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Chapter 1

Introduction

In 2006, Dr Wang, former CEO of Samsung Electronics said “Rapid adoption of

3D integration technology seems to be essential and, thankfully, unavoidable” [71].

Many advances have been presented ever since and commercial products are already

available. However, the full potential of 3D integration is yet to be reached.

Although 3D integration was first proposed in the early 1980s, it did not raise

a great deal of attention until the mid 2000s, as silicon devices started to approach

their limits (see [79]). A lot of resources and effort are being invested nowadays in

improving the integration technologies required for the mass scale fabrication of 3D

architectures. To explain this trend, it is necessary to summarize the evolution of

the semiconductor industry since the mid 1990s. Ever since, not only the perfor-

mance of the fabricated chips has skyrocketed, but also the released huge computing

power has come to be within easy reach with the massive development of mobile

devices. However, engineers and designers have come upon many difficulties in this

journey. As explained in the following, these issues have been brilliantly addressed

in some cases, and perhaps postponed to a near future in others.

Initially, frequency scaling and architectural innovations kept the performance

enhancement trend going. However, the increase of clock speed slowed in the mid

2000s due to the fact that pushing frequency above a given limit is not efficient in

terms of power consumption. Moreover, the resulting high temperatures negatively

affect reliability and lifetime of silicon chips.
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Therefore, the industry moved towards architectures with multiple processors

working at a lower clock speed to meet the performance requirements imposed by

high-demanding applications like multimedia processing. This way, even though

frequency stalled or decreased, the number of executed instructions per second con-

tinued to rise.

The ever increasing need of performance led to increment the number of cores

per die. This increment was made possible by device shrinking together with ad-

vances in integration technology and communication architectures, resulting in a

higher integration density. Thus, chips from consecutive generations presented a

similar area. As a replication strategy has been followed, the number of integrated

cores has typically doubled from one generation to the next, resulting in a higher

bandwidth demand. Moreover, recent processors have reincorporated Simultane-

ous MultiThreading techniques, resulting in an increased virtualization and an even

stronger need of bandwidth as more bus transactions are required. Figure 1.1 de-

picts the evolution of the number of integrated processors in a single die, as stated

by Stephen Rusu in [129].

Figure 1.1: Evolution of the number of integrated processors per die as shown in [129]

At the same time, the improvements made to reduce wire delays have not

matched the increasing frequency. This issue is becoming more relevant since chip

area is expected to increase due to the fact that integration density is reaching its

physical limit. In fact, as the transistor size decreases, device leakage current in-

creases while the variability worsens [52]. Since it will not be possible to reduce
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transistor size indefinitely, the area needed to integrate more and more cores will

significantly increase. As a consequence, the chip area accessible within one cycle

will continue to be reduced at every generation. This reduction, in turn, leads to

higher communication latencies. Therefore, the increasing and slower transactions

will set the limit for the performance improvement provided by the integration of

more cores in a single processor [16].

In brief, it can be said that easy performance gains will no longer be possible.

The semiconductor industry must therefore make substantial moves to keep up with

the demanded performance [91]. Integrating a higher number of processors in a

single chip will only be beneficial if an increased bandwidth is provided and the dis-

tance between interconnected components is reduced. This is where 3D integration

comes into play. In fact, stacking vertically connected ICs leads to an overall wire

length reduction and provides high bandwidth connections between layers. More-

over, recent Network-on-Chip (NoC) communication approaches are also compatible

with 3D architectures [116]. Broadly speaking, in 3D architectures, total wiring is

expected to drop by a factor of (Nlayers)
1/2, as opposed to the quadratical increase of

2D architectures [44]. For example, a two layer design of a Pentium IV resulted in a

15% performance increment thanks to an improved design of the existing pipelines

[102]. Additionally, vertical connections between layers implemented with Through

Silicon Vias (TSVs) provide a massive bandwidth. For instance, this higher capacity

can be exploited to speedup memory access operations if memories and processors

are connected with TSVs.

Therefore, 3D integration is considered a key technology capable of providing

the demanded performance enhancement in the coming years. Such technology

combined with device scaling was first seen as a way to more than double device

density in each generation, resulting in “More than Moore” applications. However,

as device scaling becomes harder, 3D chips will more likely be a way to keep on

track with the well-known Moore Law [113] (“More Moore”) [101]. Additionally, 3D

integration has the potential to provide benefits other than performance enhance-

ment. In fact, wire length reduction also results in a significant decrease of both

power consumption and timing issues due to clock skew and jitter [102]. Moreover,
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heterogeneous integration is allowed as different process technologies can be com-

bined in a single stack. Finally, the modular integration of layers can reduce the

overall cost and design effort [52]. In summary, 3D integration provides:

1. Higher performance due to a shorter wire length and a higher bandwith pro-

vided by TSVs (vertical distances are shorter).

2. Power reduction thanks to a reduced footprint of clock and power networks,

as compared to an equivalent 2D architecture.

3. Heterogeneous integration.

4. Modular integration resulting in a reduced design effort.

As a consequence, 3D integration has risen a great deal of interest in both the

industrial and academic worlds. Table 1.1 shows some of the organizations involved

in research and development projects related to 3D integration (see [124]).

AMERICA ASIA EUROPE

Albany Nanotech Amkor 3D-PLUS
Cubic Wafer ASE CEA-LETI
Freescale ASET EMFT Munich
Ga Tech Chartered Fraunhofer IZM
IBM Elpida IMEC
Intel Fujikura Infineon

Lincoln Labs Hitachi NXP
Micro IME Sensonor
MIT ITRI Siemens

NC State KAIST SINTEF
RPI NEC STM
RTI Oki TU Chemnitz

SANDIA National Labs Renesas VTI
Sematech Samsung
Stanford Sanyo

Texas Instruments Sharp
Tezzaron Sony

Univ. Arkansas STATSChipPAC
Univ. Minn Tohoku Univ.

Xilinx Toshiba
Ziptronix TSMC

ZyCube

Table 1.1: 3D activity as shown in [124]
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3D integration involves several technological possibilities giving birth to a wide

range of end products. Some commercial applications requiring a simple packaging

are already commercialized. On the other hand, initiation of mass-market high per-

formance 3D IC products has not yet taken place as technological requirements can

not be met with low production costs [124]. Additionally, whether or not adopting

3D technology is a complicated business decision as the associated risk factors are

still higher than those corresponding to past changes of process technology. Several

fabrication steps have to be improved, such as vias formation, thin-wafer handling,

wafer alignment, and bonding [92]. Other major concerns are related to test is-

sues [94] and the lack of Electronic Design Automation (EDA) tools suitable for

3D design [104], [92]. In fact, the industry needs the creation of standards and a

tool infrastructure for 3D integration. In particular, 3D place-and-route algorithms,

power and timing models, and floorplanning tools are urgently required [56]. Figure

1.2 shows the status of 3D IC research and development as of 2009 [94].

Figure 1.2: Status of 3D IC R&D.

As depicted in the figure, there is a need for design automation tools. Such

tools must avoid high temperatures and high thermal gradients as these two factors
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negatively impact the performance, reliability and lifetime of silicon chips [44], [90].

These critical issues are magnified in 3D ICs because of two main reasons. First,

power density increases with the number of layers as more devices are packed in a

smaller area. Second, additional layers are stacked farther from the heat sink, hin-

dering heat dissipation. Therefore, managing thermals is essential for the widespread

adoption of 3D integration [102], [52], [104]. However, traditional floorplanners failed

to consider thermal restrictions during the optimization process.

Thermal-aware floorplanning is used to reduce the peak temperature of the chip,

generally looking for an optimum floorplan that minimizes area, temperature, and

wire length (translated into performance). The idea behind this technique is that

strictly regular arrangements do not lead to configurations with the required ther-

mal characteristics. In fact, if a hot block is placed beside cooler blocks, lateral

spreading of heat takes place. As a result, the temperature of the hot block is re-

duced [131]. To illustrate these thermal issues, we show in Figure 1.3 the thermal

maps of a four-layered 48 cores architecture inspired in the Niagara 2 and Niagara

3 platforms (such architecture will be used as benchmark later in this work). The

depicted configuration corresponds to a regular arrangement of the SPARC cores

(SPC), Power6 cores (P6), memories (L2) and crossbars (Cross) of the architecture.

