55 research outputs found

    Memory Hierarchy Design for Next Generation Scalable Many-core Platforms

    Get PDF
    Performance and energy consumption in modern computing platforms is largely dominated by the memory hierarchy. The increasing computational power in the multiprocessors and accelerators, and the emergence of the data-intensive workloads (e.g. large-scale graph traversal and scientific algorithms) requiring fast transfer of large volumes of data, are two main trends which intensify this problem by putting even higher pressure on the memory hierarchy. This increasing gap between computation speed and data transfer speed is commonly referred as the “memory wall” problem. With the emergence of heterogeneous Three Dimensional (3D) Integration based on through-silicon-vias (TSV), this situation has started to recover in the past years. On one hand, it is now possible to improve memory access bandwidth and/or latency by either stacking memories directly on top of processors or through abstracted memory interfaces such as Micron’s Hybrid Memory Cube (HMC). On the other hand, near memory computation has become worthy of revisiting due to the cost-effective integration of logic and memory in 3D stacks. These two directions bring about several interesting opportunities including performance improvement, energy and cost reduction, product miniaturization, and modular design for improved time to market. In this research, we study the effectiveness of the 3D integration technology and the optimization opportunities which it can provide in the different layers of the memory hierarchy in cluster-based many-core platforms ranging from intra-cluster L1 to inter-cluster L2 scratchpad memories (SPMs), as well as the main memory. In addition, by moving a part of the computation to where data resides, in the 3D-stacked memory context, we demonstrate further energy and performance improvement opportunities

    Heurísticas bioinspiradas para el problema de Floorplanning 3D térmico de dispositivos MPSoCs

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 20-06-2013Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Architecting Memory Systems for Emerging Technologies

    Full text link
    The advance of traditional dynamic random access memory (DRAM) technology has slowed down, while the capacity and performance needs of memory system have continued to increase. This is a result of increasing data volume from emerging applications, such as machine learning and big data analytics. In addition to such demands, increasing energy consumption is becoming a major constraint on the capabilities of computer systems. As a result, emerging non-volatile memories, for example, Spin Torque Transfer Magnetic RAM (STT-MRAM), and new memory interfaces, for example, High Bandwidth Memory (HBM), have been developed as an alternative. Thus far, most previous studies have retained a DRAM-like memory architecture and management policy. This preserves compatibility but hides the true benefits of those new memory technologies. In this research, we proposed the co-design of memory architectures and their management policies for emerging technologies. First, we introduced a new memory architecture for an STT-MRAM main memory. In particular, we defined a new page mode operation for efficient activation and sensing. By fully exploiting the non-destructive nature of STT- MRAM, our design achieved higher performance, lower energy consumption, and a smaller area than the traditional designs. Second, we developed a cost-effective technique to improve load balancing for HBM memory channels. We showed that the proposed technique was capable of efficiently redistributing memory requests across multiple memory channels to improve the channel utilization, resulting in improved performance.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145988/1/bcoh_1.pd

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Detector Technologies for CLIC

    Full text link
    The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear electron-positron collider under development. It is foreseen to be built and operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. It offers a rich physics program including direct searches as well as the probing of new physics through a broad set of precision measurements of Standard Model processes, particularly in the Higgs-boson and top-quark sectors. The precision required for such measurements and the specific conditions imposed by the beam dimensions and time structure put strict requirements on the detector design and technology. This includes low-mass vertexing and tracking systems with small cells, highly granular imaging calorimeters, as well as a precise hit-time resolution and power-pulsed operation for all subsystems. A conceptual design for the CLIC detector system was published in 2012. Since then, ambitious R&D programmes for silicon vertex and tracking detectors, as well as for calorimeters have been pursued within the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector requirements with innovative technologies. This report introduces the experimental environment and detector requirements at CLIC and reviews the current status and future plans for detector technology R&D.Comment: 152 pages, 116 figures; published as CERN Yellow Report Monograph Vol. 1/2019; corresponding editors: Dominik Dannheim, Katja Kr\"uger, Aharon Levy, Andreas N\"urnberg, Eva Sickin

    Micromachining

    Get PDF
    To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends
    • …
    corecore