

School of Computing, Engineering and Mathematics

A thesis submitted in the partial fulfilment of the requirements for the degree of

MASTER OF RESEARCH IN COMPUTER SCIENCE

A Deep Learning Approach for

Intrusion Detection in Internet of

Things using Bi-Directional Long

Short-Term Memory Recurrent

Neural Network

By

Bipraneel Roy

December, 2018

THIS PAGE LEFT INTENTIONALLY BLANK

DEDICATION

I owe the most to my mother Bakul Rani Roy, for her genuine optimism and

continuous inspiration. Without her encouragement and support this piece of work would

have been nowhere. I sincerely put my gratitude towards her for supporting me in every

way one can be supported and dedicate my MRes Thesis to my Mother.

THIS PAGE LEFT INTENTIONALLY BLANK

ACKNOWLEDGEMENT

It is truly an incredible delight to thank everybody who helped me in this

undertaking. Firstly, I would like to convey my sincere gratitude to my supervisor Dr. Hon

Cheung, for his invaluable comments, suggestions and continuous support and optimism

throughout the project.

I would like to thank University of Western Sydney for giving me the fortuity for

conducting Masters Course and School of Computing Engineering and Mathematics

(SCEM) department for providing me with all the resources needed to accomplish it. I

would conjointly wish to convey the ITNAC conference committee for accepting my

paper.

Also, my sincere gratitude goes to my friend Taniya Gomes for providing moral,

economic and intellectual upkeep all through the year. I likewise want to thank Niranjan

Parajuli for being such a supportive friend.

Finally, I also convey my thankfulness towards those that don’t seem to be listed

here. So many people have helped me during my Masters study. At last, obviously, the

obligation regarding any error that may remain is solely mine.

THIS PAGE LEFT INTENTIONALLY BLANK

STATEMENT OF AUTHENTICATION

The work presented in this thesis is to the best of my knowledge and believe, original

except as acknowledged in the text. I hereby declare that I have not submitted this material

either in full or in part, for a degree at this or any other institution.

Signature

THIS PAGE LEFT INTENTIONALLY BLANK

i

TABLE OF CONTENTS

LIST OF FIGURES .. v

LIST OF TABLES ... vi

LIST OF ABBREBRIATIONS .. vii

ABSTRACT .. x

Chapter 1 - INTRODUCTION ... 1

1.1. The Overview ... 1

1.2. Motivation .. 2

1.3. Problem Statement ... 2

1.4. Research Questions .. 3

1.5. Research Goals ... 3

1.6. Delimitation .. 4

1.7. Research Contributions .. 4

1.8. Outline .. 5

Chapter 2 - LITERATURE REVIEW ... 6

2.1. Introduction .. 6

2.2. Internet of Things ... 6

2.3. IoT Definition ... 6

2.4. Classification of “Things” in IoT ... 8

2.4.1. Physical things ... 8

2.4.2. Cyber Things ... 9

2.5. IoT Architecture and Security Concerns .. 9

2.5.1. Perception Layer Security Issues ... 10

2.5.2. Security Issues at Sensor Network ... 11

2.5.3. Security Issues at Network Layer .. 11

2.5.4. Application Layer Security Issues ... 11

2.5.5. Network Capacity Limitation ... 12

2.6. IoT Challenges .. 12

2.7. Machine Learning ... 12

ii

2.7.1. Types of Learning in ML ... 13

2.7.2. Algorithms of Machine Learning .. 13

2.8. Machine Learning versus Deep Learning ... 16

2.9. A Popular ML Algorithm - Deep Learning .. 17

2.9.1. DL Architecture ... 18

2.9.2. Salient Aspects of Deep Learning .. 19

2.9.2.1. Representation Learning ... 19

2.9.2.2. Distributed Representations ... 20

2.9.2.3. Learning Multiple Levels of Representations... 20

2.9.3. Resent Advances .. 20

2.10. Implementation of DL in IoT Applications .. 21

2.10.1. Smart Homes ... 21

2.10.2. Smart City... 21

2.10.3. Energy.. 22

2.10.4. Intelligent Transportation System ... 22

2.10.5. Healthcare and Wellbeing ... 23

2.10.6. Agriculture ... 23

2.10.7. Education ... 24

2.10.8. Industry .. 25

2.10.9. Government ... 25

2.10.10. Sport and Entertainment .. 26

2.11. Related Works ... 26

2.12. Improvement to Existing Identified Research Gaps .. 28

Chapter 3 - NEURAL NETWORKS ... 30

3.1. Artificial Neurons ... 30

3.2. Feed Forward Neural Networks ... 31

3.3. Recurrent Neural Networks ... 32

3.4. Long Short-Term Memory RNN ... 34

3.5. Bi-directional Long Short-Term Memory RNN .. 36

3.6. Training Neural Networks ... 37

3.7. Activation Functions .. 38

3.7.1. Step Function ... 39

iii

3.7.1.1. Rectified Linear Unit (ReLU) .. 40

3.8. Deep Learning .. 40

3.9. Dropout Regularization .. 41

3.10. Deep Learning Loss Function .. 41

3.10.1. Mean Squared Error .. 42

3.10.2. Cross Entropy Loss .. 42

3.11. Deep Neural Network Implementation Frameworks ... 42

3.11.1. H2O .. 43

3.11.2. Torch .. 43

3.11.3. TensorFlow .. 43

3.11.4. Caffe ... 43

3.11.5. Theano ... 44

3.11.6. Neon .. 44

3.12. Training Dataset and Feature Identification: UNSW-NB15 46

3.13. Dataset Format Conversion .. 48

Chapter 4 - RESEARCH METHODOLOGY.. 50

4.1. Introduction .. 50

4.2. Model Design Methodology .. 50

4.3. Implementation Methodology .. 52

4.3.1. Keras Library .. 52

4.4. Evaluation Methodology .. 53

4.5. Hardware and Software Used .. 55

Chapter 5 - ARCHITECTURE & IMPLEMENTATION ... 56

5.1. System Architecture ... 56

5.2. Technical Knowhow – Programming Language, Development Environment,

Backend Framework and Libraries .. 57

5.3. Code Structure.. 58

5.3.1. IDS Class .. 60

5.3.2. Data Class ... 60

5.3.2.1. preprocess Method .. 61

5.3.2.1.1. importDataset Method.. 61

5.3.2.1.2. normalizeData Method ... 63

iv

5.3.2.1.3. dataStructure Method ... 65

5.3.2.1.4. reshape Method ... 66

5.3.3. Classifier Class .. 69

5.3.4. FitModel Class .. 72

5.3.5. Detection Class ... 73

5.4. Conclusions .. 74

Chapter 6 - SIMULATION RESULTS & EVALUATION .. 76

6.1. Metric Definition and Clarification .. 76

6.2. Performance over Different Hyper-Parameters ... 77

6.2.1. Performance over Different Time-Steps .. 78

6.2.2. Performance over Different Batch-Size .. 79

6.2.3. Performance over Different Dropout Rates ... 79

6.3. Performance on Reduced Test-set .. 80

6.4. Performance on Full UNSW-NB15 Test-set .. 83

Chapter 7 - Conclusion & Future Work ... 85

References .. 87

Appendix - A .. 100

v

LIST OF FIGURES

Figure 2.1: IERC definition of IoT [107] ... 7

Figure 2.2: Classification of "things" [105] ... 8

Figure 2.3: IoT security architecture [109] .. 10

Figure 2.4: ML and DL .. 16

Figure 2.5: Google Trend screening more inclination toward DL in recent times [39] 17

Figure 2.6: A neuron with multiple inputs and weights and bias [39] ... 18

Figure 2.7: Overall working of DL training [39] ... 19

Figure 3.1: Working of a single neuron [113] ... 30

Figure 3.2: Feed-forward Neural Network [115] ... 31

Figure 3.3: An RNN neuron ... 32

Figure 3.4: Unrolling of RNN architecture .. 33

Figure 3.5: Unfolded RNN structure with T time steps [48] ... 33

Figure 3.6: LSTM cell [48] .. 34

Figure 3.7: Unfolded BLSTM RNN structure with three consecutive time steps [48] 37

Figure 3.8: Biological neuron and artificial neuron [122] ... 39

Figure 3.9: Step function [123] .. 40

Figure 4.1: Intrusion Detection Process (IDP) – high level view .. 50

Figure 4.2: IDP Flowchart ... 51

Figure 4.3: Confusion Matrix... 53

Figure 5.1: System Architecture .. 57

Figure 5.2: Scheme of Implementation. ... 59

Figure 5.3: A view of the training-set as data-frame format taken from Spyder IDE.................. 62

Figure 7.1: Bi-directional LSTM architecture with three consecutive time steps...................... 102

Figure 7.2: Confusion Matrix... 104

file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208977
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208978
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208979
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208980
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208981
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208982
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208983
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208984
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208986
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208987
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208989
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208990
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208994
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532208999
file:///C:/WSU/COURCE%20WORK/SEM_3/Literature/Sections/Total%20Thesis/10%20DEC/v4/A%20Deep%20Learning%20Approach%20for%20Intrusion%20Detection%20in%20Internet%20of%20Things%20using%20Bi-Directional%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network.docx%23_Toc532209000

vi

LIST OF TABLES

Table 2.1: Corresponding dataset and reported accuracy .. 27

Table 3.1: Assessment of different DL implementation framework [39]. 44

Table 3.2: Data-set structure after extracting the features manually.. 48

Table 5.1: Design parameters of the proposed model .. 57

Table 5.2: Classes and their respective functions .. 60

Table 5.3: Example of categorical data (marked yellow) and other un-normalized data 64

Table 5.4: Categorical to numeric conversion (marked yellow) other normalized data 65

Table 5.5: Input and Output of the preprocess() method ... 68

Table 5.6: I/O of the sub-functions of the preprocess() method .. 68

Table 5.7: List of steps and their corresponding actions for building the RNN 69

Table 6.1: Constant hyper-parameter values (excluding time-steps) ... 78

Table 6.2: Results of different time-steps .. 78

Table 6.3: Constant hyper-parameter values (excluding batch-size) ... 79

Table 6.4: Results of different batch-size .. 79

Table 6.5: Constant hyper-parameter values (excluding dropout rate) .. 80

Table 6.6: Results of different dropout rates .. 80

Table 6.7: Architecture of our model with all the optimum parameter values 81

Table 6.8: Number of samples used for classification (reduced test-set)..................................... 81

Table 6.9: Confusion matrix values (reduced test-set)... 82

Table 6.10: Classifier performance over reduced test-set .. 82

Table 6.11: Confusion matrix values over full UNSW-NB15 test-set ... 83

Table 6.12: Classifier performance over reduced full UNSW-NB15 test-set 83

vii

LIST OF ABBREBRIATIONS

ACCS Australian Centre for Cyber Security

AE Auto Encoder

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programmer Interface

BAC Breast Arterial Calcification

BLSTM Bi-directional Long Short-Term Memory

BP Back Propagation

BPTT Back Propagation Through Time

BRNN Bidirectional Recurrent Neural Network

CAE Contractive Auto Encoder

CART Classification And Regression Tree

CEL Cross Entropy Loss

CPS Cyber-Physical System

CPU Central Processing Unit

DAE Denoising Auto Encoder

DL Deep Learning

DNN Deep Neural Network

DOS Denial of Service

EM Expectation Maximization

FAR False Alarm Rate

FDC Fault Detection and Classification

FFNN Feed Forward Neural Network

viii

FN False Negative

FP False Positive

FPR False Positive Rate

GAN Global Area Network

GPRS General Packet Radio Services

GPS Global Positioning System

GPU Graphics Processing Unit

GSM Global System For Mobile

GUI Graphical User Interface

IDE Integrated Development Environment

IDS Intrusion Detection System

IERC European Research Cluster On Internet-of-Things

IOT Internet Of Things

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ITS Intelligent Transportation System

ITU International Telecommunications Union

LSTM Long Short Term Memory

LSTM

S2S

Long Short-Term Memory Sequence-to-Sequence

ML Machine Learning

MSE Mean Squared Error

OOP Object oriented programming

QoS Quality Of Service

ix

ReLU Rectified Linear Unit

RFID Radio Frequency Identification

RNN Recurrent Neural Network

SDA Stacked Denoising Auto Encoder

SDN Software Defined Network

SGD Stochastic gradient descent

SVM Support Vector Machine

TCP Transfer Control Protocol

TN True Negative

TP True Positive

UDP User Datagram Protocol

WAN Wide Area Network

WSN Wireless Sensor Network

x

ABSTRACT

 Internet-of-Things connects every ‘thing’ with the Internet and allows these

‘things’ to communicate with each other. IoT comprises of innumerous interconnected

devices of diverse complexities and trends. This fundamental nature of IoT structure

intensifies the amount of attack targets which might affect the sustainable growth of IoT.

Thus, security issues become a crucial factor to be addressed. A novel deep learning

approach have been proposed in this thesis, for performing real-time detections of security

threats in IoT systems using the Bi-directional Long Short-Term Memory Recurrent

Neural Network (BLSTM RNN). The proposed approach have been implemented through

Google TensorFlow implementation framework and Python programming language. To

train and test the proposed approach, UNSW-NB15 dataset has been employed, which is

the most up-to-date benchmark dataset with sequential samples and contemporary attack

patterns. This thesis work employs binary classification of attack and normal patterns. The

experimental result demonstrates the proficiency of the introduced model with respect to

recall, precision, FAR and f-1 score. The model attains over 97% detection accuracy. The

test result demonstrates that BLSTM RNN is profoundly effective for building highly

efficient model for intrusion detection and offers a novel research methodology.

 Keywords—Bi-directional Recurrent Neural Network, Deep Learning, Intrusion

Detection, IoT.

1

Chapter 1

INTRODUCTION

1.1. The Overview

The Internet, since 1960s, has been playing an important role in connecting

individuals and putting organization and businesses together. It has collapsed the

geographical barriers that previously used to exist between peoples and has provided

an efficient and financially worthwhile way of communications.

These days, things are changing and opening a completely new dimension of

communication due to the emergence of smart objects which possess the competency

of creating and collaborating data through the Internet in a much smarter course.

Internet of Things (IoT) is the cutting-edge innovation and frameworks which can

possibly change the way in which we live. IoT can be viewed as an innovation which

is built upon two fundamental components: “Internet” and “Things”. The “Things”

simply refers to any kind of device or object that has the capability of perceiving or

collecting information about itself or the surrounding environment. These smart

devices or things has the capability of analyzing and acting accordingly with other

devices by using “Internet” as the backbone network for communication.

IoT communication systems can reach way beyond the traditional Internet and

has the potential to improve human life condition. For instance, through IoT, human

health can be remotely monitored, thus, rejecting the necessity of visiting the hospital

physically. For example, University of Edinburgh, Scotland, have created minute

computing gadgets that can be attached to human chest, and can screen and gather

respiratory information and after that transmit it remotely to the respective specialists

who can pursue their cases remotely [114]. IoT is being utilized by government

organizations round the globe for gathering information from various regions and to

make accessible enhanced facilities in security, health, development and

transportation. IoT is employed by enterprises for accommodating enhanced customer

services and to augment security and safety to employees. IoT can also enhance the

way of managing day to day life. For instance, Amazon Echo are a bunch of smart IoT

devices having a linguistic capability. People can interact with the devices and can ask

for advice regarding weather, schedule alarm or obtain new feed from the Internet.

2

Internet of Things (IoT), originally termed by Kevin Ashton in the year 1999 [2],

stands for a system of globally recognizable physical devices (or things) which can

sense the environment around them and behave intelligently. To construct the IoT

network, a varied assortment of technologies is required. These techniques support to

shape a virtual world of objects or things over the physically connected networks

where things can communicate to each other in an intelligent way, providing

information to people or taking actions based on individual inputs. IoT is rising at an

accelerating stride, interconnecting billions of device or ‘Things’. As per Gartner [1],

about 25 billion distinctively recognizable objects or things are predicted to be a part

of the worldwide computing system by 2020 [1]. These interconnected devices

augment regular activities and shape smart solutions. However, the immense prospects

and conveniences brought by IoT leads to security concerns.

1.2. Motivation

The technique of Deep Learning (DL) essentially imitates the functionality of

a human brain. For acquiring those functionalities, the DL technique uses powerful

NN algorithms such as Clustering algorithm, Bayesian Algorithm, Artificial Neural

Network algorithm. DL algorithms possess high computation ability which makes it

more appropriate for intricate and composite IoT datasets likened to legacy ML

techniques. DL application in the IoT sphere, chiefly on IoT network security is still

in its early research phase and holds an enormous prospective for discovering

incursions from the IoT system. Recurrent neural networks possess the ability of

learning from preceding time-steps from input dataset. The information of every time-

step goes under processing, and then reserved for providing input for the succeeding

time-stamp. The subsequent time-step uses the prior data stored for processing the

information further. Nevertheless, the recurrent neural network architectures remain

very complex, yet, hyper-parameters could be tuned for obtaining efficient

functionality for IoT resolutions. This hypothesis puts motivation for applying DL

perceptions to the security of IoT network.

1.3. Problem Statement

The relevance of security in contemporary connected world needs analyzing and

processing a colossal amount of diverse data already; IoT network makes it even more

complex. In spite of the several countermeasures proposed by many research studies,

the IoT environment remains very prone to intruders. This clearly expose that gaps do

3

still exist on how IoT security concerns are mitigated. This work’s central objective

is to examine the use of deep-learning neural network in the detection of network

intrusion attempts or attacks on a computer network in general and on an IoT network

in particular. The neural network model to be used in the investigation is called Bi-

directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN).

Also, this research stretches to inspect and provide an efficient way for implementing

the deep learning approach and enhance its efficiency to detect intrusions in the IoT

network infrastructure in competent and timely manner, attaining high degree of

detection accuracy and low rates of false alarm.

1.4. Research Questions

The research questions of this endeavor are as follows:

RQ1. Why Deep Learning is efficient in intrusion detection accuracy over IoT

network than prevailing machine learning techniques?

RQ2. How efficient is Bi-directional Long Short-Term Memory Recurrent Neural

Network (BLSTM RNN) in detecting intrusions in an IoT environment?

RQ3. What are the parameters essential for BLSTM RNN to generate a low False

Alarm Rate (FAR) and a high detection accuracy?

RQ4: What are the efficient ways to implement the BLSTM RNN approach?

1.5. Research Goals

In answering the above-mentioned questions, the subsequent research goals

would be achieved:

 Determine the key factors that give advantages to Deep Learning (DL) over

prevailing Machine Learning (ML) techniques in detecting intrusion over IoT

network.

 Implement BLSTM RNN approach using TensorFlow framework for

developing the code for an AI model proficient of detecting intrusions in IoT

network.

4

 Determine the probable optimal hyper-parameters required by the proposed

model to attain the highest detection accuracy and FAR in least time.

 Evaluate the reported performance of the introduced model.

1.6. Delimitation

This thesis is limited to the detection of intrusions in IoT network layer only.

Also, the proposed model is restricted to only detecting intrusions and provides no

prevention mechanism whatsoever.

1.7. Research Contributions

This research work is a multidisciplinary venture that involves Artificial

Intelligence (AI), IoT and computer network security. Therefore, a considerable

amount of time is committed in interpreting the complexity of the perceptions in depth.

We begin with recognizing the attack categories consisted in the intrusion recognition

dataset. Then, learning the architecture of the IoT network and started assessing ML

algorithms substantial for the IoT environment. However, we observed that deep

learning algorithms forms the utmost appropriate methodology for the defined research

problem. Experiments are performed using Google TensorFlow. The performance

outcome are then evaluated and discussed. This inclusive interdisciplinary applied

approach made the research work unique.

The new contributions of this research work are:

 Introducing BLSTM RNN for intrusion detection in IoT network.

 Design and develop the proposed BLSTM RNN algorithm using Python as

programming language, and Tensorflow as implementation framework.

 Provide parameters tuning details that enables a low FAR and an elite

intrusion detection accuracy.

5

1.8. Outline

The structure of this thesis is in the subsequent order: Chapter 1 - Introduction:

provides an introduction to IoT and introduces neurons and neural networks. Also

gives an overview of the deep learning, activation functions and loss functions. This

chapter also establishes the problem statement, research questions, research goals and

research contributions along with the research delimitations. Chapter 2 – Literature

Review: discusses Internet-of-Things (IoT) along with IoT architecture and security

concerns and the sectors where IoT systems are applied. This chapter also establishes

the background in Machine Learning (ML), Deep Learning (DL) techniques and their

implementation in IoT. This chapter also presents the literature review of similar works

done by other researchers, existing methods and their issues and identify a potential

research gap. Chapter 3 – Neural Networks: discusses architecture and functionality

of neurons, Feed-forward Neural Networks, Recurrent Neural Network (RNN), Long

Short-Term Memory (LSTM) RNN and Bi-directional LSTMs (BLSTMs) along with

the neural network training procedure, activation function and loss functions. Also

discusses about neural network implementation framework and UNSW-NB15 training

dataset. Chapter 4 – Research Methodology: provides the research methodology, data

flow chart, implementation methodology (Keras and TensorFlow) and evaluation

parameters. Chapter 5 – Architecture & Implementation: proposes the architectural

details and hyper-parameter values of the proposed model. Also discusses about the

implementation of the aforementioned proposed model through Keras library and

Python programming language. Chapter 6 – Results: shows the simulation outcomes

and the performance evaluation of the proposed model with various parameters.

Chapter 7 - Conclusions and Future Work: presents the conclusion drawn out of the

project including the possible future works that might be accomplished to enhance and

upgrade the project.

6

Chapter 2

LITERATURE REVIEW

2.1. Introduction

With progressively deep incorporation of human society with the Internet, the

way people live, work and study is changing. Along with it, numerous security

concerns are growing more serious. Identifying various network attacks, remains an

inevitable technical concern. An Intrusion Detection System (IDS) could recognize

attacks which are ongoing or an invasion that has already happened. As a matter-of-

fact, the mechanism of detecting intrusion is equal to a classification task, including

multiclass classification or binary classification. Precisely, the key motivation of

detecting intrusions is to improve the classifier’s detection accuracy in efficiently

identifying abnormal data patterns.

2.2. Internet of Things

Internet of Things (IoT) could be realized as a persistent network of networks:

plentiful heterogeneous things or entities, both virtual and physical like sensors,

people, software and all types of devices) connected with some other entity or number

of entities over unique addressing protocols and communicating with each other for

providing services. The development of internet of things by utilizing the new IP

address (IPv6) version, which drives beyond the confines of IPv4, will revolutionize

the world of Internet by the connectivity for a huge number of connected smart devices

nearby 70 billion, may be even more. Thriving this technology is called as the Second

Economy or the Industrial Internet revolution [108].