As a consequence, the SPARC cores are placed above the others producing severe

hotspots reaching 411.82K.

Thermal-aware floorplanning techniques have become more and more relevant

since device shrinking and frequency scaling have led to higher power densities re-

sulting in higher temperatures. There are a number of proposals targeting the op-

timization 2D circuits that have been extended to deal with the new 3D platforms.

However, they generally fail to provide thermally optimal floorplans in a reduced

time. As will be shown in this work, there is a need for new methods better adapted

to the three dimensional scenario.

Even though a complete toolchain covering all the steps of the design process

has not yet been introduced, there already exist useful tools for 3D architectural

exploration. For instance, a number of thermal simulators have been proposed,
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Figure 1.3: Thermal map of the 4 layers of the baseline configuration of the 48 cores
platform

generally employed to make sure that candidate floorplans do not exhibit extreme

temperatures or elevated thermal gradients [75], [24], [145], [149], and [138]. Another

example is the simulation of liquid cooling necessary for a number of 3D platforms,

namely for 3D MPSoCs [9], [41], and [130]. As will be shown in this work, the

produced cooling effect must be considered in the optimization process to obtain

configurations presenting a good tradeoff between performance and thermal behav-

ior.

From a computational point of view, the floorplanning problem is classified as

NP-Hard problem (see [17] and [58]). The addition of the third dimension results

in an even bigger design space as a greater number of configurations are possible.

Moreover, candidate configurations typically present a tradeoff between thermal
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behavior and performance, which represent fundamental features of 3D platforms.

Thus, appropriate methods are required to explore the solution space in an efficient

manner and obtain thermally and performance optimized floorplans.

In this work, Multi-Objective Evolutionary Algorithms (MOEAs) are employed

to attack the thermal-aware floorplanning of 3D MPSoCs. These algorithms rep-

resent an extension of Evolutionary Algorithms (EAs). In a nutshell, EAs are

population-based metaheuristics inspired in Darwin’s concept of evolution capable

of obtaining good solutions of complex problems in a reduced time. MOEAs, in

turn, incorporate the concept of Pareto optimality and are widely recognized as an

efficient way of obtaining solutions that present a good tradeoff between two or more

conflictive objectives. Therefore, MOEAs represent a suitable tool for the optimiza-

tion of the targeted architectures, resulting in configurations that simultaneously

minimize temperature and maximize performance.

Given the relevance of 3D MPSoCs and the lack of floorplanning tools well

adapted for their optimization, we establish the following objectives:

• To make sure that peak temperatures of large 3D MPSoCs remain in accept-

able levels while providing an increased performance.

• To study the suitability of existing floorplanning proposals adapted to per-

form the optimization of the targeted large 3D MPSoCs. In a similar way,

it is necessary to compare the validated techniques against new floorplanning

representations and algorithms.

• It is necessary to provide manufacturers with a wide range of optimal solutions

presenting a good tradeoff between performance and thermal behavior. This

way, chip manufacturers can select the most suitable floorplan according to

their own criteria.

• To propose parallel thermal-aware floorplanning techniques to speedup the

architectural exploration process.

• To compare the suitability of several existing thermal models as guiding cost

function in the studied floorplanning context.
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• To study whether or not additional cooling techniques such as microfluidic

cooling are necessary. If required, consider the resulting effect in the optimiza-

tion process.

Once the study of the thermal-aware floorplanning of 3D MPSoCs has been

motivated and the main objectives of this work have been stated, we describe the

structure of this thesis and propose a brief overview of the chapters composing this

work.

In Chapter 2, we motivate the exploration of 3D MultiProcessor Systems-on-

Chip. To this end, we present the existing 3D integration technologies and study

their compatibility with different design possibilities. We also introduce several

thermal models used in this work to simulate the thermal behavior of the targeted

architectures.

Next, in Chapter 3, we present the most relevant floorplanning proposals and

adapt them to optimize three large architectures based on the Niagara platform.

The presented comparative study shows that new multi-objective techniques are re-

quired to deal with the specific constraints imposed by large 3D MPSoCs.

The Multi-Objective Evolutionary Algorithms adopted in this work to attack

the thermal-aware floorplanning problem are explained in Chapter 4. To introduce

these methods, a brief introduction to multi-objective optimization is proposed. We

also present Evolutionary Algorithms and the main parallelization strategies typi-

cally followed to accelerate these techniques.

Chapter 5 gathers several contributions of this work. First, a parallel imple-

mentation of an existing multi-objective evolutionary floorplanner is presented in

order to speedup the optimization. We also introduce additional knowledge to the

problem by means of a power profiling step previous to the thermal-aware floor-

planning process to better guide the search. Finally, the performance and thermal

optimization achieved integrating several thermal models in the floorplanning pro-

cess is compared.
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A new representation, namely Direct Mapping, is proposed in Chapter 6. Such

representation, in combination with a MOEA designed to perform the optimization

of 3D MPSoCs, leads to outperform previous floorplanning proposals. Additionally,

the new floorplanner is guided by thermal simulations that consider the inclusion of

microfluidic channels in intermediate layers of the 3D stack.

Even though the previous chapters include partial conclusions, the most relevant

ones are summarized in Chapter 7. Future improvements and new research possi-

bilities are also discussed in this chapter. Finally, we provide the references of the

publications resulting from the presented research as well as the projects and grants

with which this work has been funded.

Finally, the motivations, proposals and most relevant results of this thesis are

summarized and translated to Spanish in Appendix A.



Chapter 2

3D Integration

3D Integration is widely recognized as a viable solution to provide increased per-

formance and chip footprint reduction in the absence of scaling. The performance

improvement is allowed by a decreased total wiring length, and thus reduced inter-

connect delay times, an increased number of vertical interconnects, and heteroge-

neous integration.

3D Technology can be broadly defined as any technology that stacks vertically

interconnected semiconductor elements. Under this definition, this technology com-

prises a wide range of applications that differ from each other, mainly, in the re-

quired interconnect density. In fact, some systems require only a few Through-

Silicon Vias (TSVs) while others could need extremely high densities (in the range

of 100 pins/cm2) [159]. A great deal of applications exist requiring the full range of

possible interconnect densities.

Thus, the term 3D Integration has been used in the last ten years to report a

wide range of applications and technologies that present tradeoffs between perfor-

mance, fabrication cost, power consumption and reuse possibilities among others.

Some applications such as 3D Packages are already commercially available while

other approaches have only been demonstrated with prototypes. For instance, [115]

reports the fabrication of a 3D Image sensor with vias. Another example is the

report by M. Koyanagi et. al. [85], in which the authors present the successful

fabrication of four different prototypes using 3D TSV technology: a microprocessor
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test chip, a memory test chip, an image sensor chip, and an artificial retina chip.

When it comes to the 3D Integration processes conceived to burst the perfor-

mance of existing high-performance systems, it can be said that the allowing tech-

nology is not yet ready for mass production. However, some of the involved steps

are already mature, and the first commercially viable products are expected in the

short term future. It has been showed that such architectures have the potential

to provide huge benefits in the context of high performance systems. For example,

Jacob et. al. [78] stated that 3D can break the memory wall. A similar work [99]

studied the performance of a single-core processor in different 3D scenarios.

A lot of effort and resources have been dedicated to develop 3D Integration tech-

nologies in the last years. As a consequence, the technological constraints imposed

by the different 3D processes such as via pitch and via density are evolving quickly,

making it difficult to develop universal tools for the design of 3D circuits. As a

matter of fact, there is currently a clear gap between technological constraints and

design approaches as the latter are based on assumptions rather than on specific

technological processes. It is therefore difficult to make the link between the differ-

ent integration approaches and their potential applications.

This chapter attempts to motivate the architectural and design choices made in

this work, namely the exploration of 3D MultiProcessor Systems-on-Chip. The first

two sections present the state-of-the-art of the technologies allowing the fabrication

of 3D platforms and their compatibility with the emerging design possibilities. The

last section introduces the thermal models used later in this work to guide the

optimization of 3D chips.

