10,099 research outputs found

    Combustion regimes in sequential combustors: Flame propagation and autoignition at elevated temperature and pressure

    Full text link
    This numerical study investigates the combustion modes in the second stage of a sequential combustor at atmospheric and high pressure. The sequential burner (SB) features a mixing section with fuel injection into a hot vitiated crossflow. Depending on the dominant combustion mode, a recirculation zone assists flame anchoring in the combustion chamber. The flame is located sufficiently downstream of the injector resulting in partially premixed conditions. First, combustion regime maps are obtained from 0-D and 1-D simulations showing the co-existence of three combustion modes: autoignition, flame propagation and flame propagation assisted by autoignition. These regime maps can be used to understand the combustion modes at play in turbulent sequential combustors, as shown with 3-D large eddy simulations (LES) with semi-detailed chemistry. In addition to the simulation of steady-state combustion at three different operating conditions, transient simulations are performed: (i) ignition of the combustor with autoignition as the dominant mode, (ii) ignition that is initiated by autoignition and that is followed by a transition to a propagation stabilized flame, and (iii) a transient change of the inlet temperature (decrease by 150 K) resulting into a change of the combustion regime. These results show the importance of the recirculation zone for the ignition and the anchoring of a propagating type flame. On the contrary, the autoignition flame stabilizes due to continuous self-ignition of the mixture and the recirculation zone does not play an important role for the flame anchoring

    VIOLA - A multi-purpose and web-based visualization tool for neuronal-network simulation output

    Full text link
    Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.Comment: 38 pages, 10 figures, 3 table

    Management and display of four-dimensional environmental data sets using McIDAS

    Get PDF
    Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback

    Volume-Enclosing Surface Extraction

    Full text link
    In this paper we present a new method, which allows for the construction of triangular isosurfaces from three-dimensional data sets, such as 3D image data and/or numerical simulation data that are based on regularly shaped, cubic lattices. This novel volume-enclosing surface extraction technique, which has been named VESTA, can produce up to six different results due to the nature of the discretized 3D space under consideration. VESTA is neither template-based nor it is necessarily required to operate on 2x2x2 voxel cell neighborhoods only. The surface tiles are determined with a very fast and robust construction technique while potential ambiguities are detected and resolved. Here, we provide an in-depth comparison between VESTA and various versions of the well-known and very popular Marching Cubes algorithm for the very first time. In an application section, we demonstrate the extraction of VESTA isosurfaces for various data sets ranging from computer tomographic scan data to simulation data of relativistic hydrodynamic fireball expansions.Comment: 24 pages, 33 figures, 4 tables, final versio
    corecore