2.3. IoT Definition

In the year 2005, the International Telecommunication Union (ITU) added to

the conception of IoT and recommended 4 technologies to comprehend IoT: Intelligent

embedded technology, RFID technology, sensor technology and nanotechnology

[105]. As per [106] IoT is in yet in early phases and any regular or common standard to

comprehend IoT hasn’t been established however. There exist various definitions of

IoT. For example, [104] explain IoT as environment of computing of several RFID

7

entrenched things which intercommunicates to provide smart Information Technology

(IT) facilities.

The European Research Cluster on the Internet-of-Things (IERC) specifies IoT

as: “a dynamic global network infrastructure with self-configuring capabilities based

on standard and interoperable communication protocols where physical and virtual

‘things’ have identities, physical attributes, and virtual personalities and use intelligent

interfaces, and are seamlessly integrated into the information network” [107].

Above figure illustrates IoT characterization proposed by IERC. “Dynamic

global network infrastructure” refers to the network which is capable of automatically

delivering and resource allotting in order to fulfill the prevailing and upcoming needs

of IoT gadgets. This could be applied by using software defined networks (SDN) and

cloud computing (CC) which allow “self-configuring capabilities” built over “standard

communication protocols” like UDP and TCP/IP. Moreover, these protocols required

to be implanted within the things that have “intelligent interfaces”. Intelligent interface

possesses the capability to perform certain functions as per the need, such as

connecting to the Internet, exchanging data and information etc. in a “seamlessly

integrated” way like present personal computers.

Figure 2.1: IERC definition of IoT [107]

8

2.4. Classification of “Things” in IoT

According to [105] the mapping among “things” over cyber and physical world

is an inevitable part of IoT infrastructure, where “things” could be categorized into

two sorts: Physical things and Cyber things. The grouping of “things” in IoT are

illustrated in the Figure 2.2.

2.4.1. Physical things

a) Objects: These are tangible things with measurable bodies like Persons, vehicles,

tablets etc.

b) Behaviors: It refers to the movements of the objects. For instance, running, driving,

monitoring and so on.

c) Tendency: This refers to the trends in physical things, like the tendency of a vehicle

in a parking is to be stationary. This trend may also occur due to external factors

like congested traffic or weather becoming cloudy.

d) Physical events: These are an assortment of all the above-named properties

integrating to define the events caused by certain situations in the physical world.

Figure 2.2: Classification of "things" [105]

9

2.4.2. Cyber Things

a) Entities: refers to the abstract things like code and data.

b) Actions: denotes data processing like, transmission of information with in entities.

c) Events: refers to entity activities like, reporting.

d) Services: refers to the tasks that are being offered to a thing or by a thing in order

to perform a specific goal.

For instance, Google’s automated car, exhibit a device which has

comportments like driving, parking and so forth. The vehicle could have an affinity as

when it discovers that it has begun to rain, it is likely to take physical activities like

actuating wipers. The car wiper consists an algorithm which signifies the abstraction

which process and share data dependent on available services for taking actions and

reporting events.

2.5. IoT Architecture and Security Concerns

Despite the massive potential of the IoT in numerous spheres, the entire

communication setup of the IoT network is flawed as per the security standpoint is

concerned. The rising usage of IoT devices requires a prevailing security against

probable vulnerabilities or attacks. Therefore, security is essential at every layers of

IoT infrastructure, primarily for there is no network boundary or perimeter. Security

constraints that required to be considered in IoT applications could be characterized

into four key categories [109]:

a) Confidentiality: Confidentiality encompasses discretion in shielding data secrecy

from third parties.

b) Integrity: For the sake of preserving the integrity of the information, the recipient

of the message needs to authenticate that the received communications remained

unaltered during the delivery or broadcast.

c) Authentication: Authentication in the IoT is the process of conforming that the

communication actually is, from where it claims to be

d) Availability: It states the ability of accessing the information or any resources in

the truthful format. An authenticated user could use several services of IoT to

prevent Denial of Service (DoS) attack and keep the services available. DoS

attacks remains a major threat to the availability [110].

10

Since IoT is the incorporation of multiple diverse networks, consequently it is

challenging to accomplish a reliable association between the explicit nodes because of

the constantly varying characteristics of the nodes. IoT architecture can be broadly

arranged into three layers: sensing layer, transportation layer and application layer.

Figure 2.3 below illustrates the security architecture of IoT.

Some of the most prominent security concerns are discussed below:

2.5.1. Perception Layer Security Issues

Perception or Sensing layer primarily consists of devices like RFID tag,

Reader, Smart card, Sensor network etc. These devices remains exposed to subsequent

vulnerability that may lead to security issues of IOT network like radio interference,

sensor abnormalities and sensor attacks. [109]. Collecting real-time information needs

a huge number of terminals are required at the sensing layer. This procedure requires

data integrity and authentication. Since the nature of the communication is wireless,

the primary problems occur in sensing or perception terminals comprise tampering,

confidential information leakage, copying, terminal virus and other issues [110].

Figure 2.3: IoT security architecture [109]

11

2.5.2. Security Issues at Sensor Network

Sensor nodes are accountable for information transmission, collaboration and

integration. Since they are battery-operated with minimum security defense, they may

encounter complex security matters like:

 Summoning Malicious Codes: Harmful programs like worm could affect the

sensor network very easily, as, to execute, the worms do not require any other

dependent files, which makes it very hard to identify and take action.

 Tag defect: Due to lack of enough security it is easy for the intruder to

accomplish illegal usage of legal reader. An invader could effortlessly get the

tag information and for accessing Radio Frequency Identification (RFID)

devices devoid of any kind of prior authentication through forging.

2.5.3. Security Issues at Network Layer

IoT network layer chiefly consists of Computers and Wired or wireless

networks. The reason for this layer is to transmit data. Nodes move freely in wireless

networks, i.e. nodes are able to connect or disconnect from the network anytime with

no prior conformation which make wireless networks exposed to security threats. The

network layer of IoT ought to have that capability to cope with such malicious

obliteration. Nonetheless, mechanisms that exist is not adequate to deal with this

security issue [109].

2.5.4. Application Layer Security Issues

IoT application layer comprises of diverse applications such as industrial

monitoring, monitoring services, smart grid or any additional intelligent systems.

Malicious program or software exposures could be hosted in such exposed systems.

Additionally, the incorporation of various techniques and professional requirements

could generate a congestion or bottleneck for processing immense data and on process

control which might lead to the safety and reliability issues of IoT systems [110].

12

2.5.5. Network Capacity Limitation

The converging of devices which ascends from the IoT system kindles greater

claim for a certain grade of Quality of Service (QoS) of the connected network

infrastructure. Applications that deliver certain services might demand additional

frequent transfer of small data blocks (sessions) essential for upgrading and

synchronization. Frequency of the mentioned sessions will generate a significant effect

on delay and penetrability of the network. This fragment of the infrastructure

necessarily be securely brought for ensuring secure information flow [111].

2.6. IoT Challenges

IoT is yet at an early stage of development and encounters numerous

challenges. Primarily, there exists no standard structural design for IoT networks [11].

Due to its initial phase, companies are not eager to manufacture devices which comply

with other merchant’s devices to accomplish monetary benefit and drive customers

toward the sellers’ lock-in. Besides, IoT networks are heterogeneous, as a result

associating, operating, organizing and securing the network is a difficult task. Thirdly,

IoT devices utilize diverse communication conventions to correspondence over

various kinds of networks (e.g. Bluetooth, WAN, GSM, and WSN) [11]. Then comes

privacy and security. Due to different types, and the amount of IoT devices, and their

restricted equipment capacities, it is relatively difficult to employ host-based

protection methods for securing IoT objects, which drives to the idea of network based

security measures along with intrusion detection and protection techniques.

2.7. Machine Learning

Machine learning (ML) is considered as a sub area inside AI which is becoming

ever more prevalent and is broadly employed in the industry and academia for solving

various tasks. However, AI isn’t new to computer science. It started back in the year

1950, after Alan Turing introduced famous interrogation of "Can machines

think?"[37]. Later, the focus of AI has been distributed around various expanses. With

the accessibility of enormous capacities of data, data-driven method of ML has become

so prevalent. Mitchell [38] states ML by: "A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E"[38]. Taking

13

the classical example of spam filter would put it into the proper context, which is: The

task ‘T’ represents the prediction of whether an email is a spam or not. The ‘E’

represents the experience, that is the training data set, and the performance ‘P’ is

measured as the ratio between appropriately classified emails.

2.7.1. Types of Learning in ML

According to [112] “learning” in ML can be categorized in to the following:

a) Supervised Learning: It is a systematization of the concept of learning from

examples. The learner (commonly, a computer program) is provided with two

separate data sets. One is called the training-set while test-set is the other one.

Through the training-set the learner can “learn” the patterns of labelled

instances and can recognize unlabeled samples in the test dataset with the

highest possible accuracy [112].

b) Unsupervised Learning: Here, the data is clustered into classes depending on

the statistical propertied if the input data. Unlike supervised learning, there

remains no explicit target outputs related to each input. In unsupervised

learning the learner receives inputs x1, x2… n and determines which aspects of

the input structure should be considered in the output [112].

c) Reinforcement Learning: In this sort of learning both marked and unlabeled

information could be utilized to form the fundamental knowledge. The

framework gets a reward for every right or wrong forecast. Depending on the

reward the next forecast could be generated. At the point when new data is

given to the framework, the framework will endeavor to locate the best

execution way or join in multiple execution pathway for forecasting and pause

for the reward. When the obtained reward occurs to be superior with respect to

the past rewards for the identical input, at that point, this pathway turn out to

be agreeable Reinforcement learning is utilized in web based games, for

example, Chess [112].

2.7.2. Algorithms of Machine Learning

Algorithms could be defined as an arrangement of rules to be carried out in an

explicit order for resolving a specified problem [112]. Below are the list of groups of

ML algorithms:

14

1) Regression Algorithm

It is a technique based on predictive modelling. It examines the correlation in

between the dependent variable (also called as target) and one or multiple independent

variables (also called predictor) [121]. Regression algorithms are commonly utilized

for modelling sequential or time series data. Instances of usage are: forecasting,

financial modelling including discovery of relations among variables. For instance,

forecasting of stock prices are best performed using regression. It deals with the

statistical data analysis and involves indicating significant relationships among a

dependent variable Y and a set of independent variables X1, X2,…, Xn. Some of the

most widely used examples are given below:

a) Stepwise regression

b) Logistic regression

c) Ordinary lest squares regression (OLSR)

d) Linear regression

2) Clustering Algorithm

Clustering algorithms are generally apprehensive with recognizing the input

data patterns and establish them into groups or clusters. The goal is to place similar

objects (as per specific similarity measure) in a same cluster and allocate unlike data

to different clusters [121]. Data are generally defined and clustered by utilizing a set

of values and features. It is an unsupervised form of learning since there exist no pre-

existing data categorization. Some of the widely used clustering algorithms are as

follows:

a) Expectation Maximization (EM)

b) K-Medians

c) Hierarchical clustering

d) K-Means

15

3) Bayesian Algorithm

Bayesian algorithm employ Bayes’ hypothesis in regression and classification

problems [121]. It considers the conditional probability of every conceivable reason

for a certain outcome. Most widely used Bayesian algorithms are as follows:

a) Bayesian Network

b) Gaussian Naïve Bayes

c) Naïve Bayes

d) Multinomial Naïve Bayes

4) Decision Tree Algorithm

Decision tree is a competent nonparametric technique that could be employed

either to regression or to classification tasks [121]. Most widely used decision tree

algorithms are as follows:

a) Decision Stump

b) Classification and Regression Tree (CART)

c) M5

d) C4.5 and C5.0

5) Artificial Neural Network Algorithm

Artificial Neural Network (ANN) algorithms mimics the way of the biological

neurons for complying with classification and regression problems [121]. Some ANN

algorithm examples are as follows:

a) Radial Basis Function Network

b) Perceptron

c) Hopfield Network

d) Back-Propagation

There are additional ML algorithms, like association rule learning, deep

learning, regularization and features selection algorithms, and dimensionality

reduction – just to name a few examples.

16

2.8. Machine Learning versus Deep Learning

Machine learning (ML) is extensively utilized in identifying several types of

attacks. A ML methodology could assist the network admin to perform required

actions for averting intrusions. Nevertheless, most customary ML methods reside

within shallow learning and usually give emphasis to feature engineering and

selection. With enormous intrusion data that rises in the real-time network

environment, shallow learning is unable to resolve the classification issue efficiently

[29]. Deep learning approach possess the potential to extract improved representations

from the dynamic data-sets, and is capable of creating much efficient prototypes. G.

Hinton et al. [30] introduced the hypothesis of DL in the year 2006, and over years the

theory underwent spectacular rise in the area of ML. Most recent ML methodologies

work well because of human-designed representations and inputs features.

In ML, ‘representation learning’ or ‘feature learning’ represents set of methods

that makes a system capable of automatically learning the representations required for

detecting features from the training dataset. DL, on contrary, could be considered as

establishing both representation learning and machine learning together. DL pursuits

to together learn essential features along multiple levels of cumulative intricacy and

abstraction and the concluding prediction. Figure 2.4 illustrates the fundamental

difference between ML and DL, where traditional ML involves manual feature

selection and on contrary DL employs automated feature selection.

Figure 2.4: ML and DL

17

2.9. A Popular ML Algorithm - Deep Learning

Machine learning (ML) is comprised of several approaches, Deep learning

(DL) is one of them. The basic principle behind every deep learning technique is the

automated discovery of abstraction. DL comprises of supervised and unsupervised

learning methods established on multiple layers of ANN. DL is comprised of manifold

processing layers, where every layer generates a non-linear output from the input layer

data. The DL functionality is inspired from the signal processing capability of neurons

of the human brain.

Compared to other traditional ML approaches, DL models has gained more

consideration in current years. Figure 2.5 demonstrates the popularity flow of 5

popular ML algorithms as per Google trends, where deep learning is fetching further

popularity amid others. The emerging trend for Deep Neural Networks (DNNs) began

since 2006 after G. Hinton et al. [42] proposed deep belief networks hypothesis.

Subsequently, this expertise is employed in diverse areas of artificial intelligence

including search engines, image recognition, natural language processing so on and so

forth.

Figure 2.5: Google Trend screening more inclination toward DL in recent times [39]

18

2.9.1. DL Architecture

Deep neural network (DNN) comprises of 3 major layers, namely: the input

layer, manifold hidden layers and the output layer. The layers are constituted with

multiple neurons or units. A single neuron is the computational unit which accepts

some input vectors, computes a weighted summation of the input vectors, then passes

the resultant sum through the activation function for generating the output. Figure 2.6

represents the structure of a single neuron, where {X1, X2…Xn} represents the set of

inputs, {W1, W2 … Wn} represents the weight vector and the bias is represented by b.

These weights and biases would be optimized through the training course. The

summation of all the inputs, their respective weights and bias are feed into the

activation function to generate the output. The purpose of the activation function is to

help the neuron to learn complex patterns and present a non-linear properties into the

network.

In a typical DL input layer, random weights are allotted to the input data and

are forwarded to subsequent layer. Every succeeding layer similarly allots weights to

the respective inputs and generate outputs. Output of former layer contributes as input

of the subsequent layer. Model’s output layer represents the prediction outcome. The

accuracy of the model is determined by a loss function that computes the error-rate

among the actual output (i.e. output generated by the model) and the expected output.

The loss or error-rate represents the divergence among the actual and expected output.

The error-rate is then transmitted over the network back to the input layer. This

Figure 2.6: A neuron with multiple inputs and weights and bias [39]

19

technique of error-rate transmission across the network is termed as Back-propagation

(BP). The BP is utilized for updating network weights and biases. The DNN again

iterates the cycle and optimizes the weights of individual neuron in every iteration, till

the error-rate reduces under an anticipated threshold value. Once it’s attained, the DNN

is trained and is equipped for operation. Figure 2.7 illustrates the high level working

of training phase of a typical DL algorithm.

2.9.2. Salient Aspects of Deep Learning

Four main reasons of deep learning resurgence are discussed in the following sections.

2.9.2.1. Representation Learning

Representation learning or feature learning is a mechanism which makes a

system capable of automatically determining the representations required for

classification or feature recognition [6]. Handcrafting features is excessively time-

consuming, and features are frequently both incomplete and over-quantified.

Additionally, effort must be given again for every modality task like text, images,

databases or even language and domain. In contrary, if ML could learn features

automatically, then the entire process of learning possibly will be automated more

simply, and various additional tasks could be resolved. DL delivers one means of

automated feature learning which substitute hand-crafted feature engineering by

Figure 2.7: Overall working of DL training [39]

20

making a machine capable of both feature learning and using those features for

performing an explicit task.

2.9.2.2. Distributed Representations

This signifies many-to-many association amongst two kinds of depictions. For

example, patterns and neurons, where an individual pattern is represented by several

neurons and individual neurons partakes in the representation of several patterns [7].

Many shallow learning models faces the problem of so-called “curse of

dimensionality.” Since an index vector over a huge data volume is very sparse, hence,

the models can simply overfit to the training data. The traditional solutions to this kind

of issue encompass either hand crafted feature engineering or the procedure of very

simple target functions like linear models. Deep learning technique generally use

distributed vector representation as an alternative to discrete vector counts which

makes the models more robust. DL network could learn in an unsupervised way to

apprehend distributional resemblances and also can be fine-tuned in a supervised

manner.

2.9.2.3. Learning Multiple Levels of Representations

Deep learning algorithms are particular cases of representation learning with

the feature that they learn multiple levels of representation. For instance, deep learning

architectures like convolutional neural networks (CNN) [31] trained on images are

capable of learning similar levels of representations as human brain does. The 1st layer

acquires knowledge on simple edges, the 2nd layer learns primeval shapes and the

higher layer combines all these to produce objects.

2.9.3. Resent Advances

Neural networks (NNs) are around for several decades [32]. Nevertheless, till

2006, deep NNs were overtaken by shallow architectures. In the same year, though,

Hinton and Salakhutdinov [33] proposed a unique technique of pre-training the DNNs.

The concept was based on employing restricted Boltzmann machines for initializing

the weights of a single layer at a time. This acquisitive technique initialized the weights

of the fully connected NN which resulted to enhanced local optima [34]. Vincent et al.

21

[35] exhibited that alike effects could be achieved by utilizing auto-encoders. An auto-

encoder is an ANN employed for unsupervised learning.

Additional causes have lately facilitated deep learning networks to attain state-

of-the-art performance. For instance, accessibility of big datasets, faster computing

devices like multi-core CPU and GPU computing architectures. A deep learning

architecture excludes manual feature engineered training data and hence requires an

enormous size of data. In this era of ‘big data’, various institutions and researchers can

inexpensively and easily accumulate huge datasets that might be utilized for training

DL models with many parameters.

2.10. Implementation of DL in IoT Applications

2.10.1. Smart Homes

Smart homes incorporates a broad scope of IoT applications which could

upgrade homes' energy utilization and the quality of living of their occupants by giving

intelligent services. For instance, for collecting information from fridge interior,

Microsoft and Liebherr are implementing Cortana DL [56]. These analytics and

forecasts could profit the home to have a smart and efficient electrical power system,

and with additional peripheral information, could be utilized for forecasting and

checking health orientation. Due to continually increasing demand of household

electricity, the capability to regulate and enhance energy competence and forecasting

the forthcoming need is becoming a requirement for smart homes. Other instances like,

forecasting electricity load in a smart home forms the basic applications that employs

diverse DL algorithms [57]. Manic et al. [57] did an energy load analysis for home

energy ingesting by employing different DL models, namely, CNN, LSTM and LSTM

Sequence-to-Sequence (S2S) and showed that LSTM S2S performs a better

forecasting than DL models.

2.10.2. Smart City

Smart city incorporates a few other IoT areas, to be specific, transportation,

agriculture, energy and so forth. Nevertheless, smart city deals with heterogeneous

data that gets generated from diverse areas and leads toward big data. By means of

deep learning architecture, analysis of big data could yield high quality performance

[39]. In order to see the usefulness of DL models over IoT environments, Toshiba

22

conjointly with Dell Technologies has lately developed a DL testbed, and used it in a

Smart Community Center, Kawasaki, Japan, for evaluating and analyzing the gathered

information [91]. The big data which fuels the testbed were collected from

construction management, building security and air conditioning. Another significant

matter for smart city is prediction of patterns of the crowd movement. Song et al. [58]

established a mechanism built upon DNNs for resolving the issue on a city level. Their

proposed model is based on 4-layered LSTM RNN employed to learn from human

mobility (GPS information), joined with modes of transportation like train, car,

bicycle, and walk). The authors insist that their approach of deep LSTM RNN attains

better efficiency than shallow LSTMs. Waste supervision and classification of trash is

one more correlated job that smart cities should exhibit. A vision-based classifications

by utilizing deep CNNs might be a way to address the job [59]. Amato et al. [60]

established a decentralized structure for identifying the occupied and the vacant spots

in a parking lots by means of smart cameras and deep CNNs. Valipour et al. [61] also

came up with a detection system for vacant parking areas by employing CNN and

exhibits better results than SVM network.

2.10.3. Energy

Smart grid refers to a power supply network that utilizes digital

communications technology for detecting and reacting accordingly to the local

variations in utilization. Predicting the energy sources like wind, solar and other

natural resources is evolving as a dynamic research area. DLs are progressively

employed in various applications of smart grid. For instance, Gensler et al. [62]

inspects the effect of various DL architectures and their evaluation shows that the

combination of LSTMs (Auto-LSTM) and AEs (Auto Encoder) and generate the best

outcome compared to other methods of learning. Muranushi et al. [63], proposes a

web-based LSTM RNN forecasting system for prediction of the solar power.

2.10.4. Intelligent Transportation System

The Intelligent Transportation System or (ITS) refers to the technology of

detecting, investigation, control and intercommunication advancements to build

transportation in order to enhance security, portability and productivity. Ma et al. [64]

proposed a system built on DL architecture that analyses the transportation network

by utilizing the GPS data as the model input. The proposed model generates a high

23

accuracy of 88%. Y Tian et al. [65] also conveyed the study on short-term traffic flow

forecast by means of LSTM RNN model that showed enhanced prediction accuracy in

comparison with other models like support vector machine (SVM), stacked Auto

Encoders (AEs) and traditional feed forward NN. In [66], ITS data are fed to an IDS

built using DNN in order to facilitate in-vehicular network communications security.

Moreover, it inspires the progress of methodologies used for traffic signs recognition.

For example, technologies like autonomous driving, mobile mapping and driver

assistance systems require such mechanisms for providing consistent services. Cires

et al. [67] introduced a DNN based system of traffic sign recognition and stated

increased accuracy with the methodology. Additionally, self-driving vehicles utilize

DNNs to execute various jobs, like detecting pedestrians, obstacles, traffic signs etc.