2.1 3D Integration Approaches

In this section we briefly present the different methods and technologies involved

in the fabrication of 3D chips. Note that, as the allowing technology is evolving

quickly, so is the employed terminology leading to certain confusions. In this section,

we classify, label and describe the different 3D Integration alternatives to avoid the
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misunderstandings caused by the changing terminology in the remaining of this

work.

2.1.1 Stacking Alternatives

Nowadays, several processes leading to three dimensional architectures or circuits

have been proposed and demonstrated. In a nutshell, entire wafers can be stacked

(bonded) in top of other wafers, and then diced to obtain separate 3D chips. In-

dividual dies can also be stacked directly and there are other hybrid combinations

such as Die-to-Wafer stacking involving partial and complete wafers. These different

possibilities are illustrated in Figure 2.1

(a) Wafer-to-Wafer (b) Die-to-Die

(c) Die-to-Wafer

Figure 2.1: Schematic representation of major 3D stacking approaches

Wafer-to-Wafer In the Wafer-to-Wafer approach (see Figure 2.1(a)), components

are fabricated with two or more wafers. These wafers must be aligned, bonded and

finally diced into several 3D chips. Full-wafer bonding is harder to align but provides

the best manufacturing throughput [102]. However, a reduced yield is obtained as

the stacked dies composing a 3D chip can not be tested separately. As a conse-

quence, the entire chip fails if one of the stacked dies is defective.



14 3D Integration

Die-to-Die Figure 2.1(b) shows a schematic representation of the Die-to-Die ap-

proach. In this case, components are built on separate dies. These dies are typically

thinned, aligned and bonded. The different dies forming the stack can be tested

separately, leading to an increased yield.

Die-to-Wafer The Die-to-Wafer, as depicted in Figure 2.1(c), is a hybrid ap-

proach in which electronic components are built on two wafers. One of the wafers

is then diced, aligned and bonded in specific sites of the second wafer. Additional

dies can be stacked before dicing.

Even though each of these stacking alternatives presents pros and cons from a

cost or yield perspective, the current trend in industry seems to be in favor of die-

to-die stacking [94].

Besides the stacking possibilities mentioned above, vertical connections are gen-

erally used to classify the different 3D Integration schemes. Namely, most of the

state-of-the-art reviews clearly distinguish between the architectures with and with-

out Through-Silicon Vias [92] [124]. In fact, according to [124], the spectrum of 3D

Integration technologies can be classified in the following main categories:

1. Stacking of packages or embedded dies without TSVs, also called 3D packaging

2. 3D TSV technology divided in:

• 3D Integrated Circuits (3D-IC) with high TSV densities

• 3D ICs with low TSV densities, also called 3D System-on-Chip

We now present an overview of the characteristics of these different 3D Integra-

tion approaches.

2.1.2 Packaging-Based Chip Stack

3D packaging reduces the chip footprint by stacking separate chips in a single pack-

age. However, this packaging does not integrate the different chips into a single

circuit. In fact, off-chip signaling is used for communication, just as if the stacked



2.1 3D Integration Approaches 15

chips were placed in separate packages on a 2D circuit board. Figure 2.2 shows a

schematic representation of a 3D package with off-chip signaling. A wire bonding

strategy is used in this case. Note that there are other alternatives not illustrated

here such as flip-chip bonding, however they both present the same main features.

Figure 2.2: Schematic representation of a 3D stack with off-chip signaling

This approach rose a great deal of interest in the late 90s, when 3D packaging

was seen as a way to provide wire and area reduction. The latter was especially

desirable in the context of an increasing demand for low power consumption, low

weight and compact portable devices [2]. It also started to be clear that wiring

was to become a limiting factor as it was unable to keep up with the performance

enhancement provided by technology scaling [86]. The improvement of the allowing

technologies made this research trend continue and gain interest in the following

years [148], [96].

This approach was demonstrated for the fabrication of memories and real-time

image processing chips [71]. However, several physical design and technological is-

sues common to most of the 3D fabrication processes were detected [96]. These

technological issues will be discussed later in this chapter.

Nowadays, 3D packaging is already mature and is at the core of commercially

available products since 2006, being widely used in cell phones [104]. However, con-

sidering on-chip vertical connections between layers by means of Through-Silicon

Vias allows for further wire reduction and for higher integration density [82].
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3D Packages present a poor cost-effectiveness ratio due to a number of redun-

dancy/repair issues. In this respect, 3D Integrated Circuits are able to overcome

these limitations through easy implementations of redundancies and repairs. In fact,

silicon technology based on 3D Integration has been drawing much attention because

it regarded as the only practical solution to keep the performance enhancement trend

going [71].

2.1.3 3D Integrated Circuits

The term 3D IC typically designates a 3D chip with on-chip signaling. This means

that the different layers of the stacked architecture communicate vertically by means

of TSVs. In such case, the selection of the integration technology is crucial as it

impacts the achievable die-to-die (d2d) via pitch, which in turn impacts the vertical

interconnect capability. In fact, both the vertical pitch and bandwidth requirements

play a key role to determine the appropriate integration approach for a given applica-

tion. Other decision factors are silicon efficiency, complexity, thermal management,

speed, and power consumption [2], [159].

Most authors distinguish between 3D ICs with very high or low TSVs densities.

The first approach is generally employed for transistor-level 3D designs as it requires

fine-pitch vias, and TSVs density and via pitch are inversely correlated. In this case,

the vias are used as wire to connect different transistors of a CMOS circuit. The sec-

ond, usually called 3D System-on-Chip (3D SoC), is employed to design 3D circuits

at a coarser granularity level. For instance, a 2D processor can be repartitioned into

several layers connected with TSVs or 3D MPSoCs can be designed.

Transistor-level Build-ups The fabrication of Transistor-level Build-ups is al-

lowed by several technological processes such as Transistors Formed Inside On-Chip

Interconnect, Transistors Formed on Single-Crystal Silicon Films, or Transistors

Formed on Polysilicon Films. Nowadays, the applications resulting of these tech-

niques are respectively signal amplifiers for optical interconnects, low-performance

nonvolatile memory, and very high-density SRAMs and NANDs [104]. While the

three techniques seem promising for the fabrication of future commercialized prod-

ucts, only the latter will provide a significant performance enhancement. This ap-
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proach requires an important effort as 3D designs have to be made from scratch.

The fact that memories present a regular structure makes them good candidates

for this technological process. As will be discussed later in this chapter, it is not

expected that more complex and irregular circuits will benefit from this 3D Integra-

tion paradigm in the short term.

As an example, we illustrate the approach to manufacture transistors on polysil-

icon films layer by layer with tungsten interlayer vias in Figure 2.3. In this case,

a small piece of silicon film is deposited followed by either laser heating or rapid

thermal anneal to recrystallize the silicon. The transistors are then formed by Back-

End-Of-Line compatible processing.

Figure 2.3: Transistors Formed on Polysilicon Films

3D ICs with low TSVs densities In this case, devices are stacked and inter-

connected at a global level with much lower TSV densities. Note that 3D ICs with

low TSVs densities are also referred to as 3D Systems-on-Chip. There are several

demonstrations of the fabrication of 3D chips following this approach. For instance,

in 2006, J.A. Burns reports the fabrication of three 3-tier digital an analog small

scale circuits: a 3D ring oscillator, a 1024×1024 visible imager, and a 64×64 Geiger

mode laser radar chip [19]. This approach has been predicted to be a key technol-

ogy to deal with the so-called “wiring crisis”. In fact, further transistor integration

densities can be reached, allowing to keep up with the Moore Law (“More Moore”).

Moreover, it is compatible with heterogeneous integration technologies [124] and

could result in “More than Moore” applications if combined with further transistor

scaling. Both academic and industrial organizations are developing and evaluating
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a variety of such 3D Technologies [104]. However, as of today, performance needs

can not be met by current TSV technologies with sufficient low production costs

[124].

