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ABSTRACT 

An on-line identifier using Functional Link Network (FLN) and Pole-shift (PS) controller 

for power system stabilizer (PSS) application are presented in this thesis. To have the 

satisfactory performance of the PSS controller, over a wide range of operating conditions, it is 

desirable to adapt PSS parameters in real time. Artificial Neural Networks (ANNs) transform the 

inputs in a low-dimensional space to high-dimensional nonlinear hidden unit space and they have 

the ability to model the nonlinear characteristics of the power system. The ability of ANNs to 

learn makes them more suitable for use in adaptive control techniques.   

On-line identification obtains a mathematical model at each sampling period to track the 

dynamic behavior of the plant. The ANN identifier consisting of a Functional link Network 

(FLN) is used for identifying the model parameters. A FLN model eliminates the need of hidden 

layer while retaining the nonlinear mapping capability of the neural network by using enhanced 

inputs. This network may be conveniently used for function approximation with faster 

convergence rate and lesser computational load.  

The most commonly used Pole Assignment (PA) algorithm for adaptive control purposes 

assign the pole locations to fixed locations within the unit circle in the z-plane. It may not be 

optimum for different operating conditions. In this thesis, PS type of adaptive control algorithm 

is used. This algorithm, instead of assigning the closed-loop poles to fixed locations within the 

unit circle in the z-plane, this algorithm assumes that the pole characteristic polynomial of the 

closed-loop system has the same form as the pole characteristic of the open-loop system and 

shifts the open-loop poles radially towards the centre of the unit circle in the z-plane by a shifting 

factor  according to some rules. In this control algorithm, no coefficients need to be tuned 

manually, so manual parameter tuning (which is a drawback in conventional power system 

stabilizer) is minimized. The PS control algorithm uses the on-line updated ARMA parameters to 

calculate the new closed-loop poles of the system that are always inside the unit circle in the z-

plane. 

Simulation studies on a single-machine infinite bus and on a multi-machine power system 

for various operating condition changes, verify the effectiveness of the combined model of FLN 

identifier and PS control in damping the local and multi-mode oscillations occurring in the 

system. Simulation studies prove that the APSSs have significant benefits over conventional 

PSSs: performance improvement and no requirement for parameter tuning. 
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CHAPTER 1 

INTRODUCTION 

1.1 Power System Stability and Control 

Electric power systems are complex interconnected systems spread over vast geographical 

areas. The characteristics of the power systems vary with varying loads. They are also subject to 

many kinds of disturbances. Maintaining synchronism between the various parts of a power 

system becomes increasingly difficult, as the systems and interconnections between systems 

continue to grow. 

Power system stability is the ability of an electric power system, for a given initial operating 

condition, to regain a state of operating equilibrium after being subjected to a physical 

disturbance, with most system variables bounded so that practically the entire system remains 

intact[1]. 

The power system is a highly nonlinear system that operates in a constantly changing 

environment; loads, generator outputs and key operating parameters change continually. When 

subjected to a disturbance, the stability of the system depends on the initial operating condition 

as well as the nature of the disturbance. 

Power systems are subjected to a wide range of disturbances, small and large. Small 

disturbances in the form of load changes occur continually; the system must be able to adjust to 

the changing conditions and operate satisfactorily. A large disturbance may lead to structural 

changes due to the isolation of the faulted elements. 

For stability study, the torque developed by any particular means can be broken down into 

synchronizing torque that is in phase with machine rotor angle and damping torque that is in 

phase with machine rotor speed. Sufficient and necessary conditions for the system to be stable, 

is that both synchronizing and damping torques have to be positive. Positive synchronizing 

torque assures restoring of the rotor angle of the machine following an arbitrary small 

displacement of this angle. Positive damping is necessary to damp out any oscillation due to any 

perturbation[2]. 

The objective of all stability studies is to determine whether or not the rotors of the machines 

being disturbed return to constant speed operation. Various kinds of unstable characteristics and 
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complicated system dynamic and transient behavior occur because of the interaction between 

electrical and mechanical parts in an individual element[3, 4]. Stability studies are usually 

classified into three types depending upon the nature and order of magnitude of the disturbance.  

1) Steady-state Stability – When a power system is able to maintain synchronism after it is 

subjected to small and gradual change in load, it is said to be steady-state stable. Solution 

to the steady-state problem is to examine the stability of the system under incremental 

variations about an equilibrium point. 

2) Transient Stability – This determines if the system will remain in synchronism following 

major disturbances such as transmission system faults, sudden load changes, loss of 

generating units or line switching.  

3) Dynamic Stability – This refers to the long time response of the power system to small 

disturbances. In dynamic stability studies, the excitation system and turbine-governing 

system are represented along with synchronous machine models which provide for flux-

linkage variation in the machine air-gap. This differs from the transient stability because 

no major shock or impact is considered. The system will lose synchronism if the damping 

in the system is not strong enough. In contrast to transient stability, dynamic stability 

tends to be a property of the state of the system.  

The power system stability problem can be solved either in the time domain or in the 

frequency domain. Generally, dynamic stability is treated as an extension of transient stability 

and is thus solved in the time domain. 

1.2 Power System Damping Controllers 

Damping of power system oscillations plays an important role not only in increasing the 

transmission capability but also for stabilization of power system conditions after critical faults, 

particularly in weakly coupled systems. The main advantage of artificial damping is to make net 

damping positive.  

In conventional synchronous machines damping of speed oscillations is achieved by 

appropriate control of the amplitude of the rotor MMF by forcing the field current. It is 

established that machine damping due to forced changes in the amplitude of the rotor MMF is a 

function of [5]: 

 The magnitude of the component of field current in phase with the change in rotor speed. 
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 The power transfer, that is, the power angle or rotor angle, δ 

Several stabilizing signals have been tried from which the following signals have been found 

to have a significant effect in increasing the damping [6]:  

 Change in rotor speed 

 Synchronous machine electrical power  

 Accelerating power and/or 

 The power angle or rotor angle 

A good power system must have both steady-state and transient stability. If steady-state 

stability exists, damping may be required to ensure transient stability by eliminating excessive 

overshoot. Damping alone may not be sufficient for control of systems which easily lose steady-

state equilibrium. In this case, dynamic braking will help to maintain synchronism when 

generation and loads tend to diverge by slowing the accelerating group until steady-state 

equilibrium is restored [7]. The fast control of terminal voltage can help to limit the first swing 

but without adequate damping, stability would be lost on subsequent swings [8]. 

Flexible AC Transmission System (FACTS) are used at transmission level to provide 

damping of system oscillations. These devices are used to control power flow along transmission 

lines and improve power system stability. STATCOM is one of the parallel FACTS devices that 

are used for voltage regulation. It is also used to improve power system stability by injecting or 

absorbing reactive power [9].  

The Static Synchronous Series Compensator (SSSC) is an important FACTS device which 

can allow rapid and continuous changes in the transmission line impedance so that the active 

power flow along the compensated transmission line can be maintained within a specified range 

under a range of operating conditions. Studies show that SSSC can be very effective in 

maintaining the transient and oscillatory stability of a power system by providing extra damping 

to power flow oscillations [10]. 

FACTS are very fast acting type power electronic devices, but the major problem in applying 

to the power system is the cost associated with FACTS. A STATCOM, SSC or UPSC cost in the 

range of 10 to 50 million dollars. FACTS came into existence around early 1990s, but so far only 

one installation is present in the North American system. But, PSSs are inexpensive technologies 

and they have been used for number of years to provide additional supplementary controllers for 

generator excitation system and they cost a fraction of the cost of FACTS (15 to 20,000 dollars). 
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That makes the PSSs a more economical option for damping oscillations both at the generation 

level (local mode oscillations) and at the transmission line level (inter-area oscillations) and to 

bring back stability to the system. The PSS are explained in the next section.  

1.3 Power System Stabilizers 

To provide extra damping for the system and to improve the dynamic performance, a 

supplementary control signal in the excitation system and/or the governor system of a generating 

unit can be used [11]. The objective of power system stabilizers is to provide a supplementary 

feedback signal in the excitation system of a generator to produce a positive damping [12]. 

Power system stabilizer (PSS) adds damping to the generator rotor oscillations by controlling its 

excitation using auxiliary stabilizing signals. These oscillations of concern typically occur in the 

frequency range of 0.2 to 2.0 Hz. Inadequate damping of the oscillations may limit the ability to 

transmit power. To provide damping, the stabilizer must produce a component of electrical 

torque in phase with the rotor speed deviations.  

In multi-machine power systems, improving the damping of one generator by using PSS may 

be insufficient to improve the damping of the other generators. Post fault condition may differ 

from the pre fault conditions and poorly damped swings may result after severe fault. So, adding 

PSS to all generators is necessary for damping of both local and inter-area oscillations [13].   

The transfer function of the stabilizer must compensate for the gain and phase characteristics 

of the excitation system, the generator and the power system, which collectively determine the 

transfer function from the stabilizer output to the component of electrical torque which can be 

modulated via excitation control. This transfer function is strongly influenced by voltage 

regulator gain, generator power level and AC system strength. 

1.4 Conventional Power System Stabilizers 

CPSS are linear controllers with fixed parameters. Normally, the design of CPSSs is based on 

a linearized machine model corresponding to a nominal operating condition. They provide good 

dynamic performance for that specific operation condition, but often do not provide satisfactory 

results over a wide range of operating conditions and system parameters.  
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CPSS uses a lead/lag compensation network to compensate for the phase shift caused by the 

low frequency oscillation of the system. By appropriately tuning the parameters of a lead/lag 

compensation network, it is possible to make a system have desired damping characteristics. 

Since power systems are nonlinear systems, their configuration and parameters change with 

time. The linearized system models used to design the CPSSs are valid only at the operating 

point that is used to linearize the system. As the fixed parameter controller, CPSS cannot provide 

optimal performance under wide operating conditions. 

A control that “adapts” to changing system characteristics will have the ability to improve 

power system performance. The idea has led to the research and development of adaptive power 

system stabilizers (APSSs). In recent years, new approaches have been proposed for PSS design, 

such as fuzzy logic control, adaptive control and neuro-control [14]. Many of these approaches, 

however, lack one or more of the three basic and important features that a PSS should have, i.e. 

simplicity of structure, low computation time and adaptability. Besides, multi-modal nature of 

oscillations and mutual interactions among generators should be considered in the PSS design.  

1.5 Adaptive Power System Stabilizers 

Controllers based on adaptive control techniques cope with changing characteristics of the 

controlled plant by adjusting their parameters online [15]. Whenever an adaptive controller 

detects changes in system operating conditions, it responds by determining a new set of control 

parameters. 

The adaptive control theory provides a possible way to solve many of the problems 

associated with the CPSS. Two distinct approaches – direct adaptive control and indirect 

adaptive control can be used to control a plant adaptively [16]. 

1. Direct Adaptive Control – In this method, the output of the reference model is compared 

with the adjustable system. The value of mismatch between the controlled coordinates (yp) of the 

system and the model (yr) is used by the adaptation mechanism to perform parameter adjustment.  

                    

where  is called the mismatch error. This kind of adaptive control is often referred to as the 

model reference adaptive control (Fig 1.1).  

The performance of this algorithm depends on the choice of a suitable reference model and the 

derivation of an appropriate learning mechanism. 
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2. Indirect Adaptive Control – In this type of control, the controller parameters are adjusted 

as a function of the parameters of the dynamic model of the controlled plant obtained online. 

When the characteristics of the actual plant change, the parameters of the model are modified by 

an identification algorithm that tracks the actual plant, and the controller parameters change 

correspondingly. This kind of adaptive control is often referred to as the self-tuning adaptive 

control (Fig 1.2). 