2.10.5. Healthcare and Wellbeing

Internet-of-things in collaboration with deep learning is utilized for serving

healthcare solutions and prosperity for societies and individuals. For instance, Liu et

al. [68] introduced a CNN based image recognition system for recognizing images of

food and their pertinent facts (like portion and types). In healthcare, Pereira et al. [69]

utilized the concept of handwritten image identification by employing CNNs which

helps detecting Parkinson’s disease in its initial stages. In [70], DL have been used to

recognize cardiovascular diseases from mammograms. The study established a twelve-

layer CNN for identifying the presence of breast arterial calcification (BAC). Their

outcome shows that the precision of the proposed model is parallel to human experts.

Lipton et al. [71] studied the performance efficiency of LSTM RNN network for

analyzing and recognizing multivariate time sequence patterns of medical extents in

intensive care units (ICUs). A study of DL in the field of health informatics is provided

in [72]. Researchers have also utilized time sequence medical information for

forecasting and diagnosis of diseases through RNN based architecture.

2.10.6. Agriculture

Disease identification in plants by means of DNN models proved to be an

effective measures. Sladojevic et al. [73], proposed a disease identification system for

plants which is built on the cataloging of the leave pictures by using CNN model coded

by the Caffe framework. Such identification model could be employed as a mobile app

for the agriculturalists to recognize plant disease by clicking leave images. DL has also

24

been applied in remote sensing for crop and land recognition and gradation [74] [75]

[76]. Another instance, DL has been used for predicting and detecting in the area of

automatic farming. Steen et al. [77] introduced a DL based model of deep CNNs to

detect obstacles in the agricultural land. This approach helps the autonomous

machineries to operate safe and sound over the field. Furthermore, in automated

harvesting, detecting the stage of fruit (ripe or raw) is crucial. Sa et al. [78] employed

a variant of deep CNNs called Region-based CNN for studying the fruit images.

2.10.7. Education

IoT combined with DL are capable of contributing to the effectiveness of the

current education system. Enhanced reality technology united with mobile devices

forms potential implicating area for DL techniques. The combined technologies of IoT

and DL would help to keep students encouraged, studies and trainings to be

stimulating, and making means of learning to be competent [39]. Additionally, DL

could be utilized as a customized recommendation unit [79] to endorse more pertinent

contents to the instructor. The utilization of DL in supplementary areas, like

summarization of text and translation of natural language, will be beneficial for smart

education. Yang et al. [80] used a technique for grade prediction of students in MOOCs

(Massive Open Online Courses). The authors have utilized the clickstream data

gathered from lecture videos while students were interacting with the videos while

watching. Those clickstream data were then fed into a DNN model which learns from

both clickstream data and former performance. Moreover, Piech et al. [81] used LSTM

and RNN architecture for predicting educators’ answers to quizzes and exercises,

based on their former actions and communications over MOOCs. Monitoring

classroom occupancy is one more application studied by Conti et al. [82]. In their

investigation, the authors introduced twofold approaches intended for estimation of

density estimation and head detection. Both the proposed approaches are constructed

on CNN for calculating the student number in a specific classroom.

25

2.10.8. Industry

In industry, cyber-physical systems (CPS) and IoT forms the central essentials

to advance manufacturing technologies delivering high-accuracy and intelligent

systems [39]. Luckow et al. [83] investigates a visual inspection by using CNN

network with AlexNet and GoogLeNet. In this study, various images of vehicles along

with their explanations are fed to a DL model. The system uses TensorFlow framework

and shows that the best efficiency acquired is accuracy of 94%. Shao et al. [120]

employed DNNs in a fault identification system aimed for extracting important

features by utilizing denoising auto encoder (DAE) and contractive auto encoder

(CAE) and. In another study, Lee [46] proposed a model in combination with IoT and

cloud platform for sustenance of error recognition of defect categories in car headlights

in automobile manufacturing and the outcome established the better efficiency of the

DBN model over SVM and RBF (Radial Basic Function). In [11], the authors has

proposed stacked denoising auto-encoders (SdA) for two purposes: one, sensory data

noise reduction that happened due to electrical and mechanical turbulences. Second,

for performing classification of faults. They experimented their proposed approach in

wafer samples of a photolithography process and the reported outcome revealed that

in noisy situation, the proposed system generates 14% higher accuracy with respect to

other methods including SVM and K-Nearest Neighbors.

2.10.9. Government

Governments could fetch inordinate potential benefits by utilizing intelligent

and enhanced connectivity that originates from the merging IoT with DL. For

occurrence, the prediction and recognition of natural disasters like forest fire, landslide

etc. and ecofriendly monitoring is of high priority. Optical remote sensing imageries

were provided as input into a deep AEs model along with softmax classifiers to

forecast environmental landslides were introduced by Liu et al. [124] in 2016 with a

reported accuracy of 97.4%, consequently beating SVM and ANN models. Another

investigation done in [84], employs LSTM RNN for the earthquake prediction by using

the US Geological Survey website data for the training purpose. Their experiment

reported 63% accuracy with 1-Dimentional input and 74% accuracy with 2-

Dimentional input. Also, Liu et al. [85] introduced a model based on CNN for extreme

climate events recognition (like weather fronts, atmospheric rivers and tropical

cyclones). They fed the system with picture patterns of weather events. The system is

26

implemented in Neon framework with an accuracy of 89%- 99%. Additionally, [86]

addresses the issue of road damage detection by utilizing DNN architectures which

gathers its data from crowd-sourcing empowered by IoT devices. The study is

performed through a deep CNN and evaluations shows a damage identification

accuracy of 81.4%.

2.10.10. Sport and Entertainment

Sports analytics are drastically evolving. However, DL is very new in this

sector and very few studies have been conducted using DNNs. In [87], a DL approach

is proposed for creating an intelligent basketball ground. The system uses SVM for

choosing the finest camera for real-time propagation and provide basketball energy

images to a CNN network henceforth delivering correct online score and fascinating

highlight clips with an accuracy of 94.59%. In another study [89], Wang et al. presents

an RNN for doing grouping of invasive basketball plays over NBA games which uses

SportVU3 dataset with 80% accuracy. Kautz et al. [90] examined players’ action

identification in volleyball. A CNN architecture along with wearable sensor data were

used in this study and achieved classification accuracy of 83.2%. Group activity

identification forms another exciting course for sport teams. In [91] Ibrahim et al.

studied this by employing hierarchical model based on LSTM RNN in volley ball

team. In their study, to derive the events for every player they constructed a single

LSTM network, along with a top-level LSTM network to sum-up the discrete models

for overall team conduct identification. In comparison with the other models,

introduced hierarchical architecture attained enhanced outcomes.

2.11. Related Works

A recent work by B. A. Tama and K. H. Rhee [4] proposes a DNN methodology

where instead of employing outdated datasets, like NSL-KDD and KDDCup 99, the

authors have evaluated the DNN performance over three contemporary IoT related

benchmark datasets, namely: GPRS, CIDDS-001 and UNSW-NB15. The accuracy

measure of the model is tabulated in Table 2.1. The study also reports an occurrence

of bias results in CIDDS-001 dataset due to data imbalance issue, which is the

distribution of one class in CDDS-001 dataset is compellingly lower than the

supplementary class [4]. The study also remains unable to observe the performance

differences between DNN and other algorithms. In this study, UNSW-NB15

27

benchmark dataset is chosen for evaluating our proposed BLSTM RNN model for

detecting intrusions in the IoT network.

Table 2.1: Corresponding dataset and reported accuracy

Dataset Accuracy

UNSW-NB15 94.04%

CIDDS-001 99.99%

GPRS-WEP 82.74%

GPRS-WPA2 92.48%

In recent years, deep learning has developed progressively, and has become

functional for detecting intrusions and outperforming conventional methods. Studies

reveals that DL entirely outperforms conventional shallow learning methods. In [12],

a deep learning method has been used by employing a DNN for flow-based anomaly

recognition. The outcome reveals that the proposed technique could be used for

detecting anomalies in software-defined systems. In [13], a deep learning technique

has been proposed where the authors use a self-taught-learning (STL) algorithm over

NSL-KDD dataset. When relating the performance with former studies, the approach

has proved to be more efficient. However, their studies emphasize only on the feature

reduction capability of DL techniques. Fu et al. [5] introduces a novel technique for

intrusion detection intended for the IoT systems established upon anomaly extraction.

In their study, the authors assert that anomalies are detectable by analyzing the patterns

of the data of the IoT sensor layer, like the temperature, humidity or anything that an

IoT object sensor could collect and report. The study uses an unsupervised algorithm

for data-mining for identifying normal patterns. For performance evaluation, Intel Lab

Project dataset was employed, but no detected accuracy was reported to the designed

system. Another study conducted by M. Sheikhan et al. [20] claims that RNNs can be

viewed as reduced-sized neural networks (NNs). The paper introduces a 3-layer RNN

architecture having 41 input features and 4 intrusion classes as outputs for a misuse-

based intrusion detection system. Nevertheless, the RNN units of layers remain partly

connected. As a result, the proposed RNNs does not exhibit the capability of DL to

28

produce high dimensional features. Moreover, performance evaluation of the proposed

approach in terms of binary classification has not been reported.

With the consistent growth of big data along with the increase in computational

power, the deep learning technique has become popular rapidly, and is increasingly

utilized in numerous fields. This thesis work introduces a unique DL to detect

intrusions over IoT network by employing a bidirectional LSTM (BLSTM) recurrent

neural network (RNN). Related with former works, we have used the BLSTM-based

model aimed at binary classification and excluding pre-training. In addition, we have

used two distinct data sets for training and testing purposes (namely, UNSW-

NB15_training-set.csv and UNSW-NB15_test-set.csv) for evaluating the performance

of the proposed model.

2.12. Improvement to Existing Identified Research Gaps

There exist several research gaps within the prior related works. Foremost, no

studies has been conducted using both BLSTM RNN and TensorFlow implementation

framework in order to detect intrusion in the IoT network. Second, most of the previous

work has used the traditional RNN that has the exploding and vanishing gradient [15]

problem, which gets resolved by LSTM RNN. But, LSTM network has a major

limitation, that, it cannot be trained in both positive and negative time direction [28].

As a result, during training phase, the LSTM network needs to search for “optimal-

delay” (another extra parameter needed for training) of the network. Eventually, while

the delay becomes so big that nearly none of the vital data could be saved, then the NN

congregates to the probable optimal resolution depending on the prior information

[28]. Bidirectional LSTM (BLSTM) RNN resolves the problem of optimal delay, since

the BLSTM architecture propagates the existing data in both forward and backward

direction in time [28]. We have attended this research gap in our work by proposing a

novel Bidirectional LSTM RNN architecture for intrusion detection. Third, most of

the prior works used benchmark dataset like KDD’99, NSL-KDD etc. which remain

highly criticized. In [20] the authors’ express that the KDD dataset is obsolete and

endures with data redundancy data which may prompt to partial detection accuracy. In

[27] the authors insist that the NSL-KDD dataset comprises of redundant occurrences

and it is not appropriate to be used for the accurate training of NN models. Fourth, a

very limited amount of work has been done to detect intrusion in the IoT network using

deep learning technique. This piece of work contributes to the literature of IoT network

intrusion detection mechanism. This research work uses UNSW-NB15 dataset, which

29

according to the literature forms to be the most recent and effective dataset published

for intrusion detection research work purpose.

30

Chapter 3

NEURAL NETWORKS

3.1. Artificial Neurons

An artificial neural network (ANN) is a widely used ML architecture inspired

by the functioning and structure of human cerebrum. Any neural network consists of

basic computational components termed as neurons. Essentially, neurons take input

vectors, multiplies the input vectors with their respective weights, then sum up all the

multiplications, and then employs a non-linear mathematical function termed as

activation function, which is to compute neuron output. Figure 3.1 illustrates the

operation of a single neuron.

A neuron output can be calculated mathematically by (1.1), where, Yk denotes

output of the neuron, f() signifies the activation function, W represents weight of each

input(s),  represents element-wise multiplication, X represent input vector and b

stands for the neuron bias. Xi represents the input vectors where, i = 1, 2, ...,, n. The

input signals are multiplied by corresponding weight Wki where k represents the neuron

number, i represents the input signal number. Vk represents the net input and is

Figure 3.1: Working of a single neuron [113]

31

calculated by summing up all the input vectors. Moreover, another input called bias

(bk) is also feed into the network. The computation of the net input vector Vk is shown

in (3.1).






n

XWU

i

ikik

0

(3.1)

Where, X0 = 1 and Wk0 = bk. The output of the neuron Yk is calculated by (3.2).

To perform the computation an activation function  (·) is employed on the net input

Vk:

)(kk VY 
(3.2)

3.2. Feed Forward Neural Networks

Feed forward neural network (FFNN) is a multi-layered structure made up of

many neurons or units. A neuron of a FFNN remains fully connected to each other.

For instance, in Figure 3.2, each and every neurons of the input layer remains

connected to each and every neurons of the hidden layer. The connections between

neurons are referred to as edges. Every edge or connection is associated with respective

weights. The foremost FFNN layer is termed as the input layer, as input to the network

is received through this layer. The last layer of the FFNN is termed as the output layer

since it delivers the network output. Rest of the network layers are conjointly stated as

hidden layers. FFNN are useful for performing supervised learning tasks [5]. Figure

3.2 shows a FFNN architecture where each and every neuron remains connected with

all other subsequent layer neurons. This type of architecture is termed as fully

connected NN.

Figure 3.2: Feed-forward Neural Network [115]

32

3.3. Recurrent Neural Networks

Recurrent Neural Network (RNN) is comprised of several layers with feedback

loops and is able to propagate past information onward to the present time. An RNN

consists of loops and these loops allow the information to persist. The hidden layers of

the RNN act as information storage like computer memory. RNNs form a class of

powerful DNNs that use its internal memory along with loops for dealing with

sequence data [47]. Figure 3.3 illustrates an RNN neuron where, xt is the input and ht

the output. The loop (denoted by the recurring arrow) lets the information to pass from

one step to the next step of the network.

RNN hidden layers act as a memory unit. Precisely, the RNN output of time

t−1 effect the output of time t. The RNN neurons are armed with feedback loops which

yields the present output as the input for the subsequent step. The neurons of an RNN

could be expressed like an internal memory which preserves the computational

information from input in the previous step. For training an RNN, a variance of the

back-propagation algorithm, termed as Back-Propagation-Through-Time (BPTT) is

employed. Fundamental component of BPTT algorithm is a procedure called

unrolling. Figure 3.4 illustrates the assembly of an RNN and the idea of unrolling.

RNN can be unfolded in a graph without any cycles as presented in Figure 3.4, where,

(X(t), X(t+1), …) represents multiple input time steps, (u(t), u(t+1), …) is multiple

internal state time steps, and (y(t), y(t+1), …) as multiple time steps of outputs. When

unrolling the RNN structure, and the internal state (u(t)) and the output (y(t)) of the

prior time step are delivered as inputs to the subsequent time step.

Figure 3.3: An RNN neuron

33

RNN forms a class of powerful DNN that uses its internal memory along with

loops for dealing with sequence data [48]. The unfolded architecture of RNNs in the

Figure 3.5 represents the calculation procedure of an RNN unfolded (or unrolled) in

time.

Figure 3.5: Unfolded RNN structure with T time steps [48]

In the above figure, during each iteration at time T, the hidden state of the

hidden layer, ℎT, gets updated depending on the current input XT, and prior hidden state,

ℎT−1, through the following equation:

)(1 hthhtxht bhWXWh h  
(3.3)

Figure 3.4: Unrolling of RNN architecture

34

Where, 𝑊𝑥ℎ represents the input layer to hidden layer weight matrix, 𝑊ℎℎ

denotes the weight matrix amongst two consecutive hidden states (ℎ𝑡−1 and ℎ𝑡), 𝑏ℎ is

the bias vector of the hidden layer, and 𝜎ℎ denotes the activation function to generate

the hidden state. The network output could be calculated as:

)(ythyyt bhWY 
(3.4)

Where 𝑊ℎ𝑦 denotes hidden layer to output layer weight matrix, 𝑏𝑦 denotes the

bias vector of the output layer, and 𝜎𝑦 represents the output layer activation function.

3.4. Long Short-Term Memory RNN

Long Short-Term Memory (LSTM) is an extension of RNNs. LSTM employs

the idea of gates for its units. One major issue with RNNs is that it is unable to learn

the context information across a prolonged span of time due to the vanishing gradient

problem, which is, during a long temporal gap (i.e. time from when an input is obtained

to the time when the input is used to make a prediction). Therefore, RNNs are

incapable of learning from long-distance dependencies [28]. One answer to the

problem of vanishing gradient is an LSTM design [28]. It averts the issue of the

vanishing gradient and thus permits the retention of the elongated period of context

information. Figure 3.6 shows an LSTM cell or neuron.

Since LSTM is an extension of RNN, the only additional component between

RNN and LSTM architecture is the hidden layer [48] which is also referred as LSTM

Figure 3.6: LSTM cell [48]

35

cell. In Figure 3.6, at each time reiteration, 𝑡, the LSTM cell has input 𝑥𝑡, and the output

ℎ𝑡. During the training phase, the LSTM cell also considers the cell input state, 𝑪̃t, the

cell output state, 𝐶𝑡, and the previous cell output state, 𝐶𝑡−1. The gated structure allows

LSTM to deal with aforementioned long-distance dependencies [48]. LSTM cell

comprises of 3 gates, namely: input gate, output gate and forget gate. Figure 3.6 depicts

the input gate, the output gate and the forget gate are denoted as 𝑖𝑡, 𝑜𝑡 and 𝑓𝑡

respectively at time 𝑡. All the three gates and the input cell state are denoted by colored

boxes in Figure 3.6, are calculated by the following equations iterated from t = 1 to T:

)(1 ftftfgt bhUXWf  
(3.5)

)(1 ititigt bhUXWi  
(3.6)

)(1 ototogt bXUXWO  
(3.7)

)tanh(
~

1 ctctct bhUXWC  
(3.8)

 Where 𝑊𝑓, 𝑊𝑖, 𝑊𝑜, and 𝑊𝐶 denotes the weight matrices which maps the input

of the hidden layer with the 3 gates and the input cell state, whereas the 𝑈𝑓, 𝑈𝑖, 𝑈𝑜, and

𝑈𝐶 represents the weight matrices connecting the previous cell output state to the three

gates and the input cell state. The 𝑏𝑓, 𝑏𝑖, 𝑏𝑜, and 𝑏𝐶 are the bias vectors. The 𝜎𝑔 denotes

the activation function of the gates, and the tanh denotes the hyperbolic tangent

function. Based on the results of four above equations, at each time iteration 𝑡, the cell

output state, 𝐶𝑡, and the layer output, ℎ, can be calculated as follows:

ttttt CiCfC

~
** 1 

(3.9)

)tanh(* ttt COh 
(3.10)

The last output of a LSTM layer would be a vector of all the outputs: 𝒀𝑇 =

[ℎ𝑇−𝑛,…,ℎ𝑇−1].

36

3.5. Bi-directional Long Short-Term Memory RNN

The concept of Bi-directional Long Short-Term Memory (BLSTM) originates

from bidirectional RNN [44] that processes sequence data in both frontward and

backward directions using two distinct hidden layers. BLSTMs join these hidden

layers with the same output layer. One inadequacy of traditional RNNs is that they are

only capable of using the previous context. BRNNs [47] fix this by dispensing data in

both directions. A BLSTM network computes the forward hidden layer sequence

output , the output sequence of the backward hidden layer and the output layer y by

reiterating the forward layer starting t =1 to T, backward hidden layer since t = T to 1,

and then the final output is upgraded by the following equations:

)(1 hthhthxt bhWXWHh 


 

(3.11)

)(1 hthhthxt bhWXWHh 


 

(3.12)

ytyhtyht bhWhWy 

 

(3.13)

Both the output of the forward and backward layers are calculated by means of

the standard LSTM equations, Equations (3.5) - (3.10). The BLSTM layer produces

an output vector, 𝒀𝑇, which is calculated by the equation:

),(ttt hhy



(3.14)

Where 𝜎 function combines both the output sequences. The 𝜎 function could

be of four kinds: concatenating, summation, average and multiplication function.

Incorporating BRNNs with LSTM neurons results a bidirectional LSTM recurrent

neural network (BLSTM RNN) [45]. The BLSTM RNN is capable of accessing long-

term context data in both the backward and forward directions. The combination of

both the forward and backward LSTM layers is considered as a single BLSTM layer.

It has been shown that the bidirectional models are considerably better than regular

unidirectional models in various domains like phoneme classification and speech

recognition [48]. Figure 3.7 illustrates a bidirectional LSTM structure with three

consecutive time steps.

37

A thorough search of the relevant literature yielded no relevant paper which

employs BLSTM for intrusion detection in IoT network. To fill this gap, a BLSTM

RNN structure with the capability to deal through both frontward and backward

dependences is introduced in this study. The BLSTM RNN architecture permits the

integration of both previous and impending context through bidirectional optimization

process.

3.6. Training Neural Networks

The implementation of neural network goes over two major stages: Training

and Testing. During training, the NN is feed with knowledge (data) and the network is

required to learn from its input data. The learning procedure is performed through an

optimization (error minimization) process. Optimization algorithms are mathematical

functions which help to reduce the loss function by fine-tuning the neural network

parameters. The loss function computes the variance among the expected output and

the actual output. Hence, minimizing the loss makes the network model generate

optimal output. The optimization algorithm which is used for training the NNs is

termed as Gradient Descent. The Gradient descent algorithm calculates the gradients

or the slopes of the loss function with regard to the NN parameters (biases and

weights). The technique which is used to calculate the gradients is termed as Back-

Propagation (BP) [116]. The gradient is the amount of the alteration that occurs in the

loss function due to the variation in the network parameters. Depending on the gradient

the network parameters are updated by means of a scalar value called learning rate.

Figure 3.7: Unfolded BLSTM RNN structure with three consecutive time steps [48]

38

This mechanism is performed via iterations by allowing several repetitions over the

training data. One surpass over the training data is known as an epoch. Since each

epoch, the parameter values move nearer to the optimal value resulting in the loss

function convergence. For a large dataset computing the loss and gradient for the full

dataset might be computationally infeasible. Hence, a variance of the gradient descent

known as Stochastic Gradient Descent (SGD) is widely in use. In SGD algorithm, the

total input is distributed into smaller subsets of input termed as batches. NN parameters

are then updated by computing the loss function of single batch at a time. There are

several other popular variants, namely: RMSprop, AdaGrad and Adam [117].

