176 research outputs found

    The icosahedron is clique divergent

    Get PDF
    AbstractA clique of a graph G is a maximal complete subgraph. The clique graph k(G) is the intersection graph of the set of all cliques of G. The iterated clique graphs are defined recursively by k0(G)=G and kn+1(G)=k(kn(G)). A graph G is said to be clique divergent (or k-divergent) if limn→∞|V(kn(G))|=∞. The problem of deciding whether the icosahedron is clique divergent or not was (implicitly) stated Neumann-Lara in 1981 and then cited by Neumann-Lara in 1991 and Larrión and Neumann-Lara in 2000. This paper proves the clique divergence of the icosahedron among other results of general interest in clique divergence theory

    Clique graphs and Helly graphs

    Get PDF
    AbstractAmong the graphs for which the system of cliques has the Helly property those are characterized which are clique-convergent to the one-vertex graph. These graphs, also known as the so-called absolute retracts of reflexive graphs, are the line graphs of conformal Helly hypergraphs possessing a certain elimination scheme. From particular classes of such hypergraphs one can readily construct various classes G of graphs such that each member of G has its clique graph in G and is itself the clique graph of some other member of G. Examples include the classes of strongly chordal graphs and Ptolemaic graphs, respectively

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    On embeddings of CAT(0) cube complexes into products of trees

    Full text link
    We prove that the contact graph of a 2-dimensional CAT(0) cube complex X{\bf X} of maximum degree Δ\Delta can be coloured with at most ϵ(Δ)=MΔ26\epsilon(\Delta)=M\Delta^{26} colours, for a fixed constant MM. This implies that X{\bf X} (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ)\epsilon(\Delta) trees, and that the event structure whose domain is X{\bf X} admits a nice labeling with ϵ(Δ)\epsilon(\Delta) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the computation of the bounds in Theorem 1. Some figures repaire

    Beyond Helly graphs: the diameter problem on absolute retracts

    Full text link
    Characterizing the graph classes such that, on nn-vertex mm-edge graphs in the class, we can compute the diameter faster than in O(nm){\cal O}(nm) time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph HH of a graph GG is called a retract of GG if it is the image of some idempotent endomorphism of GG. Two necessary conditions for HH being a retract of GG is to have HH is an isometric and isochromatic subgraph of GG. We say that HH is an absolute retract of some graph class C{\cal C} if it is a retract of any G∈CG \in {\cal C} of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized O~(mn)\tilde{\cal O}(m\sqrt{n}) time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of kk-chromatic graphs, for every fixed k≥3k \geq 3. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    Put three and three together: Triangle-driven community detection

    Get PDF
    Community detection has arisen as one of the most relevant topics in the field of graph data mining due to its applications in many fields such as biology, social networks, or network traffic analysis. Although the existing metrics used to quantify the quality of a community work well in general, under some circumstances, they fail at correctly capturing such notion. The main reason is that these metrics consider the internal community edges as a set, but ignore how these actually connect the vertices of the community. We propose the Weighted Community Clustering (WCC), which is a new community metric that takes the triangle instead of the edge as the minimal structural motif indicating the presence of a strong relation in a graph. We theoretically analyse WCC in depth and formally prove, by means of a set of properties, that the maximization of WCC guarantees communities with cohesion and structure. In addition, we propose Scalable Community Detection (SCD), a community detection algorithm based on WCC, which is designed to be fast and scalable on SMP machines, showing experimentally that WCC correctly captures the concept of community in social networks using real datasets. Finally, using ground-truth data, we show that SCD provides better quality than the best disjoint community detection algorithms of the state of the art while performing faster.Peer ReviewedPostprint (author's final draft
    • …
    corecore