 

 

   Fig 1.1 Model reference adaptive control 

One of the most effective indirect adaptive control techniques is the Self tuning adaptive 

control. In self tuning adaptive control, the controller parameters are adjusted as a function of the 

parameters of the dynamic model of the controlled plant obtained. An identification algorithm 

that tracks the actual plant modifies the controller parameters, when the characteristics of the 

actual plant change. Because of the flexibility, auto-tuning properties and ease of implementation 

using PLCs, self-tuning adaptive technique have gained wide spread acceptability. The structure 

of the self-tuning APSS is shown in Fig 1.2. 
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Fig 1.2 Self-tuning adaptive control 

The self-tuning adaptive power system stabilizer involves two parts: an on-line parameter 

identifier and a controller. At each sampling period, a mathematical model is obtained by an on-

line identification method to track the dynamic behavior of the plant. The control strategy 

calculates the control signal based on the on-line identified parameters. 

1.5.1 On-line Parameter Identifier 

This part is the essence of the APSS which gives the PSS the ability to adapt. The choice of 

the identification model (i.e. its parameterization) and the method of adjusting its parameters 

based on the identification error constitute the two principal parts of the identification problem 

[17]. Input and output of the generating unit are sampled at each sampling instant, and an 

updated mathematical model is obtained by some on-line identification method to represent the 

dynamic behavior of the generating unit at that instant of time. For a time varying stochastic 

system, such as a power system, its dynamic behavior varies from time to time. It is expected 

that the mathematical model obtained each sampling period can track changes in the controlled 

system with the on-line identifier. The extent to which the identified model fits the dynamics of 

the actual generating unit determines the failure or success of the APSS.  

For the self-tuning APSS development, the recursive least squares (RLS) method is 

commonly used. RLS method is one of the simplest of the on-line identification methods; it 

requires less computation time and has reasonably good numerical stability and fast convergence 
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property when the system conditions do not change drastically. But the operating condition may 

change drastically very quickly; often the RLS identification algorithm will not be able to track 

the changes. For handling the time-varying parameters of the power system, nonlinear type of 

identification procedures are desirable. Nonlinear algorithms have excellent approximation 

properties, provide integrity and good fault tolerance behavior and they produce impressive 

results for poorly defined systems.  

A FLN identifier is proposed in this thesis. In a functional-link network, functional expansion 

of the input increases the dimension of the input pattern. Thus, identification of complex 

nonlinear dynamic systems and the creation of nonlinear decision boundaries in the 

multidimensional input space become easier. Also, FLN identification has the advantages of 

clear structure, simple training principle, analytic mathematical formula etc. A forgetting factor 

is used to improve the tracking ability of the on-line identifier to the changing power system.  

A third order auto-regressive moving average (ARMA) model is used to describe the power 

system. ARMA model is a linear model. A proper set of parameters of the model corresponds to 

a certain operating condition of the power plant. The ARMA model has to be updated on-line to 

track the change of the operating condition. The ARMA model acts as a link between identifier 

and controller. The PS Control uses the ARMA parameters obtained on-line from the 

linearization of the identifier to compute the control signal. 

1.5.2 Controller 

Based on an identified model of the system, the adaptive control is computed by an algorithm 

which shifts the closed-loop poles of the system to some optimal locations inside the unit circle 

in the z-domain to minimize a given performance criterion. With the self optimization property, 

outside intervention in the controller design procedure is minimized, thus simplifying the tuning 

procedure during commissioning.  

Successful application of the APSS can be achieved with the on-line identifier and the 

control part working together. 

1.5.3 Control Strategy  

Minimum variance (MV) control algorithms optimize the system output response directly. 

They are fast, but are not easily susceptible to a stability analysis of the closed-loop system.  

Pole Assignment (PA) strategy concentrates on the closed-loop stability rather than the time 

domain responses. In this algorithm, according to the desired response and stability margin of the 



9 

 

controlled system, the closed-loop poles are assigned to specific locations within the unit circle 

in the z-domain. The disadvantage of this control technique is that it is difficult to select the 

closed loop poles that meet both stability and time domain response criteria. 

Pole Shift control algorithm takes the advantages of both MV and PA algorithm. In PS-

Control algorithm, the pole characteristic polynomial of the closed-loop system is assumed to 

have the same form as the pole characteristic polynomial of the open-loop system, and in closed-

loop the open-loop poles are shifted radially towards the center of the unit circle in the z-plane 

by a shifting factor . This algorithm self-searches the optimal value of the pole-shift factor  

according to the performance index minimization used in the MV control principle. The closed 

loop poles are restricted to be within the unit circle in the z-domain during the optimization. 

1.6 Objective 

The primary objective of the thesis is to develop a combined functional link neural network 

based identifier and pole shift controller for APSS application. The objective of this work 

includes the following aspects: 

1. ANNs are capable of complex nonlinear system identification by tuning neuron‟s 

weights. Functional link network (FLN) is used for system identification in this thesis. 

FLN is a single layer structure in which nonlinearity is introduced by enhancing the input 

pattern with functional expansion. The mapping between the input nodes and 

enhancement nodes in the FLN is fixed. So, only those weights that contribute to the 

output are updated using the learning algorithm of the FLN. This significantly reduces the 

amount of learning in the FLN.  

2. A third-order discrete auto-regressive moving average (ARMA) model is used to describe 

the power system. At every sampling instant, the input-output mapping of the ANN is 

linearized to get the ARMA parameters. The Pole-Shift (PS) controller uses the on-line 

updated regression coefficients to calculate the closed-loop poles of the system. To 

achieve the desired performance, the unstable poles are moved inside the unit circle in the 

z-plane and the control is calculated. 

3. Simulation studies on a single machine and multi-machine power system to verify the 

effectiveness of the FLN identifier and PS control are performed. 
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1.7 Thesis Organization 

The contents of this thesis are arranged as follows: 

 Chapter 1 contains an overview of the objective and motivation of the research. 

 Chapter 2 discusses different neural network architectures and the advantages of 

Functional link neural networks. The reason for selecting FLN for identification is also 

given in Chapter 2. 

 Chapter 3 presents the basic concepts of the pole shifting control strategy. Details of the 

control algorithm and its advantages over the existing methods are given in this Chapter. 

A simulation example to demonstrate the proposed control algorithm applied to a linear 

discrete system is also given in this Chapter.  

 Chapter 4 presents simulation studies on a single-machine and a multi-machine power 

system using FLN-Identifier and PS control. A comparison between CPSS and APSS 

with FLN Identifier and PS control is also given in this chapter. 

 Conclusion and further research in the area of ANN based APSSs that can be explored 

are summarized in Chapter 5.  
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CHAPTER 2 

NEURAL NETWORKS AND SYSTEM IDENTIFICATION 

2.1 Introduction  

Artificial Neural Networks (ANNs) transform the inputs in a low-dimensional space to high-

dimensional nonlinear hidden unit space and hence are more likely to model the nonlinear 

characteristics of the power system. Many different ANNs and neural network based control 

architectures have been developed since eighties. ANNs such as Multi-layer Perceptrons 

(MLPs), Radial Basis Functions (RBFs) and B-Splines have been developed.  

The nonlinear functional mapping properties of neural networks are central to their use in 

identification and control. Different type of network architectures, their advantages and 

disadvantages and the rationale for using Functional Link Networks (FLNs) for system 

identification, enhanced inputs that are used in the FLN, a brief description of Autoregressive 

Moving Average (ARMA) model and Nonlinear Autoregressive Moving Average with 

Exogenous Inputs (NARMAX) methodology and an overview of obtaining ARMA parameters 

from the FLN network using Taylor series expansion are presented in this chapter. 

2.2 Artificial Neural Networks  

Artificial Neural networks (ANNs) are a powerful tool for many complex applications 

including functional approximation, nonlinear system identification and control, pattern 

recognition, classification and optimization because of their nonlinear signal processing and 

learning capability [18]. The ANN‟s are capable of generating complex mapping between the 

input and the output space and form arbitrarily complex nonlinear decision boundaries. 

Neural networks have the capability of interpolation over the entire range for which they 

have been trained. They provide the capability of adaptability not possessed by fixed parameter 

devices designed and tuned for one operating condition. ANN requires efficient training 

algorithms and sufficient accurate data for training [19]. 

     A neural network consists of many simple computational elements or nodes arranged in layers 

and operating in parallel. Strength of connection between the nodes is defined by the weights of 

the network. The weights are adapted during use to yield good performance. Network 

architectures, node characteristics and learning rules define the neural networks [20]. Advantages 
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of neural network include their capability to capture nonlinear relationships between input-output 

patterns, high parallelism, learning ability and adaptability. 

2.3 System Identification Using ANN 

System identification is the experimental approach to the modeling of a process or a plant of 

unknown parameters. It involves experimental planning, the selection of a model structure, 

parameter estimation and model validation. The procedure of identification, in practice, is 

iterative in nature that we have to go back and forth between these steps until a satisfactory 

model is built.  

Most of the ANN-based system identification techniques are based on multilayer feed-

forward networks such as multilayer perceptron (MLP) trained with backpropagation (BP). 

These networks are robust and effective in modeling and control of complex dynamic plants 

[21].  

MLP is highly nonlinear in parameters; the mean square error is very complicated. It has a 

large number of global minima that may lie at infinity for some problems. The error surfaces also 

generally contain many local minima and may have flat areas where the gradients almost vanish. 

When the weights fall into these flat regions, learning becomes extremely slow.  

Recurrent neural networks (RNNs) are neural networks with one or more feedback loops. 

The feedback can be local or global (see Section 2.4.2). They can be used as associative 

memories and also as input-output mapping networks. RNN has atleast one feedback loop when 

compared to feed-forward neural network. RNN allows signal to flow in both forward and 

backward directions, giving the network a dynamic memory useful to mimic dynamic systems. 

But, training these networks becomes difficult due to the feedback connections.  

Radial Basis Function (RBF) network is a two layer processing structure. The hidden layer 

consists of an array of nodes. Each node contains a parameter vector called a centre. The node 

calculates the Euclidean distance between the center and the network input vector, and passes the 

result through a nonlinear function. The RBF networks can learn functions with local variations 

and discontinuities effectively and also possess universal approximation capability. In these 

networks, choosing an appropriate set of RBF centers for effective learning still remains a 

problem.  

Nonlinear learning can be avoided by initially performing some nonlinear functional 

transform or expansion of the network inputs and combine the resulting terms linearly. The FLN 
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structure has good nonlinear approximation ability and learning of the weights is a linear 

problem. FLN is different from RBF because the centers and widths are free parameters in RBF. 

Only when the centers and widths are all fixed can a RBF network be regarded as a FLN. 

FLN is truly linear in the parameters. Approximation theory not only states that a sufficient 

FLN with the correct weights can accurately implement an arbitrary continuous function but also 

ensures that these parameters can always be learnt in the least squares sense. This second 

property is an advantage of using the extended model set concept or the FLN to model nonlinear 

systems [22]. The global feedback in FLN model has the potential of reducing the memory 

requirement significantly. So FLN has been suggested in this thesis for system identification. 

FLNN architecture uses a single layer feed forward neural network and uses non-linear 

functions to expand the input vector. The main advantages of FLNN are: 

1. Low computational cost, while maintaining the approximation performance of the 

MLP network. 

2. FLNN has a simpler architecture since they do not have hidden layer and is 

computationally efficient. 

