45 research outputs found

    Robust Poisson Surface Reconstruction

    Full text link
    Abstract. We propose a method to reconstruct surfaces from oriented point clouds with non-uniform sampling and noise by formulating the problem as a convex minimization that reconstructs the indicator func-tion of the surface’s interior. Compared to previous models, our recon-struction is robust to noise and outliers because it substitutes the least-squares fidelity term by a robust Huber penalty; this allows to recover sharp corners and avoids the shrinking bias of least squares. We choose an implicit parametrization to reconstruct surfaces of unknown topology and close large gaps in the point cloud. For an efficient representation, we approximate the implicit function by a hierarchy of locally supported basis elements adapted to the geometry of the surface. Unlike ad-hoc bases over an octree, our hierarchical B-splines from isogeometric analysis locally adapt the mesh and degree of the splines during reconstruction. The hi-erarchical structure of the basis speeds-up the minimization and efficiently represents clustered data. We also advocate for convex optimization, in-stead isogeometric finite-element techniques, to efficiently solve the min-imization and allow for non-differentiable functionals. Experiments show state-of-the-art performance within a more flexible framework.

    State Estimation with Model Reduction and Shape Variability. Application to biomedical problems

    Get PDF
    We develop a mathematical and numerical framework to solve state estimation problems for applications that present variations in the shape of the spatial domain. This situation arises typically in a biomedical context where inverse problems are posed on certain organs or portions of the body which inevitably involve morphological variations. If one wants to provide fast reconstruction methods, the algorithms must take into account the geometric variability. We develop and analyze a method which allows to take this variability into account without needing any a priori knowledge on a parametrization of the geometrical variations. For this, we rely on morphometric techniques involving Multidimensional Scaling, and couple them with reconstruction algorithms that make use of reduced model spaces pre-computed on a database of geometries. We prove the potential of the method on a synthetic test problem inspired from the reconstruction of blood flows and quantities of medical interest with Doppler ultrasound imaging

    Smooth representation of thin shells and volume structures for isogeometric analysis

    Get PDF
    The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of “isoparametric”, for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B®ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B®ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B®ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems

    On the Link between Gaussian Homotopy Continuation and Convex Envelopes

    Full text link
    Abstract. The continuation method is a popular heuristic in computer vision for nonconvex optimization. The idea is to start from a simpli-fied problem and gradually deform it to the actual task while tracking the solution. It was first used in computer vision under the name of graduated nonconvexity. Since then, it has been utilized explicitly or im-plicitly in various applications. In fact, state-of-the-art optical flow and shape estimation rely on a form of continuation. Despite its empirical success, there is little theoretical understanding of this method. This work provides some novel insights into this technique. Specifically, there are many ways to choose the initial problem and many ways to progres-sively deform it to the original task. However, here we show that when this process is constructed by Gaussian smoothing, it is optimal in a specific sense. In fact, we prove that Gaussian smoothing emerges from the best affine approximation to Vese’s nonlinear PDE. The latter PDE evolves any function to its convex envelope, hence providing the optimal convexification

    High-performance and hardware-aware computing: proceedings of the second International Workshop on New Frontiers in High-performance and Hardware-aware Computing (HipHaC\u2711), San Antonio, Texas, USA, February 2011 ; (in conjunction with HPCA-17)

    Get PDF
    High-performance system architectures are increasingly exploiting heterogeneity. The HipHaC workshop aims at combining new aspects of parallel, heterogeneous, and reconfigurable microprocessor technologies with concepts of high-performance computing and, particularly, numerical solution methods. Compute- and memory-intensive applications can only benefit from the full hardware potential if all features on all levels are taken into account in a holistic approach

    Doctor of Philosophy

    Get PDF
    dissertationVolumetric parameterization is an emerging field in computer graphics, where volumetric representations that have a semi-regular tensor-product structure are desired in applications such as three-dimensional (3D) texture mapping and physically-based simulation. At the same time, volumetric parameterization is also needed in the Isogeometric Analysis (IA) paradigm, which uses the same parametric space for representing geometry, simulation attributes and solutions. One of the main advantages of the IA framework is that the user gets feedback directly as attributes of the NURBS model representation, which can represent geometry exactly, avoiding both the need to generate a finite element mesh and the need to reverse engineer the simulation results from the finite element mesh back into the model. Research in this area has largely been concerned with issues of the quality of the analysis and simulation results assuming the existence of a high quality volumetric NURBS model that is appropriate for simulation. However, there are currently no generally applicable approaches to generating such a model or visualizing the higher order smooth isosurfaces of the simulation attributes, either as a part of current Computer Aided Design or Reverse Engineering systems and methodologies. Furthermore, even though the mesh generation pipeline is circumvented in the concept of IA, the quality of the model still significantly influences the analysis result. This work presents a pipeline to create, analyze and visualize NURBS geometries. Based on the concept of analysis-aware modeling, this work focusses in particular on methodologies to decompose a volumetric domain into simpler pieces based on appropriate midstructures by respecting other relevant interior material attributes. The domain is decomposed such that a tensor-product style parameterization can be established on the subvolumes, where the parameterization matches along subvolume boundaries. The volumetric parameterization is optimized using gradient-based nonlinear optimization algorithms and datafitting methods are introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed order of accuracy. Then, a visualization method is proposed allowing to directly inspect isosurfaces of attributes, such as the results of analysis, embedded in the NURBS geometry. Finally, the various methodologies proposed in this work are demonstrated on complex representations arising in practice and research
    corecore