50 research outputs found

    D3.6.1: Cookbook for IPv6 Renumbering in SOHO and Backbone Networks

    Get PDF
    In this text we present the results of a set of experiments that are designed to be a first step in the process of analysing how effective network renumbering procedures may be in the context of IPv6. An IPv6 site will need to get provider assigned (PA) address space from its upstream ISP. Because provider independent (PI) address space is not available for IPv6, a site wishing to change provider will need to renumber from its old network prefix to the new one. We look at the scenarios, issues and enablers for such renumbering, and present results and initial conclusions and recommendations in the context of SOHO and backbone networking. A subsequent deliverable (D3.6.2) will refine these findings, adding additional results and context from enterprise and ISP renumbering scenarios

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    NAT64/DNS64 in the Networks with DNSSEC

    Get PDF
    Zvyšuj?c? se pod?l resolverů a aplikac? použ?vaj?c? DNS-over-HTTPSvede k vyš?mu pod?lu klientů použ?vaj?c?ch DNS resolvery třet?chstran. Kvůli tomu ovšem selhává nejpouž?vanějš? NAT64 detekčn?metoda RFC7050[1], což vede u klientů použ?vaj?c?ch přechodovémechanismy NAT64/DNS64 nebo 464XLAT k neschopnosti tytopřechodové mechanismy správně detekovat, a t?m k nedostupnostiobsahu dostupného pouze po IPv4. C?lem této práce je navrhnoutnovou detekčn? metodu postavenou na DNS, která bude pracovati s resolvery třet?ch stran, a bude schopná využ?t zabezpečen? DNSdat pomoc? technologie DNSSEC. Práce popisuje aktuálně standardizovanémetody, protokoly na kterých závis?, jejich omezen?a interakce s ostatn?mi metodami. Navrhovaná metoda použ?vá SRVzáznamy k přenosu informace o použitém NAT64 prefixu v globáln?mDNS stromu. Protože navržená metoda použ?vá již standardizovanéprotokoly a typy záznamů, je snadno nasaditelná bez nutnostimodifikovat jak DNS server, tak s?t'ovou infrastrukturu. Protožemetoda použ?vá k distribuci informace o použitém prefixu globáln?DNS strom, umožňuje to metodě použ?t k zabezpečen? technologiiDNSSEC. To této metodě dává lepš? bezpečnostn? vlastnosti nežjaké vykazuj? předchoz? metody. Tato práce vytvář? standardizačn?bázi pro standardizaci v rámci IETF.The rising number of DNS-over-HTTPS capable resolvers and applicationsresults in the higher use of third-party DNS resolvers byclients. Because of that, the currently most deployed method of theNAT64 prefix detection, the RFC7050[1], fails to detect the NAT64prefix. As a result, clients using either NAT64/DNS64 or 464XLATtransition mechanisms fail to detect the NAT64 prefix properly,making the IPv4-only resources inaccessible. The aim of this thesisis to develop a new DNS-based detection method that would workwith foreign DNS and utilize added security by the DNS securityextension, the DNSSEC. The thesis describes current methods ofthe NAT64 prefix detection, their underlying protocols, and theirlimitations in their coexistence with other network protocols. Thedeveloped method uses the SRV record type to transmit the NAT64prefix in the global DNS tree. Because the proposed method usesalready existing protocols and record types, the method is easilydeployable without any modification of the server or the transportinfrastructure. Due to the global DNS tree usage, the developedmethod can utilize the security provided by the DNSSEC and thereforeshows better security characteristics than previous methods.This thesis forms the basis for standardization effort in the IETF.

    An analysis of the risk exposure of adopting IPV6 in enterprise networks

    Get PDF
    The IPv6 increased address pool presents changes in resource impact to the Enterprise that, if not adequately addressed, can change risks that are locally significant in IPv4 to risks that can impact the Enterprise in its entirety. The expected conclusion is that the IPv6 environment will impose significant changes in the Enterprise environment - which may negatively impact organisational security if the IPv6 nuances are not adequately addressed. This thesis reviews the risks related to the operation of enterprise networks with the introduction of IPv6. The global trends are discussed to provide insight and background to the IPv6 research space. Analysing the current state of readiness in enterprise networks, quantifies the value of developing this thesis. The base controls that should be deployed in enterprise networks to prevent the abuse of IPv6 through tunnelling and the protection of the enterprise access layer are discussed. A series of case studies are presented which identify and analyse the impact of certain changes in the IPv6 protocol on the enterprise networks. The case studies also identify mitigation techniques to reduce risk