Training the NN is often associated with the problem of overfitting, which is,

when the network is characterized with high accuracy over the training-set but

generates poor accuracy when evaluated on a new test data. Several counter measures

can be applied for preventing overfitting. One is Early-Stopping, where the loss

function of a validation set (a small sub-set of training set) is calculated after each

epoch. If the value of the loss function over validation set starts increasing, despite the

decreasing loss of the training set, it could be a sign of overfitting. In that case the

training should be stopped. Another technique is dropout regularization, which is

frequently used in deep learning where a certain ratio of neural network connections

are eliminated randomly over each epoch. The network weights and biases gets

updated by the training algorithm like Back-Propagation (BP), Back-Propagation-

Through-Time (BPTT) etc. Parameters like dropout, decay, batch size, learning rate

etc. are the optimization algorithm parameters which are generally determined by the

researcher over trial-and-error. All these parameters are collectively called as hyper-

parameters.

3.7. Activation Function

Neurons are the building blocks an ANN. Neurons take inputs from the

preceding neurons, multiply the input values with weights, generate a sum of products,

and pass the summation through an activation function to generate the final output

(3.16). Mathematical illustration of the neuron is presented in (3.15).

   biasweightinputY)(*)(
(3.15)

39

)(YfOutput 

(3.16)

Firing a neuron actually means activating it. The similarity between biological

neurons and artificial neurons is illustrated in Figure 3.8.

 Figure 3.8: Biological neuron and artificial neuron [122]

In the above Figure 3.8., the dendrites carry the electrical signals to the neuron

body and act as the neuron inputs. Similarly, in an artificial neuron, the inputs in1,

in2,…, inn resembles the dendrites. The activation function resembles the cell body,

and the propagated output resembles biological axon. The artificial neurons imitates

a similar functioning logic as that of a biological neuron.

3.7.1. Step Function

It is a NN activation function which receives f(x) as input. Figure 3.9 illustrates

the Step function diagram, where X represents the threshold value. If f(x) exceeds a

definite given value (called threshold), the step function output is fired (i.e. activated),

else the output of the Step function remains non-activated [123].

40

Figure 3.9: Step function [123]

There are several step functions that are widely used in machine learning. For

instance: Sigmoid function, Tanh (hyperbolic tangent) function and Rectified Linear

Unit (ReLU) function. Among these, ReLU is the most popular step function in the

area of RNN. A brief discussion of ReLU step function is provided in the following

section.

3.7.1.1. Rectified Linear Unit (ReLU)

This function is the most broadly employed solution for vanishing gradient

issue of LSTM RNN. The mathematical representation is shown in (3.17).

),0max()(xxfY  (3.17)

When the input remains smaller than 0, then output remains 0. When the input

is greater than 0, then the input and output becomes equivalent. The ReLU function is

more efficient for a binary classification problem, and we employ it as hidden layer

activation functions in our proposed model.

3.8. Deep Learning

Neural network layers are comprised of neurons. The number of units or

neurons that constitute the input layer (i.e. the first layer of the network) would be

equivalent to the amount of data-set features [53], it’s not mandatory though. The

output layer should consist of only one neuron along with an activation function while

solving a binary classification problem [53]. The third type of layer that neural

networks have are called hidden layers, which is placed in the middle of the input and

output layer. The quantity of hidden layers determines the depth of the NN. A NN with

41

lots of hidden layers are termed as Deep Neural Network (DNN) and Deep Learning

(DL) represents the learning algorithm of the DNN. Salient features of DL is that it

can learn the features by itself, thus there is no need of hand crafting the features. This

DL property facilitates the learning procedure and makes DNN more efficient and

robust in comparison to the shallow learning [53].

3.9. Dropout Regularization

Deep neural network (DNN) models have numerous parameters and have the

ability to model highly composite functions. This capacity is a boon and a bane. Such

prototypes would frequently overfit on the training-set and would drop accuracy and

generalizability over the test-set [56]. Regularization in ANN terminology speaks of

the procedure of regulating neural network layers for preventing the over-fitting.

Dropout (also known as dropout probability or dropout rate) is the most widely utilized

regularization technique in DL. During the learning process the hidden layer(s)

neurons are selected randomly and are discarded depending on the dropout rate.

Precisely, randomly selected neurons are dropped-out i.e. dropped out neurons could

not update weights any more, thus helping the learning process to evade the problem

of overfitting [55].

3.10. Deep Learning Loss Function

In a NN, the corresponding neuron weights are tuned via back-propagation

algorithm. Mathematical representation of BP is shown in (3.18).

1** 




 t

t
t W

W

MSE
W 

(3.18)

Where, Wt represents the weight change of a specific edge at time t. Wt-1

represents the weight change of the prior iteration. The learning rate is denoted by .

And ∆𝑤𝑡 signifies the total weight difference at time t. The ∆𝑤𝑡 is computed by

employing a loss function. There are several loss functions that are used to calculate

the loss. In the following sections some of the popular loss functions are discussed.

42

3.10.1. Mean Squared Error

MSE or Mean Squared Error loss function remains one of the most widely

used in the area of DL. The mathematical function of MSE is presented in (3.19).






1
2)ˆ(

1
i

n

ii yy
n

MSE

3.19

Where, Yi forms the learning procedure output, iŶ is the expected output and n

is number of output classes.

3.10.2. Cross Entropy Loss

Also termed as CEL, is one more widely used loss function which is frequently

chosen for regression or classification issues. Mathematical representation of CEL is

presented in (3.20).






1

)ˆlog(_

i

k

ii yyentrophycross

3.20

Where, i denotes the amount of training instances, iŶ is the expected outcome

and Yi is the learning output [56]. CEL and MSE are extensively employed in

classification problems.

3.11. Deep Neural Network Implementation Frameworks

Use of deep learning architectures has grown fast, and this growth has been

sustained by various deep learning frameworks in current years. Every DL framework

has their own strength and weakness depending on the optimization algorithms, DL

architectures, and convenience of deployment and development [92]. Many of these

DL frameworks has been widely used in research work for proficient implementation

of DNNs. In the subsequent sections some of the frameworks are reviewed.

43

3.11.1. H2O

H2O framework supports interfaces for Java, JSON, Python,

CoffeeScript/JavaScript, R and Python [93]. It is capable of executing in several

different modes like on Hadoop, on Spark Cluster and standalone mode. H2O is

capable of accommodating both ML algorithms and DL algorithm.

3.11.2. Torch

Torch provides an easy to access platform for ML comprising a variety of deep

learning algorithms which facilitates easy deployment of deep neural network models

[95]. It is an open source light weight DL framework based on Lua programming

language and supports faster training of the ML models. It also supports ML model

development for both GPUs and CPUs, and provides efficient parallelization packages

in order to train the DNNs.

3.11.3. TensorFlow

TensorFlow was originally intended for Google Brain project. It is employed

by various Google merchandises like Google Translate, Google Search, Google Maps

and YouTube. It is an open source library for ML implementation which uses several

types of DNNs [94]. Tensorflow implements graph representations for building NN

models. TensorFlow also comes with a visualization package called TensorBoard,

where, NN models and their learning procedure could be observed.

3.11.4. Caffe

Caffe is a C++ based DL algorithm which supports CUDA for GPU

computation. Caffe is open source and also supports Matlab and Python interfaces.

Model representation and implementation are separated in Caffe. It defines models by

configuration rather than hard coding in the source code, which in turn makes the

switching between the platforms possible (for example, GPU to CPU or other mobile

devices) [97].

44

3.11.5. Theano

It is a competent ML framework based on Python programming language for

that supports GPU and CPU compiling. Theano employs graph representations and

utilizes the CUDA library for code optimization on GPUs. It is an open source ML

framework that permits parallelism on CPUs. Several wrapper libraries like keras,

Pylearn2 and Lasagne convey simpler programming interface over Theano [96].

3.11.6. Neon

Neon is a Python-based open source DL framework that exhibits high

efficiency for contemporary DNNs like AlexNet, GoogleNet and VGG. It supports the

development of various widely used NNs, like AEs, RNNs, CNNs and LSTMs [98].

Neon is capable of operating on both GPUs and CPUs and also offers easy shifting of

the backend platform of hardware. A study done by Bahrampour et al. [99] shows

comparative investigation of the previously mentioned frameworks. In spite of the fact

that the productivity of each framework varies depending upon situations, Theano and

Torch showed better overall performance. A summary of comparison of several DL

implementation frameworks are presented in Table 3.1.

Table 3.1: Assessment of different DL implementation framework [39].

Framework Core

Language

Interface Pros Cons

TensorFlow C++ C, Java,

C++,

Python

and Go

• Fast on LSTM

training procedure

• Supports

visualizing

networks

• Slower training

process related to

other Python-

based frameworks

H2O Java R,

Python,

Scala,

REST

API

• Extensive range

of interfaces

• Number of

supported models

are restricted.

 • Nonflexible

Torch Lua C++ and

C

• Supports several

models

• Upright

documentation

• Learning a new

programing

language

45

• Comprehensive

error debugging

Theano Python Python • Several models

are supported

• Rapid training of

LSTMs over

GPUs

 Various

low level

APIs

Neon Python Python • Quick training

time

• Platform

switching is easy

• Provisions

modern

architectures like

GAN

• Not supportive

for CPU multi-

threading

Deeplearning4j Java Python,

Scala,

Clojure

• Models get

imported from

leading

frameworks (such

as Theano, Caffe,

Torch and

TensorFlow)

• Provides

visualization

interface.

• Extended

training time

related to other

tools

Caffe C++ Python,

Matlab

• Offers a bunch

of models as

reference

• Elementary

platform swapping

• Excellent for

CNN

 Not very

good for

RNN

46

3.12. Training Dataset and Feature Identification: UNSW-NB15

Machine learning (ML) and the techniques of data mining are extensively

utilized for advance detection of intrusion in contemporary years which makes it

probable to automate intrusion detections in IoT network. One of the major research

difficulties that IoT intrusion detection research face is the inaccessibility of a

comprehensive network-based dataset which mirrors modern network traffic

environment [23]. Several current researches exhibited that for the present network

threat scenario, those datasets do not conclusively reflect modern network traffic and

contemporary low footprint attacks. In [20], Bajaj and Arora express that the KDD

dataset is obsolete, recommending that the NSL-KDD dataset is most appropriate for

analyzing current networks. They also stress that, KDD 99 dataset endures with

redundant information that leads to biased outcome of intrusion detection. This results

in inappropriate feature classification. They also claim that intrusion detection studies

would likely generate results that do not characterize the real network scenarios due to

the use of KDD 99 datasets [20]. However, the absence of alternatives is the reason

the dataset is still being used. However, answering the unobtainability of network

benchmark dataset encounters, in the year 2015, Moustafa and Slay [23] came up with

their studies and produced UNSW-NB15 dataset. The authors claim that the introduced

dataset comprises a fusion of the contemporary real network traffic and synthesized

threat actions. The authors castigated that NSL-KDD dataset and KDD’99 dataset

don’t characterize the up-to-date interventions in IDS and presented a comprehensive

and all-inclusive dataset called the UNSWNB15. This dataset encompassed several

features from KDD’99 dataset [24]. They further inspected the features of UNSW-

NB15 dataset and KDD’99 dataset and the results attained exhibited that the actual

KDD’99 dataset attributes are less effective compared to UNSW-NB15 features. The

new UNSW-NB15 intrusion dataset that includes diverse attributes or features

including those in the KDD’99 dataset. This newly generated UNSW-NB15 intrusion

dataset forms the most up-to-date dataset, published in 2015 to facilitate intrusion

detection research works.

Another challenge that this area of research face is obtaining the labeled input

dataset for the purpose of intrusion detection in IoT [5]. Fu et al. [5] recognizes out

this difficulty that majority of the independent researchers face in the field of IoT

security. For overcoming the challenge, UNSW-NB15 dataset have been employed in

this research work. Moustafa and Slay (in 2015) [23] suggested that the NSL-KDD

dataset and KDD‘99 dataset did not characterize the up-to-date features for intrusion

47

detection, and presented a comprehensive and all-inclusive dataset called the

UNSWNB15. This dataset encompassed several features from KDD‘99 dataset. In [9],

they further analyzed the features of the UNSW-NB15 and KDD‘99 dataset. Results

demonstrated that actual KDD‘99 dataset features were less representative as

compared to the features of UNSW-NB15 intrusion dataset. The UNSW-NB15 dataset

contains 45 features [23]. The dataset is further split into separate training and testing

set containing all the current attack types. T. Janarthanan and S. Zargari [26] performed

an extensive study on the UNSW-NB15 dataset for extraction of most competent

features and thus proposed a feature subset which dramatically increased the intrusion

detection efficiency. In this thesis, the dataset subset in the file UNSW-NB15_training-

set.csv will used for training the proposed model, while the UNSW_NB15_test-set.csv

will be utilized for testing the proposed model. Both the dataset files can be obtained

from: https://www.unsw.adfa.edu.au/australian-centre-for-cyber-

security/cybersecurity/ADFA-NB15-Datasets/

The data set file UNSW-NB15_training-set.csv contains 175,341 records for

training, while the test set file UNSW-NB15_testing-set.csv contains 82,332 records.

the UNSW-NB15 dataset has 9 attack types in total, out of which 5 types are often

present in IoT attacks (Analysis, Backdoor, Denial-of-Service, Worms, and

Reconnaissance) [118][119]. Hence, we extracted only these 5 types of attack samples

along with the 'normal' samples to prepare our training-set. In [4], the authors have

used UNSW-NB15 dataset for conducting IoT research because unlike previous

benchmark datasets, UNSW-NB15 exhibits contemporary attack patterns and modern

normal traffic patterns. Moreover, since UNSW-NB15 has separate training-set and

testing-set, data distribution remains different [4]. Again, in [31], the authors points

out that: “It encompasses realistic normal traffic behavior and combines it with the

synthesized up to date attack instances”. Also, [35] points out that previous benchmark

data sets like KDD‘99 and NSL-KDD could not meet the current network security

research needs as they does not comprehend the present-day network security

circumstances and the latest attack features.

The UNSW-NB15 data set have been chosen for this research purpose as it

covers modern attack patterns, consists of modern normal traffic patterns, and contains

only two classes (“attack” and “normal”). Since we are performing binary

classification task, this class distribution facilitates the approach that has been

proposed. Secondly, UNSW-NB15 forms a comprehensive data set that presents 5

types of IoT attacks. Thirdly, UNSW-NB15 is a sequential dataset, which is very

appropriate for training recurrent neural networks.

48

3.13. Dataset Format Conversion

The training set is named as NSW-NB15_training-set.csv. The training set has

9 types of attack, out of which 5 types of attack are often present in IoT attacks

[118][119]. In order to make the dataset suitable for this research work, samples of

only those 5 attack types are extracted. The UNSW-NB15 training-set has 45 features

in total. For this research purpose, the attribute sub-set proposed by [9], namely,

service, sbytes, sttl, smean, ct_dst_sport_ltm are considered as it reduces the problem

of overfitting, reduces training time and improves the accuracy [9]. Hence, the

training-set which is used for this research work consists of 5 attack types and 5

features. A total of 5450 samples of data are randomly selected from UNSW-

NB15_training-set.csv and placed it in a new .csv Microsoft Excel file named

UNSW_NB15_training-set_5450.csv. The approach of Fu et al. [5] is followed by

manually manipulating the training dataset, where, the authors has followed the

approach of manually adding some abnormal samples within the dataset for making

the dataset fit for their research purpose. It is the advantage of the approach that the

input dataset would be appropriate for intrusion detection, which would fit the goal of

the research. Moreover, the approach helps in managing the issue of procuring labeled

intrusion datasets at a high cost. Here, the approach of manual manipulation is

followed and the above mentioned 5 features (service, sbytes, sttl, smean,

ct_dst_sport_ltm) along with 5 attack types (Analysis, Backdoor, DoS,

Reconnaissance and Worms) are extracted manually. Thus, the resulting training-set

(UNSW_NB15_training-set_5450.csv) consists of 5 types of attacks, 5 features and

two class labels: “Attack” and “Normal”. Table 3.2 shows the resulting data-set

structure of the training-set.

Table 3.2: Data-set structure after extracting the features manually

service sbytes sttl smean ct_dst_sport_ltm attack_cat label

- 4238 31 59 1 Normal 0

- 3752 31 208 1 Normal 0

- 1280 254 52 1 DoS 1

smtp 37310 31 718 1 Normal 0

- 168 254 84 1 Reconnaissance 1

Table 3.2 shows five rows of the dataset after format conversion. First five

columns represent the five selected features proposed by [9] and their corresponding

49

values. Column six (attack_cat) shows the category of attack including normal

samples, and the last column shows the dataset label, where, value 0 is equivalent to

normal samples and value 1 represents attack samples.

50

Chapter 4

RESEARCH METHODOLOGY

4.1. Introduction

This chapter discusses the research methodology of this project. It comprises

of the description of the data preprocessing methodology and implementation

methodology. This chapter also describes the methods we have followed to develop

our proposed BLSTM RNN classification model. This chapter also defines the

evaluation criteria, i.e. the conditions by which the model’s detection accuracy in IoT

could be measured.

4.2. Model Design Methodology

The proposed model aims to detect intrusions at the transport layer of the IoT

architecture. In order to detect intrusions in the data at the IoT transport layer, a process

design is required which would accept IoT data as input, perform the processing and

generate a two-fold classification: “attack” or “normal”. A high level model design

view is shown in Figure 4.1.

Figure 4.1: Intrusion Detection Process (IDP) – high level view

The Intrusion Detection Process (IDP) is responsible for the intrusion

classification task. It consists of three stages. Figure 4.2 illustrates IDP in further

depths.

51

1. Preprocessing Input Data: This phase deals with the conversion of input data

in an acceptable data structure permitted by the simulation framework.

2. Training: This phase includes fitting the NN model with the training data for

classification.

3. Detection: In this stage the trained NN model performs the detection of

intrusions.

In Figure 4.2 above, during the preprocessing stage the training-set data

samples are encoded and normalized and fit into a data structure compatible to the

Figure 4.2: IDP Flowchart

52

TensorFlow framework. After preprocessing, the whole dataset will be divided into

two subsets: Training subset and validation subset. The former one, which is the

training subset is used for training the BLSTM RNN network, and the validation subset

is used for validating the already trained network. After the completion of the

validation process a separate testing dataset is used for testing the model classification

accuracy and other performance measures.

4.3. Implementation Methodology

4.3.1. Keras Library

In this thesis, Python programming language and Keras library will be used for

the implementation purpose. Keras is a neural network library which is open source

and offers a high-level Application Programmer Interface (API) for implementing

DNNs. Keras executes atop several other DL frameworks such as TensorFlow1 and

Theano2. In this research work, we will be using Keras atop TensorFlow. Keras is

chosen as Keras API enables rapid prototyping of neural network models in research.

Keras also permits modular configuration of NNs, i.e. it allows to combine parameters

like activation functions, loss functions and optimizers. Moreover, the Keras API is

easy to learn and use, and has the added advantage of easily porting models between

frameworks. Since Keras is self-contained, it can be used without having to interact

with the back-end NN framework, which is TensorFlow in our case. This approach

minimizes the complication and need for programming the back-end framework and

enables fast experimentation. We have chosen Keras, primarily, for the following

advantages:

 Better user experience for deep learning algorithms: The Keras API is user

friendly. The API is well designed, object oriented, and flexible. Researchers can

define new deep learning models without needing to work with potentially

complex back ends, resulting in simpler and leaner codes [40].

 Persistent Python integration: Keras is a native Python package, which allows easy

access to the entire Python data science ecosystem. For example, the Python Scikit-

learn API can also use Keras models [40].

1 https://sheffieldml.github.io/GPyOpt/

2 http://deeplearning.net/software/theano/

53

 Portability: Keras allows researchers to port from Tensorflow back-ends to other

back-ends like Theano. In addition, Keras makes many learning resources,

documentation, and code samples freely available [40].

 We have used Keras library as it takes into account simple and quick prototyping

through modularity, extensibility and user friendliness extensibility [40].

4.4. Evaluation Methodology

To characterize the efficiency and detection accuracy of the proposed model,

confusion matrix would be utilized. The confusion matrix is a 2-dimensional matrix

representing the correlation amongst the detected and actual values as shown in Figure

4.3. True Positive (TP) specifies the count of anomalous or unusual samples that are

accurately identified by the model. False Positive (FP) signifies the count of samples

that are labeled as normal in the dataset but are recognized as anomalies by the model.

True negative (TN) signifies the amount of normal samples that are detected as normal

by the system. False Negative (FN) refers to the amount of attack samples which have

been labeled as normal by the model.

 Figure 4.3: Confusion Matrix.

The overall accuracy of the model, could be precisely defined as – how

frequently the model is correct. The overall accuracy of the model is computed by

(4.1):

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑋

4.1

Where, X denotes total number of samples present in the input dataset.

54

The model’s misclassification rate could be defined as – how frequent the

model is wrong. Misclassification rate is the percentage of wrong detections and can

be calculated by using the formulae in (4.2):

 𝑚𝑖𝑠𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑋

4.2

False Positive Rate (FPR), calculated by (4.3), is the percentage at which the

system incorrectly classifies normal samples as anomaly:

NormalX

FP
FPR 

4.3

Where, XNormal is the number of actual normal samples in X.

Other parameters for evaluating the proposed model includes recall, precision,

and f1-score values Precision is calculated as the ratio of correct positive detections to

the total actual positive detections, as shown in (4.4):

FPTP

TP
precision




4.4

Recall is the ratio of correct positive detections to the number of actual

abnormal samples, as presented in (4.5):

FNTP

TP
recall




4.5

In (4.6), F1-Score denotes the harmonic mean of recall and precision. F1-Score

is calculated by the weighted average of precision and recall by taking both the FP and

FN into account.

precisionrecall

precisionrecall
scoref




)*(2
1

4.6

55

These metrics are employed to evaluate the proposed model in the testing phase

of the model simulations.

4.5. Hardware and Software Used

Google’s TensorFlow framework will be used to perform the neural network

experiments. A powerful python library called Keras will be used to build and

implement our proposed BLSTM RNN model. The experiments are conducted in the

below mentioned environment:

CPU: Intel ® Core ™ i7-7500U CPU @ 2.70 GHz

RAM: 16GB

OS: Windows 10

Programming Language: Python

Libraries used: numpy, scikit-learn, keras, pandas, and Tensorflow.

56

Chapter 5

ARCHITECTURE & IMPLEMENTATION

The model architecture is discussed in this chapter, along with the

implementation of the proposed BLSTM RNN intrusion detection model. The

proposed model would be implemented through Python programming language and

Tensorflow as the back-end implementation framework. Keras, the neural network

library written in Python is used, which operates atop the Tensorflow framework. The

use of Keras makes the implementation process scalable, fast and straightforward.

