44 research outputs found

    FCM-Type Fuzzy Coclustering for Three-Mode Cooccurrence Data: 3FCCM and 3Fuzzy CoDoK

    Get PDF
    Cocluster structure analysis is a basic technique for revealing intrinsic structural information from cooccurrence data among objects and items, in which coclusters are composed of mutually familiar pairs of objects and items. In many real applications, it is also the case that we have not only cooccurrence information among objects and items but also intrinsic relation among items and other ingredients. For example, in food preference analysis, users’ preferences on foods should be found considering not only user-food cooccurrences but also the implicit relation among users and cooking ingredients. In this paper, two FCM-type fuzzy coclustering models, that is, FCCM and Fuzzy CoDoK, are extended for revealing intrinsic cocluster structures from three-mode cooccurrence data, where the aggregation degree of three elements in each cocluster is maximized through iterative updating of three types of fuzzy memberships for objects, items, and ingredients. The characteristic features of the proposed methods are demonstrated through a numerical experiment

    An Informed Long-term Forecasting Method for Electrical Distribution Network Operators

    Get PDF
    Northern Powergrid (NPG) is an electrical distribution network operator in the UK servicing Yorkshire and the Northeast of England. Currently they produce long-term eight year forecasts for each substation on the network with an emphasis on an annual maximum demand (MD) figure. The current method used by NPG is thought to oversimplify the problem and does not give enough insight into changes in substation demand. In order to inform their current forecast, the novel CL-ANFIS method uses a combination of machine learning techniques for both forecasting and general insight to the drivers of demand. Also introduced here are novel techniques for determination of MD at NPG and methods for handling load transfer periods. In order to address a problem of this size, a twofold approach is taken. One is to address the drivers of demand such as weather, economic or demographic data sets through the use of statistics and machine learning techniques. The other is to address the long-term forecasting problem with a transparent technique that can aid in explaining the drivers of demand on any given substation. Techniques used include cluster analysis on demographic data sets in addition to ANFIS as a forecasting method. The results of the novel CL-ANFIS method are compared against the current NPG forecast and show how more insight into substation demand profiles can drive the decision-making process. This is done through a combination of using a tailored customer database for NPG and leveraging the information provided by the membership functions of ANFIS

    Data Science: Measuring Uncertainties

    Get PDF
    With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems

    Fuzzy Sets, Fuzzy Logic and Their Applications 2020

    Get PDF
    The present book contains the 24 total articles accepted and published in the Special Issue “Fuzzy Sets, Fuzzy Logic and Their Applications, 2020” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of fuzzy sets and systems of fuzzy logic and their extensions/generalizations. These topics include, among others, elements from fuzzy graphs; fuzzy numbers; fuzzy equations; fuzzy linear spaces; intuitionistic fuzzy sets; soft sets; type-2 fuzzy sets, bipolar fuzzy sets, plithogenic sets, fuzzy decision making, fuzzy governance, fuzzy models in mathematics of finance, a philosophical treatise on the connection of the scientific reasoning with fuzzy logic, etc. It is hoped that the book will be interesting and useful for those working in the area of fuzzy sets, fuzzy systems and fuzzy logic, as well as for those with the proper mathematical background and willing to become familiar with recent advances in fuzzy mathematics, which has become prevalent in almost all sectors of the human life and activity

    Online Multi-Stage Deep Architectures for Feature Extraction and Object Recognition

    Get PDF
    Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. Large datasets with high-dimensional features complicate the implementation of visual architectures in memory constrained environments. This dissertation constructs online learning replacements for the components within a multi-stage architecture and demonstrates that the proposed replacements (namely fuzzy competitive clustering, an incremental covariance estimator, and multi-layer neural network) can offer performance competitive with their offline batch counterparts while providing a reduced memory footprint. The online nature of this solution allows for the development of a method for adjusting parameters within the architecture via stochastic gradient descent. Testing over multiple datasets shows the potential benefits of this methodology when appropriate priors on the initial parameters are unknown. Alternatives to batch based decompositions for a whitening preprocessing stage which take advantage of natural image statistics and allow simple dictionary learners to work well in the problem domain are also explored. Expansions of the architecture using additional pooling statistics and multiple layers are presented and indicate that larger codebook sizes are not the only step forward to higher classification accuracies. Experimental results from these expansions further indicate the important role of sparsity and appropriate encodings within multi-stage visual feature extraction architectures

    Big data-driven multimodal traffic management : trends and challenges

    Get PDF

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Multimedia Retrieval

    Get PDF
    corecore