    IPv4 to IPv6 transition : security challenges

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Implementation of ISO Frameworks to Risk Management in IPv6 Security

    Get PDF
    The Internet of Things is a technology wave sweeping across various industries and sectors. It promises to improve productivity and efficiency by providing new services and data to users. However, the full potential of this technology is still not realized due to the transition to IPv6 as a backbone. Despite the security assurances that IPv6 provides, privacy and concerns about the Internet of Things remain. This is why it is important that organizations thoroughly understand the protocol and its migration to ensure that they are equipped to take advantage of its many benefits. Due to the lack of available IPv4 addresses, organizations are in an uncertain situation when it comes to implementing IoT technologies. The other aim is to fill in the gaps left by the ISO to identify and classify the risks that are not yet apparent. The thesis seeks to establish and implement the use of ISO to manage risks. It will also help to align security efforts with organizational goals. The proposed solution is evaluated through a survey that is designed to gather feedback from various levels of security and risk management professionals. The suggested modifications are also included in the study. A survey on the implementation of ISO frameworks to risk management in IPv6 was conducted and with results as shown in the random sampling technique that was used for conducting the research a total of 75 questionnaires were shared online, 50 respondents returned responses online through emails and social media platforms. The result of the analysis shows that system admin has the highest pooling 26% of all the overall participants, followed by network admin with 20%, then cybersecurity specialists with 16%. 14% of the respondents were network architects while senior management and risk management professionals were 4% and 2% respectively. The majority of the respondents agreed that risk treatment enhances the risk management performance of the IPv6 network resulting from the proper selection and implementation of correct risk prevention strategies

    Migration to a New Internet Protocol in Operator Network

    Get PDF
    This thesis explains the differences between IPv4 and IPv6. Another important part of the thesis is to review the current readiness of IPv6 for worldwide production use. The status (in terms of readiness, adaptability, compatibility and co-existence) of IPv6 in TeliaSonera is discussed in more detail. The most important reason for migrating to IPv6 is the address exhaustion of IPv4. This may not be a big problem in the developed countries but in developing countries the growth of Internet is fast and lots of more addresses are needed. The need for addresses is not only from computers but from many devices connected to the Internet. Attempts to slow down the exhaustion of free addresses have been made but current solutions are not enough. IPv6 will solve the problem by using much longer addresses. It will also add security features and simplify headers to speed up routing. TeliaSonera has started to roll out IPv6 services. At the beginning the corporate customers will receive IPv6 connectivity and consumers will follow later. TeliaSonera International Carrier is already serving its customers with IPv6. It seems that IPv6 is ready, standards have been ready for years and support in devices and software is prevalent. To achieve and keep up the global connectivity, IPv6 is a must and should not be avoided

    An Analysis of Selected IPv6 Network Attacks

    Get PDF
    Tato diplomová práce se zabývá analýzou a demonstrací vybraných IPv6 útoků, konkrétně dvou Man-in-the-Middle útoků a jednoho Denial of Service útoku - Rogue Router Advertisement a Neighbor Cache Poisoning resp. Duplicate Address Detection DoS. V její první části autor prezentuje informace související s danou problematikou a nutné na pochopení problému. Dále autor poskytuje detailní popis realizace daných útoků v praxi za pomoci veřejně dostupných nástrojů. Druhá část práce nastíňuje možnosti prevence proti prezentovaným útokům, analyzuje implementace některých způsobů obrany na Cisco a H3C zařízeních a diskutuje jejích použitelnost.This master's thesis analyses and demonstrates selected IPv6 attacks including two Man-in-the-Middle attacks and one Denial of Service attack - Rogue Router Advertisement, Neighbor Cache Poisoning and Duplicate Address Detection DoS, respectively. In the first part the author presents necessary information related to the issue and provides detailed information on how to realize these attacks in practice using publicly available tools. The second part of the thesis presents various ways of mitigating presented attacks, analyses implementations of some of those countermeasures on Cisco and H3C devices and discussess their applicability.
    corecore