and test the RNN model. This method takes training-set as an 

argument to generate X_train and Y_train, and test-set as argument for generating 

X_test and Y_test. Generation of X_test and Y_test are implemented through (V). 

 

 

 X_test and Y_test are just similar to X_train and Y_train, except, they hold the 

test-set observations instead of training-set observations. The dataStructure() method 

takes the normalized 2D array, i.e., output of the normalizeData() method as input and 

returns NumPy arrays: X_train and  Y_train  (for training-set) and X_test and Y_test 

(for test-set).   

 

5.3.2.1.4. reshape Method 
 

To make the data structure compatible with the input format of our RNN, the 

reshape() method is used as shown below in (VI). 

 

 

In (VI), the np.reshape() method from NumPy class is used to implement the 

reshaping of the X_train. As per Keras Recurrent Layer documentation3, the input 

shape of an RNN should be a 3-D tensor with the following dimensions: batch-size, 

time-step, and input-dimension. The np.reshape() method actually generates a 3D 

                                                           
3 (available: https://keras.io/layers/recurrent/) 

 X_test = [] 

Y_test = [] 

for i in range(1, 4205): 

    X_test.append(test_set_scaled[i-1:i, 0]) 

    Y_test.append(test_set_scaled[i, 0]) 

X_test, Y_test = np.array(X_test), np.array(Y_test) 

 

V 

 X_train = np.reshape(X_train, (5451,5, 1)) VI 
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tensor which is compatible for RNNs. The argument structure of the np.reshape() 

method is like this: np.reshape (name of the array to be reshaped, (batch_size, 

time_step, input_dim)). The first argument in (VI) is X_train because X_train is the 

array that needs to be reshaped. The batch size is 5450, followed by the time-step of 

5. The time step is usually equals the column numbers of the input array. The input 

dimension is 1. The reusability feature of the object oriented programming has been 

exploited to implement the reshape() method. In order to reshape the training-set into 

an RNN-compatible input format,   X_train is passed as an argument to this method 

along with the other corresponding parameter values. When X_test is passed as an 

argument to this method, it reshapes the X_test into a compatible format which is fit 

for testing the model.  

Table 5.5 summarizes the input parameters and the final output of the 

preprocess() method. Data pre-processing is implemented through the preprocess() 

method. Since we have to perform the pre-processing for both the training-set and test-

set, we have used the reusability feature of OOP to implement data pre-processing.  To 

implement the pre-processing of the training-set, the preprocess() method is called 

(from inside the build() method) with the training-set as an argument. For 

implementing test-set pre-processing, the same preprocess() method is called again 

(from inside the execute() method) with the test-set as an argument.  This is why, Table 

5.5 and Table 5.6 are segmented into two: blue corresponds to training-set and green 

for test-set. The respective sub-functions of the preprocess() method like 

importDataset(), normalizeData(), dataStructure() and reshape() also work according 

to the input parameters of the preprocess() method. For example, when the input is 

training-set, the output of the importDataset() sub-function is training_set, and when 

the input is test-set, the output of the same sub-function test_set, so on and so forth. 

Precisely, the same sub-function yields different output in different implementation 

steps. Table 5.5 below lists all the sub-functions of the preprocess() method. 
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Table 5.5: Input and Output of the preprocess() method 

Method 

name 

Input parameters Final outcome Briefing 

 

 

preprocess() 

Training-set 

(UNSW_NB15_training-

set_5451.csv file) 

X_train, Y_train This method 

pre-processes 

our training-

set and test-

set, which is a 

.csv format, 

into the 

compatible 

data format. 

Test-set (UNSW_NB15_test-

set.csv file) 

X_test, Y_test 

 

 
Table 5.6: I/O of the sub-functions of the preprocess() method 

Sub-function 

Name 

Input parameters Output Sub-function 

Briefing 

 

 

importDataset() 

 

UNSW_NB15_training-

set_5451.csv file 

training_set 

(Pandas dataframe 

object) 

This sub-

function 

converts the 

.csv format 

into Pandas 

dataframe 

format 

UNSW_NB15_test-

set.csv file 

test_set 

(Pandas dataframe 

object) 

 

normalizeData() 

 

training_set training_set_scaled This sub-

function 

performs the 

Normalization 

and scaling. 

test_set  test_set_scaled 

 

dataStructure() 

 

Time-step, 

training_set_scaled 

X_train, Y_train This sub-

function 

creates the data 

structure 
Time-step, X_test, Y_test 
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test_set_scaled compatible for 

RNN 

 

 

 

reshape() 

 

X_train, batch_size, 

time_step, input_dim 

X_train Essentially, a 

Tensorflow 

based neural 

network 

structure takes 

a 3D array as 

input. This 

sub-function 

takes the 

previously 

built data 

structure and 

reshapes it into 

a 3D array. 

X_test, batch_size, 

time_step, input_dim 

X_test 

 

5.3.3. Classifier Class  
 

This class implements the architecture of our proposed BLSTM RNN model. 

In order to make it more robust, dropout regularization have been utilized, which is a 

mechanism to prevent overfitting of the model. The model architecture is implemented 

through several steps. Table 5.7 lists all the required steps and their respective actions. 

 
Table 5.7: List of steps and their corresponding actions for building the RNN 

Steps What it does? 

Step 1 Import the Keras library and it’s corresponding classes 

Step 2 Initialize the neural network 

Step 3 Add input layer and Dropout regularization  

Step 4 Add hidden layers with corresponding neurons and add 

Dropout regularization 

Step 5 Add the Output layer 
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Step1: Importing the Keras Library 

The foremost step of implementation is concerned with importing the Keras 

library and packages by the following lines of Python code in (VII):  

 

 

In (VII), the Sequential class creates an RNN object representing a sequence 

of layers of the neural network The Dense class is used for generating the output layer 

of the model. The Bidirectional and LSTM class is used to generate the input layer and 

hidden layers. Lastly, the Dropout class is used to add some dropout regularization to 

the model.  

 

Step2: Initialize the BLSTM RNN 

In this step, the initialization of the neural network is implemented by (VIII): 

 

 

In (VIII), the Sequential class from Keras initializes the neural network object 

called classifier. Here, we introduce a new name called ‘classifier’. This classifier is 

an object of the Sequential class which represents a sequence of RNN layers. 

Executing this line will initialize the RNN. In the implementation level, this identifier 

(‘classifier’) represents our RNN model that we are going to build.  In other words, 

‘classifier’ will be the name of our proposed BLSTM RNN model.  