3. FLNNs have faster convergence rate than MLPs. 

Functional Link Neural Network (FLNN) has been suggested in this thesis to bridge the gap 

between the single layer neural networks (linear networks) and the complex,  computationally 

intensive multi layer neural networks. MLPs offer input-output mapping only and linearization 

of MLP is not possible. The major difference between MLP and FLNN is that FLNN has only 

input and output layers and the hidden layers are replaced by the nonlinear mappings. The task 

performed by the hidden layers in MLP is performed by functional expansion in FLNN. An FLN 

is much simpler than a MLP, since it does not require complete weight updates like the MLP 

network.  

Most APSSs are model-based. The widely used models in APSSs are auto regression moving 

average (ARMA) and nonlinear auto regression moving average with exogenous inputs 

(NARMAX) models. Different ANN models like Nonlinear Autoregressive eXogenous Inputs 

(NARX) model, Input-Output model, ARMA and NARMAX models are discussed in detail from 

Section 2.3.1 to Section 2.3.4. 
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2.3.1 Nonlinear Autoregressive eXogenous Inputs (NARX) Model 

An important class of discrete-time nonlinear systems is the Nonlinear Autoregressive with 

eXogenous Inputs (NARX) model. The following equation represents a NARX model [23]: 

                                                                          (2.1) 

where u(t) and y(t) represent input and output of the network at time t, nu and ny are the input and 

output order, and function f is a nonlinear function. When the function f can be approximated by 

a multilayer perceptron, the resulting system is called a NARX network. 

2.3.2 Input-Output model 

Suppose the unknown model is only accessible through its output. Let the system be a single 

input, single output kind. Let y(n) denote the output of the system due to the input u(n) for 

varying discrete-time n. Then, the identification model takes the form: 

                                                    (2.2) 

where q is the order of the unknown system. Eqn. (2.2) is also a representation of the NARX 

model. At time n+1, the q past values of the output are all available. The model output        

represents an estimate of the actual output       . The estimate        is subtracted from 

       to produce the error signal 

                                   (2.3) 

where        plays the role of desired response. The error        is used to adjust the 

synaptic weights of the neural network so as to minimize the error in some statistical sense. 

NARX solution for the system identification problem is shown in Fig 2.1. The identification 

model shown in Fig 2.1 is of a series-parallel form because the actual output of the system is fed 

back to the input of the model. 
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Fig 2.1 NARX solution for the system identification 

2.3.3 Autoregressive Moving Average (ARMA) model 

ARMA model is a combination of an autoregressive (AR) model and a moving average 

(MA) model [24]. The order of the ARMA model in discrete time t is described by two integers 

(g, h), that are the orders of the AR and MA parts respectively. The general expression for an 

ARMA process y(t) is: 

                    
 
                     

              (2.4) 

Where 

g is the order of the AR-part of the ARMA model 

           are the coefficients of the AR part of the model 

h is the order of the MA part of the ARMA model 

           are the coefficients of the MA part of the model 

x(t) are elements of the white noise 

2.3.3.1 Auto Regressive (AR) Model 

Let                   is stationary time series with zero mean. The generalized form 

of AR model can be described as follows 

                                (2.5) 
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Where             
        

             
     .     denotes the backward shift 

operator,    is stationary white noise with zero mean, r is the order of AR model and      

       are parameters of the AR model. And AR model can also be described as follows: 

                                          (2.6) 

2.3.3.2 Moving Average (MA) Model 

Let                   is stationary time series with zero mean. The generalized form 

of AR model can be described as follows 

                               (2.7) 

Where             
        

             
     . q is the order of MA model and B 

and    are the same as AR model and             are the parameters of the MA model. MA 

model can also be described as follows: 

                                         (2.8) 

2.3.3.3 ARMA model 

Let                   is stationary time series with zero mean. The generalized form 

of ARMA model can be described as follows 

                                   (2.9) 

Where             
        

             
      and             

   

     
             

     . r, q are the orders of the ARMA model.             and 

            are parameters of the ARMA model. When n=0, ARMA(m,n) model is AR(m) 

model. When m=0, ARMA(m,n) model is MA(n) model. The ARMA model can also be 

described as follows 

                                                       (2.10) 

2.3.4 Nonlinear Autoregressive Moving Average (NARMAX) model 

NARMAX models are an extension of ARMA models where the sampled response of a 

system is modeled as the weighted sum of previous input and response values plus nonlinear 

combinations of these input and response samples [25].  

The model widely used in APSSs is an ARMA model. ARMA model is a linear model. A 

proper set of parameters of the model corresponds to a certain operating condition of the power 
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plant. This model has to be updated online to track the change of the operating condition. The 

identifier used in this thesis is a third order ARMA model. 

Different types of neural network models namely Multilayer Perceptron (MLP), Recurrent 

Neural Networks (RNN), Radial Basis Function Network (RBF) and Functional Link Networks 

(FLN) are described in the next section.  

2.4 Network Architectures and Learning Algorithm 

ANNs have a number of advantages [26]: 

 An ANN has the capability of synthesizing complex and transparent mappings which are 

very difficult to be expressed in mathematical form. 

 Once an ANN is trained, it can provide the ability to solve the mapping problems much 

faster than conventional methods because of the parallel mechanism. 

 ANNs are robust. When the input data is not complete or has some noise, the ANN can 

still get the correct results. 

 ANNs can adjust to the new environment because they can be trained on-line by its error 

performance. 

 They require only less memory. 

2.4.1 Multi-layered Perceptron (MLP) 

A very popular model of ANN is the multi-layer perceptron shown in Fig. 2.2. This type of 

ANN has an input layer, an output layer and one or more hidden layers. The layers are 

interconnected by the pretrained weights. The input layer receives the input vector from the 

outside as the input of the ANN, and directly passes the signals to the nodes in the next layer. 

Each hidden layer and output layer consists of a number of elements which are called neurons. 

Each neuron gets the input from the lower layer. Neurons in hidden layers send their outputs to 

the neurons in the upper layer through weights, and the outputs of the neurons in output layer are 

the outputs of the ANN. 

Two kinds of signals are identified in this network:  

1. Function Signals: A function signal is an input signal that comes in at the input end of the 

network, propagates forward through the network, and emerges at the output end of the 

network as an output signal. 

2. Error Signals: An error signal originates at an output neuron of the network, and 

propagates backward (layer by layer) through the network. 
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Fig 2.2 Multi- layer perceptron  

The output neurons constitute the output layers of the network. The first hidden layer is fed 

from the input layer made up of sensory units (source nodes); the resulting outputs of the first 

hidden layer are in turn applied to the next hidden layer. 

Consider an ith neuron in the kth layer. The combining, vi
k
, and activation, xi

k
, terms for the 

neuron are: 

         
   

         
     

                             (2.11) 

  
          

                                                                                                   (2.12) 

where    
  and   

  are the connection weights and threshold, respectively, and F(.) is the 

activation function. The activation function of the hidden nodes is chosen as the following tan 

hyperbolic function 

        
              

              
                                                          (2.13) 

The most widely used algorithm used for training a MLP is the back-propagation algorithm. 

Back-propagation (BP) algorithm is explained in the Appendix A. 

Despite the universal approximation capability of MLP networks, their use is limited because 

they cannot be represented in the form of a function. RBF and FLNs overcome this disadvantage 

and will be discussed later in Sections 2.4.3.1 and 2.4.3.2.  
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2.4.2 Recurrent Neural Networks 

RNNs are another type of NN used for system identification. Recurrent network architectures 

incorporate a static multilayer perceptron or parts thereof and they exploit the nonlinear mapping 

capability of the multilayer perceptron. Recurrent neural network is shown in Fig 2.3. Many 

recurrent networks can be represented by the state-space model, where the state is defined by the 

output of the hidden layer fed back to the input layer via a set of unit delays. Following are the 

properties of the RNN:  A recurrent network is said to be controllable if an initial state is 

steerable to any desired state within a finite number of time steps. The recurrent network is said 

to be observable if the state of the network can be determined from a finite set of input/output 

measurements.  

There are two modes of training a static multilayer perceptron: batch mode and sequential 

mode. The sensitivity of the network is computed for the entire training set before adjusting the 

free parameters of the network in the batch mode training. On the other hand, parameter 

adjustments are made after the presentation of each pattern in the training set, in the sequential 

mode of training. There are two modes of training a recurrent network: 

a. Epochwise training – For a given epoch, the recurrent network starts running from some 

initial state until it reaches a new state, at which point the training is stopped and the 

network is reset to an initial state for the next epoch. The initial state of the next epoch 

need not be the same as the previous initial state. But, the initial state of the new epoch 

has to be different from the state that was reached by the network at the end of the 

previous epoch. 

b. Continuous training – This method of training is suitable for situations where there are no 

reset states available and/or on-line training is required. During continuous training, the 

network learns while signal processing is being performed by the network. The learning 

process never stops.  

Back-propagation through time and real-time recurrent learning algorithm are two different 

training algorithms for the recurrent networks. Both the algorithms are based on the method 

of gradient descent, whereby the instantaneous value of a cost function is minimized with 

respect to the synaptic weights of the network. Both the algorithms are simple to implement 

but converge slowly. The back-propagation algorithm is a well established algorithm. The 

details of this algorithm are given in Appendix A.  
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Fig 2.3 Recurrent Neural Network using Local Feedback Loops 

2.4.3 Higher Order Neural Networks 

Conventional ANN models are incapable of handling discontinuities in the input training 

data. Artificial neural networks act as “black boxes”, and thus are unable to provide explanations 

for their behavior. Higher order neural networks (HONNs) on the other hand, provide 

information concerning the basis of the data and hence can be considered as „open box‟ models. 

Furthermore, HONN models are also capable of simulating higher frequency and higher order 

nonlinear data, compared with those derived from ANN-based models. This is the motivation for 

developing the identification algorithm with a higher order network in this thesis. 

HONNs expand the capabilities of standard feed-forward neural networks by including input 

nodes that provide the network with a more complete understanding of the input patterns and 

their relations. Basically, the inputs are transformed so that the network does not have to learn 

some basic mathematical functions. The inclusion of these functions enhances the network‟s 

understanding of a given problem and has been shown to accelerate training on some 

applications [27].   

A major advantage of HONNs is that only one layer of trainable weights is needed to achieve 

nonlinear separability, unlike the typical MLP or feed-forward networks. They are simple in their 

architecture and require fewer numbers of weights to learn the underlying equation when 

compared to ordinary feed forward networks, in order to deliver the same input-output mapping. 

Consequently, they can learn faster. Also, higher order terms in HONNs can increase the 

information capacity of neural networks. Larger capacity means that the same function or 

problem can be solved by network that has fewer units.  
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The simpler characteristic of HONNs, having a single layer of trainable weights, can offer a 

large saving of hardware in the implementation. HONNs have certain unique characteristics; 

stronger approximation property, faster convergence rate, greater storage capacity and higher 

fault tolerance than lower order neural networks. The networks have been considered as good 

candidates, due to their design flexibility for given geometric transforms, robustness to noisy 

inputs, inherent fast training ability and nonlinearly separable. Some of the important HONNs 

are discussed in Section 2.4.3.1 and 2.4.3.2.  

2.4.3.1 Radial Basis Function Networks 

The construction of a radial-basis function (RBF) network, involves three layers with entirely 

different roles. The input layer is made up of source nodes that connect the network to its 

environment. The second layer, the hidden layer in the network, applies a nonlinear 

transformation from the input space to the hidden space; in most applications the hidden space is 

of high dimensionality. The output layer is linear, supplying the response of the network to the 

activation pattern applied to the input layer. 

The input layer does not process the information; it only distributes the input variables to the 

hidden layer. Each neuron on the hidden layer represents a radial function and the number of 

radial functions depends on the problem to be solved. A radial basis function network is shown 

in Fig 2.4. 