2.2 Difficulties and Challenges

3D Integration targets a wide range of applications presenting different power and

performance requirements. Therefore, different process flows are needed in each

case. However, some technological processes are common and critical in all the 3D

Integration approaches. These crucial steps are briefly described in this section.

2.2.1 Strata Orientation

The orientation of the die in the 3D stack, namely Face-to-Back or Face-to-Face,

has important implications for design. The choice impacts the distance between the

transistors in different layers, and more importantly, it determines the fabrication

process of the 3D chip. Figure 2.4 shows two two-layered 3D chips formed with

the Face-to-Face (Figure 2.4(b)) and Face-to-Back approaches (Figure 2.4(a)). Note

that, in a 3D chip, multiple strata orientations can be combined, however the impli-

cations found in a two-die stack can be used to illustrate the most relevant issues.

(a) Face-to-Back (b) Face-to-Face

Figure 2.4: 3D fabrication methods: Face-to-Face and Face-to-Back.
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Face-to-Back

The “Face-to-Back” method bonds the front side of the bottom die with the

back side of the top die. Similar approaches were developed for 3D packages at IBM

and for the fabrication of CMOS and MEMS applications [159] [144].

Figure 2.4(a) depicts a two-layer 3D chip following the Face-to-Back approach.

The final height of the chip basically depends on the thickness of the top wafer,

usually thinned before the bonding process. This technique requires a handle wafer

that can introduce distortions that make alignment difficult. The typical thickness

of the top wafer is on the order of 25-50µm, which limits the via pitch to values on

the order of 10-20µm. It is expected that technological advances will help reducing

these numbers in the coming years [159]. In this work, the Face-to-Back strategy is

adopted to design large 3D MPSoCs as it allows for homogeneous vertical connec-

tions when more than two layers are stacked.

Face-to-Face

Figure 2.4(b) shows the “Face-to-Face” approach which joins the front side (face)

of two wafers. With this technique, it is possible to achieve much higher intercon-

nect densities than with the Face-to-Back assembly. The via pitch is limited by the

alignment tolerance of the bonding process. As bonding systems reach tolerances of

1-2 µm, it is predicted that interconnect pitches of 10 µm or smaller will be achieved

with this approach. However, this connectivity between layers would only be feasible

for two-layer stacks. Otherwise, the via pitch will still be limited to values on the

order of 10-20µm [159].

2.2.2 Wafer Thinning

Wafer thinning allows the distance between the different layers to be reduced, al-

lowing a high density of vertical interconnects. The great challenge of the thinning

process is the uniformity requirement, typically < 1−2µm, with no natural etch stop

in the case of bulk Si. There are demonstrations of robust processes in which a great

uniformity is achieved but the thickness of the stacked dies have to be > 20µm. To

ease this technological difficulty, several approaches consider the use of an etch-stop
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such as an ion implanted layer, a graded SiGe layer, or a buried oxide layer [159].

2.2.3 Alignment

As mentioned above, the alignment tolerances have an impact on the achievable via

pitch, and thus, on the density of vertical interconnects. The alignment tolerance

depends on the stacking process. Die-to-Die stacking allows for tolerances in the

range of 1 − 20µm depending on the speed of the assembly process. As of 2012,

Wafer-to-Wafer systems can achieve an alignment accuracy of 1µm or smaller

2.2.4 Bonding

The bonding process of two dies presents several mechanical, electrical, and thermal

constraints and is a key issue being addressed. To be able to determine the right

bonding alternative, the alignment, pre-bonding, and actual bonding must represent

different steps of the process flow. In [159], Albert M. Young and Steven J. Koester

report three different technological processes to perform the bonding step developed

at IBM.

The first one is the Copper-to-Copper Compression Bonding in which a thermo-

compression bond is used to attach two wafers. This bond can provide electrical

connection between the layers but requires elevated temperatures greater than al-

lowed by CMOS BEOL processes (BEOL metalization typically needs the bonding

process to be performed at temperatures lower than 400◦C).

The second is the Hybrid Cu/Adhesive Bonding which is a variation of the previ-

ous approach in which the adhesive provides an improved bond strength. Moreover,

it increases mechanical integrity and presents a higher thermal stability. However,

this method is still in a development phase.

The third technique reported by IBM is called Oxide-Fusion Bonding. This

approach also requires low temperature processes and extreme planarization. On

the other hand, this approach is expected to provide very high-density interconnects

in a near future [159] [104].
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2.2.5 TSVs

TSVs are at the core of 3D Integration as they are fundamental to really take

advantage of the third dimension from a performance perspective. TSVs have been

developed in the production environment in companies such as IBM, Toshiba, and

ST Microelectronics [159]. Barely speaking, TSVs are vertical holes created in silicon

using an etching and filling process. There is a number of reports on the successful

fabrication of TSVs see [104] and therein and [85].

Via etching: The etching refers to the creation of the via. Several alternatives

such as laser drilling or Deep Reactive Ion Etching (DRIE) have been demon-

strated [104].

Via filling: The filling corresponds to the deposition of a highly conductive mate-

rial in the walls of the constructed via. Copper (Cu) and Tungsten (W) are usually

employed to this end. Note that the latter allows for better aspect ratios [159].

Dimensions: As mentioned in Section 2.2.1, TSVs dimensions depend on sil-

icon thickness (specially Cu vias), and other process considerations such as wafer

alignment and thinning and represents a key feature for 3D circuits designers. In

fact, the floorplanning of the different components of a system has to respect the via

placement. Moreover, the placement of such TSVs impacts the overall wire length,

and thus, the performance, of the 3D chip.

Moment in the process flow: According to Albert M. Young et. al. [159],

the timing of creation of the TSVs can be classified in the following categories:

Pre-backend frontside via, Post-backend frontside via, and Backside via etch. These

approaches impose different design rules and restrictions such as low aspect ratios in

the case of the Backside Via procedure or the incompatibility with high complexity

designs presented by the Post-backend Frontside Via process. For further details on

this topic, the reader is referred to [159].
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2.2.6 Test and Yield

From an industrial point of view, yield, test, and throughput drive the cost of 3D

Integration [104]. 3D Integration could ideally improve yield since it allows het-

erogeneous integration. This means that different components of a system can be

fabricated in different wafers with different fabrication procedures optimized for the

involved technology [94].

However, several test challenges have been identified. Broadly speaking, to in-

crease yield and ease the testing of the final product, each layer should be indepen-

dently testable. This presents serious difficulties because testing must be accom-

plished with very few probe contacts and few wafer touchdowns and also because

layers might not present complete functionality [52]. In fact, yield and test issues

are sometimes regarded as the biggest challenge of 3D Integration [94]. The adapta-

tion of well known techniques such as redundancy, fault tolerance, Error-Correcting

Codes (ECC), Design-For-Testability (DFT), or Built-In Self-Test (BIST) to 3D

chips will be fundamental for the commercial success 3D Integration.

2.3 3D Design Possibilities

The design of 3D ICs can be considered at different abstraction levels corresponding

to different design possibilities. The referred 3D approaches range from coarse to fine

grained, depending on the granularity of the unit to be stacked. Figure 2.5 shows

the different possibilities of 3D Integration from higher to lower level of abstraction.

According to the classification proposed by G. Loh et. al. in [102], four different

granularities can be considered, namely Entire cores and memories, Functional unit

blocks (FUBs), Logic gates (also known as FUB splitting), and Transistors. The

benefits and redesign effort of the different approaches is summarized below.

2.3.1 Entire Cores and Memories

The coarser approach consists in considering entire cores and memories as showed

in Figure 2.5(a) where a two-layer 3D MPSoC is depicted. In this case, the designer

manages macroscopic two dimensional blocks that must be placed on a single layer
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(a) Entire cores and memories

(b) Functional unit blocks

(c) Logic gates: ALU on ALU

(d) Transistors: CMOS inverter

Figure 2.5: Different granularity approaches for 3D Integration.
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of the stack. Thus, 2D processors, memories, and Intellectual Property (IP) blocks

can be reused, resulting in a low redesign effort. Note that, even if the power and

performance of the different components of a system remain unchanged, it allows

to reduce the footprint of clock, power networks and global wiring of the whole

chip, resulting in a better overall performance. Therefore, the performance of large

3D MPSoCs can be increased as compared to a 2D equivalent architecture. Other

examples resulting of this approach are Memory-on-Core architectures.