 

Step3: Add Input layers and dropout regularizations 

In this step, the input layer creation is implemented by (IX):   

 

 from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from keras.layers import Bidirectional 

from keras.layers import Dropout 
 

 

VII 

 classifier = Sequential() VIII 

 classifier.add(Bidirectional(LSTM(units = 5, activation = ‘relu’, 

return_sequences=True), input_shape=(X_train.shape[1])) 

 

 

IX 
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In (IX), the add() method (which is a built-in method of the Sequential class) 

generates the input layer. Inside the add() method, the LSTM class is used to add the 

LSTM units or neurons. Then the Bidirectional class is used as a wrapper class which 

wraps up the LSTM units and provide a BLSTM unit altogether.  

As per Keras documentation, the LSTM class is to be provided with the 

following list-of-arguments4: 

 units = 5:  denotes the number of input neurons, which is 5 in our model. 

 activation = ‘relu’:  specifies the activation function we are using for our input 

layer, which is a ReLU (Rectified Linear Unit) function. 

 return_sequence = True: specifies whether the values of the specific layer will 

be passed to the next layer or not. Since our proposed model is a fully 

connected BLSTM network, the value of this argument is set as True.  

 input_shape: specifies the shape of the input array (X_train) that has been 

created previously in the Data class.  

In the last line of (IX), the add() method of the sequential class is used for 

implementing the dropout regularization to our model with a dropout-rate of 0.2 

 

Step 4: Add hidden layers with corresponding neurons and add Dropout 

regularization 

In this step, 3 hidden layers are added to the network by (X): 

 

                                                           
4 https://keras.io/layers/recurrent/#lstm 

classifier.add(Dropout(0.2)) 
 

 # hidden layer 1 

classifier.add(Bidirectional(LSTM(units = 220, 

return_sequences=True))) 

classifier.add(Dropout(0.2)) 

 

# hidden layer 2 

classifier.add(Bidirectional(LSTM(units = 240, 

return_sequences=True))) 

classifier.add(Dropout(0.2)) 

 

# hidden layer 3 

classifier.add(Bidirectional(LSTM(units = 260, , 

return_sequences=True))) 

 

 

 

X 
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In (X), the 1st, 2nd, and the 3rd hidden layers are comprised of 220, 240 and 260 

neurons, respectively. The return_sequence and dropout regularization works the same 

way as explained before in the third step. 

 

Step 5: Add the Output layer 

In this step, the addition of the output layer is implemented by (XI): 

 

 

In (XI), the add() method from sequential class implements the output layer 

generation. Since the output layer is fully connected to the previous BLSTM layer, 

hence the Dense class of the Keras library is used to implement the full connectivity. 

As the network will perform a binary classification, so, the units parameter is set to 1, 

which means only 1 neuron will be there in the output. The second parameter 

(activation = ‘sigmoid’) implements the output layer activation function.  

 

5.3.4. FitModel Class  
 

This class implements the compilation and the NN training. Compiling is the 

conversion procedure of the high level source code to the machine level binary code. 

The compilation of the model is implemented through (XII): 

 

 In (XII), the compile() method of the Sequential class implements the 

compilation procedure. The compile() method takes two arguments: optimizer and the 

loss function. ADAM is employed as the network optimizer and ‘binary_crossentropy' 

as the loss function. After compilation, the model training is implemented by (XIII): 

 

 

classifier.add(Dropout(0.2)) 

 classifier.add(Dense(units = 1, activation = 'sigmoid')) XI 

 classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy') 

 

XII 

 regressor.fit(X_train, y_train, epochs = 100, batch_size = 132) XIII 
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In (XIII), the RNN is trained with the training set. The fit() method is used to 

implement the training procedure. The fit() method connects the neural network to the 

training-set and perform iterations based on given parameters. The fit() method takes 

the following 4 arguments: 

X_train: the input of the training set that has the features. 

Y_train: the ground truth (i.e. the expected output) of the training set.  

Epochs: is the number of epochs, i.e. number of iterations our neural network will be 

trained. In other words, it is the number of times the whole dataset will be propagated 

through the model. The implemented model will be trained using the same dataset for 

100 times. 

batch_size: finally, the batch_size is the amount of samples that are processed by the 

neural network at a time. The batch-size is 132, which means that the weights and 

biases of our network will get updated every 132 data samples. 

 

5.3.5. Detection Class  
 

The intrusion detection task and the evaluation metrics generation is 

implemented through the line of Python code in (XIV):  

 

 In (XIV), as a part of the implantation, we introduce a new variable called 

y_pred, which is a 1-D array that stores the computation values performed by the 

network. The method predict() is a method provided by Keras library which performs 

the computation process of intrusion detection. The predict() method takes only one 

argument, that is the pre-processed test-set (X_test). The generation of the X_test is 

been implemented by invoking the Data class from the execute() method with test-set 

('UNSW_NB15_testing-set.csv’ file) as parameter. The values returned by the 

predict() method is stored into the newly introduced variable y_pred.  

Once y_pred is produced, the confusion matrix (cm) along with the 

classification report (report) generation is implemented through (XV). The 

classification report provides the evaluation metrics including precision, recall and f1-

score, which are further discussed in Section 4.4 of Chapter 4.  

 y_pred = classifier.predict(X_test) 

 

XIV 

 from sklearn.metrics import confusion_matrix  
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In (XV), the Python codes implement the evaluation phase. The 

confusion_matrix() and classification_report() method are imported from sklearn 

class. The confusion_matrix() method takes two arguments: Y_test and y_pred. The 

Y_test contains the expected output generated out of the test-set, and y_pred contains 

the actual output generated by our model. The confusion_matrix()  method plots a 

graphical representation of the classification outcome by using these two arguments. 

The classification_report() also takes the same parameters and generates a tabular 

result consisting of precision, recall, f-1 score and false alarm rate. 

 

5.4. Conclusions 
 

In this chapter, we discussed the detailed step-by-step explanations of the 

implementation of our proposed BLSTM RNN model. We have followed an object 

oriented approach in order to perform the implementation of our proposed model. In 

order to facilitate the whole implementation, five classes is being constructed, namely: 

IDS class, Data class, Classifier class, FitModel class and Detection class. The IDS 

class is the parent class which instantiates the rest of the four classes and their 

corresponding methods. The Data class implements the pre-processing of the data-sets. 

The preprocess() method of the Data class implements the data pre-processing 

mechanism by taking the data-sets as input and producing the pre-processed RNN 

compatible data-structure as output. The Classifier class implements the proposed 

BLSTM RNN architecture by generating all the involved layers (1 input, 3 hidden and 

1 output) along with the dropout regularizations. The training of the model is 

implemented through the FitModel class. The last class of our implementation scheme 

is the Detection class. This class implements the testing of the proposed model. This 

class takes test-set as input parameter and generates the confusion matrix and 

classification report as its output.   