The mostly used radial basis function is the symmetrical Gaussian function. They are 

characterized by two parameters: the centroid represented by cj and the width represented by j. 

The output from the j
th

 Gaussian kernel for an input vector xi can be estimated by the following 

equation: 

            
       

 

  
  

                      (2.14) 

Where                      is the d-dimensional input vector, cj is the centroid vector, and j 

is the width of the radius, which determines the portion of the input space, where the j
th

 kernel 

will have a non significant zero response. 

MLP and RBF networks differ from each other in several important aspects: 

1. RBF network has a single hidden layer, but MLPs may have one or more hidden layers. 

2. The hidden layer of RBF network is nonlinear, whereas the output layer is linear. But, the 

hidden and output layers of MLP are usually all nonlinear. 
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3. MLPs construct global approximations to nonlinear input-output mapping. The RBF 

networks using exponentially decaying localized nonlinearities (e.g Gaussian functions) 

construct local approximations to nonlinear input-output mappings. For the 

approximation of a nonlinear input-output mapping, MLP may require a smaller number 

of parameters than the RBF network for the same degree of accuracy. 

 

Fig 2.4 Radial-basis function network 

RBF networks can be used to identify the time-varying parameters of the power system. But, 

it has been proven that the RBF network becomes unnecessarily large by arbitrarily choosing 

some data points as centers and trying to reduce the mean squared error.  

2.4.3.2 Functional Link Networks 

A multilayer perceptron with a suitable architecture is capable of approximating virtually any 

function of interest. But, finding such a network is not easy [28]. Problems such as local minima 

trapping, saturation, weight interference, initial weight dependence and overfitting, make neural 

network training difficult. Moreover, most neural learning methods, being based on gradient 

descent, cannot search the non-differentiable landscape of multilayer architecture. The main idea 

behind a FLN is the use of links for effecting information processing transformations. The 

essential idea behind FLN is the generation of an enhanced pattern to be used in place of the 

actual pattern [29]. 
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An easy way to avoid the architectural problems of MLPs is by removing the hidden layers. 

The removing process can be executed without giving up nonlinearity, provided that the input 

layer is endowed with additional higher order units, also known as sigma-pi units. This is the 

idea behind higher order networks (HONs). FLNs are basically a subset of HONs [30].  FLNs are 

HONs without hidden units. Despite their linear nature, FLNs can capture non-linear input-

output relationships, provided that they are fed with an adequate set of polynomial inputs. The 

general architecture of the FLN is shown in Fig 2.5. 

In contrast to the linear weighting of the input pattern produced by the linear links of artificial 

neural network, the functional link acts on an element of a pattern or on the entire pattern itself 

by generating a set of linearly independent functions, then evaluating these functions with the 

pattern as an argument. Thus class separability is possible in the enhanced feature space. 

FLNs are simple in their architectures and require less number of weights to learn the 

underlying approximating polynomials. This potentially reduces the number of required training 

parameters. As a result, they can learn faster, since each iteration of the training procedure takes 

less time. This makes them suitable for complex problem solving where the ability to retrain or 

adapt to new data in real time is critical.   

 

 

Fig 2.5 Schematic of functional-link network 

Functional links not only increases learning rates, but also simplifies the learning algorithms. 

There are two functional link network models, the functional expansion model and the tensor (or 
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outerproduct) model. In the functional expansion model, the functional link acts on each node 

singly. In the tensor or outerproduct model each component of the input pattern multiplies the 

entire input pattern vector. Rapid quadratic optimization in the learning of weights and 

simplification in hardware and computational procedures are the significant advantages of using 

a flat net architecture [31]. 

As FLNs do not have any hidden layer; the architecture becomes simple. Thus, nonlinear 

modeling can be accomplished, by means of a linear learning rule, such as delta rule. As FLNs 

involve linear mapping in polynomial space, they can easily map linear and nonlinear terms [40]. 

FLN may be conveniently used for function approximation and pattern classification with faster 

convergence rate and lesser computational load than an MLP structure. 

In the functional expansion model the functional link acts on each node singly. It might 

induce the same additional functionalities for each node in the input pattern. The tensor or outer-

product model is simply a special case of the functional-expansion model. In this model, each 

component of the input pattern multiplies the entire input pattern vector. The functional link in 

this case generates an entire vector from each of the individual components. 

In the tensor model, the effect of the nonlinear functional transform is to change the 

representation of the input pattern, so that instead of being described in terms of a set of 

components, it is described as  

                                 (2.15) 

Or as                              and so on.  

Once the structure of FLN or the set of model bases is given, the RLS algorithm provides an 

efficient means for real-time adaptation of the network weights. 

2.5 Problem Formulation 

Consider a dynamic system which is governed by the following nonlinear relationship: 

                                                       (2.16) 

where  

                                             (2.17) 

                      
                 (2.18) 

                                       (2.19) 
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are the system output, input and noise vectors respectively; ny and nu are the corresponding lags 

in the output and input; and f(.) is some vector-valued nonlinear function. The aim is to realize or 

to approximate the underlying dynamics f(.) using neural networks. Introduce the network input 

vector 

                       
                

 
        (2.20) 

with a dimension  

                               (2.21) 

The modeling and identification task can then be formulated using the neural network input-

output response 

                                 (2.22) 

as the one-step-ahead predictor for y(t). 

The system representation (2.2) is a simplified case of the general nonlinear system known as 

the NARMAX model: 

                                                               

                                                                                                                           (2.23) 

2.6 Functional Link Network Identifier 

Learning algorithm for the FLN identifier, enhanced inputs to the identifier and the A and B 

parameters are presented in this section. 

System identification plays a very important role in the success of the APSS and has received 

much attention in its development. The tracking property of the identification methods is very 

important for the APSS to achieve desired dynamic performance. When the power system is 

subject to a disturbance or its operating point changes, the APSS must sense this change quickly 

and smoothly adjust the identified model to represent the new state of the power system [32]. 

The FLN model shown in Fig 2.6 is used to identify the ARMA parmeters. Performing nonlinear 

functional transform or expansion of the network inputs and combining the resulting terms 

linearly will avoid nonlinear learning.  

The value of the new basis function hj(x) depends only on the input x and a given functional 

expansion contains no other free parameters. Once the structure of the FLN is given, the RLS 

algorithm provides an efficient means for real-time adaptation of the network weights. 
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Fig 2.6 FLN Identifier 

2.6.1 Enhanced Inputs to the FLN Identifier 

                                     

 
 
 
 
 
 
 
 
 
 

  
  
  

 

  
  
  

       
       
       

        
 
 
 
 
 
 
 
 
 

                                             (2.24) 

Where                                                         

2.6.2 Learning Algorithm for FLN Identifier 

Nonlinear learning rules have the disadvantage of unacceptably slow learning rate and local 

minima problems. To avoid nonlinear learning, nonlinear functional transform or expansion of 

the network inputs can be performed initially and then the resulting terms can be combined 

linearly. Once the structure of the FLN or the set of model bases is given, RLS algorithm 

provides an efficient means for real-time adaptation of the network weights. 

  The weight vector, , can be calculated by the following RLS equations: 

     
         

                  
                  (2.25) 

       
 

    
                                 (2.26) 

                                             (2.27) 
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Where (t) is the forgetting factor, P(t) is the covariance matrix and G(t) is the modifying gain 

vector. 

The forgetting factor  (t) can be chosen as a constant or a variable. The forgetting factor is 

usually computed according to the rule 

                                     (2.28) 

The identification error can be defined as: 

                                    (2.29) 

The accuracy of the identified model and the change in the environmental conditions are 

indicated by the absolute value of e (t). It can be used as a criterion to determine the value of the 

forgetting factor (t): 

                            
     

  
             (2.30) 

Where 0 is a constant. 0 is different for different systems under investigation. For smooth 

parameter identification, a minimum forgetting factor min must be specified. A maximum 

forgetting factor max can also be specified to keep the identifier more sensitive to the system 

changes under steady state operation. 

                                 (2.31) 

 

2.6.3 Linearization of FLN-Identifier 

FLN network is trained on-line every sampling period making it an adaptive approach. The 

on-line updating of weights allows the APSS to track the operating conditions of the power 

system and any changes in the ARMA parameters. 

Linear parameters of the standard ARMA model are obtained by linearizing the output of the 

FLN                       using Taylor series expansion and retaining the first-order 

terms and ignoring the higher order terms at each sampling instant: 

   
  

       
            

  

       
                        (2.32) 

The partial derivative terms,  
  

   
   of Eqn. 5.14, determine the system parameters  which 

can be used in computing the control signal.  

        
  

   
                       (2.33) 
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                        (2.34) 

        
  

   
                      (2.35) 

        
  

   
                       (2.36) 

        
  

   
                         (2.37) 

        
  

   
                        (2.38) 

Typical curves for the on-line variation of the ARMA parameters during a three phase to 

ground fault applied at 1s at the middle of one transmission line are shown in Fig 2.7. The fault 

is cleared 50ms later by opening the breakers at both ends. The initial operating conditions are 

0.5 pu active power delivered to the bus at 0.93 pf lag. 

 

 

Fig 2.7 A & B parameters 
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2.7 Summary 

System identification using artificial neural networks is explained in Section 2.3. Advantages 

and disadvantages of using MLP, RNN, RBF and FLN for system identification are also 

presented. Widely used models in the APSS are discussed from Section 2.3.1 to 2.3.3. 

Section 2.4 presented various neural network architectures and their learning algorithms. The 

characteristics of FLN that make it suitable for system identification are also presented in this 

section. 

Enhanced inputs that are being used in this thesis are discussed in Section 2.6.1. A brief 

overview about the linearization of FLN-identifier to obtain the A and B parameters of the 

ARMA model and a graph representing these parameters are given in Section 2.6.3. A detailed 

discussion about the Pole-Shift controller is presented in Chapter 3. 
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CHAPTER 3 

POLE-SHIFT LINEAR FEEDBACK CONTROL 

3.1 Introduction 

A general introduction to system identification using neural networks and learning 

algorithms were given in Chapter 2. The identifier adjusts online the parameters of a model of 

the system continuously, in response to the changing network and operating conditions of the 

system. The controller has to calculate a control that ensures optimum damping of active power 

oscillations, based on the updated system parameters. 

Fixed parameter controllers cannot provide effective control over a wide operating range for 

systems that are nonlinear, time-varying and subject to uncertain noise. An adaptive controller 

which has the ability to adjust its own parameters, and even the structure, online according to the 

environment will yield a satisfactory control performance [33].  

Pole Assignment methods are generally implemented assuming that a low order discrete 

model is a close approximation to the power system. But, the power system is a non-linear, high-

order continuous system and it is hard for the discrete model to describe the dynamic behavior of 

the system accurately. Also, a significant amount of computation will be required, if a high-order 

model is used to represent the system [34]. 

This Chapter explains an adaptive Pole Shifting Control algorithm, that combines the 

advantages of Minimum Variance (MV) and Pole-Assignment (PA) control algorithms.  

3.2 PS-Control 

3.2.1 Background 

MV control algorithms [35] have the common feature of optimizing the system output 

response directly, thus are fast, but are not easily susceptible to a stability analysis of the closed 

loop system. PA based adaptive control algorithm places emphasis on the stability of the closed-

loop system rather than the system output response directly. In this algorithm, only the desired 

system closed-loop poles are specified, and the update of controller parameters is based on 

explicit system identification. MV controller shifts all the poles towards the origin, but the PA 

controller has the freedom to place the poles at other locations. PA algorithm can be applied to 

the non-minimum phase (NMP) systems easily and safely. With proper choice of the closed-loop 
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poles it can yield satisfactory dynamic response. This algorithm ensures closed-loop stability as 

long as the identified parameters converge to their true values and there are no control limits. 