Several other libraries are also utilized, namely: Pandas and NumPy. The model will

be implemented in Spyder (a scientific interactive development environment for

Python language) using the Tensorflow library. The whole implementation process is

divided into three major phases: data pre-processing phase, model training phase and

lastly, model testing phase. This chapter is organized as: Section 5.1 explains the

architecture of the proposed model. In Section 5.2 programming language and libraries

used in implementing the model is discussed. It is followed by the details of

implementation in section 5.3.

5.1. System Architecture

As depicted in the Figure 5.1 below, the proposed classifier is a layered

BLSTM RNN architecture with one input layer, three hidden layers which are densely

connected, and one output layer. The input layer comprises of five BLSTM units. The

first, second and third hidden layer of the proposed architecture has 220,240, and 260

BLSTM units respectively, and the dense output layer consists of 1 neuron. The model

will employ Adam as network optimizer with a decay of 0.99, a learning rate of .05,

and a batch size of 132. The model will be iterated for 100 epochs. To avoid the model

to overfit the training data because of excessive training epochs, the dropout

regularization technique have been used (mentioned in Section 3.9). Other hyper-

parameters of the proposed architecture is shown in Table 5.1.

57

Figure 5.1: System Architecture

Table 5.1: Design parameters of the proposed model

Epoch 100

Hidden Layers 3

Activation function Sigmoid

Optimizer Adam

Classification engine binary_crossentropy

Learning Rate 0.001

Class size 2

One hot encoder Yes

Weights Random

Biases Random

5.2. Technical Knowhow – Programming Language, Development

Environment, Backend Framework and Libraries

The Python programming language have been used for implementation

purpose, as Python provides superior quality data science libraries with expedient

development environment: Spyder - which is a scientific interactive development

environment and is great for easy and fast visualization. It has many integrated features

that facilitates RNN implementation, and it is super easy to install. Spyder provides

58

many advanced Graphical User Interface (GUI) functionalities that assist for RNN

implementation. For instance, the “Variable Explorer” GUI helps to visualize the

variables (data and values) used in the implementation. We have used this functionality

to visualize and analyze the dataset values, confusion matrix threshold values,

prediction metrics, etc. Moreover, it facilitates the running and debugging of the

python code through syntax coloring and breakpoints. Spyder IDE also supports

parallel-run, i.e., multiple neural networks can be trained and/or tested simultaneously.

While conducting our experiment, this feature have been used to train and test several

RNNs simultaneously. Spyder IDE integrates the essentials libraries for developing

RNN, like, NumPy, SciPy and Matplotlib.

For implementing the BLSTM RNN, the high level neural network library

called Keras [116] have been employed. The Keras Sequential class is utilized for

instantiating the RNN object. Other Keras classes like LSTM and Bidirectional ia being

used for implementing the proposed BLSTM model. Dropout is another class that

belongs to Keras library which have been used for preventing network overfitting. In

our implementation, we use the Google TensorFlow as backend neural network

framework. For manipulating the matrices effectively, the NumPy and Pandas [117]

libraries are employed. NumPy is primarily used to create the Tensorflow data

structure. NumPy also allows to use much less memory for matrices than the default

python lists, and it also makes the matrix operations much more efficient. Pandas is

built on top of NumPy and it provides higher level interface for manipulating datasets

with named rows and columns (the input datasets are required to be Pandas

dataframes). We have used Pandas library to import the values from training-set and

test-set (which are .csv files) and store them as data frames. For measuring the

performance of the detection system, some helper functions have been used from the

library sklearn [115] namely: confusion_matrix and classification_report.

5.3. Code Structure

Since python is an object oriented programming language (OOP), objects

(classes) have been employed to implement the functionality of the layers described in

section 5.1. Figure 5.2 below depicts the interaction among the classes and their

respective methods. The build() method of the IDS class instantiates the other four

classes (Data class, Classifier class, FitModel class and Detection class), so that they

can be later used in the method execute(). The methods are called in the order as the

59

arrows suggest. The ‘param’ signifies the function parameter. X_train and Y_train are

the training-set matrix. X_test is the test-set matrix.

Figure 5.2: Scheme of Implementation.

As in Figure 5.2, five different classes have been developed, i.e., IDS, Data,

Classifier, FitModel, and Detection, in order to implement our system architecture.

Table 5.2 summarizes functions of all the used classes. In the following sections, the

classes and their respective methods are described in detail.

60

Table 5.2: Classes and their respective functions

Class

Name

Description

IDS The IDS class is the parent class which instantiates and encapsulates

other four classes and their respective methods.

Data The Data class deals with the data preprocessing mechanism.

Classifier This class builds the code for the BLSTM RNN architecture.

FitModel This class is responsible for two tasks: The first task is to compile our

model, and the second task is to train the model with the preprocessed

data produced from the Data class.

Detection This class performs the intrusion detection task and generates the

evaluation metrics.

5.3.1. IDS Class

The IDS class is the parent class which encapsulates rest of the four functioning

classes and respective methods. It has two methods: build() and execute(). The build()

method is responsible for instantiating all the other four classes with their respective

methods. The execute() method just reuses the previously instantiated classes with a

separate set of arguments. The two green branches in Figure 5.2 (above) represents the

reuse functionality and the param represents the arguments. In the first green line

param=test-set, which means the Data class is re-used by providing test-set as new

argument. Similarly, the second green line (where param=X_test) signifies that the

Detection class is re-used with X_test as argument. X_test has been discussed in detail

in Section 5.3.2.1.3.

5.3.2. Data Class

The Data class deals with the data preprocessing mechanism and consists of

only one method called preprocess().The preprocess() method deals with data

preprocessing and consists of a four sub-functions, including importDataset(),

normalizeData(), dataStructure() and reshape(). Details of the preprocess() method

and its sub-functions are described in the following sections.

61

5.3.2.1. preprocess Method

The preprocess method takes the dataset (as a .csv file) as input parameter and

reconstructs the data samples into a TensorFlow neural network compatible structure

that can be used for training and testing purpose. The preprocess() method is being

called twice: in the first time, it is called by the build() method in the IDS class for

processing the training-set and in the second time by the execute() method in the IDS

class for processing the test-set. In the first instance, the parameter passed to the

preprocess() method is the 'UNSW_NB15_training-set_5000.csv' file which contains

the training dataset, and in the second instance the 'UNSW_NB15_testing-set.csv' file,

which contains the testing dataset. The preprocess() method encapsulates 4 sub-

functions for performing the data pre-processing task. The processed files are returned

to the main IDS classes and are used in the training and testing phases, respectively.

The details of the sub-functions of the preprocess() method are presented in the

following sections.

5.3.2.1.1. importDataset Method

This method imports the training-set for training the neural network. The

training-set is imported as Pandas data-frame (a 2-dimensional labeled data structure).

This is because, training a neural network requires a NumPy array format; and to

generate a NumPy array out of the .csv file format, Pandas data-frame is essential. The

read_csv method from Pandas library is used in order to import the training-set as

data-frame format. Figure 5.3 below is a snapshot of the Spyder IDE ‘Variable

Explorer’ showing the structure of the data-frame format. While importing data it’s

important to note that, it is necessary not only to select the exact columns (which are

service, sbytes, sttl, smean, ct_dst_sport_ltm), but also to convert them into an array

of numbers, because only numbers can be the input of neural networks. The data-frame

is named as dataset_train. Below is the line of python statements which import the

training set from a .csv file and convert it to a data-frame.

62

In (I), first the Pandas library class is imported with pd as its object. Then

pd.read_csv (where pd is an object of the Pandas class and read_csv is an inbuilt

method from Pandas class) is employed to read the training set and import the values

as data frame and store them in dataset_train.

Figure 5.3: A view of the training-set as data-frame format taken from Spyder IDE

Next, the columns from the training-set are selected and stored as a NumPy

array by (II):

In (II), a new NumPy array variable called training_set is introduced. This

training_set variable contains the training samples from the dataset for training our

proposed BLSTM RNN. To obtain the relevant training samples, relevant columns

 import Pandas as pd

dataset_train = pd.read_csv('UNSW_NB15_training-set_5000.csv')

I

 training_set = dataset_train.iloc[:, [3,7,10,27,35]].values II

63

need to be selected from the dataset. To do that, we have used the iloc() method to get

the right index of the columns we want. The data-frame (dataset_train) and the iloc()

method is used to specify the column numbers that we want. Essentially, the columns

pointed to by these column numbers contain the features that we intend to select. The

UNSW_NB15_training-set_5451.csv file (i.e. the training set) consists of 45 features

in total (i.e. 44 columns, since index number of the Pandas dataframe starts from zero,

hence 45 features is projected as 0 to 44 columns in the dataframe). For this research

purpose, we have selected the feature sub-set proposed by [9] (discussed in Section

3.13). These 5 features are located in the 4th, 8th, 11th, 28th and 36th columns in the

original dataset. The index of the iloc() method (3,7,10,27,35) are actually the

dataframe column index of those features. As we have discussed before that the index

number of the dataframe starts from zero, hence column 1 in the original dataset is

index 0 in iloc() method, column 4 is index 3, column 8 is index 7, so on and so forth.

Since we have 5 features and 5000 training samples, hence, the training_set consists

of 5 columns and 5000 rows where each row corresponds to a sample.

5.3.2.1.2. normalizeData Method

This sub-function deals with the data normalization. The input of this sub-

function is the output of the importDataset() method (dataset_train). Normalization

refers to rescaling real numbers by the use of the formulae in (5.1)

𝑋𝑛𝑜𝑟 =

𝑋 − min (𝑋)

max(𝑋) − min (𝑋)

(5.1)

In (5.1), X refers to the value of each data sample. Xnor is the normalized value,

min(X) is the minimum of all the values in the training-set and max(X) is maximum

of all the values in the training-set. To perform the data normalization, we introduce a

new variable called training_set_scaled which will store the new normalized values,

because it is recommended to keep the original non-normalized training-set separate

from the normalized one. The normalizeData sub-function returns a normalized 2D

array (called training_set_scaled) of real numbers in the range of 0 and 1. The

normalization process is carried out by the following Python statements in (III).

64

In (III), the MinMaxScalar class (imported from the sklearn.preprocessing

class) is responsible for data normalization. We have implemented data normalization

by creating an object of the MinMaxScalar class called sclr, where a feature range

between 0 and 1 is defined to specify the minimum and maximum range of normalized

values. In other words, it means that the values of the normalized training-set should

be within the range of 0 to 1. The fit_transform() method of the MinMaxScalar class

is used to perform the data normalization process. The original un-normalized training-

set (training_set) is passed as a function argument. Since heterogeneous data-type is

not supported by Python, the non-numeric data entries (also called categorical data)

are converted to numeric values. The process of converting categorical data into

numeric values is called Encoding. For instance, the dataset features such as ‘service’

highlighted (yellow) in Table 5.3, is an example of categorical data. Table 5.4 shows

the corresponding encoded values of the categorical data. Last four columns of Table

5.4 shows the normalized values. The fit_transform() method performs the encoding

operation and converts the categorical data into numeric values. Both the

normalization and encoding process are performed within this normalizeData() sub-

function.

Table 5.3: Example of categorical data (marked yellow) and other un-normalized data

service sbytes sttl smean ct_dst_sport_ltm

- 530 254 53 1

ftp 7954 254 568 1

http 794 254 397 1

smtp 2516 254 252 1

- 816 62 82 1

ftp 534 254 53 1

 from sklearn.preprocessing import MinMaxScaler

sclr = MinMaxScaler(feature_range = (0, 1))

training_set_scaled = sclr.fit_transform(training_set)

III

65

Table 5.4: Categorical to numeric conversion (marked yellow) other normalized data

service sbytes sttl smean ct_dst_sport_ltm

0 4.97482e-05 1 0.144928 0

0.3 0.000189706 1 0.581781 0

0.5 0.000112984 1 0.342305 0

0.8 9.4411e-05 1 0.284334 0

0 0.000229947 1 0.707384 0

0.3 8.1587e-05 1 0.244306 0

5.3.2.1.3. dataStructure Method

In order to feed data into an RNN, a TensorFlow data structure is required for

storing the features and labels. To transform the dataset into a TensorFlow data

structure, two separate entities are created. The first entity will be X_train, which is

the input of the RNN and then the second entity will be Y_train, which will contain

the expected output of the RNN. So, technically, X_train will contain the prior

observations (from time t-1 till time t), and Y_train will contain the expected

observation at time t+1. Important to note here is that the RNN neuron takes the

X_train, learns the correlations between the observations in the data samples, and

generates a prediction out of the learning. This generated prediction is the actual output

of the RNN neuron at time t. To calculate the efficiency of the neurons, this actual

output is compared with Y_train containing the expected output. The data structure is

created by (IV).

In (IV), two newly introduced variables X_train and Y_train are initialized as

empty lists. Then, these two entities X_train and Y_train are populated with the traffic

observations from our training-set by using a for-loop (where i represents the time t)

 X_train = []

Y_train = []

for i in range(1, 5451):

 X_train.append(training_set_scaled[i-1:i, 0])

 Y_train.append(training_set_scaled[i, 0])

X_train, Y_train = np.array(X_train), np.array(y_train)

IV

66

ranging from 1 to the last index of our training-set i.e. 5451. The X_train is appended

with observations ranging from time i-1 to time i by using the append() function.

Y_train is similarly appended with the observation at time t+1. Since both X_train and

Y_train are lists, converting them to NumPy arrays is crucial, so that they can be

accepted by our BLSTM RNN model. This conversion is implemented by using

np.array() function (where np is an object of NumPy class).

To summarize, the dataStructure() method builds the compatible data structure

required to train and test the RNN model. This method takes training-set as an

argument to generate X_train and Y_train, and test-set as argument for generating

X_test and Y_test. Generation of X_test and Y_test are implemented through (V).

 X_test and Y_test are just similar to X_train and Y_train, except, they hold the

test-set observations instead of training-set observations. The dataStructure() method

takes the normalized 2D array, i.e., output of the normalizeData() method as input and

returns NumPy arrays: X_train and Y_train (for training-set) and X_test and Y_test

(for test-set).

5.3.2.1.4. reshape Method

To make the data structure compatible with the input format of our RNN, the

reshape() method is used as shown below in (VI).

In (VI), the np.reshape() method from NumPy class is used to implement the

reshaping of the X_train. As per Keras Recurrent Layer documentation3, the input

shape of an RNN should be a 3-D tensor with the following dimensions: batch-size,

time-step, and input-dimension. The np.reshape() method actually generates a 3D

3 (available: https://keras.io/layers/recurrent/)

 X_test = []

Y_test = []

for i in range(1, 4205):

 X_test.append(test_set_scaled[i-1:i, 0])

 Y_test.append(test_set_scaled[i, 0])

X_test, Y_test = np.array(X_test), np.array(Y_test)

V

 X_train = np.reshape(X_train, (5451,5, 1)) VI

67

tensor which is compatible for RNNs. The argument structure of the np.reshape()

method is like this: np.reshape (name of the array to be reshaped, (batch_size,

time_step, input_dim)). The first argument in (VI) is X_train because X_train is the

array that needs to be reshaped. The batch size is 5450, followed by the time-step of

5. The time step is usually equals the column numbers of the input array. The input

dimension is 1. The reusability feature of the object oriented programming has been

exploited to implement the reshape() method. In order to reshape the training-set into

an RNN-compatible input format, X_train is passed as an argument to this method

along with the other corresponding parameter values. When X_test is passed as an

argument to this method, it reshapes the X_test into a compatible format which is fit

for testing the model.

Table 5.5 summarizes the input parameters and the final output of the

preprocess() method. Data pre-processing is implemented through the preprocess()

method. Since we have to perform the pre-processing for both the training-set and test-

set, we have used the reusability feature of OOP to implement data pre-processing. To

implement the pre-processing of the training-set, the preprocess() method is called

(from inside the build() method) with the training-set as an argument. For

implementing test-set pre-processing, the same preprocess() method is called again

(from inside the execute() method) with the test-set as an argument. This is why, Table

5.5 and Table 5.6 are segmented into two: blue corresponds to training-set and green

for test-set. The respective sub-functions of the preprocess() method like

importDataset(), normalizeData(), dataStructure() and reshape() also work according

to the input parameters of the preprocess() method. For example, when the input is

training-set, the output of the importDataset() sub-function is training_set, and when

the input is test-set, the output of the same sub-function test_set, so on and so forth.

Precisely, the same sub-function yields different output in different implementation

steps. Table 5.5 below lists all the sub-functions of the preprocess() method.

68

Table 5.5: Input and Output of the preprocess() method

Method

name

Input parameters Final outcome Briefing

preprocess()

Training-set

(UNSW_NB15_training-

set_5451.csv file)

X_train, Y_train This method

pre-processes

our training-

set and test-

set, which is a

.csv format,

into the

compatible

data format.

Test-set (UNSW_NB15_test-

set.csv file)

X_test, Y_test

Table 5.6: I/O of the sub-functions of the preprocess() method

Sub-function

Name

Input parameters Output Sub-function

Briefing

importDataset()

UNSW_NB15_training-

set_5451.csv file

training_set

(Pandas dataframe

object)

This sub-

function

converts the

.csv format

into Pandas

dataframe

format

UNSW_NB15_test-

set.csv file

test_set

(Pandas dataframe

object)

normalizeData()

training_set training_set_scaled This sub-

function

performs the

Normalization

and scaling.

test_set test_set_scaled

dataStructure()

Time-step,

training_set_scaled

X_train, Y_train This sub-

function

creates the data

structure
Time-step, X_test, Y_test

69

test_set_scaled compatible for

RNN

reshape()

X_train, batch_size,

time_step, input_dim

X_train Essentially, a

Tensorflow

based neural

network

structure takes

a 3D array as

input. This

sub-function

takes the

previously

built data

structure and

reshapes it into

a 3D array.

X_test, batch_size,

time_step, input_dim

X_test

5.3.3. Classifier Class

This class implements the architecture of our proposed BLSTM RNN model.

In order to make it more robust, dropout regularization have been utilized, which is a

mechanism to prevent overfitting of the model. The model architecture is implemented

through several steps. Table 5.7 lists all the required steps and their respective actions.

Table 5.7: List of steps and their corresponding actions for building the RNN

Steps What it does?

Step 1 Import the Keras library and it’s corresponding classes

Step 2 Initialize the neural network

Step 3 Add input layer and Dropout regularization

Step 4 Add hidden layers with corresponding neurons and add

Dropout regularization

Step 5 Add the Output layer

70

Step1: Importing the Keras Library

The foremost step of implementation is concerned with importing the Keras

library and packages by the following lines of Python code in (VII):

In (VII), the Sequential class creates an RNN object representing a sequence

of layers of the neural network The Dense class is used for generating the output layer

of the model. The Bidirectional and LSTM class is used to generate the input layer and

hidden layers. Lastly, the Dropout class is used to add some dropout regularization to

the model.

Step2: Initialize the BLSTM RNN

In this step, the initialization of the neural network is implemented by (VIII):

In (VIII), the Sequential class from Keras initializes the neural network object

called classifier. Here, we introduce a new name called ‘classifier’. This classifier is

an object of the Sequential class which represents a sequence of RNN layers.

Executing this line will initialize the RNN. In the implementation level, this identifier

(‘classifier’) represents our RNN model that we are going to build. In other words,

‘classifier’ will be the name of our proposed BLSTM RNN model.

Step3: Add Input layers and dropout regularizations

In this step, the input layer creation is implemented by (IX):

 from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Bidirectional

from keras.layers import Dropout

VII

 classifier = Sequential() VIII

 classifier.add(Bidirectional(LSTM(units = 5, activation = ‘relu’,

return_sequences=True), input_shape=(X_train.shape[1]))

IX

71

In (IX), the add() method (which is a built-in method of the Sequential class)

generates the input layer. Inside the add() method, the LSTM class is used to add the

LSTM units or neurons. Then the Bidirectional class is used as a wrapper class which

wraps up the LSTM units and provide a BLSTM unit altogether.

As per Keras documentation, the LSTM class is to be provided with the

following list-of-arguments4:

 units = 5: denotes the number of input neurons, which is 5 in our model.

 activation = ‘relu’: specifies the activation function we are using for our input

layer, which is a ReLU (Rectified Linear Unit) function.

 return_sequence = True: specifies whether the values of the specific layer will

be passed to the next layer or not. Since our proposed model is a fully

connected BLSTM network, the value of this argument is set as True.

 input_shape: specifies the shape of the input array (X_train) that has been

created previously in the Data class.

In the last line of (IX), the add() method of the sequential class is used for

implementing the dropout regularization to our model with a dropout-rate of 0.2

Step 4: Add hidden layers with corresponding neurons and add Dropout

regularization

In this step, 3 hidden layers are added to the network by (X):

4 https://keras.io/layers/recurrent/#lstm

classifier.add(Dropout(0.2))

 # hidden layer 1

classifier.add(Bidirectional(LSTM(units = 220,

return_sequences=True)))

classifier.add(Dropout(0.2))

hidden layer 2

classifier.add(Bidirectional(LSTM(units = 240,

return_sequences=True)))

classifier.add(Dropout(0.2))

hidden layer 3

classifier.add(Bidirectional(LSTM(units = 260, ,

return_sequences=True)))

X

72

In (X), the 1st, 2nd, and the 3rd hidden layers are comprised of 220, 240 and 260

neurons, respectively. The return_sequence and dropout regularization works the same

way as explained before in the third step.

Step 5: Add the Output layer

In this step, the addition of the output layer is implemented by (XI):

In (XI), the add() method from sequential class implements the output layer

generation. Since the output layer is fully connected to the previous BLSTM layer,

hence the Dense class of the Keras library is used to implement the full connectivity.

As the network will perform a binary classification, so, the units parameter is set to 1,

which means only 1 neuron will be there in the output. The second parameter

(activation = ‘sigmoid’) implements the output layer activation function.

5.3.4. FitModel Class

This class implements the compilation and the NN training. Compiling is the

conversion procedure of the high level source code to the machine level binary code.

The compilation of the model is implemented through (XII):

 In (XII), the compile() method of the Sequential class implements the

compilation procedure. The compile() method takes two arguments: optimizer and the

loss function. ADAM is employed as the network optimizer and ‘binary_crossentropy'

as the loss function. After compilation, the model training is implemented by (XIII):

classifier.add(Dropout(0.2))

 classifier.add(Dense(units = 1, activation = 'sigmoid')) XI

 classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy')

XII

 regressor.fit(X_train, y_train, epochs = 100, batch_size = 132) XIII

73

In (XIII), the RNN is trained with the training set. The fit() method is used to

implement the training procedure. The fit() method connects the neural network to the

training-set and perform iterations based on given parameters. The fit() method takes

the following 4 arguments:

X_train: the input of the training set that has the features.