The Keras library have been used to implement the neural network and perform 

simulations. The Keras executes on top of Google TensorFlow which forms the 

backend framework of the implementation. The Pandas library is used to convert the 

from sklearn.metrics import classification_report 

print( confusion_matrix(Y_test, y_pred)) 

print( classification_report(Y_test, y_pred)) 

 

 

XV 
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.csv format data-sets into RNN compatible data-frames. NumPy is a package in Python 

used for scientific computing. In order to manipulate arrays of unlike shapes (such as 

2D array and 3D array), NumPy package is employed.  The inbuilt scientific Python 

library called sklearn is used to implement the generation of evaluation parameters 

like confusion matrix and classification report. 

  



76 
 

Chapter 6  

 

SIMULATION RESULTS & EVALUATION 

 
This chapter shows the simulation results obtained as we adjust the model 

parameters like learning rate, batch size, time steps and dropout regularization and 

provide a qualitative performance analysis of the model. The model performance 

evaluation over different test-sets is also discussed. 

 

6.1. Metric Definition and Clarification 
 

The intrusion detection (ID) process is a binary classification problem where 

the system implementing the ID process classifies individual sample either “attack” or 

“normal”. The evaluation metrics are used to analyze the model performance, and the 

metrics include accuracy, recall, precision, f-1 score, false alarm rate (FAR) and 

miscalculation rate (error rate). Recall, is defined in (7.1). 

 
 

FNTP

TP
recall


  

6.1  

 

Where, TP denotes the count of true positive samples (i.e. instances that are 

intrusions and are labeled by the model as intrusions) and FN denotes the amount of 

false negatives (i.e. instances that are intrusions but are labeled by the model as non-

intrusions). Recall states the model capability of detecting all the “attack” samples 

within the dataset. It gives a sense of how good our model is in detecting “attack” 

samples from within the dataset. Precision is defined in (7.2).  

 
 

FPTP

TP
precision


  

6.2  

 

Where, FP denotes the false positives (i.e. instances that are non-intrusions but 

are labeled by the model as intrusions). Precision states the ability of the model to 

identify only the relevant instances. It gives us a sense for how likely when the model 

labels a sample as positive, remains accurate.  

The F1 score, defined in (7.3) is the harmonic mean of precision and recall 

taking both metrics into account. 
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precisionrecall

precisionrecall
scoref




)*(2
1  

6.3  

 

The overall accuracy of the model is calculated by (7.4).  

 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑋
 

6.4 

 
 

Where, X denotes total number of samples fed as input. TP is the true positives 

and TN denotes the true negatives (that is, instances that are normal and are labeled by 

the model as normal). Accuracy tells how often the model is correct. 

The misclassification rate of the model defined in (7.5) signifies how often the 

classifier is wrong. Misclassification rate is the percentage of wrong detections and 

can be calculated by using the formulae in (4.2): 

 
 

 𝑚𝑖𝑠𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =  
𝐹𝑃 + 𝐹𝑁

𝑋
 

6.5 

 
 

False Positive Rate (FPR), also called False Alarm Rate (FAR) is calculated by 

(7.6). 

 

 

NormalX

FP
FPR   

 

6.6 

Where, XNormal is the number of actual normal samples in X. FPR or FAR is the 

percentage at which the model incorrectly classifies normal samples as intrusions. 

 

6.2. Performance over Different Hyper-Parameters 
 

This section provides the investigation details of the model performance over 

different hyper-parameters. As described in Chapter 5, the proposed model consisted 

of one input layer with 5 neurons, three hidden layers with 220, 240, and 260 neurons 

respectively, and one output layer with one neuron. All the layers are densely 

interconnected with each other. Sigmoid was used as activation function. As an initial 

experiment, 5450 samples were considered from the UNSW-NB15 training dataset 
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and the outcome for 100 iterations were recorded. It is important to note here: in order 

to investigate the model performance in relation with different hyper-parameters, only 

one hyper-parameter at a time is applicable to change. For instance, while studying the 

model performance with respect to time-steps, rest of the hyper-parameters (batch-

size, dropouts, learning rate) remains constant. In the following sections, the model 

performance over different hyper-parameters have been discussed. 

 

6.2.1. Performance over Different Time-Steps 
 

The model performance was studied with respect to varying time steps. Time 

step refers to the number of steps the RNN is unrolled in time. In other words, time 

step defines the memory capacity of an RNN cell. Table 6.1 shows the hyper-

parameters which remains constant during different time-steps. Table 6.2 tabulates the 

results of different time steps ranging from 1 to 60.  

 

Table 6.1: Constant hyper-parameter values (excluding time-steps) 

Batch size Dropout Learning rate Epochs 

132 0.2 0.001 100 

 

 
 

Table 6.2: Results of different time-steps 

Time-Steps Accuracy Precision Recall F1 score 

1 0.95 1 0.95 0.97 

15 0.79 1 0.79 0.88 

30 0.73 0.99 0.96 0.98 

45 0.73 0.99 0.96 0.98 

60 0.98 0.99 1 1 

 

 

Table 6.2 above, shows that the model is at its best with a time step value of 

60. A second interesting trend is the relatively poor performance of the model at 15, 

30 and 45 time steps. Though there remains no major fluctuations in the precision, 

recall and f1 value, but the accuracy drops very sharp.  This may have arisen due to 

the decreased number of examples present to the model causing it to require more than 

the allotted number of epochs to converge. 
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6.2.2. Performance over Different Batch-Size 
 

The time step value was chosen as 60, as it performed best with respect to all 

the evaluation matrices. A batch-size dictates the amount of samples fed to the network 

at a point of time. Determining optimal batch size requires cross validation, so, started 

with a very large batch size of 1090 (by keeping in mind that the total sample size must 

be divisible by batch size. This is a convenient convention, though it’s not mandatory). 

Table 6.3 shows the hyper-parameters which remains constant. Table 6.4 tabulates the 

results of different batch sizes.  

 
  

Table 6.3: Constant hyper-parameter values (excluding batch-size) 

Time steps Dropout Learning rate Epochs 

60 0.2 0.001 100 

 

 
Table 6.4: Results of different batch-size 

Batch size Accuracy Precision Recall F1 score 

1090 0.92 0.99 0.94 0.97 

545 0.92 0.99 0.94 0.97 

220 0.92 0.99 0.94 0.97 

132 0.98 0.99 1 1 

 

 

It could be observed that when using a larger batch there is a degradation in the 

quality of the model. This is probably because the large batch size have a tendency to 

converge to sharp minima which leads to degraded generalization [120]. In contrast, 

small batch size shows a promising performance for our model with 100% f1 and recall 

value. 