But, it not always easy to choose suitable closed loop pole locations, especially if the system 

operates over a wide range. 

Minimum variance controllers can only be used for small disturbance cases provided the 

system is minimum phase (MP). Pole assigned controllers can only be used in the cases where 

the system is well known, although it can damp out large disturbances efficiently. Linear 

quadratic and pole-shifting controllers can be most beneficial when the system is not well 

known, but has stable open-loop poles [36].  

A self-tuning controller based on pole assignment has the advantages of overcoming the 

drawbacks of minimum variance control and of incorporating comparatively simple control 

calculation algorithm. In addition it always produces a much smoother control action which is 

more acceptable. Based on pole assignment control, pole-shifting control further simplifies the 

calculation algorithm while retaining the basic advantages. Instead of considering both the poles 

and the zeros of the system, PS control considers only the poles of the system and allows the 

zeros to be configured according to the design algorithm. This simplification is very significant 

for on-line computer control [37]. The use of a self-searching pole-shifting technique increases 

the flexibility when applied to varying operating conditions encountered in power systems. It 

eliminates the necessity of choosing the closed-loop pole locations and still possesses the quality 

of robustness of „pole-assignment‟ and ease of reference signal tracking of „self-tuning‟ 

controller.  

3.2.2 Adaptive Pole-Shifting Controller 

Consider a system modeled by  

                                                                                                (3.1) 

Where y(t), u(t), e(t) are system output, system input and white noise respectively, and       , 

       take the form, 

            
        

        
                                               (3.2) 

          
        

        
                                                      (3.3) 

where na and nb are the orders of the polynomials        and        respectively. 
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Assuming the system parameters {ai}a, {bi} are known from a real-time parameter 

identification method. Based on the identified system parameters, procedure for computing the 

control signal using PS algorithm is described below: 

Assume the feedback loop has the form as shown in Fig 3.1, 

    

    
  

      

      
                                                                                                      (3.4) 

Where 

            
        

        
                                                 (3.5) 

             
        

        
                                             (3.6) 

Where 

                                 (3.7) 

 

Fig. 3.1Closed loop system block diagram configuration 

In the pole-shifting algorithm, the characteristic polynomial of the closed-loop system is 

assumed to have the same form as the characteristic polynomial of the open-loop system, and the 

open-loop poles are shifted radially towards the centre of the unit circle in the z-plane by a 

shifting factor . Thus the following equation holds: 

                                                                                      (3.8) 

Expanding both sides of Eqn. (3.8) and comparing the coefficients gives 
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                  (3.9) 

Or  

Mw(α) = L(α)                                                                                                  (3.10) 

The control limit should be taken into account in the stabilizer design to avoid servo system 

saturation or equipment damage. If umin and umax are the lower and upper limits respectively, the 

optimal solution of the pole-shifting factor  should also satisfy the control constraint. Once the 

pole-shifting factor  is found from the performance index optimization, the control signal can 

be calculated from Eqns. (3.9 and 3.4). 

3.2.3 Taylor Series Expansion of Control Signal u(t) in Terms of αt 

It is obvious from Eqns. (3.4 and 3.10) that the control at time t, u(t) is a function of the pole 

shifting factor α at that time. From now on the notation u(t, αt) is used to indicate the relation. 

For this algorithm, u(t, αt) can be expressed in a Taylor series in terms of the factor αt. The 

general Taylor series expansion of u(t, αt) at any point α0 is  

                  
 

  
 
             

    
    

 
      

       
  

                                 (3.11)     

From Eqn. (3.4), 

                                                                                                 (3.12) 

Expanding Eqn. (3.12) and using Eqn. (3.10), control, u(t, αt), can be expressed as  

                                                                                       (3.13)  

Where 

                                              
              (3.14) 

is the measurement variable vector. 

The jth order differential of u(t, αt) with respect to the pole shifting factor αt becomes  
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            =                                             (3.15) 

From Eqn. (3.10) and for simplicity, letting α0=0, L
(k)

(0) becomes 

                                                                                            (3.16) 

where j!aj is the jth term, and  

                                                                                                    (3.17) 

Defining the jth order sensitivity constant, sk, as 

   
 

  
 
           

   
   

 
     

 

     = 
 

  
                 

     =                                                                                                         (3.18) 

where pk is the kth term of the row vector X
T
(t)M

-1
. 

Eqn. (3.11) can be written in a simple form as 

                     
   

                                                                          (3.19) 

3.2.4 System Output Prediction, ŷ (t+1) 

At time t, a predicted value ŷ(t+1) for the system output y(t+1) at time (t+1) can be got if it is 

assumed that the control u(t, αt) at time t is known.  

The explicit form of ŷ (t+1) is 

                                                                                 (3.20) 

Where 

                        
                                                                (3.21) 

is an identified parameter vector. 

By substituting Eqn. (3.19) into Eqn. (3.20), the system output prediction value ŷ (t+1) can be 

expressed as a function of the pole shifting factor αt, as 

                             
   

                                     (3.22) 

3.2.5 Performance Index and Constraints 

Taking the idea of minimum variance control, the performance index is chosen as: 

     
                                                                           (3.23) 

where        is the system output reference.  
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Substituting Eqn. (3.22) into Eqn. (3.23) and considering the independence between the 

white noise and other variables, the minimization of J(t+1, αt) is equivalent to the minimization 

problem of a quadratic function Ĵ(t+1, αt) 

     
                                 

   
                      (3.24) 

In order to get a practical stabilizer, when minimizing Ĵ(t+1, αt) with respect to the pole-

shifting factor αt, it should be noted that αt will be subject to the following constraints. 

1. The controller must keep the closed-loop system stable. It implies that all roots of the 

closed-loop characteristic polynomial A(αt z
-1

) must lie within the unit circle in the z-

domain. Supposing λ is the absolute value of the largest characteristic root of A(z
-1

), then 

αt λ is the absolute value of the largest characteristic root of A(αt z
-1

). To ensure the 

stability of the closed-loop system, αt ought to satisfy the following inequality (stability 

constraint): 

  

 
      

 

 
                                                                                              (3.25) 

2. The control limit should be taken into account in the controller design.. If umin and umax 

are the lower and upper limits respectively, the optimal solution of the pole-shifting 

factor αt should also satisfy the following inequality (control constraint): 

                  
   

                                                             (3.26) 

Eqns. (3.24 - 3.26) constitute the self-optimizing pole shifting control algorithm. 

3.2.6 Properties of the PS-Algorithm 

3.2.6.1 Pole-Shift factor,  

The system will be more stable if the closed-loop poles are nearer to the center of the unit 

circle in the z-plane. The pole shift factor α will help achieve this goal.  

In the proposed algorithm, the varying range of the pole-shifting factor α is 
  

 
 
 

 
 . For 

different conditions, it acts in the following way: 

1. If  > 1, the open-loop system is unstable. PS control strategy first behaves as a PA 

controller, places the largest closed-loop poles within the unit circle to assure closed-loop 

stability and then optimizes its performance. 
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2. If  < 1, the open-loop system is stable. The range of  
  

 
 
 

 
  is larger than (0, 1). Thus, it 

provides a more feasible area for performance optimization and it will result in a better 

performance. 

3.2.6.2 Optimization function 

The proposed control algorithm turns out to be an optimization problem with inequality 

constraints      
                                     

 . Any optimization 

method (such as modified Lagrange multiplier method, Kuhn-Tucker method etc) can be applied 

to this problem. But for a real-time adaptive control algorithm, a simpler method will be the 

better choice. Handling the control constraints in the optimization of the performance index 

          offers a difficult problem. For this, the following strategy is used. 

Consider that the open-loop system is stable and the optimal value of the pole-shifting factor 

     is obtained by optimizing           with the stability constraint only (obviously 
  

 
 

                        
 

 
 ). If the control signal         obtained by optimizing     

      with the stability constraint outside the control limits, then 

i. the control limit (umin or umax) is the only control signal which optimizes           

under the control constraint and  

ii. there must exist a pole shifting factor    which satisfies the stability constraint for 

this control signal 

The control         is a continuous, single-valued function in terms of pole-shifting factor 

  . With the mean-value theorem of continuous functions,        must satisfy 
  

 
       

                                
 

 
 which indicates that        is within the range of 

 
  

 
 
 

 
  and thus assures the closed-loop stability of the controlled system.  

The above strategy simplifies the optimization scheme and reduces the optimization time. It 

indicates that if the control signal has to reach its limit, the best control signal for this situation is 

the control limit itself and the closed-loop system will not lose its stability under this condition. 

3.2.6.3 Steady-state characteristics 

When the system is operating under steady state conditions, it is desirable for the controlled 

system to have enough stability margins to endure disturbances. The proposed algorithm easily 
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fulfills this steady state stability margin setting through the steady state pole shifting factor. With 

this property, the proposed algorithm eliminates the necessity of choosing the closed-loop pole 

locations suitable for both dynamic and steady state conditions and still possesses the quality of 

robustness of a PA algorithm.  

3.2.6.4 Dynamic characteristics 

Under dynamic conditions caused by disturbances or changes in the operating conditions, the 

system output is required to be settled to its normal value or track the reference as quickly as 

possible. This requires a fast response from the controller. Once it senses a change in the 

operating conditions, the proposed control algorithm will shift the poles to appropriate locations 

within the unit circle immediately to yield an optimal control signal corresponding to the change. 

3.2.6.5 Closed-loop stability 

The stability of the closed-loop system has the highest priority in this algorithm. This 

algorithm assures the stability of the closed-loop system, as long as the identified parameters 

converge to their true values. If the identified parameters do not converge to their true values, the 

stability constraint in Eqn. (3.10) can be modified so that the controller acts in a more cautious 

manner and satisfies a certain security coefficient, 

 
 

 
          

 

 
                                                                               (3.27) 

where σ is called the security coefficient and its value can be set at any desired value between 

0% and 100%. 

3.2.7 Third Order ARMA Model - Control Strategy  

The generating unit is represented by a third order discrete ARMA [38] model of the form: 

                                         (3.28) 

where        and        are polynomials in the backward shift operator     and are defined as 

            
      

      
                (3.29) 

          
      

      
                  (3.30) 

and           and      are the system output, system input and white noise respectively. 

 Rewriting Eqn. (3.28) in the form suitable for identification: 

                                  (3.31) 

where 

                             
                 (3.32) 
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is the parameter vector and 

                                                       (3.33) 

is the measurement variable vector. 

 Once the system model parameters (Eqn. (3.32)) are identified by the FLN identifier (as 

described in Section 2.6.3), the control signal can be calculated based on the ARMA model (Eqn. 

(3.28)) . Assuming that the feedback loop has the form, 

    

    
  

      

      
                    (3.34) 

where  

            
      

                  (3.35) 

             
      

                  (3.36) 

The characteristic polynomial of the closed-loop system is assumed to have the same form as 

that of the open-loop system in the PS control algorithm. Also, in the closed-loop, the open-loop 

poles are shifted radially towards the center of the unit circle in the z-plane by a shifting factor . 

This gives the following equation: 

                                                 (3.37) 

Expanding both sides of Eqn. (3.37) and comparing the coefficients gives: 

 
 
 
 
 
      
        
          

         

        
 
 
 
 

 
 
 
 
 
  
  
  

  

   
 
 
 
 

 

 
 
 
 
 
       

    
    

    
    
 
  

 
 
 
 

             (3.38) 

or in matrix form, 

                              (3.39) 

If the pole-shift factor  is fixed, the PS control algorithm becomes a special case of Pole 

Assignment (PA) control algorithm. The rule determining the pole-shifting factor is very 

important.  is modified on-line according to the operating conditions of the controlled system 

for optimum performance. 