Y_train: the ground truth (i.e. the expected output) of the training set.

Epochs: is the number of epochs, i.e. number of iterations our neural network will be

trained. In other words, it is the number of times the whole dataset will be propagated

through the model. The implemented model will be trained using the same dataset for

100 times.

batch_size: finally, the batch_size is the amount of samples that are processed by the

neural network at a time. The batch-size is 132, which means that the weights and

biases of our network will get updated every 132 data samples.

5.3.5. Detection Class

The intrusion detection task and the evaluation metrics generation is

implemented through the line of Python code in (XIV):

 In (XIV), as a part of the implantation, we introduce a new variable called

y_pred, which is a 1-D array that stores the computation values performed by the

network. The method predict() is a method provided by Keras library which performs

the computation process of intrusion detection. The predict() method takes only one

argument, that is the pre-processed test-set (X_test). The generation of the X_test is

been implemented by invoking the Data class from the execute() method with test-set

('UNSW_NB15_testing-set.csv’ file) as parameter. The values returned by the

predict() method is stored into the newly introduced variable y_pred.

Once y_pred is produced, the confusion matrix (cm) along with the

classification report (report) generation is implemented through (XV). The

classification report provides the evaluation metrics including precision, recall and f1-

score, which are further discussed in Section 4.4 of Chapter 4.

 y_pred = classifier.predict(X_test)

XIV

 from sklearn.metrics import confusion_matrix

74

In (XV), the Python codes implement the evaluation phase. The

confusion_matrix() and classification_report() method are imported from sklearn

class. The confusion_matrix() method takes two arguments: Y_test and y_pred. The

Y_test contains the expected output generated out of the test-set, and y_pred contains

the actual output generated by our model. The confusion_matrix() method plots a

graphical representation of the classification outcome by using these two arguments.

The classification_report() also takes the same parameters and generates a tabular

result consisting of precision, recall, f-1 score and false alarm rate.

5.4. Conclusions

In this chapter, we discussed the detailed step-by-step explanations of the

implementation of our proposed BLSTM RNN model. We have followed an object

oriented approach in order to perform the implementation of our proposed model. In

order to facilitate the whole implementation, five classes is being constructed, namely:

IDS class, Data class, Classifier class, FitModel class and Detection class. The IDS

class is the parent class which instantiates the rest of the four classes and their

corresponding methods. The Data class implements the pre-processing of the data-sets.

The preprocess() method of the Data class implements the data pre-processing

mechanism by taking the data-sets as input and producing the pre-processed RNN

compatible data-structure as output. The Classifier class implements the proposed

BLSTM RNN architecture by generating all the involved layers (1 input, 3 hidden and

1 output) along with the dropout regularizations. The training of the model is

implemented through the FitModel class. The last class of our implementation scheme

is the Detection class. This class implements the testing of the proposed model. This

class takes test-set as input parameter and generates the confusion matrix and

classification report as its output.

The Keras library have been used to implement the neural network and perform

simulations. The Keras executes on top of Google TensorFlow which forms the

backend framework of the implementation. The Pandas library is used to convert the

from sklearn.metrics import classification_report

print(confusion_matrix(Y_test, y_pred))

print(classification_report(Y_test, y_pred))

XV

75

.csv format data-sets into RNN compatible data-frames. NumPy is a package in Python

used for scientific computing. In order to manipulate arrays of unlike shapes (such as

2D array and 3D array), NumPy package is employed. The inbuilt scientific Python

library called sklearn is used to implement the generation of evaluation parameters

like confusion matrix and classification report.

76

Chapter 6

SIMULATION RESULTS & EVALUATION

This chapter shows the simulation results obtained as we adjust the model

parameters like learning rate, batch size, time steps and dropout regularization and

provide a qualitative performance analysis of the model. The model performance

evaluation over different test-sets is also discussed.

6.1. Metric Definition and Clarification

The intrusion detection (ID) process is a binary classification problem where

the system implementing the ID process classifies individual sample either “attack” or

“normal”. The evaluation metrics are used to analyze the model performance, and the

metrics include accuracy, recall, precision, f-1 score, false alarm rate (FAR) and

miscalculation rate (error rate). Recall, is defined in (7.1).

FNTP

TP
recall




6.1

Where, TP denotes the count of true positive samples (i.e. instances that are

intrusions and are labeled by the model as intrusions) and FN denotes the amount of

false negatives (i.e. instances that are intrusions but are labeled by the model as non-

intrusions). Recall states the model capability of detecting all the “attack” samples

within the dataset. It gives a sense of how good our model is in detecting “attack”

samples from within the dataset. Precision is defined in (7.2).

FPTP

TP
precision




6.2

Where, FP denotes the false positives (i.e. instances that are non-intrusions but

are labeled by the model as intrusions). Precision states the ability of the model to

identify only the relevant instances. It gives us a sense for how likely when the model

labels a sample as positive, remains accurate.

The F1 score, defined in (7.3) is the harmonic mean of precision and recall

taking both metrics into account.

77

precisionrecall

precisionrecall
scoref




)*(2
1

6.3

The overall accuracy of the model is calculated by (7.4).

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑋

6.4

Where, X denotes total number of samples fed as input. TP is the true positives

and TN denotes the true negatives (that is, instances that are normal and are labeled by

the model as normal). Accuracy tells how often the model is correct.

The misclassification rate of the model defined in (7.5) signifies how often the

classifier is wrong. Misclassification rate is the percentage of wrong detections and

can be calculated by using the formulae in (4.2):

 𝑚𝑖𝑠𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑋

6.5

False Positive Rate (FPR), also called False Alarm Rate (FAR) is calculated by

(7.6).

NormalX

FP
FPR 

6.6

Where, XNormal is the number of actual normal samples in X. FPR or FAR is the

percentage at which the model incorrectly classifies normal samples as intrusions.

6.2. Performance over Different Hyper-Parameters

This section provides the investigation details of the model performance over

different hyper-parameters. As described in Chapter 5, the proposed model consisted

of one input layer with 5 neurons, three hidden layers with 220, 240, and 260 neurons

respectively, and one output layer with one neuron. All the layers are densely

interconnected with each other. Sigmoid was used as activation function. As an initial

experiment, 5450 samples were considered from the UNSW-NB15 training dataset

78

and the outcome for 100 iterations were recorded. It is important to note here: in order

to investigate the model performance in relation with different hyper-parameters, only

one hyper-parameter at a time is applicable to change. For instance, while studying the

model performance with respect to time-steps, rest of the hyper-parameters (batch-

size, dropouts, learning rate) remains constant. In the following sections, the model

performance over different hyper-parameters have been discussed.

6.2.1. Performance over Different Time-Steps

The model performance was studied with respect to varying time steps. Time

step refers to the number of steps the RNN is unrolled in time. In other words, time

step defines the memory capacity of an RNN cell. Table 6.1 shows the hyper-

parameters which remains constant during different time-steps. Table 6.2 tabulates the

results of different time steps ranging from 1 to 60.

Table 6.1: Constant hyper-parameter values (excluding time-steps)

Batch size Dropout Learning rate Epochs

132 0.2 0.001 100

Table 6.2: Results of different time-steps

Time-Steps Accuracy Precision Recall F1 score

1 0.95 1 0.95 0.97

15 0.79 1 0.79 0.88

30 0.73 0.99 0.96 0.98

45 0.73 0.99 0.96 0.98

60 0.98 0.99 1 1

Table 6.2 above, shows that the model is at its best with a time step value of

60. A second interesting trend is the relatively poor performance of the model at 15,

30 and 45 time steps. Though there remains no major fluctuations in the precision,

recall and f1 value, but the accuracy drops very sharp. This may have arisen due to

the decreased number of examples present to the model causing it to require more than

the allotted number of epochs to converge.

79

6.2.2. Performance over Different Batch-Size

The time step value was chosen as 60, as it performed best with respect to all

the evaluation matrices. A batch-size dictates the amount of samples fed to the network

at a point of time. Determining optimal batch size requires cross validation, so, started

with a very large batch size of 1090 (by keeping in mind that the total sample size must

be divisible by batch size. This is a convenient convention, though it’s not mandatory).

Table 6.3 shows the hyper-parameters which remains constant. Table 6.4 tabulates the

results of different batch sizes.

Table 6.3: Constant hyper-parameter values (excluding batch-size)

Time steps Dropout Learning rate Epochs

60 0.2 0.001 100

Table 6.4: Results of different batch-size

Batch size Accuracy Precision Recall F1 score

1090 0.92 0.99 0.94 0.97

545 0.92 0.99 0.94 0.97

220 0.92 0.99 0.94 0.97

132 0.98 0.99 1 1

It could be observed that when using a larger batch there is a degradation in the

quality of the model. This is probably because the large batch size have a tendency to

converge to sharp minima which leads to degraded generalization [120]. In contrast,

small batch size shows a promising performance for our model with 100% f1 and recall

value.

6.2.3. Performance over Different Dropout Rates

As per the previous outcomes, batch-size = 132 and time-steps = 60 performed

optimal. In practice, RNNs can easily overfit the training data which may result in

degrading the model performance. Dropout is a regularization technique explained in

section 3.9, which is employed while network training in order to avoid network

overfitting and improving the performance of the model. Table 6.5 shows the hyper-

80

parameters which remains constant. Table 6.6 tabulates the results of different dropout

rates.

Table 6.5: Constant hyper-parameter values (excluding dropout rate)

Time steps Batch size Learning rate Epochs

60 132 0.001 100

Table 6.6: Results of different dropout rates

Dropout Accuracy Precision Recall F1 score

0.2 0.98 0.99 1 1

0.3 0.92 0.99 0.94 0.97

0.5 0.92 0.99 0.94 0.97

0.8 0.98 0.99 1 1

The idle value for drop out ranges from 0.2 to 0.8 depending on the model

architecture and dataset size [121]. Too large dropout values may result the network

to underfit and too small dropout might result in overfitting. Determining the optimal

value or the “sweet spot” is a trial and error method. Table 6.6 shows that a drop of

value of 0.2 and 0.8 functions most appropriate for yielding a robust performance.

6.3. Performance on Reduced Test-set

After studying the hyper-parameter tuning outcome in the previous sections,

the hyper-parameter values with best results were considered. Table 6.7 tabulates the

architecture of the proposed model with all the optimum parameter values.

81

Table 6.7: Architecture of our model with all the optimum parameter values

Input layer 1 (5 neurons)

Hidden Layers 3 (220,240,260 neurons respectively)

Output Layer 1 (1 neuron)

Activation function Sigmoid

Batch-Size 132

Time-Steps 60

Dropout Rate 0.8

Learning Rate 0.001

Epochs 100

After training, the training-set becomes known data to the NN model. For

observing the model’s performance over an unknown set of data, we fed our model

with a test-set. For initial testing, a reduced test-set with considerably less amount of

data samples were prepared. The idea of preparing a reduced test-set was to see the

models performance over unknown data relatively quick. For instance, if that model

yields unsatisfactory performance during testing, it is easier and faster to retest the

model with the reduced test-set, rather than retesting the model with full test-set.

Another purpose of creating a reduced test-set is that, the full UNSW-NB15 test-set

comprises of 9 types of attacks in total, out of which 5 types are often present in IoT

attacks (Analysis, Backdoor, Denial-of-Service, Worms, and Reconnaissance). Hence,

only these 5 types of attack samples along with the 'normal' samples were extracted to

prepare the reduced test-set. The reduced test-set samples were extracted from

UNSW_NB15_testing-set.csv file, and contains 4206 test samples. Table 6.8 shows

the number of anomalies and normal samples used in the test-set. Table 6.9

summarizes the four parameter values in the confusion matrix: TP, FN, FP and FN

(confusion matrix parameters are discussed previously in Chapter 4). Table 6.10 shows

the experimental outcomes.

Table 6.8: Number of samples used for classification (reduced test-set)

Class Sample size

Attack 4094

 Normal 112

82

Table 6.9: Confusion matrix values (reduced test-set)

Parameter
Number of

Samples

TP 4027

TN 1

FP 10

FN 166

Table 6.10: Classifier performance over reduced test-set

Performance

Measure
Percentage

Accuracy 0.9571

Precision 0.99

Recall 1

f1 - score 1

Miscalculation

rate
0.041

FAR 0

Detection

Time (sec)
2.19

The model is capable of detecting attacks over the reduced test-set, with more

than 95% accuracy, i.e. the model is successful of classifying more than 95% of the

samples correctly. The model generates a precision value of 99%. That is, whenever

the model labels a sample as “attack” or “normal”, it is 99% accurate. Our model

generates a recall value of 100%, which indicates that the model is capable of detecting

100% of all the attack instances present in the data-set. The model generates a zero

false alarm rates and a very low wrong detection rate of 4.1%. The proposed model

was capable of classifying 4205 samples of data in 2.19 seconds on an Intel Core i7

2.4GHz Central Processing Unit (CPU) without a Graphics Processing Unit (GPU),

which is impressively fast.

83

6.4. Performance on Full UNSW-NB15 Test-set

The full UNSW-NB15 testing-set comprises of 82332 samples and 9 attack

types (namely: Analysis, Backdoor, Denial-of-Service, Worms, Reconnaissance, Shell

code, Exploits, Fuzzers and Generic). In order to test the model’s capability of

detecting completely unknown attack types, the UNSW-NB15 testing-set was

intentionally kept intact, which consisted of 4 new attack samples (Shell code,

Exploits, Fuzzers and Generic). Table 6.11 shows the four parameter values in the

confusion matrix. Table 6.12 shows the detailed report of the outcomes.

Table 6.11: Confusion matrix values over full UNSW-NB15 test-set

Parameter
Number of

Samples

TP 79966

TN 21

FP 2102

FN 242

Table 6.12: Classifier performance over reduced full UNSW-NB15 test-set

Performance

Measure
Percentage

Accuracy 0.9715

Precision 0.99

Recall 0.97

f1 - score 0.98

Miscalculation

rate
0.028

FAR 0

Detection

Time (sec)
36.2

From Table 6.12, it could be observed that our proposed model is capable of

detecting attacks in the full UNSW-NB15 test-set with more than 97% accuracy. That

is, the model is successful of detecting more than 97% of the attack and normal

samples correctly. Interestingly, as the full test-set comprises of 4 new attack types,

84

the accuracy score shows that our model can also classify completely new attack types

as well. An impressive precision value of 0.99 shows that whenever our model

classifies a data sample as “attack” or “normal”, the model remains 99% correct in its

classification. A satisfactory recall value of 0.97 indicates that the model is capable of

detecting 97% of all the attack instances present in the full UNSW-NB15 test-set,

including the new attack types. The model generates a false alarm rate of 0.02,

indicating that the proposed model very seldom fires a false alarm to the user. A

miscalculation rate or wrong detection rate signifies how often the model classification

is wrong. A very low wrong detection rate of 0.02 signifies that our proposed model

exhibit a very negligible detection error. The model exhibits impressive speed and

was capable of classifying 82332 samples of data in only 36.2 seconds in an Intel Core

i7 2.4GHz Central Processing Unit (CPU) without a Graphics Processing Unit (GPU).

85

Chapter 7

Conclusion & Future Work

Prime purpose of this research work was to detect intrusions in IoT network.

To accomplish the objective, Artificial Neural Network (ANN), specifically, Bi-

directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN), a

deep learning approach, and Googles ML framework termed TensorFlow was adopted

and utilized through Python programing language. This research work shows that DL

could effectively cope with securities in IoT network. The proposed model can detect

five type of attacks that occur to IoT network, namely: Analysis, Backdoors, DoS,

Reconnaissance and Worms.

IDS are evaluated by the attained accuracy of intrusion detection including the

false alarm rate (FAR) of the model. The proposed IoT intrusion detection model

demonstrated over 97% accuracy in effectively identifying attack and normal samples.

The proposed model reported a FAR of 2.5%. This value is equivalent to the model’s

general misclassification rate, which constitutes a false negative rate. The proposed

model’s sensitivity is found to be 100% in (shown in section 6.3), which implies an

impressive 0% false negative rate

The main contributions of this thesis are that, it investigates and explains the

efficiency of DL algorithms in addressing intrusion detection in IoT systems.

Secondly, it shows the efficiency of BLSTM RNN in detecting IoT attacks through

simulation results and shows the parameter values essential for BLSTM RNN to

generate high detection accuracy. This research work also contributes to the efficient

way of implementing BLSTM RNN approach by using Python programming language

and Google TensorFlow implementation framework.

This research work employs one of the most recent benchmark intrusion

dataset called UNSW-NB15 which is a synthetic dataset restricted to only 5 types of

attacks that occurs in any IoT network: Backdoor, DoS, Reconnaissance, Analysis and

Worms. In future work, we are planning to enrich the IoT attack dataset by adding

more IoT attack types with real IoT network traffic. The data pre-processing stage of

the thesis was done manually which took a lot of working hours. This is because the

source dataset was not in acceptable TensorFlow format. The recommendation to this

drawback is that further work should be done to automate this process. The thesis work

was analyzed only on CPU. The future recommendation is that the model should be

analyzed on different computing resources like GPUs and should port the model to

86

different platforms such as iOS, Android, Google Clouds, CUDA etc. to test the

performance of the proposed BLSTM RNN model. The best results generated by the

algorithm depended on parameters such as batch size, epochs, learning rate, time steps.

The values of these parameters were set manually per every iteration until the best

results was achieved. For future development we will be working on automating the

assigning of values for these parameters. This will ease the guess work and try and

error approach of getting the best values that will produce the best detection accuracy.

87

References

[1] M. U. Farooq, M. Waseem, A. Khairi, & S. Mazhar, “A critical analysis on the

security concerns of the internet of things (IoT)”, in International Journal of Computer

Applications, 111, 2015.

[2] Kevin Ashton, That Internet of things thing. Available:

http://www.rfidjournal.com/articles/view?4986

[3] X. Yuan, C. Li and X. Li, “DeepDefense: Identifying DDoS Attack via Deep

Learning,” in 2017 IEEE International Conference on Smart Computing

(SMARTCOMP), Hong Kong, 2017, pp. 1-8

[4] B. A. Tama and K. H. Rhee, “Attack Classification Analysis of IoT Network

via Deep Learning Approach,” in Research Briefs on Information & Communication

Technology Evolution (ReBICTE), 2018. Doi: 10.22667/ReBiCTE.2017.11.15.015.

[5] Fu et al., “An Intrusion Detection Scheme Based on Anomaly Mining in

Internet of Things”, in IEEE International Conference on Wireless, Mobile &

Multimedia Networks (ICWMMN 2011), Beijing, 2011, pp. 315-320.

DOI: 10.1049/cp.2011.1014.

[6] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review

and New Perspectives,” no. 1993, pp. 1–30, 2012.

[7] G. Hinton, “Machine Learning Lecture 5: Distributed Representations Localist

representations,” 2011.

[8] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A Design

Science Research Methodology for Information Systems Research”, Journal of

Management Information Systems, vol. 24, no. 3, pp. 45-77, 2007.

[9] T. Janarthanan and S. Zargari, "Feature selection in UNSW-NB15 and

KDDCUP'99 datasets", in 2017 IEEE 26th International Symposium on Industrial

Electronics (ISIE), Edinburgh, 2017, pp. 1881-1886. doi: 10.1109/ISIE.2017.8001537

[10] H. Kurniawan, Y. Rosmansyah & B. Dabarsyah, “Android anomaly detection

88

system using machine learning classification.”, in International Conference on

Electrical Engineering and Informatics (ICEEI), 2015.

DOI:10.1109/ICEEI.2015.7352512.

[11] Jung, E., Cho, I., & Kang, S. M., “An Agent Modeling for Overcoming the

Heterogeneity in the IoT with Design Patterns”, in Park, J., Adeli, H., Park, N. and

Woungang, I. (Eds.) Mobile, Ubiquitous, and Intelligent Computing. Vo. 274, pp. 69-

74.

 [12] A. Javaid, Q. Niyaz,W. Sun, and M. Alam, “A deep learning approach for

network intrusion detection system,'' in 9th EAI Int. Conf. Bio-inspired Inf. Commun.

Technol. (BIONETICS), New York, NY, USA, May 2016, pp. 21_26.

[13] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep

learning approach for network intrusion detection in software defined networking,'' in

Proc. Int. Conf. Wireless Netw. Mobile Commun. (WINCOM), Oct. 2016, pp. 258_263.

[14] M. Sheikhan, Z. Jadidi, and A. Farrokhi, “Intrusion detection using reduced-

size RNN based on feature grouping,'' Neural Comput. Appl., vol. 21, no. 6, pp.

1185_1190, Sep. 2012.

[15] X. Yuan, C. Li and X. Li, “DeepDefense: Identifying DDoS Attack via Deep

Learning," in 2017 IEEE International Conference on Smart Computing

(SMARTCOMP), Hong Kong, 2017, pp.1-8.

[16] Pfahringer Bernhard, “Winning the KDD99 classification cup: bagged

boosting”, ACM SIGKDD Explorations Newsletter,V.1, Issue 2, 2000, [Online]

available: http://dl.acm.org/citation.cfm?id=846200

[17] Sabhnani M., and Serpen G., “Application of machine learning algorithms to

KDD intrusion detection dataset within misuse detection context”, in International

Conference on Machine Learning, Models, Technologies and Applications, pp. 209-

215, 2003.

[18] Ghorbani A., Lu W., and Tavallaee M., 2010, “Network Intrusion Detection

and Prevention: Concepts and Techniques”, Springer Science, LLC.

89

[19] Kumar, G. Sunil, and C. V. K. Sirisha, “Robust Preprocessing and Random

Forests Technique for Network Probe Anomaly Detection.,” International Journal of

Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-1, Issue-6,

January 2012. available:

http://www.academia.edu/9521473/Robust_Preprocessing_and_Random

_Forests_Technique_for_Network_Probe_Anomaly_Detection

[20] Bajaj and Arora, “Improving the Intrusion Detection using Discriminative

Machine Learning Approach and Improve the Time Complexity by Data Mining

Feature Selection Methods”, International Journal of Computer Applications (0975-

8887), Volume 76-No.1, August 2013. available:

http://research.ijcaonline.org/volume76/number1/pxc3890587.pdf

[21] Pervez M. S. and Farid D. M., "Feature selection and intrusion classification in

NSL-KDD cup 99 dataset employing SVMs," in The 8th International Conference on

Software, Knowledge, Information Management and Applications (SKIMA 2014),

Dhaka, 2014, pp. 1-6.