 

6.2.3. Performance over Different Dropout Rates 
 

As per the previous outcomes, batch-size = 132 and time-steps = 60 performed 

optimal. In practice, RNNs can easily overfit the training data which may result in 

degrading the model performance. Dropout is a regularization technique explained in 

section 3.9, which is employed while network training in order to avoid network 

overfitting and improving the performance of the model. Table 6.5 shows the hyper-
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parameters which remains constant. Table 6.6 tabulates the results of different dropout 

rates.  

 

Table 6.5: Constant hyper-parameter values (excluding dropout rate) 

Time steps Batch size Learning rate Epochs 

60 132 0.001 100 

 

 

Table 6.6: Results of different dropout rates 

Dropout Accuracy Precision Recall F1 score 

0.2 0.98 0.99 1 1 

0.3 0.92 0.99 0.94 0.97 

0.5 0.92 0.99 0.94 0.97 

0.8 0.98 0.99 1 1 

 

 

The idle value for drop out ranges from 0.2 to 0.8 depending on the model 

architecture and dataset size [121]. Too large dropout values may result the network 

to underfit and too small dropout might result in overfitting. Determining the optimal 

value or the “sweet spot” is a trial and error method. Table 6.6 shows that a drop of 

value of 0.2 and 0.8 functions most appropriate for yielding a robust performance. 

 

6.3. Performance on Reduced Test-set 
 

After studying the hyper-parameter tuning outcome in the previous sections, 

the hyper-parameter values with best results were considered. Table 6.7 tabulates the 

architecture of the proposed model with all the optimum parameter values.  
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Table 6.7: Architecture of our model with all the optimum parameter values 

Input layer 1 (5 neurons) 

Hidden Layers 3 (220,240,260 neurons respectively) 

Output Layer 1 (1 neuron) 

Activation function Sigmoid 

Batch-Size 132 

Time-Steps 60 

Dropout Rate 0.8 

Learning Rate 0.001 

Epochs 100 

 

 

After training, the training-set becomes known data to the NN model. For 

observing the model’s performance over an unknown set of data, we fed our model 

with a test-set. For initial testing, a reduced test-set with considerably less amount of 

data samples were prepared. The idea of preparing a reduced test-set was to see the 

models performance over unknown data relatively quick. For instance, if that model 

yields unsatisfactory performance during testing, it is easier and faster to retest the 

model with the reduced test-set, rather than retesting the model with full test-set. 

Another purpose of creating a reduced test-set is that, the full UNSW-NB15 test-set 

comprises of 9 types of attacks in total, out of which 5 types are often present in IoT 

attacks (Analysis, Backdoor, Denial-of-Service, Worms, and Reconnaissance). Hence, 

only these 5 types of attack samples along with the 'normal' samples were extracted to 

prepare the reduced test-set. The reduced test-set samples were extracted from 

UNSW_NB15_testing-set.csv file, and contains 4206 test samples. Table 6.8 shows 

the number of anomalies and normal samples used in the test-set. Table 6.9 

summarizes the four parameter values in the confusion matrix: TP, FN, FP and FN 

(confusion matrix parameters are discussed previously in Chapter 4). Table 6.10 shows 

the experimental outcomes.  

 

Table 6.8: Number of samples used for classification (reduced test-set) 

Class Sample size 

Attack   4094 

 Normal   112 
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Table 6.9: Confusion matrix values (reduced test-set) 

Parameter 
Number of 

Samples 

TP 4027 

TN 1 

FP 10 

FN 166 

 
 

Table 6.10: Classifier performance over reduced test-set 

Performance 

Measure 
Percentage 

Accuracy 0.9571 

Precision 0.99 

Recall 1 

f1 - score 1 

Miscalculation 

rate 
0.041 

FAR 0 

Detection 

Time (sec) 
2.19 

 

 

The model is capable of detecting attacks over the reduced test-set, with more 

than 95% accuracy, i.e. the model is successful of classifying more than 95% of the 

samples correctly. The model generates a precision value of 99%. That is, whenever 

the model labels a sample as “attack” or “normal”, it is 99% accurate. Our model 

generates a recall value of 100%, which indicates that the model is capable of detecting 

100% of all the attack instances present in the data-set. The model generates a zero 

false alarm rates and a very low wrong detection rate of 4.1%.  The proposed model 

was capable of classifying 4205 samples of data in 2.19 seconds on an Intel Core i7 

2.4GHz Central Processing Unit (CPU) without a Graphics Processing Unit (GPU), 

which is impressively fast. 
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6.4. Performance on Full UNSW-NB15 Test-set 
 

The full UNSW-NB15 testing-set comprises of 82332 samples and 9 attack 

types (namely: Analysis, Backdoor, Denial-of-Service, Worms, Reconnaissance, Shell 

code, Exploits, Fuzzers and Generic). In order to test the model’s capability of 

detecting completely unknown attack types, the UNSW-NB15 testing-set was 

intentionally kept intact, which consisted of 4 new attack samples (Shell code, 

Exploits, Fuzzers and Generic). Table 6.11 shows the four parameter values in the 

confusion matrix. Table 6.12 shows the detailed report of the outcomes.  

 
Table 6.11: Confusion matrix values over full UNSW-NB15 test-set 

Parameter 
Number of 

Samples 

TP 79966 

TN 21 

FP 2102 

FN 242 

 

Table 6.12: Classifier performance over reduced full UNSW-NB15 test-set 

Performance 

Measure 
Percentage 

Accuracy 0.9715 

Precision 0.99 

Recall 0.97 

f1 - score 0.98 

Miscalculation 

rate 
0.028 

FAR 0 

Detection 

Time (sec) 
36.2 

 

From Table 6.12, it could be observed that our proposed model is capable of 

detecting attacks in the full UNSW-NB15 test-set with more than 97% accuracy. That 

is, the model is successful of detecting more than 97% of the attack and normal 

samples correctly. Interestingly, as the full test-set comprises of 4 new attack types, 
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the accuracy score shows that our model can also classify completely new attack types 

as well. An impressive precision value of 0.99 shows that whenever our model 

classifies a data sample as “attack” or “normal”, the model remains 99% correct in its 

classification. A satisfactory recall value of 0.97 indicates that the model is capable of 

detecting 97% of all the attack instances present in the full UNSW-NB15 test-set, 

including the new attack types. The model generates a false alarm rate of 0.02, 

indicating that the proposed model very seldom fires a false alarm to the user. A 

miscalculation rate or wrong detection rate signifies how often the model classification 

is wrong. A very low wrong detection rate of 0.02 signifies that our proposed model 

exhibit a very negligible detection error.   The model exhibits impressive speed and 

was capable of classifying 82332 samples of data in only 36.2 seconds in an Intel Core 

i7 2.4GHz Central Processing Unit (CPU) without a Graphics Processing Unit (GPU). 
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Chapter 7  
 

Conclusion & Future Work 
 

Prime purpose of this research work was to detect intrusions in IoT network. 