From Eqns. (3.34) and (3.39), the control signal u(t) can be expressed as a function of the 

pole-shifting factor  as: 

                                        (3.40) 
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where 

              –        –      –        –        
 
        (3.41) 

u(t) can be expanded into a Taylor series with a simple form [39]: 

                  
  

                   (3.42) 

where    is the ith term of the row vector       and 

                                    (3.43) 

At time t, the predicted value        for the system output y(t+1) at time (t+1) can be 

found if it is assumed that the control u(t) at time t is known. The explicit form of        is: 

                                        (3.44) 

where 

                        
                  (3.45) 

is an identified parameter vector. 

3.2.8 Linear Discrete System Example 

The proposed control algorithm is first applied to a known linear discrete system: 

y(t) – 0.95 y(t–1) + 0.09 y(t–2) + 1.377 y(t–3) = 0.5 u(t–1) + 0.1 

u(t–2) + 0.25 u(t–3) + e(t) 
(3.46) 

The error term e(t) accounts for a 2% white noise added to the system. The open loop poles 

of the plant are at -0.85 and 0.9 ± j 0.9. The control signal is calculated using Eqn. (3.10) in each 

sampling period such that the cost function given in Eqn. (3.23) is minimized.  

The system response to the square wave reference waveform of magnitude ±1 is plotted in 

Fig 3.2. The reference signal is tracked effectively by the controlled plant.  

 

Fig 3.2 Linear discrete time system response to step changes in reference 
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The open and closed loop poles/zeros of the system are plotted in Fig 3.3. The closed loop 

poles and zeros are plotted in black color and the open loop poles and zeros are plotted in gray 

color. Fig 3.3 shows that it is an unstable plant as two of the open loop poles are outside the unit 

circle. The system is stabilized by the pole-shift controller by moving the unstable poles inside 

the unit circle. The controller also minimizes the next time-step output prediction error. The 

optimal pole-shift factor is plotted in Fig 3.3b.  

 

(a) Pole-zero plot for open-loop (gray) and closed-loop system (black) 

 

(b) Pole-shift factor  

Fig 3.3 Adaptive optimal pole-shifting process for the discrete system 
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3.3 Summary 

PS-Control algorithm, which combines the advantages of MV algorithm and PA algorithm, is 

presented in Section 3.2. The FLN-Identifier discussed in Chapter 2 is combined with the linear 

feedback control system (PS-Controller) for adaptive control of power systems using APSS. In 

Section 3.2.7, a linear discrete system example is given to show the effectiveness of the proposed 

control algorithm. Advantages of using FLN identification for APSS application is the main 

point of attention in this thesis and the simulation studies and the results are discussed in Chapter 

4.  
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CHAPTER 4 

APSS USING FLN-IDENTIFIER AND POLE-SHIFT 

CONTROLLER 

4.1 Introduction 

In this dissertation, a FLN identifier and PS Control technique have been used respectively 

for identifying the system characteristics and for the control computations.  

The nonlinear functional mapping properties of neural networks are central to their use in 

identification of nonlinear systems. The approximation capabilities of neural networks are very 

useful in the modeling of power systems [40]. In FLN, the hidden layer is removed without 

giving up non-linearity by providing the input layer with expanded inputs that are constructed as 

the functions of original attributes. This overcomes the drawbacks associated with the multilayer 

network employing back propagation algorithm. Also, the multilayer perceptron cannot be 

represented in the form of a function whereas, the FLN networks have a functional form. This 

facilitates their use in PS control system. Some power system applications such as state 

estimation uses the FLN [41].  

At each sampling instant, the input and output of the FLN are linearized using Taylor Series 

expansion to find the ARMA parameters on-line. The learning algorithm further adjusts the 

weights so as to minimize the mean-squared error between the outputs of the plant, i.e desired 

output and the identifier. This process is repeated every sampling instant making the training on-

line, which in turn results in an adaptive approach to identify the power system. 

4.2 On-Line Identification Using FLN Identifier 

At any given time, power system operation can be categorized to be in one of four states:  

 Normal state in which all controlled quantities are within acceptable limits. 

 Alert state, in which some variables are out of limits, but not to the point that the system 

stability is threatened. 

 Emergency state, in which system stability is threatened, requiring immediate action to 

keep the system viable. 
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 Restorative state, in which stabilized subsystems are reconnected in a systematic way to 

maintain system integrity. 

Fixed-parameter controllers designed for a specific operating point cannot maintain the same 

quality of performance at other operating points. This difficulty can be overcome using adaptive 

control techniques, which will improve the dynamic performance of the power system. 

The objectives in this section are: 

 To verify the performance of APSS consisting of FLN-Identifier and PS-Control. 

 To make a comparative analysis of the CPSS and APSS response. 

4.2.1 Proposed FLN Structure 

The generating unit is represented by a third order discrete ARMA model of the form: 

                                                                                                       (4.1) 

where A(z
-1

) and B(z
-1

) are polynomials and are defined as  

            
      

      
                                                                        (4.2) 

          
      

      
                                                                                (4.3) 

and variables y(t), u(t) and d(t) are the system output, system input and white noise respectively.  

Rewriting Eqn. (6.1) in the form suitable for identification: 

                                                                                                                (4.4) 

where  

                         
                                                                               (4.5) 

is the parameter vector (regression coefficients) and  

                                                                   (4.6) 

is the measurement variable vector. 

4.2.2 System Model 

A synchronous generator connected to a constant voltage bus through two transmission lines 

(Fig 4.1) is used for the APSS studies. 

4.2.3 Selection of the order of ARMA Model 

The generating unit is identified by a third order discrete ARMA model. The system 

dynamics determine the selection of the order of the model.  

A third-order ARMA model is a sufficient representation for modeling the low frequency 

oscillations. The dominant low-frequency inputs to the PSS represented by a pair of complex 
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poles and a single pole representing the system response without oscillation can be represented 

by a third order system.  

Since a second order system can only represent either oscillatory or non-oscillatory part of 

the system response, this system will not be a practical option. A fourth order system can be 

identified either as two pairs of complex poles, or one pair of complex poles and two real poles 

or four real poles. But, two pairs of complex poles can only represent the oscillatory system 

response and four real poles can represent only the non-oscillatory system response. If we 

choose, two pairs of complex poles and two real poles, the two real poles seem unnecessary to 

represent the non-oscillatory part. So, the fourth order system is usually not a good choice. 

Since the idea of APSS is to give good estimate of the control signal in the shortest interval, the 

third-order system is preferred in the studies as it needs minimum number of on-line parameter 

estimates (Eqn. 4.5).  

 

Fig 4.1 System model used in APSS Studies 
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4.2.4 Control Strategy 

The process of obtaining ARMA parameters using FLN identifier is an important point; 

because it is possible to apply linear analysis control methods such as PS control technique to 

obtain the control signal. Once the system model parameters (Eqn. (4.5)) are identified using the 

FLN identifier, the control signal can be calculated based on the ARMA model defined by Eqn. 

(4.1). The PS equations using a third-order model are given below: 

The feedback loop is assumed to have the form, 

    

    
  

      

      
                     (4.7) 

Where  

             
       

                  (4.8) 

               
       

                 (4.9)

 The characteristic polynomial of the closed-loop system is assumed to have the same form as 

that of the open-loop system in the PS control algorithm. Also, in the closed-loop, the  open-loop 

poles are shifted radially towards the center of the unit circle in the z-plane by a shifting factor . 

This implies the following equation:      

                                                    (4.10) 

Expanding both sides of Eqn. (4.10) and comparing the coefficients gives: 

 
 
 
 
 
      
        
          

         

        
 
 
 
 

 
 
 
 
 
  
  
  
  

   
 
 
 
 

   

 
 
 
 
 
      
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   
    
 
  

 
 
 
 

            (4.11) 

Or in matrix form 

                           (4.12) 

 PS control algorithm becomes a special case of the PA control algorithm if the pole-shift 

factor  is fixed. The rule determining the pole-shifting factor is very important. For optimum 

performance  is modified on-line according to the operating conditions of the controlled 

system. 

 From Eqns. (4.7) and (4.12), the control u(t) can be expressed as a function of the pole-

shifting factor  as: 

                                          (4.13) 
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Where  

               –        –      –        –        
 
       (4.14) 

u(t) can be expanded into a Taylor series: 

                   
  

                  (4.15) 

where rj is the j
th

 term of the row vector          and 

                                    (4.16) 

 The predicted value        for the system output        at time       at time t can be 

found if it is assumed that the control u(t) at time t is known. The explicit form of        is: 

                                      (4.17) 

where  

                             
                (4.18) 

is an identified parameter vector. 

 Using the idea of MV control, the performance index is chosen as: 

                                           (4.19) 

where        is the system output reference. 

 From Eqns. (4.15) and (4.17), considering the independence between the white noise and 

other variables, the minimization of          is equivalent to the minimization problem of a 

quadratic function         : 

                    
                      

  
             

 
    (4.20) 

4.2.4.1 Constraints 

When minimizing          with respect to ,  will be subject to the following 

constraints: 

1. The stabilizer must keep the closed-loop system stable. So, all roots of the closed-loop 

characteristic polynomial         must lie within the unit circle in the z-domain. If λ is 

the absolute value of the largest characteristic root of       , then  . λ is the absolute 

value of the largest characteristic root of        . To ensure the stability of the closed-

loop system,  ought to satisfy the following stability constraint: 

 

 
     

 

 
                   (4.21) 
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2. In the APSS design, to avoid servo system saturation or equipment damage, the control 

limit should be taken into account. If umin and umax are the lower and upper limits 

respectively, the optimal solution of the pole-shifting factor  should also satisfy the 

following control constraint: 

                    
  

                     (4.22) 

Eqns. (4.20), (4.21) and (4.22) constitute the control strategy for the proposed APSS. The 

control signal can be calculated using Eqn. (4.15) directly, once the pole-shifting factor  

is found from the performance index optimization.  

4.2.4.2 Optimization 

A simpler optimization method is a better option to solve the minimization problem given in 

Eqn. (4.20). The solution steps are given below: 

1. Let 

                                                  From Eq. (4.15) 

    
  

  
 

    
  

  
                   (4.23) 

    
   

  
 

                                                From Eq. (4.15) 

                                          From Eq. (4.15) 

2. Then, 

                                

                   

                                          (4.24) 

                       

3. Newton‟s method is used to find . Note 

                               (4.25) 

The following equation is iterated until a pre-specified tolerance (10
-7

) is reached, 

            
  

  
   

  

                (4.26) 

or in terms of       , 
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             (4.27) 

where    is pre-selected (0.7) at start of iteration and  is the gradient term.   

This method simplifies the optimization procedure and reduces the optimization time. The 

control constraints are included in the optimization procedure as follows: 

If the control signal u(t) obtained by optimizing          with only the stability constraint, 

is outside the control limits, then 

 the control limit (umin or umax) is the only control signal which optimizes          under 

the control constraint and 

 there must exist a pole-shifting factor  which satisfies the stability constraint for this 

control signal. 

 

4.3 Simulation Studies on a Single Machine Infinite Bus Power System 

To simulate the dynamic behavior of the single-machine infinite bus power system, a non-

linear seventh order model is used. A sampling rate of 20 Hz is chosen for the simulations. The 

response of the FLN-Identifier after training is compared to that of the actual system output for 

various disturbances under different operating conditions as described in the following sections. 