2.3.2 Functional Unit Blocks

The design of 3D circuits at a Functional Unit level reduces the latency and power

of global routes, providing simultaneous performance improvement with power re-

duction [102]. However, paths must be re-floorplanned and retimed. There is also

a lack of 3D place and route tools, making this approach harder. This approach

allows to take advantage of existing designs as 2D functional blocks can be reused.

For example, Figure 2.5(b) shows a repartition of a 2D processor in two layers.

2.3.3 Logic Gates

The partition and floorplanning of logic circuits in three dimensions at a logic gate

level leads to further area reduction due to compact layout and resizing opportu-

nities. On the other hand, new 3D designs, methodologies and layout tools are a

must because this approach requires a high interconnect density between stacked

layers that has to be taken into account. Figure 2.5(c) shows an ALU bit-splitting

resulting in a shorter wire length (as long as vias are properly placed for inter-layer

communication).

2.3.4 Transistor

The design at a transistor level presents an extreme cost as it offers almost no reuse

possibilities. However, area, power, and latency could theoretically be obtained in

the case of large and complex gates. Figure 2.5(d) shows a CMOS inverter present-

ing a reduced area as compared with the 2D design. However, it is not likely that

technology will provide in the near future the extreme interconnect density neces-

sary for 3D CMOS complex designs [102]. Moreover, new 3D methodologies, and
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layout tools would also be required to operate at this granularity level.

These approaches clearly present a tradeoff between the potential benefits (per-

formance gain and area and power reduction) and reuse possibilities summarized in

Table 2.1 (see [102]).

Stacking unit Benefits Redesign effort 2D tools reuse
Cores and Memories Medium Low High
Functional units Medium Medium Medium
Logic gates High High Low
Transistors High Extreme Low

Table 2.1: Benefit and redesign effort of the different 3D design approaches

2.4 3D Integration vs. 3D Design

To select the most suitable design approach for a given application, the designer

needs to consider the reuse effort and the available technology processes. From a

technological point of view, the choice is mainly driven by the size and the pitch

of the TSVs. In fact, fine granularity designs require a small via pitch and a high

vertical interconnect density. If the d2d via pitch is large as compared to the unit to

be stacked, the designer must consider a coarser partition strategy [102]. Therefore,

the different design approaches are only compatible with some of the technologies

described in Section 2.1. We summarize in Table 2.2 the compatibility between de-

sign approaches and integration technologies.

Stacking unit Cores and Mems FUBs Logic gates Transistors
3D Packaging Medium Low Not Feas. Not Feas.
3D IC high TSV High High High High
3D IC low TSV High Medium Not Feas. Not Feas.

Table 2.2: Compatibility of 3D design approaches and manufacturing technologies
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Only the Entire Cores and Memories approach is compatible with 3D Packag-

ing. In that case, the performance enhancement, if any, will not be significant as

the connections between layers have to be done in an off-chip manner.

3D ICs with high vertical interconnect density are compatible with the four

design approaches as any range of inter-layer connectivity can theoretically be pro-

vided.

3D ICs with low TSVs densities are only compatible with the two coarser ap-

proaches, namely Entire Cores and Memories and FUBs. Moreover, following this

integration approach, only the first would fully benefit from a 3D organization as

few TSVs are required to improve the overall wire length of Systems-on-Chip.

To motivate the study of 3D MPSoCs performed in this work, it is important to

complete Table 2.1 with the information about the maturity state of the required

technology for the different design approaches. To this end, Table 2.3 presents the

tradeoff between potential benefits, reuse possibilities, and the state of the allowing

technology [102].

Stacking unit Technology ready Benefits Redesign effort 2D reuse
Cores and Mems Short Medium Low High
Functional units Short Medium Medium Medium
Logic gates Long High High Low
Transistors Long High Extreme Low

Table 2.3: Benefit, redesign effort and state of the technology necessary for the
different 3D design approaches

3D ICs with a high level of integration and designed at a Logic Gate or Tran-

sistor level are only expected in a distant future. The benefits obtained with this

approaches could be huge as the potential of 3D Integration would be fully exploited.

On the other hand, 3D designs at a coarser granularity level are expected in the short

term [124] as no technology show-stoppers are expected [104]. However, 3D Inte-

gration is still in a development phase and techniques such as aligning, thinning
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and bonding are continuously being improved and are not yet ready for mass-scale

production.

The allowing technologies are not mature yet because, even if there are several

demonstrations of fabrication of 3D ICs, the end products are not yet commercially

viable. However, a lot of effort from the industrial and academic worlds is being

invested in research and development of these architectures as 3D ICs are accepted

as a viable way to provide the demanded performance. Not only the fabrication

costs are still too high but also there are challenges that remain unresolved. While

some of these challenges are technological such as test and yield difficulties, others

are related with design issues. In fact, there is a need of 3D Electronic Design Au-

tomation (EDA) tools. The lack of such tools might be motivated by the absence

of technological standards. This means that designers are not aware of the specific

technological constraints imposed by a given technology (via pitch and density, in-

terlayer distance etc.). It is therefore, extremely difficult to come up with efficient

and universal tools with the current wide range of possible technological scenarios.

However, it is clear that managing thermals is a key challenge for 3D Integration.

In fact, significant thermal issues appear mainly because of the two following reasons

[102]:

1. The distance between active devices and the heat sink increases with the num-

ber of layers.

2. The chip power density increases linearly with the number of layers

As a result, 3D Integration together with the combined scaling of technology and

operating frequency might lead to a dramatical increase in maximum chip temper-

atures. These uneven peak temperatures cause gradient temperatures on the chip

surface that negatively affect the reliability and lifetime of integrated circuits. As a

result, thermal restrictions have become a major constraint in the design of current

3D ICs. The temperature of a 3D chip depends on the power dissipated by the ele-

ments composing the stacked ICs and on the process of lateral and vertical spreading

of heat. Therefore, both factors must be taken into account to design architectures

with an appropriate thermal behavior. Even though the relevance of the former
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varies through time, it is clear that hot blocks need to be placed strategically to

enforce heat dissipation. It is therefore necessary to introduce thermal models

in the optimization loop to deal with the imposed thermal restrictions.

2.5 Thermal Modeling of 3D ICs

In the first part of this section, we propose a brief description of the thermodynamic

laws involved in the process of heat diffusion and heat dissipation of 3D ICs. The

second part shows the different thermal models used later in this work to guide the

thermal optimization process.

2.5.1 Heat Diffusion and Heat Dissipation in 3D ICs

To introduce and motivate the thermal models presented later, we report the equa-

tion governing heat diffusion via thermal conduction in a 3D stack [18]:

ρc
∂T (�r, t)

∂t
= ∇× [k(�r)∇T (�r, t)] + p(�r, t) (2.1)

where ρ is the material density, c is the mass heat capacity, T (�r, t), and k (�r) are

the temperature and thermal conductivity of the material at position �r and time t,

and p(�r, t) is the power density of the heat source. The equation is subject to the

following boundary condition:

k(�r, t)
∂T (�r, t)

∂ni

+ hiT (�r, t) = fi(�r, t). (2.2)

With respect to (2.2), ni is the outward direction normal to the boundary surface i,

hi is the heat transfer coefficient and fi is an arbitrary function at the surface i.

Discretization Method

A seven point finite difference discretization method can be applied to Equation (2.1)

to perform numerical thermal analysis over the three dimensional volume of the IC.

To this end, the 3D stack is decomposed into numerous rectangular parallelepipeds.