To accomplish the objective, Artificial Neural Network (ANN), specifically, Bi-

directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN), a 

deep learning approach, and Googles ML framework termed TensorFlow was adopted 

and utilized through Python programing language. This research work shows that DL 

could effectively cope with securities in IoT network. The proposed model can detect 

five type of attacks that occur to IoT network, namely: Analysis, Backdoors, DoS, 

Reconnaissance and Worms.  

IDS are evaluated by the attained accuracy of intrusion detection including the 

false alarm rate (FAR) of the model. The proposed IoT intrusion detection model 

demonstrated over 97% accuracy in effectively identifying attack and normal samples. 

The proposed model reported a FAR of 2.5%. This value is equivalent to the model’s 

general misclassification rate, which constitutes a false negative rate. The proposed 

model’s sensitivity is found to be 100% in (shown in section 6.3), which implies an 

impressive 0% false negative rate  

The main contributions of this thesis are that, it investigates and explains the 

efficiency of DL algorithms in addressing intrusion detection in IoT systems. 

Secondly, it shows the efficiency of BLSTM RNN in detecting IoT attacks through 

simulation results and shows the parameter values essential for BLSTM RNN to 

generate high detection accuracy. This research work also contributes to the efficient 

way of implementing BLSTM RNN approach by using Python programming language 

and Google TensorFlow implementation framework.     

This research work employs one of the most recent benchmark intrusion 

dataset called UNSW-NB15 which is a synthetic dataset restricted to only 5 types of 

attacks that occurs in any IoT network: Backdoor, DoS, Reconnaissance, Analysis and 

Worms. In future work, we are planning to enrich the IoT attack dataset by adding 

more IoT attack types with real IoT network traffic. The data pre-processing stage of 

the thesis was done manually which took a lot of working hours. This is because the 

source dataset was not in acceptable TensorFlow format. The recommendation to this 

drawback is that further work should be done to automate this process. The thesis work 

was analyzed only on CPU. The future recommendation is that the model should be 

analyzed on different computing resources like GPUs and should port the model to 
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different platforms such as iOS, Android, Google Clouds, CUDA etc. to test the 

performance of the proposed BLSTM RNN model. The best results generated by the 

algorithm depended on parameters such as batch size, epochs, learning rate, time steps. 

The values of these parameters were set manually per every iteration until the best 

results was achieved. For future development we will be working on automating the 

assigning of values for these parameters. This will ease the guess work and try and 

error approach of getting the best values that will produce the best detection accuracy. 
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Abstract— Internet of Things (IoT) is one of the most rapidly 

evolving technologies nowadays. It has its impact in various 

industrial sectors including logistics tracking, medical fields, 

automobiles and smart cities. With its immense potentiality, IoT 

comes with crucial security concerns that need to be addressed.  
In this paper, we present a novel deep learning technique for 

detecting attacks within the IoT network using Bi-directional 

Long Short-Term Memory Recurrent Neural Network (BLSTM 

RNN). A multi-layer Deep Learning Neural Network is trained 

using a novel benchmark data set: UNSW-NB15. This paper 

focuses on the binary classification of normal and attack 

patterns on the IoT network. The experimental outcomes show 

the efficiency of our proposed model with regard to precision, 

recall, f-1 score and FAR. Our proposed BLSTM model achieves 

over 95% accuracy in attack detection. The experimental 

outcome shows that BLSTM RNN is highly efficient for building 

high accuracy intrusion detection model and offers a novel 

research methodology. 

 
Keywords—Bi-directional Recurrent Neural Network, Deep 

Learning, Intrusion Detection, IoT. 

I. INTRODUCTION  

Internet of Things (IoT) was initially termed by Kevin 
Ashton in the year 1999 [2]. It stands for a system of globally 
recognizable physical devices or things which can sense the 
environment around them and behave intelligently. IoT is 
rising at an accelerating stride and interconnecting billions of 
devices or ‘things’. As per Gartner, about 25 billion 
distinctively recognizable objects or things are predicted to 
be a part of the worldwide computing system by 2020 [1]. 
These interconnected devices augment regular activities and 
shape smart solutions. However, the immense prospects and 
conveniences brought by IoT lead to security concerns. IoT 
is considered as the future Internet or Internet 2.0. 
Consequently, IoT acquires traditional Internet security 
concerns as well as some new ones [18]. An IoT system can 
be a victim of several ways of attacks: Physical attacks (e.g. 
Node tampering, Node jamming, etc.), Network attacks (e.g. 
the Sinkhole attack, Denial-of-Service attacks, Man-in-the-
Middle (MiM) attacks, etc.), Software attacks (e.g. Worms, 
Trojan horse, Spyware, etc.) and Encryption attacks (e.g. 
Cryptanalysis attacks) [19]. In this paper, we focus on 
detecting network attacks only, which target the network 
layer of IoT, and the attackers do not essentially have to be 
nearby the IoT system to perform such attacks [19].  

An intrusion detection system (IDS) is a security system 

capable of scanning the network traffic activity and can 

identify any hostile or abnormal behavior. Technically, an 

IDS is equivalent to a classification task, i.e., identifying 

whether any network behavior is “abnormal” or “normal”. 

Any classification problem can be of two types: binary 

classification and multi-class classification. In binary 

classification the system generates only one of two outputs: 

“attack” or “normal”. A multi-class classification, on the 

other hand, identifies attack types as well. In this paper, we 

employ binary classification for intrusion detection. 

Most of the conventional ML techniques use shallow 

learning and is incapable of effectively solving the intrusion 

classification problem with the immense data from a real-

time environment [3]. In contrast, with the vibrant evolution 

of various datasets, deep learning (DL) approaches possess 

the prospective to mine or extract improved representations 

out of the data and can extract much more efficient features. 

The concept of deep learning was introduced by G. Hinton et 

al. [4] in the year 2006 and over the years, deep learning has 

undergone a spectacular rise in the area of ML. Since deep 

learning has the property of the automated discovery of 

abstraction from the raw data set, to build a much more 

efficient intrusion detection model, we propose a unique deep 

learning methodology to build an IDS for IoT using the Bi-

directional Long Short-Term Memory Recurrent Neural 

Networks (BLSTM RNN) approach. 