The AVR/Exciter and CPSS refer to IEEE Standard 421.5, Type ST1A AVR and Exciter Model 

and an IEEE Standard 421.5, PSS1A Type CPSS [50] (Appendix B.2 and B.4). 

4.3.1 Normal Load  

The generator is operating at 0.97 pu, 0.97 pf lag (normal load). A 0.05 pu step increase in 

torque reference is applied at 1.0 s.  

The power angle (δ) variation of the open-loop, with CPSS and with APSS is shown in Fig 

4.2. Speed variation is shown in Fig. 4.3. The control signals for APSS and CPSS and terminal 

voltage response are given in Fig 4.4 and Fig 4.5. 



49 

 

 

Fig 4.2 Power angle variation to a 0.05 pu step increase in torque and return to initial conditions 

under normal load with PSS 

 

Fig 4.3 Speed variation to a 0.05 pu step increase in torque and return to initial conditions under 

normal load with PSS 
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Fig 4.4 Control signals for a 0.05 pu step increase in torque and return to initial conditions under 

normal load with PSS 

 

Fig 4.5 Terminal voltage response to a 0.05 pu step increase in torque and return to initial 

conditions under normal load with PSS 
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4.3.2 Light Load 

The generator is operating at 0.5 pu power at 0.9378 pf lagging. A 0.15 step increase in input 

torque reference is applied at 1.0 s. The power angle (δ) response of the open-loop, with CPSS 

and with APSS is shown in Fig 4.6. Speed variation, control signals u(t) for both APSS and 

CPSS and  terminal voltage v(t) response are shown in Fig 4.7, 4.8 and 4.9. 

 

Fig 4.6 Power angle response to a 0.15 pu change in torque and return to initial conditions under 

light load with PSS 

 

Fig 4.7 Speed variation to a 0.15 pu change in torque and return to initial conditions under light 

load with PSS 
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Fig 4.8 Control signals for a 0.15 pu change in torque and return to initial conditions under light 

load with PSS 

 

Fig 4.9 Terminal voltage response to a 0.15 pu change in torque and return to initial conditions 

under light load with PSS 
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4.3.3 Voltage Reference Change 

The generator is operating at 0.6 pu power and 0.95 pf lag and 1.05 pu terminal voltage. A 

0.02 pu increase in voltage reference is applied at 1.0 s. The power angle (δ) response is shown 

in Fig 4.10. The terminal voltage response for open-loop, CPSS and APSS is shown in Fig 4.11. 

Control signals u(t) for APSS and CPSS are shown in Fig 4.12. 

 

Fig 4.10 Power angle response to a 0.02 pu step increase in voltage and return to initial 

conditions  

 

Fig 4.11 Vt response to a 0.02 pu step increase in voltage and return to initial conditions 
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Fig 4.12 Control signals for a 0.02 pu step increase in voltage and return to initial conditions 

4.3.4 Leading Power Factor 

A 0.2 pu step increase in torque reference was applied at 1 s when the generator is operating at a 

power of 0.7 pu with 0.96 pf lead. The results are given in Fig 4.13 and 4.14. 

 

Fig 4.13 Power angle response to a 0.2 pu step increase in torque under leading power factor 

conditions  
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Fig 4.14 Speed variation to a 0.2 pu step increase in torque under leading power factor conditions  

4.3.5 Fault Test 

The initial operating conditions are 0.5 pu active power delivered to the bus at 0.93 pf lag. A 

three-phase to ground fault is applied at 1.0 s at the middle of one of the transmission line. Power 

angle (δ) response is shown in Fig 4.15. Control signals u(t) are shown in Fig 4.16. 

 

Fig 4.15 Power angle response to a three-phase to ground fault at the middle of one transmission 

line 
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Fig 4.16 Control signals for a three-phase to ground fault at the middle of one transmission line 

4.3.6 Single Machine Infinite Bus Power System Performance – Discussion 

The results from Figs 4.2 through 4.16 shows that the APSS with FLN identifier has better 

performance than the CPSS for different operating conditions and disturbances. The APSS 

provides a better damping in a wide range of operation as compared to the conventional PSS 

without requiring any parameter tuning.  

Advantages of FLN identifier: 

 Use of enhanced inputs in the FLN makes it a single layer network model, thus 

requiring a simpler learning algorithm and faster training. 

 As FLNs do not have any hidden layer, the architecture becomes simple. Thus, 

nonlinear modeling can be accomplished, by means of a linear learning rule. The 

computational complexity is also reduced. 

 It reaches global minima very easily. 

 As FLNs involve linear mapping in polynomial space, they can easily map linear and 

nonlinear terms. 

 FLN is truly linear in the parameters. Approximation theory not only says that a 

sufficient FLN with the correct weights can accurately implement an arbitrary 

continuous function but also confirms that these parameters can always be learnt at 
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least in the least squares sense. This second property is an advantage of using the 

FLN to model nonlinear systems. 

4.4 FLN-Identifier and PS-Control – A Multi-Machine Power System Case Study 

FLN-identifier and PS controller to damp out multi-mode oscillations in a power system is 

described in this section. A five machine power system is used in the simulation studies. 

Behavior of the proposed APSS and its coordination ability with other CPSSs in the system is 

also explained.  

Multi-machine power systems in which the interconnected generating units have different 

inertia constants and are weakly connected by transmission lines have multi-mode oscillations. 

These oscillations are generally analyzed in three main oscillation modes, i.e. local, inter-area 

and inter-machine modes. Depending upon their location in the system, some generators 

participate in only one mode of oscillation, while others participate in more than one mode [42, 

43]. In this section, effectiveness of an APSS to damp out multi-mode oscillations in a multi-

machine environment is described. 

4.4.1 Multi-Machine Power System Model 

A five machine power system without infinite bus, as shown in Fig. 4.17, is used to evaluate 

the performance of the proposed APSS. Five generating units are connected through a 

transmission network. Generators G1, G2 and G4 have much larger capacities than G3 and G5. All 

five generators are equipped with governors, exciters and AVRs. The generating units are 

modeled by five first order differential equations (Appendix C.1). Parameters of all generators, 

governors, exciters, AVRs, transmission lines, loads and operating conditions are given in 

Appendix C.2-C.7.  Due to different sizes of the generators and system configuration, multi-

mode oscillations occur when the system experiences a disturbance. 
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Fig 4.17 A five machine power system configuration 

4.4.2 Multi-Machine Studies – Simulation Results 

A non-linear fifth-order model is used to simulate the dynamic behavior of the multi-machine 

power system. The differential equations used to simulate the synchronous generators and the 

parameters used in simulation studies are given in the Appendix C.1-C.7. The AVR/Exciter and 

CPSS refer to IEEE Standard 421.5, Type ST1A AVR and Exciter Model and an IEEE Standard 

421.5, PSS1A Type CPSS [50] (Appendix B.2 and B.4). The active power deviation, Pe(k), is 

sampled at the rate of 20 Hz for parameter identification and control computation. 

4.4.2.1 PSS on one unit 

A 0.10 pu step decrease in input torque reference of G3 is applied at 1s at the operating point 

#1 as given in Appendix C.6. The system returns to its initial condition at 10s. APSS was first 

installed on G3 only. The APSS damps out the local mode oscillations effectively as shown in 

Fig 4.18. Since the rated capacity of G3 is much less than G1 and G2, the APSS has little 

influence on the inter-area mode oscillations because these oscillations are introduced mainly by 

these large generators. G3 does not have enough power to control the inter-area mode 
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oscillations. For comparison, a CPSS with the following transfer function [44] was installed on 

G3: 

       
   

     
 
      

     

     

     
                      (4.28) 

 

Fig 4.18 System response with APSS installed on generator G3 

4.4.2.2 PSS on three units 

Two APSSs are additionally installed on G1 and G2 to damp both the local and the inter-area 

modes of oscillation. Fig. 4.19 shows that both modes of oscillations are damped out efficiently. 

Parameters of G1 and G2 have to be re-tuned if CPSSs are to be installed additionally on G1 and 

G2. Following parameters are used for the CPSS on G1 and G1: 

                                                  (4.29) 
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Fig 4.19 System response with PSSs installed on G1, G2 and G3 

4.4.2.3 Self-coordination ability of APSS 

One of the important features of the APSS is its self-coordinating property. The response for 

0.10 pu step decrease in torque reference of G3 at 1 s is shown in Fig 4.20. The system returns to 

initial condition at 10 s. The proposed APSS can coordinate itself with existing PSSs in the 

system automatically due to its on-line learning property. APSS is installed on G1 and G3 and 

CPSS on G2, G4 and G5 to prove this fact. Fig 4.20 shows that APSS can work cooperatively 

with other CPSSs to damp out the oscillations in the system. The proposed APSS coordinates 

itself with the other PSSs based on the system behavior at the generator terminals. 
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Fig 4.20 System response with APSS installed on generators G1 and G3 and CPSS on G2, G4 and 

G5 

4.4.2.4 Three-phase to ground fault test 

A three phase to ground fault was applied at the middle of one transmission line between buses 3 

and 6 at 1 s and cleared 50 ms later by removing the faulted line. The power system operates at 

the same operating conditions (operating condition #1, Appendix C.6). The faulted transmission 

line was restored successfully at 11 s. Fig 4.21 shows the response of the system under this 

disturbance. 
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Fig 4.21 System response to a three phase to ground fault with PSSs installed on G1, G2 and G3 

4.5 Summary 

In this chapter FLN-Identifier and PS Controller for APSS are described. Simulation studies 

for a single-machine infinite bus and multi-machine system are given in this chapter. Simulation 

results show that the given APSS with FLN-Identifier damps the local and inter-area mode 

oscillations effectively compared to a CPSS. Conclusion and reference to future work are given 

in the next chapter. 
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CHAPTER 5 

CONCLUSIONS 

This thesis presented an adaptive power system stabilizer consisting of a combined functional 

link network (FLN) identifier and Pole-shift (PS) control algorithm to damp low frequency 

oscillations in the power system. The advantage of using an adaptive power system stabilizer is 

that the parameters can be tuned on-line with the change in the operating conditions of the power 

system.  

5.1 Summary 

Chapter 1 introduced the concept of power system stability and control and gave an overview 

of the power system damping controllers. A summarized description of conventional power 

system stabilizers (CPSS) and adaptive power system stabilizers (APSS) were also provided in 

this chapter. A brief summary of the on-line parameter identifier and the control strategy were 

also given.  

Chapter 2 discussed the various neural network architectures and their learning algorithms. 

The literature review summarized the advantages and disadvantages of using various artificial 

neural networks for system identification. Learning algorithm and linearization of the FLN 

identifier were also given in this chapter. 

Chapter 3 described the Pole-Shift control algorithm and its advantages over moving average 

(MV) and pole-assignment (PA) control algorithms. A linear discrete system example was also 

given to prove the effectiveness of the proposed algorithm.  

Chapter 4 explained the combined FLN identifier and the PS controller for adaptive power 

system stabilizers. Simulation results for a single-machine infinite bus and multi-machine system 

were given in this chapter. The results showed that the APSS can effectively damp local mode 

oscillations and also the inter-area oscillations to some extent.  

5.2 Strengths of the Research 

Power system stabilizers are the most cost-effective means of damping low frequency 

modes of oscillations in the power system. The North American Reliability Council has 

mandated the use of power system stabilizers for all generators after the August 15, 2003 

blackout in Eastern Canada and the United States.   Other transmission control devices, such as 

HVDC links, static var compensators and FACTS also enhance the stability of power system, but 
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the cost of these devices is so prohibitive that they are recommended only after the power system 

stabilizers are insufficient to damp all the low-frequency oscillations in the power system [44, 

45]. Strengths of my research can be summarized as follows: 

Firstly, the proposed adaptive power system stabilizer helped in the damping of the low 

frequency modes (local modes as well as inter-area modes) of oscillation in the power system. 