Note that these blocks can be of non-uniform sizes and shapes if necessary. Heat
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diffusion takes place between these blocks, each one characterized by its power dis-

sipation, initial temperature, thermal capacitance and thermal resistance to ad-

jacent elements. We now show the discretized equation at an inner point of the

so-constructed grid:

Cv V
dT

Δt
= Ax (Ti−1,j,l − 2 Ti,j,l + Ti+1,j,l)

+ Ay (Ti,j−1,l − 2 Ti,j,l + Ti,j+1,l)

+ Az (Ti,j,l−1 − 2 Ti,j,l + Ti,j,l+1)

+ V pi,j,l

(2.3)

where Cv = ρc is the volumetric specific heat of the material, i, j and l are discrete

offsets along the x, y and z axes, Δt is the discretization step in time t, Δx, Δy and

Δz are discretization steps along the x, y and z axes and V = ΔxΔyΔz. Finally,

Ax, Ay and Az are the thermal conductivities between adjacent elements, defined as

follows:

Ax = k
ΔyΔz

Δx
, Ay = k

ΔxΔz

Δy
and Az = k

ΔxΔy

Δz
. (2.4)

Considering a 3D stack composed of N discretized elements, Equation (2.3) can be

summarized as follows:

C
dT (t)

dt
+AT (t) = Pu(t) (2.5)

where the thermal capacitance matrix C is an N ×N diagonal matrix, the thermal

conductivity matrix A is a N ×N sparse matrix, T (t) and P are N ×1 temperature

and power vectors and u(t) is the unit step function.

Steady-state Thermal Analysis

The peak temperatures reached by the different configurations of a floorplan are

generally used as a metric to compare their thermal behavior. We assume that these

maximum temperatures are registered in the steady-state as the studied systems

typically start at ambient temperature. To perform the referred steady-state thermal
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analysis, the left term in Equation (2.5) can be dropped, resulting:

AT = P ⇔ T = A−1P (2.6)

Thus, given the thermal conductivity matrixA and power vector P , the steady-state

thermal analysis is reduced to the computation of the inverse matrix of A.

During the execution of the floorplanning algorithm, blocks are continuously

moved searching for a configuration with a better thermal behavior. These opera-

tions have as unique effect a change in the distribution of the non-zero coefficients

(i.e. power values) in the input vector P. Therefore, the computation of A−1 can

be run only once, saved, and reused to compute the thermal profile T every time

that a new configuration of blocks must be tested. This is possible as long as the

parameters involved in the boundary conditions of the system as expressed in Equa-

tion (2.2) do not change during the optimization process. The referred parameters

are the volume of the 3D stack, the properties of the material, the heat transfer rate

between the IC and the environment, and the discretization applied to compute the

numerical solution.

In this thesis, we do not take into account the impact of the leakage current in the

final temperature of the different blocks. Such current would increment the power

consumption of the different components by a constant factor, thus modifying the

values of power vector P of Equation (2.6). Note that none of the methods presented

in this work must be modified to consider the effect of leakage power in the final

temperature of the studied architectures.

2.5.2 Existing Thermal Models for 3D ICs

In [31], it is made clear that the existing thermal models present a tradeoff between

runtime and quality. In fact, the different thermal models are classified in three

different categories:

1. Numerical computing analyses (such as Finite Element Method and Finite

Difference Method)
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2. Compact Resistive Network

3. Simplified closed-formula

Note that the first two methods are accurate and time consuming while the latter

is fast but lacks of precision. In the following, we detail extensively the approaches

used in this work to guide the thermal optimization of 3D architectures. Special

attention is given to the way the different models deal with the aforementioned

tradeoff between the accuracy of the results, the complexity of the model and the

consequent runtime.

Compact and Transient Thermal Model

In [138] the authors present a compact and transient thermal model to run fast but

accurate thermal simulations of 2D or 3D ICs. This model exploits the similarities

between heat transfer laws in solid materials and electric current. As shown in Fig-

ure 2.6, the volume of a 2D IC is divided into cuboids or thermal cells representing

a node in an electric circuit with six resistances and one capacitor. The capacitor

represents self heat storage while the resistances connect each cell to its neighbors,

modeling the heat flowing within the volume. Heat diffusion to the surrounding

environment is also considered and modeled connecting the resistances in the top

layer to the ground. On the other side, the heat generated by the IC corresponds

to the injection of electric current into those nodes that are grouped together in a

floorplan block. Figure 2.6 highlights the horizontal section of the silicon wafer used

to build a single 2D IC where the floorplan blocks are placed. 3D ICs can be easily

modeled stacking and replicating this structure in the vertical direction.

The RC circuit obtained from the structure of the IC is represented by a set

of ordinary differential equations corresponding to Equation (2.5) previously intro-

duced in Section 2.5.1. Using the terms defined in the previous Equations (2.3)

and (2.4), the conductance g of each resistor and the capacitance c of the thermal
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Figure 2.6: Division of the IC into thermal/electrical cells

cell are calculated as follows:

gT = gB = k
ΔxΔy

Δz

2

, gN = gS = k
ΔyΔz

Δx

2

,

gE = gW = k
ΔxΔz

Δy

2

, c = Cv V.

The system is solved via numerical integration using discrete time h and the

backward Euler method. The solution at the (n + 1)th time point is written as

follows:

T (tn+1) = PT (tn) +QU(tn+1), (2.7)

where,

P =
�
A+ C

h

�−1 · C
h

and Q =
�
A+ C

h

�−1
.

This thermal model has been implemented and released by the authors of [138]

as an open source library called 3D-ICE. Despite the reduced simulation times

obtained running the 3D-ICE emulator, the integration of such tool in a thermal-

aware floorplanner poses a major drawback as the simulation of large architectures

is a highly consuming task in terms of time. Hence, a model that allows faster

thermal simulations is needed.

Table 2.4 shows the most relevant thermal properties of the material used in this
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Si linear thermal conductivity 295 W/(mK)
Si quadratic thermal conductivity -0.491 W/(mK2)
SiO2 thermal conductivity 1.38 W/(µmK)
Si specific heat 1.628 x 106 J/m3K
SiO2 specific heat 4.180 x 106 J/m3K

Table 2.4: Thermal properties of materials.

model. Note that these values were set to mimic the experimental conditions of [37],

a work by D. Cuesta.

Neural Network Thermal Model

In [139] the authors propose to accelerate the thermal simulation of 2D/3D ICs us-

ing a Neural Network. However, this efficient thermal modeling approach has never

been used as guiding cost function in a floorplanning tool. Neural Networks are

multi-input multi-output operators that can be trained to mimic the behavior of

any mathematical function from some test data [108]. Therefore, to compute the

temperature profile of a 3D IC as needed by a floorplanner, the Neural Network must

be trained to reproduce the outputs of Equation (2.7). Once the training is done,

the NN can be used as a thermal simulator instead of 3D-ICE. The main advantage

of using the NN-based simulator relies on the high degree of parallelization behind a

Neural Network which can benefit from execution in massively parallel architectures

such as GPUs.

In the Neural Network Thermal Model (NNTM), each neuron computes the

temperature of a cell (or node) in the layers of the IC where the floorplanner places

the blocks. Consequently, the number of neurons (outputs) in the Neural Network

would equal the number of thermal cells in the active layers of the corresponding IC

simulated with 3D-ICE. This set of neurons forms the unique layer of the NN that

connects the input of the system directly to its output. To predict the future thermal

state T (tn+1), i.e. the output, all the neurons receive as input the actual thermal

state T (tn) of the thermal cells in the active layers and their power consumption

U(tn+1) received from the floorplans. Therefore, the entire network can be described
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with the following equation:

T (tn+1) = W ·
�

T (tn)

U(tn+1)

�
, (2.8)

where the matrix W stores the weights for each neuron (one neuron per row). The

values of the weights for any given neuron represent how much the temperature

or the power of any surrounding thermal cell contribute as a scalar factor to the

variation of its temperature. The matrix-vector multiplication in Equation (2.8) can

be implemented in parallel and performs efficiently on GPU. Therefore, the NNTM

is suitable for thermal-aware floorplanners as it allows fast thermal simulations of

3D ICs.

The computational and memory complexity of these Neural Networks can be

significantly reduced through the introduction of the proximity, a parameter that

defines a horizontal squared surface around each neuron. Given the diffusive nature

of heat flow in an IC, much of the heat flows vertically upwards from the source to

the ambient, following the path of least resistance. Hence, there is very little heat

flow/interaction between thermal cells that are far apart within the same layer and

the connection of individual neurons in the network can be limited to a reduced set

of neighbors lying within the area defined by the proximity. Figure 2.7 shows the

connections for a single neuron when the proximity parameter is set to one, i.e. only

the closest cells contribute to its output.