This paper presents a BLSTM RNN intrusion detection 

model and its implementation. The model’s performance in 

binary classification is studied with respect to accuracy, 

miscalculation rate, precision, true positive rate and f-1 score. 

The intrusion detection model is implemented using the 

Python program language, Google TensorFlow, and Keras. 

Simulations will be performed using the UNSW-NB15 

dataset. The experimental outcomes exhibit the efficiency of 

our proposed BLSTM RNN model in detecting 5 types of 

security attacks that an IoT network may encounter. The 

remaining of this paper is structured as follows. Section II 

comprises  related work within the field of intrusion 

detection. Then, section III  describes the introduced model 

for intrusion detection, including the benchmark UNSW-

NB15 dataset, data pre-processing mechanism and evaluation 

matrix. Section IV highlights the experimental outcomes and 

discussions. Finally, Section V presents the conclusions and 

the future scope of this research. 
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II. RELATED WORK 

A recent work by B. A. Tama and K. H. Rhee [5] proposes 

a deep neural network (DNN) model for attack classification 

in IoT network, where instead of employing previous data sets 

(NSL-KDD and KDD-99), the authors have evaluated the 

performance of their DNN model using three contemporary  

benchmark data sets: GPRS, CIDDS-001 and UNSW-NB15. 

Their study also reports an occurrence of bias results in 

CIDDS-001 dataset due to a data imbalance issue, that is the 

distribution of one class in CDDS-001 dataset is compellingly 

lower than the supplementary class. The study also remains 

unable to observe the performance differences between the 

DNN and other machine learning algorithms.  

 In recent years, deep learning has developed 

progressively, and has become functional for detecting 

intrusions and outperforming conventional methods. In [6], a 

deep learning method has been used by employing a DNN for 

flow-based anomaly recognition. The outcome reveals that the 

proposed technique could be used for detecting anomalies in 

software-defined systems. In [7], a deep learning technique 

has been proposed where the authors use a self-taught-

learning (STL) algorithm on the NSL-KDD dataset. When 

relating the performance with former studies, the approach has 

proved to be more efficient. However, their studies emphasize 

only on the feature reduction capability of of DL techniques.  

Fu et al. [8] introduces a novel intrusion detection 

technique intended for IoT systems established upon anomaly 

extraction. In their study, the authors assert that anomalies are 

detectable by analyzing the patterns of the data of the IoT 

sensor layer, like the temperature, humidity or anything that 

an IoT object sensor could collect and report.  The study uses 

an unsupervised algorithm for data-mining for identifying 

normal patterns. In order to evaluate the proposed system, 

Intel Lab Project dataset was used, but no detected accuracy 

was reported to the designed system. 

Another study conducted by M. Sheikhan et al. [9] claims 

that RNNs can be viewed as reduced-sized neural networks 

(NNs). The paper introduces a 3-layer RNN architecture 

having 41 input features and 4 intrusion classes as outputs for 

a misuse-based intrusion detection system. Nevertheless, the 

RNN units of layers remain partly connected. As a result, the 

proposed RNNs does not exhibit the capability of DL to 

produce high dimensional features. Moreover, performance 

evaluation of the proposed approach in terms of binary 

classification has not been reported. 

With the consistent growth of big data along with the 

increase in computational power, the deep learning technique 

has become popular rapidly, and is increasingly utilized in 

numerous fields. In this paper, an unique deep learning 

technique has been proposed for detecting intrusions in the 

IoT network by using a bidirectional LSTM (BLSTM) 

recurrent neural network (RNN). Related with former works, 

we have used the BLSTM-based model aimed at binary 

classification and excluding pre-training. In addition, we have 

used two distinct data sets for training and testing purposes 

(namely, UNSW-NB15_training-set.csv and UNSW-

NB15_test-set.csv) for evaluating the performance of the 

proposed model. 

III. PROPOSED MODEL 

A. Reccurrant Neural Network 

A Recurrent Neural Network (RNN) is a layered network 
with feedback loops and is able to propagate past information 
onward to the present time. An RNN consists of loops and 
these loops allow the information to persist. The hidden layers 
of the RNN act as information storage like computer memory. 
RNNs form a class of powerful DNNs that use its internal 
memory along with loops for dealing with sequence data [20]. 

B. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is an extension of 
RNNs. LSTM employs the idea of gates for its units. One 
major issue with RNNs is that it is unable to learn the context 
information across a prolonged span of time caused by the 
vanishing gradient problem, which is, during a long temporal 
gap (i.e. time from when an input is obtained to the time when 
the input is used to make a prediction). Therefore, RNNs are 
incapable of learning from long-distance dependencies [21]. 
One solution to this issue is the use of an LSTM design [21]. 
It averts the issue of the vanishing gradient and thus permits 
the retention of the elongated period of context information.  

C. Bi-directional LSTM 

The concept of Bi-directional LSTM (BLSTM) originates 
from bidirectional RNN (BRNN) [10] that processes 
sequences of the input in forward as well as backward 
directions by employing two different hidden layers. Fig. 1 
illustrates a bidirectional LSTM structure with three 
consecutive time steps. 

BLSTMs join both the hidden layers to the same output 
layer. One inadequacy of traditional RNNs is that they are 
only capable of using the previous context of the input data 
sequence. BLSTMs [11] fix this by dispensing data in both 
forward and backward directions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

A BLSTM network computes the forward hidden layer 
sequence output h , the output sequence of the backward 

hidden layer h  and the output layer  y by reiterating the 

forward layer starting t =1 to T, backward hidden layer since 
t = T to 1, and then the final output is upgraded by the 
following equations: 

 

Figure 7.1: Bi-directional LSTM architecture with three consecutive 

time steps. 
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The final output vector, 𝒀𝑇 is calculated by the equation: 

 ),( ttt hhY


  (4) 

The   function combines both the output sequences 

from the neurons in the hidden layers and can be one of four 
functions: concatenation, summation, averaging and 
multiplication.  

Incorporating BRNNs with LSTM neurons results a 
bidirectional LSTM recurrent neural network (BLSTM 
RNN) [12]. The BLSTM RNN is capable of accessing long-
term context data in both the backward and forward 
directions. The combination of both the forward and 
backward LSTM layers is considered as a single BLSTM 
layer. It has been shown that the bidirectional models are 
considerably better than regular unidirectional models in 
various domains like phoneme classification and speech 
recognition [13].  