Low frequency oscillations, if they are not adequately damped, can lead to further instability 

conditions such as major transient oscillatory problems in the system, which may result in the 

isolation of generator from the power system and the interruption of power to the customers.  

 Secondly, the proposed adaptive power system stabilizer, provided optimal performance for 

wide range of operating conditions such as change in reference voltage of the power system, 

stressed leading power factor conditions, light load and three-phase fault conditions, whereas the 

conventional power system stabilizers used in industry are designed to provide optimal 

performance for normal load conditions only. Damping provided by these conventional 

stabilizers may not be as good for other operating conditions. In a multi-machine power system, 

conventional stabilizer parameters need to be re-tuned to coordinate with other machines and 

utilities, whereas re-tuning is not required for adaptive power system stabilizers, because of its 

inherent self-tuning capability [46, 47].  

From the results discussed in Section 4.3.1 to 4.3.5, we can see that proposed self-tuning 

power system stabilizer offered more or less the same performance as the conventional stabilizer 

for normal load condition, but the performance of the proposed adaptive stabilizer was better 

than the conventional stabilizer for other operating conditions because of its self-tuning 

capabilities. This is one of the main strength of the proposed adaptive power system stabilizer.      

Thirdly, as the proposed functional link network does not have any hidden layer, the 

identifier architecture implementation was simple and the computational complexity was also 

reduced. The simple functional link network identifier demonstrated its capacity to learn changes 

in the plant dynamics and its capacity to adjust to the new power system operating conditions 

quickly and effectively. Also, the proposed adaptive stabilizer used a linear feedback controller 

namely the Pole-shift controller. The proposed Pole-shift controller overcame the difficulty of 

choosing suitable values for the performance index parameters often-encountered in other types 

of pole-placement controllers discussed in the optimal control theory literature.  
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Fourthly, as discussed in Section 3.2.8, the proposed Pole-shift controller moved the unstable 

poles inside the unit circle in the z-plane and thereby ensured the closed loop stability of the 

system at every sampling instant. The proposed adaptive stabilizer with pole-shift control 

technique provided very good performance in terms of shorter settling time (2-3 seconds) and 

small overshoot (<5%). Other modern techniques like neuro-control or fuzzy logic based control 

found in the literatures do not offer this advantage as there are no theoretical analyses available 

to prove the stability of the overall feedback control system using such controllers.  

5.3 Limitations of the Research Work 

The limitations of the research can be summarized as follows: 

Firstly, the simulation results showed that the power system stabilizer was very effective in 

damping local modes of oscillation. But the stabilizer was not equally effective for damping the 

inter-area oscillations. The previous works suggest that, the power system stabilizers are 

primarily employed to damp the local area oscillations [48, 49]. Further investigations are 

needed using power system stabilizers in conjunction with transmission control devices. For 

example, transmission control devices such as thyristor controlled series capacitors (TCSC) 

could be installed on the line. Adaptive power system stabilizers along with such transmission 

line control devices would be able to damp both local and inter-area oscillations effectively. 

 Secondly, the proposed adaptive stabilizer was shown to give better performance compared 

to the conventional stabilizers using simulation studies, but this has to be verified using actual 

experimental testing. True validation of the proposed adaptive stabilizer would be by testing, 

using an experimental set up consisting of a synchronous generator connected through a 

transmission line to the city grid. Such a testing would provide practical validation of the 

proposed adaptive stabilizer for industry acceptability. 

Thirdly, the proposed adaptive controller used a 3
rd

 order model for control calculations 

based on the findings of some of the previous research works. A simplified 3
rd

 order model could 

have been one of the reasons that the adaptive stabilizer did not perform well in the multi-

machine environment (especially for damping the inter-area oscillations). The performance of 

the proposed adaptive power system stabilizer was compared with that of the conventional 

stabilizer, and the simulation results proved that the adaptive power system stabilizer can damp 

local mode oscillations effectively for varying operating conditions; however, its performance 
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was not equally effective in damping the inter-area oscillations. The proposed functional link 

network identifier has demonstrated the capacity to learn changes in the plant dynamics and to 

adjust to the new operating conditions quickly and effectively. This was a limitation of the 

controller and further investigations are needed with higher-order controllers and its impact on 

damping inter-area oscillations.  

5.4 Suggestions for Future Work 

1. It was shown in this thesis that the power system stabilizers are very effective for 

damping the local mode oscillations and are also useful for damping the inter area 

oscillations to some degree. The simulation study on the multi-machine system was done 

to show that adaptive power system stabilizer was capable of damping inter-area 

oscillations. However, in some cases, the conventional power system stabilizer gave 

slightly better performance compared to the adaptive power system stabilizer. Further 

studies are needed in the multi-machine environment to get a true assessment of the 

adaptive power system stabilizer in comparison to the conventional power system 

stabilizer. 

2.  In real world power systems, all the controllers will be implemented on digital processor 

boards with certain clock speeds. Each sample control calculation can take different 

times, depending on the controller complexity. The choice of sampling frequency is very 

essential in real-time scenarios and therefore testing the proposed adaptive controller in 

real environment will be required. The Real Time Digital Simulator (RTDS) available in 

the Power Research Laboratory is capable of performing continuous real time operation. 

It uses a combination of custom hardware (Digital Signal Processors utilizing parallel 

processing technique) and software (accurate power system component models) models. 

Real time simulations provide a solid framework to test the proposed control algorithm.  

It would be useful to test the proposed Pole-shift control algorithm on RTDS and this 

would provide an excellent verification of the proposed FLN identifier and Pole shift 

control algorithm. 
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APPENDIX A 

BACK PROPAGATION ALGORITHM 

A back-propagation neural network is a layered network consisting of an input layer, an 

output layer and at least one layer of nonlinear processing elements. The nonlinear processing 

elements, which sum incoming signals and generate output signals according to some predefined 

function, are called neurons. The neurons are connected by terms with variable weights. The 

output of one neuron multiplied by a weight becomes the input of an adjacent neuron of the next 

layer. The connection weights between the neurons must be determined before it can be used in 

the application. The process of determining the weights is called the training process. MLPs 

employ the error back-propagation method to train the interconnecting weights. Back 

propagation learning requires a set of input and output pairs. Before the training, small random 

weights are assigned to the network. For each training data set p, the input pattern is presented at 

the input along with a desirable output pattern. Weights are then adjusted to eliminate the total 

squared error, Err, which is the sum of the difference squared between the set of required outputs 

and the set of actual outputs of the ANN: 

     
 

 
            

                                                       (A.1) 

where tpj is one of the required outputs and outpj is one of the actual ANN output. 

The weight wij can be adjusted to minimize Errp for the set of p training data set by a gradient 

descent method, 

                                                                     (A.2) 

                                       (A.3) 

where n is the iteration number, η is the learning rate and  

    
       

       
                                                                                                 (A.4) 

If neuron j is in the hidden layer, 

    
       

       
                                (A.5) 

Better convergence can be obtained if a momentum term is added to equation (A.3), as  
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                                                (A.6)

  

where β is the momentum factor. In the above equations, learning rate, η, and the momentum 

factor, β, are between 0.0 and 1.0. 

Disadvantages of BP algorithm: 

1. BO learning algorithm gets trapped in local minima easily, especially for non-linearly 

separable problems 

2. The convergent speed of the BP learning is too slow even if the learning goal can be 

achieved. 

3. The convergent behavior of the BP learning algorithm depends very much on the choices 

of initial values of the network connection weights as well as the parameters in the 

algorithm such as the learning rate and momentum. 
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APPENDIX B 

SINGLE-MACHINE POWER SYSTEM  

B.1 The generating unit is modeled by seven first order differential equations given below: 

                             (B.1) 

   
 

  
                          (B.2) 

                                    (B.3) 

                                    (B.4) 

                              (B.5) 

                               (B.6) 

                               (B.7) 

B.2 The AVR and exciter combination used in the system is from the IEEE Standard 

P421.5/D15, Type ST1A shown in Fig B.1[50] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig B.1. AVR and exciter model Type ST1A, IEEE Standard P421.5/D15 
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B.3 The governor used in the system has the transfer function 

        
 

     
                    (B.8) 

 

B.4 The conventional power system stabilizer is Type PSS1A from IEEE Standard P421.5/D15 

shown in Fig B.2[50] 

 

   

 

 

Fig B.2 CPSS model Type PSS1A, IEEE Standard P421.5/D15 

B.5 Parameters 

                                             

                                           

                                             

                                         

                                        

                                      

                                       

                                               

                                                     

                                            

                                      

                                        

                                  

All resistances and reactances are in per-unit and time constants in seconds. 
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APPENDIX C 

MULTI-MACHINE POWER SYSTEM 

C.1 The generating unit is modeled by five first order differential equations given below 

                           (C.1) 

   
 

  
                              (C.2) 

                                         (C.3) 

                                                              (C.4) 

                                          (C.5) 

C.2 Parameters of the generators 

 Gen#1 Gen#2 Gen#3 Gen#4 Gen#5 

   0.1026 0.1026 1.0260 0.1026 1.0260 

   0.0658 0.0658 0.6580 0.0658 0.6580 

    0.0339 0.0339 0.3390 0.0339 0.3390 

     0.0269 0.0269 0.2690 0.0269 0.2690 

     0.0335 0.0335 0.3350 0.0335 0.3350 

     5.6700 5.6700 5.6700 5.6700 5.6700 

   
   0.6140 0.6140 0.6140 0.6140 0.6140 

      0.7230 0.7230 0.7230 0.7230 0.7230 

  80.000 80.000 10.000 80.000 10.000 
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C.3 Parameters of AVRs and simplified ST1A exciters 

 Gen#1 Gen#2 Gen#3 Gen#4 Gen#5 

   0.0400 0.0400 0.0400 0.0400 0.0400 

   190.00 190.00 190.00 190.00 190.00 

   0.0800 0.0800 0.0800 0.0800 0.0800 

   10.000 10.000 10.000 10.000 10.000 

   1.0000 1.0000 1.0000 1.0000 1.0000 

 

The output of all exciters is limited within - 6.7 to 7.8 p.u. 

C.4 Parameters of the governors 

 Gen#1 Gen#2 Gen#3 Gen#4 Gen#5 

   0.25000 0.25000 0.25000 0.25000 0.25000 

  -0.00015 -0.00015 -0.00133 -0.00015 -0.00133 

  -0.01500 -0.01500 -0.17000 -0.01500 -0.17000 

 

C.5 Parameters of transmission lines in p.u. 

Bus No. R X B/2 Bus No. R X B/2 

1-7 .00435 .01067 .01536 2-6 .00213 .00468 .00404 

3-6 .01002 .03122 .03204 3-6 .01002 .03122 .03204 

4-8 .00524 .01184 .01756 5-6 .00711 .02331 .02732 

6-7 .04032 .12785 .15858 7-8 .01724 .04153 .06014 
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C.6 Operating conditions and loads for operating point #1 

 Gen#1 Gen#2 Gen#3 Gen#4 Gen#5 

         5.1076 8.5835 1.8055 8.5670 0.8501 

         6.8019 4.3836 0.4353 4.6686 0.2264 

         1.0750 1.0500 1.0250 1.0750 1.0250 

         0.0000 0.3167 0.2975 0.1174 0.3051 

 

Load in admittances in p.u. 

                                           

 

 