U (t   )
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U (t   )

T (t   )
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T (t   )

n+1

T(t   )n+1
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n+1

1
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Figure 2.7: Input/output connections of a single neuron in the network

The training phase of the Neural Network essentially consists in finding the
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correct set of weights for each neuron. This process must ensure that the Neural

Network is capable of predicting temperatures for all possible power inputs and tem-

perature states. As proposed in [139], a training set feeding the 3D-ICE simulator

with maps with a random power distribution must be generated. This way, every

neuron will be trained to respond correctly for all the possible distributions of power

over the surface where blocks are placed. This set up is crucial since the configura-

tion of the floorplan will not be known a priori and the floorplanner must evaluate

the steady state thermal profile due to every possible placement of the IC blocks.

Figure 2.8 illustrates how a different layout of the floorplan can influence the input

fed to a neuron: on the left, the highlighted neuron receives only the power values

coming from a single block, with a known power density. On the right, a change in

the floorplan will assign the connections of the neuron to two different IC blocks. If

the Neural Network is trained with the real power maps matching the configuration

on the left and then run with the situation drawn on the right, then the highlighted

neuron will give a wrong response because it has not been trained on that case.

Figure 2.8: The effect of a change in the floorplan on the input of a neuron

The training set will be finally made of the following set of power and thermal

maps:

�T (t0), U(t1),� �� �
Input

T (t1)� �� �
Output

�, �T (t1), U(t2),� �� �
Input

T (t2)� �� �
Output

�, . . .

where the values Ui,j(tn) will be random values bounded by the power consumption

of the IC block with the highest power density. This will make the resulting Neural

Network independent from the placement of the blocks. During each training itera-

tion, the inputs are given to the neurons and the outputs from the Neural Network
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and the target output from 3D-ICE are compared. The weights of the corresponding

neurons are then updated according to the error incurred. These iterations are re-

peated until convergence is reached based on some predefined error tolerance. Once

the training is finished, these weights can be stored and reused in future simulations.

This thermal model had never been included in a thermal optimization process.

We will demonstrate its suitability for thermal-aware floorplanning in Section 5.4.

Approximated Thermal Model

Most of the existing proposals consider approximated models to guide the thermal

optimization of 2D and 3D architectures. These simplified models generally present

a low computational cost translated into a fast runtime, necessary for iterative op-

timization approaches in which a large number of thermal simulations are carried

out. For example, in [38] it is assumed that in optimal solutions the hottest blocks

are placed as far as possible in the 3D stack. Under such assumption, the temper-

ature of the hottest blocks will be proportional to their own power density, mainly

because adjacent blocks will act as heat sinks. Thus, given a 3D stack discretized

in N blocks and given a block i, its temperature is modeled as follows:

Ti =
N�

j=1

Di,jPj ≈ Di,iPi ∝ pi (2.9)

where the matrix D stores the euclidean distances between the center of the blocks

in the floorplans and pi is the normalized power density of the referred block i.

Figure 2.9 shows the discretization of the volume of a single die of the 3D stack into

parallelepipeds according to the dimensions of the blocks in the floorplan.

Equation (2.9) states that the power consumed within a block will be propor-

tional to its final thermal state, without considering the volume and the mass of

the material and the distances between blocks. However, this approximation is only

valid if the hottest blocks are placed far from each other in the 3D stack. Thus, the

minimization of the metric

Min. T̂ =
�

j<i∈1...N

pi · pj�
dx2

ij + dy2ij + dz2ij

(2.10)
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Figure 2.9: Approx thermal model with the 3D stack discretized in blocks

will drive the optimization process towards a minimum thermal state. Barely speak-

ing, this metric provides an insight on how close the hottest blocks are. In the

referred work [38], it is demonstrated that targeting the minimization of T̂ leads

to a maximum temperature reduction. Note that T̂ in Equation (2.10) is not a

temperature but an approximated metric: to obtain the distribution of tempera-

tures corresponding to the placement of the blocks and validate the final solutions,

a thermal simulator must be used.

2.6 Conclusions

In this work, we target the design of 3D MPSoCs following the Entire Cores and

Memories design approach. As explained in Chapter 1, MPSoCs allow to keep the

performance enhancement trend going. 3D designs have the potential to reduce the

overall wire length of such architectures obtaining an increased performance. Also,

as showed in this chapter, these systems are the only ones that would fully benefit

from a 3D Integration technology available in the short term and from the almost

full reuse of existing 2D designs and tools. In fact, the components forming these

systems (mainly cores and memories), can be treated as IP blocks and systems can

be assembled by choosing a mix of blocks to stack together.

Some of the critical design challenges imposed by 3D Integration can be faced

with existing tools. In particular, thermal-aware floorplanning and management

and a tool infrastructure to support them, are considered essential for designing
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high-power systems such as the targeted 3D MPSoCs [52]. In fact, power density

increases linearly with the number of layers leading to significant thermal issues.

3D organizations provide additional degrees of freedom that can be exploited by

processor architects, circuit designers, and layout engineers. Thermal-aware design

is a significant challenge but, as we will show in this work, it is by no means, an

insurmountable obstacle for the adoption of 3D Technology [102].



Chapter 3

Floorplanning Representations

Floorplanning is a crucial step in Very Large Scale Integration (VLSI) physical

design. Traditionally, its main objective has been to minimize the total area required

to place all of the functional blocks on a chip. Floorplanning techniques are based on

different representations that determine the cardinality of the solution space. This

means that the chosen representation and algorithm will have a great impact on the

obtained solutions. In fact,

• not all the possible solutions to a given problem are reachable with all the

representations

• different representations might lead to different solutions

In addition, the analysis of the computational complexity of the problem depends

on the employed representation. For instance, in [17] Berntsson et al. propose the

use of a slicing structure representation, in which case, the floorplanning problem

corresponds to a generalization of the quadratic assignment problem, considered an

NP-hard problem [58].

Several Mixed Integer Linear Programming (MILP) approaches with relaxed con-

straints have been proposed to attack the floorplanning problem [51], [95], and [37].

However, the goal is not necessarily finding the global optimum of the problem, but

rather to obtain a good enough solution in still a short time, specially in a multi-

objective optimization context. Moreover, when dealing with thermal constraints,
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the (linear) thermal model must be added to the topological relations and the re-

sultant algorithm becomes highly time consuming when the problem size increases.

Initial heuristic approaches to this problem can be divided into two general cat-

egories: constructive and iterative. The first approach starts from a seed module,

and adds modules to the floorplan until all modules have been placed. The latter

starts from one or more initial floorplans that are iteratively improved, generally

with Simulated Annealing (SA) or Evolutionary Algorithms (EAs). In this chapter,

we focus on the iterative class as it is found in most of the state-of-the-art propos-

als. In fact, early works tackled floorplan design with SA [155], [84], and GAs [27],

and [137]. These proposals inspired a number of works in the 2000s targeting the

floorplanning problem at a logic circuit level. In fact the Microelectronics Center of

North Carolina (MCNC) and Gigascale Systems Research Center (GSRC) bench-

marks have been widely used to compare different works such as [146], [97], [1], [141],

[17], [31], [135], [142], [69], [143], [64], [22], [100], [23], [95], and [118]. In a similar

way, the IBM-PLACE benchmark [13] which is composed of standard cell circuits

is used in recent works such as [30], or [29].

These validated proposals have been reported successful for the floorplanning

of 2D and 3D architectures targeting area and/or wire length. However, the tar-

geted 3D MPSoCs present different restrictions such as a fixed-outline constraint

or severe thermal hotspots typically not taken into account in the referred works.

Recent works approach the thermal management of 3D MPSoCs assuming a regular

structure of the components [160] and [63]. However, rearranged floorplans might

mitigate the effect of severe hotspots present in strictly regular configurations [91].

It is therefore necessary to adapt and study the suitability of the existing proposals

for the 3D thermal-aware floorplanning of the targeted platforms.