[22] Ingre B. and Yadav A., "Performance analysis of NSL-KDD dataset using

ANN," in International Conference on Signal Processing and Communication

Engineering Systems, Guntur, 2015, pp. 92-96.

[23] Moustafa N. and Slay J., 2015, “Unsw-nb15: A comprehensive data set for

network intrusion detection,” in MilCIS-IEEE Stream, Military Communications and

Information Systems Conference, Canberra, Australia, IEEE publication, 2015.

[24] Moustafa N. and Slay J., “The significant features of the UNSW-NB15 and the

KDD99 sets for Network Intrusion Detection Systems”, in the 4th International

Workshop on Building Analysis Datasets and Gathering Experience Returns for

Security (BADGERS 2015), collocated with RAID 2015, 2016. Available:

http://handle.unsw.edu.au/1959.4/unsworks_41254

[25] Aghdam Hosseinzadeh M. and Kabiri, “Feature Selection for Intrusion

Detection System Using Ant Colony Optimization,” International Journal of Network

Security, Vol 18, No.3, May 2016, pp.420-432. Available:

http://ijns.jalaxy.com.tw/contents/ijns-v18-n3/ijns2016-v18-n3-p420-432.pdf

90

[26] G. Hinton, “Dropout : A Simple Way to Prevent Neural Networks from

Overfitting,” vol. 15, pp. 1929–1958, 2014.

[27] Z. Dewa and L. A. Maglaras, “Data Mining and Intrusion Detection Systems,”

vol. 7, no. 1, pp. 62–71, 2016

[28] T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux, and K. Takeda,

“Bidirectional LSTM-HMM Hybrid System for Polyphonic Sound Event Detection”,

Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA

02139, USA,” no. September, pp. 2–6, 2016.

[29] C. Yin, Y. Zhu, J. Fei, and X. He, “A Deep Learning Approach for Intrusion

Detection Using Recurrent Neural Networks,” vol. 5, 2017.

[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,'' Nature, vol. 521, no.

7553, pp. 436_444, May 2015.

[31] V. Timčenko and S. Gajin, “Machine Learning based Network Anomaly

Detection for IoT environments”.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors”, Nature, 1986.

[33] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks”, Science, 313(5786):504–507, 2006.

[34] D. Erhan, A. Courville, Y. Bengio, and P. Vincent, “Why does unsupervised

pre-training help deep learning?”, JMLR, 11, 2010

[35] G. Li and Z. Yan, “Data Fusion for Network Intrusion Detection: A Review”,

2018.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks”, in NIPS, 2012.

[37] A Turing, “I.—computing machinery and intelligence”, Mind, LIX(236):433–

460, 1950.

91

[38] T. M. Mitchell, “Machine Learning”, McGraw-Hill, Inc., New York, NY,

USA, 1 edition, 1997.

[39] M. Mohammadi, G. S. Member, A. Al-fuqaha, and S. Member, “Deep

Learning for IoT Big Data and Streaming Analytics : A Survey,” pp. 1–34, 2017.

[40] A. Gulli and S. Pal, Deep Learning with Keras, April 2017. Birmingham: Packt

Publishing Ltd.

[41] K. Panetta. (2016) Gartner’s top 10 strategic technology trends for 2017.

[Online]. Available: http://www.gartner.com/smarterwithgartner/ gartners-top-10-

technology-trends-2017/

[42] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[44] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”

IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[45] Alex Graves and Jurgen Schmidhuber, “Framewise phoneme classification

with bidirectional LSTM and other neural network architectures,” Neural Networks,

vol. 18, no. 5, pp. 602–610, 2005.

[46] H. Lee, “Framework and development of fault detection classification using iot

device and cloud environment,” Journal of Manufacturing Systems, 2017.

[47] Mike Schuster and Kuldip K Paliwal, “Bidirectional recurrent neural

networks,” Signal Processing, IEEE Transactions, vol. 45, no. 11, pp. 2673–2681,

1997.

[48] Z. Cui, S. Member, R. Ke, S. Member, and Y. Wang, “Deep Stacked

Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide

Traffic Speed Prediction,” pp. 1–12, 2018.

92

[49] A. Candel, V. Parmar, E. LeDell, and A. Arora, “Deep learning with h2o,”

2015.

[50] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative study

of deep learning software frameworks,” arXiv preprint arXiv:1511.06435v3 [cs.LG],

2016.

[51] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on

heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467v2 [cs.DC],

2016.

[52] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like

environment for machine learning,” in BigLearn, NIPS Workshop, no. EPFL-CONF-

192376, 2011.

[53] S. Raschka and V. Mirjalili, Python Machine Learning, 2nd ed. Birmingham,

UK: Packt Publishing, 2017.

[54] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.

Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature

embedding,” in Proceedings of the 22nd ACM international conference on

Multimedia. ACM, pp. 675–678, 2014

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information processing

systems, pp. 1097–1105, 2012.

[56] T. J. Hazen. (2016) Microsoft and liebherr collaborating on new generation of

smart refrigerators. [Online]. Available: http:

//blogs.technet.microsoft.com/machinelearning/2016/09/02/

[57] M. Manic, K. Amarasinghe, J. J. Rodriguez-Andina, and C. Rieger, “Intelligent

buildings of the future: Cyberaware, deep learning powered, and human interacting,”

IEEE Industrial Electronics Magazine, vol. 10, no. 4, pp. 32–49, 2016.

93

[58] X. Song, H. Kanasugi, and R. Shibasaki, “Deeptransport: Prediction and

simulation of human mobility and transportation mode at a citywide level.” IJCAI,

2016.

[59] G. Mittal, K. B. Yagnik, M. Garg, and N. C. Krishnan, “Spotgarbage:

smartphone app to detect garbage using deep learning,” in Proceedings of the 2016

ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM,

2016, pp. 940–945.

[60] G. Amato, F. Carrara, F. Falchi, C. Gennaro, C. Meghini, and C. Vairo, “Deep

learning for decentralized parking lot occupancy detection,” Expert Systems with

Applications, 2017.

[61] S. Valipour, M. Siam, E. Stroulia, and M. Jagersand, “Parking-stall vacancy

indicator system, based on deep convolutional neural networks,” in 2016 IEEE 3rd

World Forum on Internet of Things (WF-IoT), 2016, pp. 655–660.

[62] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep learning for solar power

forecasting—an approach using autoencoder and lstm neural networks,” in Systems,

Man, and Cybernetics (SMC), 2016 IEEE International Conference on. IEEE, 2016,

pp. 2858–2865.

[63] Y. Hada-Muranushi, T. Muranushi, A. Asai, D. Okanohara, R. Raymond, G.

Watanabe, S. Nemoto, and K. Shibata, “A deep-learning approach for operation of an

automated realtime flare forecast,” SPACE WEATHER, 2016.

[64] X. Ma, H. Yu, Y. Wang, and Y. Wang, “Large-scale transportation network

congestion evolution prediction using deep learning theory,” PloS one, vol. 10, no. 3,

p. e0119044, 2015.

[65] Y. Tian and L. Pan, “Predicting short-term traffic flow by long short-term

memory recurrent neural network,” in Smart City/SocialCom/SustainCom

(SmartCity), 2015 IEEE International Conference on. IEEE, 2015, pp. 153–158.

94

[66] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep neural

network for in-vehicle network security,” PloS one, vol. 11, no. 6, p. e0155781, 2016.

[67] D. Cires¸an, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep

neural network for traffic sign classification,” Neural Networks, vol. 32, pp. 333–338,

2012.

[68] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, and Y. Ma, “Deepfood: Deep

learning-based food image recognition for computer-aided dietary assessment,” in

International Conference on Smart Homes and Health Telematics. Springer, 2016, pp.

37–48.

[69] C. R. Pereira, D. R. Pereira, J. P. Papa, G. H. Rosa, and X.-S. Yang,

“Convolutional neural networks applied for parkinson’s disease identification,” in

Machine Learning for Health Informatics. Springer, 2016, pp. 377–390.

[70] J. Wang, H. Ding, F. Azamian, B. Zhou, C. Iribarren, S. Molloi, and P. Baldi,

“Detecting cardiovascular disease from mammograms with deep learning,” IEEE

Transactions on Medical Imaging, 2017.

[71] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell, “Learning to diagnose with

lstm recurrent neural networks,” in ICLR 2016, 2016.

[72] D. Rav`ı, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and

G.-Z. Yang, “Deep learning for health informatics,” IEEE journal of biomedical and

health informatics, vol. 21, no. 1, pp. 4–21, 2017.

[73] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic, “Deep

neural networks based recognition of plant diseases by leaf image classification,”

Computational Intelligence and Neuroscience, vol. 2016, 2016.

[74] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning

classification of land cover and crop types using remote sensing data,” IEEE

Geoscience and Remote Sensing Letters, 2017.

95

[75] K. Kuwata and R. Shibasaki, “Estimating crop yields with deep learning and

remotely sensed data,” in Geoscience and Remote Sensing Symposium (IGARSS), 2015

IEEE International. IEEE, 2015, pp. 858– 861.

[76] G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum, and C. H. Davis,

“Training deep convolutional neural networks for land– cover classification of high-

resolution imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 4, pp.

549–553, 2017.

[77] K. A. Steen, P. Christiansen, H. Karstoft, and R. N. Jørgensen, “Using deep

learning to challenge safety standard for highly autonomous machines in agriculture,”

Journal of Imaging, vol. 2, no. 1, p. 6, 2016.

[78] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: A

fruit detection system using deep neural networks,” Sensors, vol. 16, no. 8, p. 1222,

2016.

[79] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for

recommender systems,” in Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2015, pp. 1235–1244.

[80] T.-Y. Yang, C. G. Brinton, C. Joe-Wong, and M. Chiang, “Behaviorbased

grade prediction for moocs via time series neural networks,” IEEE Journal of Selected

Topics in Signal Processing, 2017.

[81] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas, and J. Sohl-

Dickstein, “Deep knowledge tracing,” in Advances in Neural Information Processing

Systems, 2015, pp. 505–513.

[82] F. Conti, A. Pullini, and L. Benini, “Brain-inspired classroom occupancy

monitoring on a low-power mobile platform,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, 2014, pp. 610–615.

96

[83] A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov, and B. Vorster,

“Deep learning in the automotive industry: Applications and tools,” in Big Data (Big

Data), 2016 IEEE International Conference on. IEEE, 2016, pp. 3759–3768.

[84] Q. Wang, Y. Guo, L. Yu, and P. Li, “Earthquake prediction based on spatio-

temporal data mining: An lstm network approach,” IEEE Transactions on Emerging

Topics in Computing, 2017.

[85] Y. Liu, E. Racah, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel, M.

Wehner, and W. Collins, “Application of deep convolutional neural networks for

detecting extreme weather in climate datasets,” Int’l Conf. on Advances in Big Data

Analytics, 2016.

[86] H. Maeda, Y. Sekimoto, and T. Seto, “Lightweight road manager: smartphone-

based automatic determination of road damage status by deep neural network,” in

Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile

Geographic Information Systems. ACM, 2016, pp. 37–45.

[87] W. Liu, J. Liu, X. Gu, K. Liu, X. Dai, and H. Ma, “Deep learning based

intelligent basketball arena with energy image,” in International Conference on

Multimedia Modeling. Springer, 2017, pp. 601–613.

[89] K.-C. Wang and R. Zemel, “classifying nba offensive plays using neural

networks,” in Proc. MIT SLOAN Sports Analytics Conf, 2016.

[90] T. Kautz, B. H. Groh, J. Hannink, U. Jensen, H. Strubberg, and B. M. Eskofier,

“Activity recognition in beach volleyball using a deep convolutional neural network,”

Data Mining and Knowledge Discovery, pp. 1–28, 2017.

[91] M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori, “A

hierarchical deep temporal model for group activity recognition,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1971–

1980.

97

[92] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,

N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed

improvements,” arXiv preprint arXiv:1211.5590v1 [cs.SC], 2012.

[93] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like

environment for machine learning,” in BigLearn, NIPS Workshop, no. EPFL-CONF-

192376, 2011.

[94] S. Raschka and V. Mirjalili, Python Machine Learning, 2nd ed. Birmingham,

UK: Packt Publishing, 2017.

[95] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.

Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature

embedding,” in Proceedings of the 22nd ACM international conference on

Multimedia. ACM, 2014, pp. 675–678.

[96] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-theart deep

learning software tools,” arXiv preprint arXiv:1608.07249v7 [cs.DC], 2016.

[97] R. Mehmood, F. Alam, N. N. Albogami, I. Katib, A. Albeshri, and S. M.

Altowaijri, “Utilearn: A personalised ubiquitous teaching and learning system for

smart societies,” IEEE Access, vol. 5, pp. 2615– 2635, 2017.

[98] A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov, and B. Vorster,

“Deep learning in the automotive industry: Applications and tools,” in Big Data (Big

Data), 2016 IEEE International Conference on. IEEE, 2016, pp. 3759–3768.

[99] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative study

of deep learning software frameworks,” arXiv preprint arXiv:1511.06435v3 [cs.LG],

2016.

[100] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-theart deep

learning software tools,” arXiv preprint arXiv:1608.07249v7 [cs.DC], 2016.

98

[101] Z. Cui, S. Member, R. Ke, S. Member, and Y. Wang, “Deep Stacked

Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide

Traffic Speed Prediction,” 2016, pp. 1–12.

[102] P. Barham et al., “TensorFlow : A system for large-scale machine learning,”

pp. 265–284.

[103] R. C. Staudemeyer, “Applying long short-term memory recurrent neural

networks to intrusion detection,” no. 56, pp. 136–154, 2015.

[104] A. Senior, “Long Short-Term Memory Recurrent Neural Network

Architectures for Large Scale Acoustic Modeling Has.”

[105] H Ning, “Unit and Ubiquitous Internet of Things”, CRC Press Inc.,2013.

[106] E. Jung et al., “An Agent Modeling for Overcoming the Heterogeneity in the

IoT with Design Patterns.” in Park, J., Adeli, H., Park, N. and Woungang, I. (Eds.)

Mobile, Ubiquitous, and Intelligent Computing, Vol. 274, pp. 69-74, 2014.

[107] IERC. (2014) Internet of Things. Available: http://www.internet-of-

thingsresearch.eu/about_iot.htm.

[108] A. Oracevic, S. Dilek, and A. Oracevic, “Security in Internet of Things : A

Survey Security in Internet of Things : A Survey,” 2017. doi: 978-1-5090-4260-9

[109] SHEN changxiang, ZHANG Huanguo and FENG Dengguo, “Literature

Review of Information Security”, Science in China (Series E: Information Sciences),

vol.37, no.2, 2007, pp.129-150

[110] M. A. Bhabad and P. G. Scholar, “Internet of Things : Architecture, Security

Issues and Countermeasures,” vol. 125, no. 14, pp. 1–4, 2015.

[111] M. Weber, “Security challenges of the Internet of Things,” pp. 638–643, 2016.

[112] Shalev-Shwartz, S. & Ben-David, S., “Understanding Machine Learning: From

Theory to Algorithms”, Cambridge University Press, 2014.

99

[113] K. Lackner, “Composing a melody with long-short term memory (LSTM)

Recurrent Neural Networks,” 2016.

[114] Nerney, C. (2012) The tiny (yet powerful) world of speckled computing.

Available: http://www.itworld.com/article/2721483/consumer-tech-science/the-tiny--

yetpowerful--world-of-speckled-computing.html.

[115] “Introduction to Artificial Neural Networks - Part 1.” [Online]. Available:

http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-

networks-part-1/7

[116] D. Williams and G. Hinton, “Learning Representations by Back-Propagating

Errors,” Nature, vol. 323, no. 6088, pp. 533–538, 1986.

[117] S. Ruder, “An Overview of Gradient Descent Optimization Algorithms,” arXiv

preprint arXiv:1609.04747, 2016.

[118] H. A. Abdul-ghani, D. Konstantas, and M. Mahyoub, “A Comprehensive IoT

Attacks Survey based on a Building-blocked Reference Model”, vol. 9, no. 3, 2018.

[119] M. Abomhara and G. M. Køien, “Cyber Security and the Internet of Things :

Vulnerabilities , Threats , Intruders,” vol. 4, pp. 65–88, 2015.

[120] G. E. G. Ap, S. H. M. Inima, J. Nocedal, P. Tak, and P. Tang, “o n l arge -b

atch t raining for d eep l earning :,” pp. 1–16, 2017.

[121] Brownlee, J., “A Tour of Machine Learning Algorithms”. Available:

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/.

[122] N. Richárd. (2018, Sep 5). The Big Difference between Artificial and

Biological Neural Networks [Online]. Available: https://towardsdatascience.com/the-

differences-between-artificial-and-biological-neural-networks-a8b46db828b7

[123] A. Jonathan. (2016, Feb 21). What is the unit Step Function in Artificial Neural

Network? [Blog]. Available: https://www.quora.com/What-is-the-unit-step-Function-

in-Artificial-Neural-Network

100

Appendix - A

Conference

1. B. Roy and H. Cheung, “A Deep Learning Approach for Intrusion Detection in

Internet of Things using Bi-Directional Long Short-Term Memory Recurrent

Neural Network,” presented at 2018 28th International Telecommunication

Networks and Applications Conference (ITNAC), Sydney, Australia, 2018.

A Deep Learning Approach for Intrusion Detection

in Internet of Things using Bi-Directional Long

Short-Term Memory Recurrent Neural Network

Bipraneel Roy

School of Computing, Engineering and Mathematics

Western Sydney University

Sydney, Australia
B.Roy2@westernsydney.edu.au

Dr. Hon Cheung

School of Computing, Engineering and Mathematics

Western Sydney University

Sydney, Australia

H.Cheung@westernsydney.edu.au

Abstract— Internet of Things (IoT) is one of the most rapidly

evolving technologies nowadays. It has its impact in various

industrial sectors including logistics tracking, medical fields,

automobiles and smart cities. With its immense potentiality, IoT

comes with crucial security concerns that need to be addressed.
In this paper, we present a novel deep learning technique for

detecting attacks within the IoT network using Bi-directional

Long Short-Term Memory Recurrent Neural Network (BLSTM

RNN). A multi-layer Deep Learning Neural Network is trained

using a novel benchmark data set: UNSW-NB15. This paper

focuses on the binary classification of normal and attack

patterns on the IoT network. The experimental outcomes show

the efficiency of our proposed model with regard to precision,

recall, f-1 score and FAR. Our proposed BLSTM model achieves

over 95% accuracy in attack detection. The experimental

outcome shows that BLSTM RNN is highly efficient for building

high accuracy intrusion detection model and offers a novel

research methodology.

Keywords—Bi-directional Recurrent Neural Network, Deep

Learning, Intrusion Detection, IoT.

I. INTRODUCTION

Internet of Things (IoT) was initially termed by Kevin
Ashton in the year 1999 [2]. It stands for a system of globally
recognizable physical devices or things which can sense the
environment around them and behave intelligently. IoT is
rising at an accelerating stride and interconnecting billions of
devices or ‘things’. As per Gartner, about 25 billion
distinctively recognizable objects or things are predicted to
be a part of the worldwide computing system by 2020 [1].
These interconnected devices augment regular activities and
shape smart solutions. However, the immense prospects and
conveniences brought by IoT lead to security concerns. IoT
is considered as the future Internet or Internet 2.0.
Consequently, IoT acquires traditional Internet security
concerns as well as some new ones [18]. An IoT system can
be a victim of several ways of attacks: Physical attacks (e.g.
Node tampering, Node jamming, etc.), Network attacks (e.g.
the Sinkhole attack, Denial-of-Service attacks, Man-in-the-
Middle (MiM) attacks, etc.), Software attacks (e.g. Worms,
Trojan horse, Spyware, etc.) and Encryption attacks (e.g.
Cryptanalysis attacks) [19]. In this paper, we focus on
detecting network attacks only, which target the network
layer of IoT, and the attackers do not essentially have to be
nearby the IoT system to perform such attacks [19].

An intrusion detection system (IDS) is a security system

capable of scanning the network traffic activity and can

identify any hostile or abnormal behavior. Technically, an

IDS is equivalent to a classification task, i.e., identifying

whether any network behavior is “abnormal” or “normal”.

Any classification problem can be of two types: binary

classification and multi-class classification. In binary

classification the system generates only one of two outputs:

“attack” or “normal”. A multi-class classification, on the

other hand, identifies attack types as well. In this paper, we

employ binary classification for intrusion detection.

Most of the conventional ML techniques use shallow

learning and is incapable of effectively solving the intrusion

classification problem with the immense data from a real-

time environment [3]. In contrast, with the vibrant evolution

of various datasets, deep learning (DL) approaches possess

the prospective to mine or extract improved representations

out of the data and can extract much more efficient features.

The concept of deep learning was introduced by G. Hinton et

al. [4] in the year 2006 and over the years, deep learning has

undergone a spectacular rise in the area of ML. Since deep

learning has the property of the automated discovery of

abstraction from the raw data set, to build a much more

efficient intrusion detection model, we propose a unique deep

learning methodology to build an IDS for IoT using the Bi-

directional Long Short-Term Memory Recurrent Neural

Networks (BLSTM RNN) approach.

This paper presents a BLSTM RNN intrusion detection

model and its implementation. The model’s performance in

binary classification is studied with respect to accuracy,

miscalculation rate, precision, true positive rate and f-1 score.

The intrusion detection model is implemented using the

Python program language, Google TensorFlow, and Keras.

Simulations will be performed using the UNSW-NB15

dataset. The experimental outcomes exhibit the efficiency of

our proposed BLSTM RNN model in detecting 5 types of

security attacks that an IoT network may encounter. The

remaining of this paper is structured as follows. Section II

comprises related work within the field of intrusion

detection. Then, section III describes the introduced model

for intrusion detection, including the benchmark UNSW-

NB15 dataset, data pre-processing mechanism and evaluation

matrix. Section IV highlights the experimental outcomes and

discussions. Finally, Section V presents the conclusions and

the future scope of this research.

102

II. RELATED WORK

A recent work by B. A. Tama and K. H. Rhee [5] proposes

a deep neural network (DNN) model for attack classification

in IoT network, where instead of employing previous data sets

(NSL-KDD and KDD-99), the authors have evaluated the

performance of their DNN model using three contemporary

benchmark data sets: GPRS, CIDDS-001 and UNSW-NB15.

Their study also reports an occurrence of bias results in

CIDDS-001 dataset due to a data imbalance issue, that is the

distribution of one class in CDDS-001 dataset is compellingly

lower than the supplementary class. The study also remains

unable to observe the performance differences between the

DNN and other machine learning algorithms.