D. Intrusion Dataset  

Moustafa and Slay (in 2015) [14] suggested that the NSL-

KDD dataset and KDD’99 dataset did not characterize the up-

to-date features for intrusion detection, and presented a 

comprehensive and all-inclusive dataset called the 

UNSWNB15. This dataset encompassed several features 

from KDD’99 dataset [15]. They further analyzed the 

features of the KDD’99 dataset and the UNSW-NB15 

dataset. The results demonstrated that actual KDD’99 dataset 

features were less representative as compared to the features 

of UNSW-NB15 dataset [15]. 

The UNSW-NB15 dataset contains 45 features [16]. The 

dataset is further divided into training and testing datasets that 

contain all the current attack types. T. Janarthanan and S. 

Zargari [15] performed an extensive study on the UNSW-

NB15 dataset for the purpose of extracting the most 

competent features and thus proposed a subset with features 

which dramatically increased the intrusion detection 

efficiency. The UNSW-NB15 dataset is the most recent and 

effective dataset published for intrusion detection research 

purposes. In this paper, the dataset subset in the file ‘UNSW-

NB15_training-set.csv’ is used for training the proposed IDS 

model,  while that in ‘UNSW_NB15_test-set.csv’ is used for 

testing the model. Both the dataset files can be obtained from: 

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-

security/cybersecurity/ADFA-NB15-Datasets/ 

The data set file ‘UNSW-NB15_training-set.csv’contains 
175,341 records for training, while the test set file ‘UNSW-
NB15_testing-set.csv’ contains 82,332  records. the UNSW-
NB15 dataset has 9 attack types in total, out of which 5 types 
are often present in IoT attacks (Analysis, Backdoor, Denial-
of-Service, Worms, and Reconnaissance) [28][29][30]. 
Hence, we extracted only these 5 types of attack samples 
along with the 'normal' samples to prepare our test-set.  

In [22], the authors have used UNSW-NB15 dataset for 
conducting IoT research because unlike previous benchmark 

datasets, UNSW-NB15 exhibits contemporary attack patterns 
and modern normal traffic patterns. Moreover, since UNSW-
NB15 has separate training-set and testing-set, data 
distribution remains different [22]. Again, in [26], the authors 
points out that: “It encompasses realistic normal traffic 
behavior and combines it with the synthesized up to date 
attack instances”. [27] also points out that previous 
benchmark data sets like KDD’99 and NSL-KDD could not 
meet the current network security research needs as they does 
not comprehend the present-day network security 
circumstances and the latest attack features. 

We choose UNSW-NB15 data set for our research as it 

covers modern attack patterns, consists of modern normal 

traffic patterns, and contains only two classes (‘attack’ and 

‘normal’). Since we are performing binary classification task, 

this class distribution facilitates our proposed approach. 

Secondly, UNSW-NB15 forms a comprehensive data set that 

presents 5 types of IoT attacks. The categories of attack 

classes are discussed below: 

 

1) Analysis 

These types of attacks are targeted at IoT system networks. 

The attacker first acquires related network information 

through packet sniffing or port scanning and then launches 

attacks on the targeted network [28].  

 

2) Backdoor 

With the advancement of IoT, several proposed IoT operating 

systems such as Contik and RTOS might encompass 

backdoor where it is possible to reprogram them for getting 

access to confidential data stored or transmitted on the IoT 

networks [29]. 

 

3) Denial-of-Service 

Over the application layer, an IoT network can be 

compromised by Denial of Service (DoS) attacks or 

Distributed Denial of Service (DDoS) attacks; where, the 

service becomes unavailable to the authentic users, because 

the system becomes unavailable due to overwhelming 

number of requests resulting in resources and capacity 

overload [28]. 

 

4) Worms 

Worms are malicious software that can be executed on the 

IoT Application layer that could harm IoT System devices. 

For instance, Stuxnet and Mirai have been developed to 

attack IoT objects [29]. 

 

5) Reconnaissance 

It is an umbrella term of any illegitimate mapping and 

discovery of vulnerabilities in systems and services. For 

example, packet sniffing, port scanning and traffic analysis 

[30]. 

 

E. Data Preprocessing 

As an initial experiment, reduced dataset samples are 

randomly selected from the whole training set and placed in 

a new .csv Microsoft Excel file titled 

“UNSW_NB15_training-set_5451.csv”. In addition, we only 

consider the attributes proposed in [15], namely, service, 

sbytes, sstl, smean, and ct_dst_sport_ltm. The training dataset 
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is manually manipulated using the approach of Fu et al. [8], 

where, the authors has followed the approach of manually 

adding some abnormal samples in the dataset in order to make 

the dataset fit for their research purpose. The benefit of using 

the approach is that the input dataset would be competent for 

intrusion detection, which would fit the goal of the research. 

Moreover the approach helps in dealing with the problem of 

procuring labeled intrusion detection IoT datasets at a high 

cost. Here, we have followed the approach of manual 

manipulation and have extracted the features and attack types 

manually. Thus, our resulting dataset consists of 5 features 

and two class labels: “Attack” and “Normal”. Table I shows 

the dataset structure. The first 5 columns represent the 

extracted features, the 6th column represents the attack 

category and the last column is the binary labeling. Value 0 

resembles ‘normal’ and value 1 as ‘attack’. 

F. Evaluation Matrix 

The confusion matrix is applied to characterize the 

accuracy of our proposed BLSTM RNN model during 

testing. The confusion matrix is a 2-dimensional matrix 

representing the correlation amongst the detected and actual 

values as shown in Fig. 2. True Positive (TP) specifies the 

count of anomalous or unusual samples that are accurately 

detected by the system. True negative (TN) signifies the 

amount of normal samples which are detected as normal by 

the system. False Positive (FP) represents the count of normal 

samples which are recognized as anomalies. False Negative 

(FN) refers to the amount of attack samples which have been 

classified as normal. 

 

 

 

 

Accuracy defines the percentage of correct classifications 
and can be calculated by using the formula in (5): 

 
X

TNTP
accuracy


  (5) 

where, X denotes total count of samples. 

Misclassification rate is the percentage of wrong 
detections and can be calculated by using the formulae in (6): 

 

 
X

FNFP
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
_  

(6) 

False Positive Rate (FPR), calculated by (7), is the 
percentage at which the system incorrectly classifies normal 
samples as anomaly: 

 

NormalX

FP
FPR   (7) 

where, XNormal is the number of actual normal samples in 
X. 

Other parameters for evaluating the proposed model 
include precision, recall and f1-score values. Precision is 
calculated as the ratio of correct positive detections to the 
total actual positive detections, as shown in (8): 

 

 
FPTP

TP
precision


  (8) 

 
Recall is the ratio of correct positive detections to the 

number of actual abnormal samples, as presented in (9):  

 
FNTP
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
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In (10), F1-Score denotes the harmonic mean of recall and 
precision: 
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These metrics are employed to assess the proposed 
intrusion detection model in the testing phase of the model 
simulations. 

IV. IMPLEMENTATION 

We have implemented the model in Spyder (a scientific 
interactive development environment for Python language) 
using Tensorflow library. The whole implementation process 
is divided into three major phases: data pre-processing, 
training the BLSTM model and lastly, testing and evaluation.  

A. TensorFlow  

In 2015 November, Google released an open source deep 
learning software library called TensorFlow [24]. The 
primary focus of TensorFlow is for defining, training and 
deploying machine learning algorithms. TensorFlow is a ML 
structure that functions at big scale and in diverse 

TABLE 7.1: DATASET STRUCTURE AFTER PRE-PROCESSING 

service sbytes sttl smean ct_ 

dst_ 

sport_ 

ltm 

attack_cat label 

smtp 37178 31 715 1 Normal 0 

- 1280 254 64 1 Reconnaissance 1 

- 1280 254 64 1 DoS 1 

- 1280 254 64 1 Backdoor 1 

 156 254 78 1 Analysis 1 

http 1308 254 131 1 Worms 1 

 

 

Figure 7.2: Confusion Matrix. 
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environments. It employs dataflow graphs and maps the 
nodes or vertices of the graph across multiple machines 
incorporating graphics processing units (GPUs), multicore 
central processing units (CPUs) and Tensor processing units 
(TPUs). The architectural design provides a receptive and 
flexible platform for the application developers by allowing 
the developers to research with novel training algorithms and 
optimizations. TensorFlow supports several of applications, 
with an emphasis on training and implication on deep 
learning neural networks and it is being widely used for ML 
research [23]. Its supple dataflow representation aids power 
users to accomplish excellent performance. 

B. Data Preprocessing phase 

Data pre-processing forms the first phase of 
implementation stage. In this phase, the whole training 
dataset is read and stored in the computer memory. After that, 
feature extraction is employed. Since heterogeneous data 
type is not supported by Python, the non-numeric data entries 
(also called categorical data, such as the feature service, 
shown in table I) are then converted to numeric values. 
Dependent variables are encoded followed by data 
normalization (feature scaling). In order to process the 
features, we need to create a TensorFlow data structure for 
storing the features and labels. Since, we are employing an 
RNN, reshaping the data to respective time-steps is required. 
Reshaping forms the last step of data pre-processing phase.  

C. Training phase 

Training is the second phase of the implementation. First 
we have built the BLSTM RNN model by using Keras 
library. The model is then compiled and then followed by 
model-training. It is here, where the UNSW_NB15_training-
set_5451.csv (reduced training-set) file is further divided into 
two subsets: Training set and Validation set, with a split ratio 
of 0.33%, i.e., 67% of the UNSW_NB15_training-
set_5451.csv will be used for training, while 33% of for 
validating. The training subset is used by the compiler to train 
the model, while the validation subset is used for evaluating 
the model performance after each epoch.  

After training the model, we analyse model’s 
performance and repeat the training after tuning the model’s 
parameters, until satisfactory performance is attained. 

D. Testing phase 

In this phase of our system, we load the test dataset and 
feed it into our trained model for the testing purpose. We then 
record the evaluation matrix for analysing our system. 

V. RESULTS AND DISCUSSION 

The Keras deep learning framework [17] and Google 
TensorFlow library are used to simulate the proposed 
BLSML RNN model. In the simulations, the proposed model 
basically performs binary classification where it classifies 
each input test sample as “normal” or “attack” in the testing 
phase. The evaluation metrics defined in the previous section, 
i.e., accuracy, error rate, precision, false positive rate, true 
positive rate, recall and F-1 score are used to evaluate the 
model performance in detecting intrusions. In the experiment, 
the simulated model was trained with a total of 5451 samples. 
The training samples were deduced from 
UNSW_NB15_training-set.csv file. The model was then 
tested with 4206 test samples. These test samples were 
extracted from UNSW_NB15_testing-set.csv file. Table II 

shows the number of anomalies and normal samples used in 
the test-set. 

Table III summarizes the four performance values in the 
confusion matrix: TP, FN, FP and FN. Table IV shows the 
experimental outcomes.  The proposed model is able to detect 
attacks using the reduced UNSW_NB15 dataset, with more 
than 95% accuracy with 100% precision. The model 
generates a zero false alarm rates and a very low wrong 
detection rate of 0.04% with an impressive recall and f1-score 
value of 98%. The proposed model was capable of classifying 
4205 samples of data in 2.19 seconds on an Intel Core i7 
2.4GHz Central Processing Unit (CPU) without a Graphics 
Processing Unit (GPU). 

TABLE 7.2: NUMBER OF SAMPLES USED FOR 
CLASSIFICATION 

Class Sample size 

Attack   4094 

 Normal   112 

 

TABLE 7.3: SIMULATED RESULTS OF THE FOUR PERFORMANCE 
VALUES IN THE CONFUSION MATRIX 

Parameter Number of Samples 

TP 4027 

TN 1 

FP 10 

FN 166 

 

TABLE 7.4: REPORTED ACCURACY, PRECISION, RECALL AND F1-
SCORE OF THE PROPOSED CLASSIFIER INCLUDING 

MISCALCULATION RATE AND FAR 

Performance 

Measure 
Percentage 

Accuracy 0.9571 

Precision 1 

Recall 0.96 

f1 - score 0.98 

Miscalculation rate 0.041 

FAR 0 

Detection Time (sec) 2.19 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a new IDS model based 
on the BLSTM RNN for anomaly intrusion detection. The 
BLSTM RNN is able to perform deep learning effectively 
and to learn detailed features from the dataset in the training 
phase. This ability is important in learning characteristics in 
network traffic involved in anomaly intrusions to distinguish 
abnormal traffic from normal traffic. 

We use Keras deep learning framework and Google 
TensorFlow library to implement the proposed new model. 
The implemented BLSTM was applied to a reduced dataset 
of the UNSW-NB15 dataset, which was used in several 
published works on IDS in IoT networks. The detection was 
based on binary classification, thus identifying normal and 
threat patterns. The developed model was able to achieve 
high accuracy in detecting attack traffic in the used dataset. 

For future developments, more experiments will be 
performed to further analyse the proposed BLSTM RNN 
model using large data sets from published data sets, 
especially data sets containing dedicated IoT traffics. In 
addition, the developed model will be improved to increase 
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its detection accuracy further and the trade-offs between 
detection parameters. 
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