 In recent years, deep learning has developed

progressively, and has become functional for detecting

intrusions and outperforming conventional methods. In [6], a

deep learning method has been used by employing a DNN for

flow-based anomaly recognition. The outcome reveals that the

proposed technique could be used for detecting anomalies in

software-defined systems. In [7], a deep learning technique

has been proposed where the authors use a self-taught-

learning (STL) algorithm on the NSL-KDD dataset. When

relating the performance with former studies, the approach has

proved to be more efficient. However, their studies emphasize

only on the feature reduction capability of of DL techniques.

Fu et al. [8] introduces a novel intrusion detection

technique intended for IoT systems established upon anomaly

extraction. In their study, the authors assert that anomalies are

detectable by analyzing the patterns of the data of the IoT

sensor layer, like the temperature, humidity or anything that

an IoT object sensor could collect and report. The study uses

an unsupervised algorithm for data-mining for identifying

normal patterns. In order to evaluate the proposed system,

Intel Lab Project dataset was used, but no detected accuracy

was reported to the designed system.

Another study conducted by M. Sheikhan et al. [9] claims

that RNNs can be viewed as reduced-sized neural networks

(NNs). The paper introduces a 3-layer RNN architecture

having 41 input features and 4 intrusion classes as outputs for

a misuse-based intrusion detection system. Nevertheless, the

RNN units of layers remain partly connected. As a result, the

proposed RNNs does not exhibit the capability of DL to

produce high dimensional features. Moreover, performance

evaluation of the proposed approach in terms of binary

classification has not been reported.

With the consistent growth of big data along with the

increase in computational power, the deep learning technique

has become popular rapidly, and is increasingly utilized in

numerous fields. In this paper, an unique deep learning

technique has been proposed for detecting intrusions in the

IoT network by using a bidirectional LSTM (BLSTM)

recurrent neural network (RNN). Related with former works,

we have used the BLSTM-based model aimed at binary

classification and excluding pre-training. In addition, we have

used two distinct data sets for training and testing purposes

(namely, UNSW-NB15_training-set.csv and UNSW-

NB15_test-set.csv) for evaluating the performance of the

proposed model.

III. PROPOSED MODEL

A. Reccurrant Neural Network

A Recurrent Neural Network (RNN) is a layered network
with feedback loops and is able to propagate past information
onward to the present time. An RNN consists of loops and
these loops allow the information to persist. The hidden layers
of the RNN act as information storage like computer memory.
RNNs form a class of powerful DNNs that use its internal
memory along with loops for dealing with sequence data [20].

B. Long Short-Term Memory

Long Short-Term Memory (LSTM) is an extension of
RNNs. LSTM employs the idea of gates for its units. One
major issue with RNNs is that it is unable to learn the context
information across a prolonged span of time caused by the
vanishing gradient problem, which is, during a long temporal
gap (i.e. time from when an input is obtained to the time when
the input is used to make a prediction). Therefore, RNNs are
incapable of learning from long-distance dependencies [21].
One solution to this issue is the use of an LSTM design [21].
It averts the issue of the vanishing gradient and thus permits
the retention of the elongated period of context information.

C. Bi-directional LSTM

The concept of Bi-directional LSTM (BLSTM) originates
from bidirectional RNN (BRNN) [10] that processes
sequences of the input in forward as well as backward
directions by employing two different hidden layers. Fig. 1
illustrates a bidirectional LSTM structure with three
consecutive time steps.

BLSTMs join both the hidden layers to the same output
layer. One inadequacy of traditional RNNs is that they are
only capable of using the previous context of the input data
sequence. BLSTMs [11] fix this by dispensing data in both
forward and backward directions.

A BLSTM network computes the forward hidden layer
sequence output h , the output sequence of the backward

hidden layer h and the output layer y by reiterating the

forward layer starting t =1 to T, backward hidden layer since
t = T to 1, and then the final output is upgraded by the
following equations:

Figure 7.1: Bi-directional LSTM architecture with three consecutive

time steps.

103

)(1 hthhthxt bhWXWHh
 

  (1)

)(1 hthhthxt bhWXWHh
 

  (2)

)ytyhtyht bhWhWY 
 

 (3)

The final output vector, 𝒀𝑇 is calculated by the equation:

),(ttt hhY


 (4)

The  function combines both the output sequences

from the neurons in the hidden layers and can be one of four
functions: concatenation, summation, averaging and
multiplication.

Incorporating BRNNs with LSTM neurons results a
bidirectional LSTM recurrent neural network (BLSTM
RNN) [12]. The BLSTM RNN is capable of accessing long-
term context data in both the backward and forward
directions. The combination of both the forward and
backward LSTM layers is considered as a single BLSTM
layer. It has been shown that the bidirectional models are
considerably better than regular unidirectional models in
various domains like phoneme classification and speech
recognition [13].

D. Intrusion Dataset

Moustafa and Slay (in 2015) [14] suggested that the NSL-

KDD dataset and KDD’99 dataset did not characterize the up-

to-date features for intrusion detection, and presented a

comprehensive and all-inclusive dataset called the

UNSWNB15. This dataset encompassed several features

from KDD’99 dataset [15]. They further analyzed the

features of the KDD’99 dataset and the UNSW-NB15

dataset. The results demonstrated that actual KDD’99 dataset

features were less representative as compared to the features

of UNSW-NB15 dataset [15].

The UNSW-NB15 dataset contains 45 features [16]. The

dataset is further divided into training and testing datasets that

contain all the current attack types. T. Janarthanan and S.

Zargari [15] performed an extensive study on the UNSW-

NB15 dataset for the purpose of extracting the most

competent features and thus proposed a subset with features

which dramatically increased the intrusion detection

efficiency. The UNSW-NB15 dataset is the most recent and

effective dataset published for intrusion detection research

purposes. In this paper, the dataset subset in the file ‘UNSW-

NB15_training-set.csv’ is used for training the proposed IDS

model, while that in ‘UNSW_NB15_test-set.csv’ is used for

testing the model. Both the dataset files can be obtained from:

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-

security/cybersecurity/ADFA-NB15-Datasets/

The data set file ‘UNSW-NB15_training-set.csv’contains
175,341 records for training, while the test set file ‘UNSW-
NB15_testing-set.csv’ contains 82,332 records. the UNSW-
NB15 dataset has 9 attack types in total, out of which 5 types
are often present in IoT attacks (Analysis, Backdoor, Denial-
of-Service, Worms, and Reconnaissance) [28][29][30].
Hence, we extracted only these 5 types of attack samples
along with the 'normal' samples to prepare our test-set.

In [22], the authors have used UNSW-NB15 dataset for
conducting IoT research because unlike previous benchmark

datasets, UNSW-NB15 exhibits contemporary attack patterns
and modern normal traffic patterns. Moreover, since UNSW-
NB15 has separate training-set and testing-set, data
distribution remains different [22]. Again, in [26], the authors
points out that: “It encompasses realistic normal traffic
behavior and combines it with the synthesized up to date
attack instances”. [27] also points out that previous
benchmark data sets like KDD’99 and NSL-KDD could not
meet the current network security research needs as they does
not comprehend the present-day network security
circumstances and the latest attack features.

We choose UNSW-NB15 data set for our research as it

covers modern attack patterns, consists of modern normal

traffic patterns, and contains only two classes (‘attack’ and

‘normal’). Since we are performing binary classification task,

this class distribution facilitates our proposed approach.

Secondly, UNSW-NB15 forms a comprehensive data set that

presents 5 types of IoT attacks. The categories of attack

classes are discussed below:

1) Analysis

These types of attacks are targeted at IoT system networks.

The attacker first acquires related network information

through packet sniffing or port scanning and then launches

attacks on the targeted network [28].

2) Backdoor

With the advancement of IoT, several proposed IoT operating

systems such as Contik and RTOS might encompass

backdoor where it is possible to reprogram them for getting

access to confidential data stored or transmitted on the IoT

networks [29].

3) Denial-of-Service

Over the application layer, an IoT network can be

compromised by Denial of Service (DoS) attacks or

Distributed Denial of Service (DDoS) attacks; where, the

service becomes unavailable to the authentic users, because

the system becomes unavailable due to overwhelming

number of requests resulting in resources and capacity

overload [28].

4) Worms

Worms are malicious software that can be executed on the

IoT Application layer that could harm IoT System devices.

For instance, Stuxnet and Mirai have been developed to

attack IoT objects [29].

5) Reconnaissance

It is an umbrella term of any illegitimate mapping and

discovery of vulnerabilities in systems and services. For

example, packet sniffing, port scanning and traffic analysis

[30].

E. Data Preprocessing

As an initial experiment, reduced dataset samples are

randomly selected from the whole training set and placed in

a new .csv Microsoft Excel file titled

“UNSW_NB15_training-set_5451.csv”. In addition, we only

consider the attributes proposed in [15], namely, service,

sbytes, sstl, smean, and ct_dst_sport_ltm. The training dataset

104

is manually manipulated using the approach of Fu et al. [8],

where, the authors has followed the approach of manually

adding some abnormal samples in the dataset in order to make

the dataset fit for their research purpose. The benefit of using

the approach is that the input dataset would be competent for

intrusion detection, which would fit the goal of the research.

Moreover the approach helps in dealing with the problem of

procuring labeled intrusion detection IoT datasets at a high

cost. Here, we have followed the approach of manual

manipulation and have extracted the features and attack types

manually. Thus, our resulting dataset consists of 5 features

and two class labels: “Attack” and “Normal”. Table I shows

the dataset structure. The first 5 columns represent the

extracted features, the 6th column represents the attack

category and the last column is the binary labeling. Value 0

resembles ‘normal’ and value 1 as ‘attack’.

F. Evaluation Matrix

The confusion matrix is applied to characterize the

accuracy of our proposed BLSTM RNN model during

testing. The confusion matrix is a 2-dimensional matrix

representing the correlation amongst the detected and actual

values as shown in Fig. 2. True Positive (TP) specifies the

count of anomalous or unusual samples that are accurately

detected by the system. True negative (TN) signifies the

amount of normal samples which are detected as normal by

the system. False Positive (FP) represents the count of normal

samples which are recognized as anomalies. False Negative

(FN) refers to the amount of attack samples which have been

classified as normal.

Accuracy defines the percentage of correct classifications
and can be calculated by using the formula in (5):

X

TNTP
accuracy


 (5)

where, X denotes total count of samples.

Misclassification rate is the percentage of wrong
detections and can be calculated by using the formulae in (6):

X

FNFP
ratetionmiscalcula


_

(6)

False Positive Rate (FPR), calculated by (7), is the
percentage at which the system incorrectly classifies normal
samples as anomaly:

NormalX

FP
FPR  (7)

where, XNormal is the number of actual normal samples in
X.

Other parameters for evaluating the proposed model
include precision, recall and f1-score values. Precision is
calculated as the ratio of correct positive detections to the
total actual positive detections, as shown in (8):

FPTP

TP
precision


 (8)

Recall is the ratio of correct positive detections to the

number of actual abnormal samples, as presented in (9):

FNTP

TP
recall


 (9)

In (10), F1-Score denotes the harmonic mean of recall and
precision:

precisionrecall

precisionrecall
scoref




)*(2
1

(10)

These metrics are employed to assess the proposed
intrusion detection model in the testing phase of the model
simulations.

IV. IMPLEMENTATION

We have implemented the model in Spyder (a scientific
interactive development environment for Python language)
using Tensorflow library. The whole implementation process
is divided into three major phases: data pre-processing,
training the BLSTM model and lastly, testing and evaluation.

A. TensorFlow

In 2015 November, Google released an open source deep
learning software library called TensorFlow [24]. The
primary focus of TensorFlow is for defining, training and
deploying machine learning algorithms. TensorFlow is a ML
structure that functions at big scale and in diverse

TABLE 7.1: DATASET STRUCTURE AFTER PRE-PROCESSING

service sbytes sttl smean ct_

dst_

sport_

ltm

attack_cat label

smtp 37178 31 715 1 Normal 0

- 1280 254 64 1 Reconnaissance 1

- 1280 254 64 1 DoS 1

- 1280 254 64 1 Backdoor 1

 156 254 78 1 Analysis 1

http 1308 254 131 1 Worms 1

Figure 7.2: Confusion Matrix.

105

environments. It employs dataflow graphs and maps the
nodes or vertices of the graph across multiple machines
incorporating graphics processing units (GPUs), multicore
central processing units (CPUs) and Tensor processing units
(TPUs). The architectural design provides a receptive and
flexible platform for the application developers by allowing
the developers to research with novel training algorithms and
optimizations. TensorFlow supports several of applications,
with an emphasis on training and implication on deep
learning neural networks and it is being widely used for ML
research [23]. Its supple dataflow representation aids power
users to accomplish excellent performance.

B. Data Preprocessing phase

Data pre-processing forms the first phase of
implementation stage. In this phase, the whole training
dataset is read and stored in the computer memory. After that,
feature extraction is employed. Since heterogeneous data
type is not supported by Python, the non-numeric data entries
(also called categorical data, such as the feature service,
shown in table I) are then converted to numeric values.
Dependent variables are encoded followed by data
normalization (feature scaling). In order to process the
features, we need to create a TensorFlow data structure for
storing the features and labels. Since, we are employing an
RNN, reshaping the data to respective time-steps is required.
Reshaping forms the last step of data pre-processing phase.

C. Training phase

Training is the second phase of the implementation. First
we have built the BLSTM RNN model by using Keras
library. The model is then compiled and then followed by
model-training. It is here, where the UNSW_NB15_training-
set_5451.csv (reduced training-set) file is further divided into
two subsets: Training set and Validation set, with a split ratio
of 0.33%, i.e., 67% of the UNSW_NB15_training-
set_5451.csv will be used for training, while 33% of for
validating. The training subset is used by the compiler to train
the model, while the validation subset is used for evaluating
the model performance after each epoch.

After training the model, we analyse model’s
performance and repeat the training after tuning the model’s
parameters, until satisfactory performance is attained.

D. Testing phase

In this phase of our system, we load the test dataset and
feed it into our trained model for the testing purpose. We then
record the evaluation matrix for analysing our system.

V. RESULTS AND DISCUSSION

The Keras deep learning framework [17] and Google
TensorFlow library are used to simulate the proposed
BLSML RNN model. In the simulations, the proposed model
basically performs binary classification where it classifies
each input test sample as “normal” or “attack” in the testing
phase. The evaluation metrics defined in the previous section,
i.e., accuracy, error rate, precision, false positive rate, true
positive rate, recall and F-1 score are used to evaluate the
model performance in detecting intrusions. In the experiment,
the simulated model was trained with a total of 5451 samples.
The training samples were deduced from
UNSW_NB15_training-set.csv file. The model was then
tested with 4206 test samples. These test samples were
extracted from UNSW_NB15_testing-set.csv file. Table II

shows the number of anomalies and normal samples used in
the test-set.

Table III summarizes the four performance values in the
confusion matrix: TP, FN, FP and FN. Table IV shows the
experimental outcomes. The proposed model is able to detect
attacks using the reduced UNSW_NB15 dataset, with more
than 95% accuracy with 100% precision. The model
generates a zero false alarm rates and a very low wrong
detection rate of 0.04% with an impressive recall and f1-score
value of 98%. The proposed model was capable of classifying
4205 samples of data in 2.19 seconds on an Intel Core i7
2.4GHz Central Processing Unit (CPU) without a Graphics
Processing Unit (GPU).

TABLE 7.2: NUMBER OF SAMPLES USED FOR
CLASSIFICATION

Class Sample size

Attack 4094

 Normal 112

TABLE 7.3: SIMULATED RESULTS OF THE FOUR PERFORMANCE
VALUES IN THE CONFUSION MATRIX

Parameter Number of Samples

TP 4027

TN 1

FP 10

FN 166

TABLE 7.4: REPORTED ACCURACY, PRECISION, RECALL AND F1-
SCORE OF THE PROPOSED CLASSIFIER INCLUDING

MISCALCULATION RATE AND FAR

Performance

Measure
Percentage

Accuracy 0.9571

Precision 1

Recall 0.96

f1 - score 0.98

Miscalculation rate 0.041

FAR 0

Detection Time (sec) 2.19

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new IDS model based
on the BLSTM RNN for anomaly intrusion detection. The
BLSTM RNN is able to perform deep learning effectively
and to learn detailed features from the dataset in the training
phase. This ability is important in learning characteristics in
network traffic involved in anomaly intrusions to distinguish
abnormal traffic from normal traffic.

We use Keras deep learning framework and Google
TensorFlow library to implement the proposed new model.
The implemented BLSTM was applied to a reduced dataset
of the UNSW-NB15 dataset, which was used in several
published works on IDS in IoT networks. The detection was
based on binary classification, thus identifying normal and
threat patterns. The developed model was able to achieve
high accuracy in detecting attack traffic in the used dataset.

For future developments, more experiments will be
performed to further analyse the proposed BLSTM RNN
model using large data sets from published data sets,
especially data sets containing dedicated IoT traffics. In
addition, the developed model will be improved to increase

106

its detection accuracy further and the trade-offs between
detection parameters.

VII. REFERENCES

M. U. Farooq, M. Waseem, A. Khairi, & S. Mazhar, “A critical analysis on

the security concerns of the internet of things (IoT)”, International
Journal of Computer Applications, 111, 2015.

Kevin Ashton, That Internet of things thing, It can be accessed at:
http://www.rfidjournal.com/articles/view?4986.

C. Yin, Y. Zhu, J. Fei, and X. He, “A Deep Learning Approach for Intrusion
Detection Using Recurrent Neural Networks,” vol. 5, 2017.

Y. LeCun, Y. Bengio, and G. Hinton, ``Deep learning,'' Nature, vol. 521, no.
7553, pp. 436_444, May 2015.

B. A. Tama and K. H. Rhee, “Attack Classification Analysis of IoT Network
via Deep Learning Approach,” Research Briefs on Information &
Communication Technology Evolution (ReBICTE), 2018. Doi:
10.22667/ReBiCTE.2017.11.15.015.

A. Javaid, Q. Niyaz,W. Sun, and M. Alam, ``A deep learning approach for
network intrusion detection system,'' presented at the 9th EAI Int. Conf.
Bio-inspired Inf. Commun. Technol. (BIONETICS), New York, NY,
USA, May 2016, pp. 21-26.

T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
``Deep learning approach for network intrusion detection in software
defined networking,'' in Proc. Int. Conf. Wireless Netw. Mobile
Commun. (WINCOM), Oct. 2016, pp. 258-263.

Fu et al., “An Intrusion Detection Scheme Based on Anomaly Mining in
Internet of Things”, In IEEE International Conference on Wireless,
Mobile & Multimedia Networks (ICWMMN 2011), Beijing, 2011, pp.
315-320. DOI: 10.1049/cp.2011.1014.

Bajaj and Arora, “Improving the Intrusion Detection using Discriminative
Machine Learning Approach and Improve the Time Complexity by
Data Mining Feature Selection Methods”, International Journal of
Computer Applications (0975-8887), Volume 76-No.1, August 2013.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–
2681, 1997.

Mike Schuster and Kuldip K Paliwal, “Bidirectional recurrent neural
networks,” Signal Processing, IEEE Transactions on, vol. 45, no. 11,
pp. 2673–2681, 1997.

Alex Graves and Jurgen Schmidhuber, “Framewise ¨ phoneme classification
with bidirectional LSTM and other neural network architectures,”
Neural Networks, vol. 18, no. 5, pp. 602–610, 2005.

Z. Cui, S. Member, R. Ke, S. Member, and Y. Wang, “Deep Stacked
Bidirectional and Unidirectional LSTM Recurrent Neural Network for
Network-wide Traffic Speed Prediction,” pp. 1–12, 2018.

K. PEFFERS, T. TUUNANEN, M. ROTHENBERGER, and S.
CHATTERJEE, A Design Science Research Methodology for
Information Systems Research, Journal of Management Information
Systems, vol. 24, no. 3, pp. 45-77, 2007.

T. Janarthanan and S. Zargari, "Feature selection in UNSW-NB15 and
KDDCUP'99 datasets," 2017 IEEE 26th International Symposium on
Industrial Electronics (ISIE), Edinburgh, 2017, pp. 1881-1886. doi:
10.1109/ISIE.2017.8001537

A. Javaid, Q. Niyaz,W. Sun, and M. Alam, ``A deep learning approach for
network intrusion detection system,'' presented at the 9th EAI Int. Conf.
Bio-inspired Inf. Commun. Technol. (BIONETICS), New York, NY,
USA, May 2016, pp. 21-26.

Z. Dewa and L. A. Maglaras, “Data Mining and Intrusion Detection
Systems,” vol. 7, no. 1, pp. 62–71, 2016.

M. Elkhodr, S. Shahrestani, and H. Cheung, “T HE INTERNET OF
THINGS : NEW INTEROPERABILITY , MANAGEMENT AND
SECURITY CHALLENGES,” vol. 8, no. 2, pp. 85–102, 2016.

M. Elkhodr, S. Shahrestani, and H. Cheung, “T HE INTERNET OF
THINGS : NEW INTEROPERABILITY , MANAGEMENT AND
SECURITY CHALLENGES,” vol. 8, no. 2, pp. 85–102, 2016.

Z. Cui, S. Member, R. Ke, S. Member, and Y. Wang, “Deep Stacked
Bidirectional and Unidirectional LSTM Recurrent Neural Network for
Network-wide Traffic Speed Prediction,” pp. 1–12, 2018.

T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux, and K. Takeda,
“BIDIRECTIONAL LSTM-HMM HYBRID SYSTEM FOR
POLYPHONIC SOUND EVENT DETECTION Mitsubishi Electric

Research Laboratories (MERL), 201 Broadway , Cambridge , MA 02139 ,
USA,” no. September, pp. 2–6, 2016.

B. A. Tama and K. H. Rhee, “Attack Classification Analysis of IoT Network
via Deep Learning Approach,” Research Briefs on Information &
Communication Technology Evolution (ReBICTE), 2018. Doi:
10.22667/ReBiCTE.2017.11.15.015.

P. Barham et al., “TensorFlow : A system for large-scale machine learning,”
pp. 265–284.

N. Buduma, TensorFlow for deep learning—implementing neural networks.
USA: O'Reilly Media, Inc., 2016.

V. Timčenko and S. Gajin, “Machine Learning based Network Anomaly
Detection for IoT environments.”

G. Li and Z. Yan, “Data Fusion for Network Intrusion Detection : A
Review,” 2018.

H. A. Abdul-ghani, D. Konstantas, and M. Mahyoub, “A Comprehensive IoT
Attacks Survey based on a Building-blocked Reference Model,” vol. 9,
no. 3, 2018.

M. Abomhara and G. M. Køien, “Cyber Security and the Internet of Things :
Vulnerabilities , Threats , Intruders,” vol. 4, pp. 65–88, 2015.