The most relevant representations are explained in the first section of this chap-

ter, namely Combined Bucket and 2D Array, Double-Tree and Sequence, Sequence

Pair, and Generalized Polish Expression. In the second section a comparison of

these state-of-the art floorplanners performing for the optimization of 3D MPSoCs

is proposed.
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3.1 Common Representations

3.1.1 Combined Bucket and 2D Array

Combined Bucket and 2D Array (CBA) representation emerges from the aspiration

of providing a solution that avoids the unnecessary overhead of “true 3D” solutions

on one side, as the number of layers is fixed in real world applications, and the

possibility of introducing effective z-axis perturbations that would not be limited by

the 2D-array representation on the other. The representation was first proposed by

Cong et al. in [31], and its main idea consists in:

• proposing a bucket structure to encode z-axis neighboring

• using Transitive Closure Graphs (TCG) [98] to encode a 2D floorplan on each

layer

This proposal is compatible with other 2D representations, yet TCG presents several

advantages, which will be explained in detail in the following text.

The TCG representation depicts the geometric relations between different mod-

ules using two graphs, a horizontal transitive closure graph Ch, and a vertical transi-

tive closure graph Cv, defined in the following manner. Two non-overlapped modules

are horizontally related if one is on the left side of the other, and their projections

on y-axis overlap. In the same way, two modules are vertically related if one is

positioned below the other, and their x-axis projections overlap. It is important to

notice that two modules can be in either horizontal or vertical relation, as in the op-

posite case they would overlap. A diagonal relation between modules is possible as

well, and it is defined for two non-overlapping modules, where one is on the left side

of the other, and their projections on both x- and y-axis do not overlap. In order to

simplify the codification, diagonal relations are mapped to vertical or horizontal re-

lations. This is depicted in Figure 3.1; the weight of each node corresponds whether

to its horizontal length, or to its height in the vertical graph. Given a TCG, the

corresponding placement of each module is obtained by performing the longest-path

algorithm [134] which, in the case of direct acyclic graphs, can be solved in linear

time using dynamic programming. In order to facilitate this calculation, two nodes

are added to both the horizontal and vertical graphs: the source node ns with weight
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0, connected to each node with fan-in equal to 0, and the sink node nt also with

weight 0 and connected to each node with fan-out equal to 0. Thus, the coordinate

(xi, yi) of the upper right corner of a module ni is given with (Lh(ni), Lv(ni)), where

Lh(ni) and Lv(ni) are the longest paths between the node and the corresponding

source node. In the same way, the area of the placement is determined by the prod-

uct Lh(nt)Lv(nt), where nt is the sink node. The important properties of the TCG

are [98]:

1. Ch and Cv are acyclic.

2. Each pair of nodes must be connected by exactly one edge either in Ch or in

Cv.

3. The transitive closure of Ch(Cv) is Ch(Cv) itself.

Figure 3.1: An example of two-layer floorplan, its corresponding TCG for each layer.

This representation offers a number of advantages, namely it does not need to

construct additional constraint graphs for the cost evaluation during packing, which

implies faster running time. Furthermore, it supports an incremental update during

operations, and keeps the information of boundary modules as well as the shape and

the relative position of modules. Moreover, the geometric relation between modules
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is transparent not only to the TCG representation, but also to its operations, pro-

viding a faster convergence to a desired solution and a placement with position

constraints.

Regarding the bucket structure, the size of the bucket (n×m) has to be defined

first. For each bucket i, the indexes of the modules that intersect with the bucket

are stored in IB(i), no matter on which layer the modules are located. At the same

time, each module j stores the indexes of the buckets that overlap with it (IBT (j)).

Table 3.1 shows the 2× 2 bucket structure imposed to two layers, where the indexes

of the blocks are listed in the buckets with which they overlap. This facilitates the

definition of the efficient z-axis perturbations given in the following.

b,g,h c,d,e,i,h,g
a,b,f,g c,f,g,i

Table 3.1: The corresponding 2× 2 bucket list.

Before explaining the perturbations, we should define two terms. The first term

is reduction edge. An edge (ni, nj) is said to be a reduction edge if it does not exist

another path from ni to nj, but the edge (ni, nj) itself. In the opposite case, the

edge is a closure edge. The second term is the z-axis neighbor, based on the bucket

structure. In order to find the z-axis neighbor of a given module j, zn(j), we first

define a set of modules that are close to module j. This is the set of all the modules

that share at least one bucket with j, formally written in the following way:

B(j) =
�

i∈IBT (j)

IB(i) (3.1)

zn(j) is defined as the block k in B(j) with the minimum neighboring cost

zc(k, j) = α|Ak − Aj|+ β(|x k − xj|+ |yk − yj|), (3.2)

where Ak and Aj are the corresponding levels, and α, β are coefficients lower than 1.

If zc(j, k) is small, then blocks j and k probably have similar area and are close to

each other, or even overlap along z-axis. The notion of z-axis neighbor will be used
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in local interlayer perturbations, as it will cause small changes to the floorplan and

the cost function.

Seven operations are used for solution perturbation. A more detailed explanation

can be found in [98] and [31].

1. Rotation: rotates the block; in essence, it consists of exchanging the weights

of a node ni in horizontal Ch and vertical Cv graph.

2. Swap: swaps two modules in one layer; it is performed by exchanging two

nodes in both Ch and Cv .

3. Reverse: reverses the direction of a reduction edge, which further corresponds

to changing the geometric relationship of two modules. If the edge was a

closure one, the result of reversing would be a formed cycle, which means that

the graph would not be acyclic, and thus it would not be a TCG.

4. Move: moves a reduction edge in a TCG to the other, which corresponds

to switching the geometric relation of the two modules between a horizontal

geometric relation and a vertical one, or vice versa. The edge has to be a

reduction edge for the same reason as before.

5. Interlayer Swap: swaps two modules at different layers and between their

corresponding graphs.

6. Z−neighbor Swap: swaps a module and its z-axis neighbor and between their

corresponding graphs.

7. Z − neighbor Move: moves a module to the layer of its z-neighbor, at either

its top or right side and updates the corresponding graphs.

3.1.2 Double-Tree and Sequence

Several authors represent floorplan configurations using ordered trees (O-trees) to

solve the placement of components in 2D [141] and in 3D chips [17]. O-trees build a

non slicing representation claimed to cover all optimal floorplans and, at the same

time, explore a smaller search space in relation to other non slicing representations.
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It is important to note that in this case, optimality of the solutions refers only to

the area of the represented configurations.

We consider the floorplan representation inspired in O-trees described in [57],

called Double-Tree and Sequence (DTS). Typically, SA algorithms are applied to

optimize 3D platforms with this representation.

Three elements are required to describe a DTS 3D configuration:

1. x-tree, a tree describing the relation between components along the x-axis

2. y-tree, an analogous tree describing the y-axis

3. z-order, a sequence that describes the order along the vertical z-axis

As stated in [57],

• x-tree is a rooted multiway tree, where each node corresponds to a rectangular

box, except that the root node of the tree represents a pseudorectangular box

whose x-size is zero, but the y- and z-sizes are infinite. The x-tree imposes

the following constraint: the x coordinate of the left plane of the box corre-

sponding to a given node must be the same as that of the right plane of the

box corresponding to its parent node

In a similar way,

• y-tree is a rooted multiway tree, where each node corresponds to a rectangular

box, except that the root node of the tree represents a pseudorectangular box

whose y-size is zero, but the x- and z-sizes are infinite. The y-tree imposes

the following constraint: the y coordinate of the front plane of the box corre-

sponding to a given node must be the same as that of the rear plane of the

box corresponding to its parent node

Figure 3.2 illustrates this definition. In this example, the floorplan consists of two

layers: layer 0, with components a, b and c; and layer 1, with components d and e.

From the x-axis point of view, the root node of x-tree, represented as a black-colored

node, is the first element in the axis and its x coordinate is set to 0. Given that the
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root has zero-size, its children will have their x coordinate set to 0 as well, because

the coordinate of an element is obtained by adding the coordinate of the parent to

the size of the parent. As seen in the example, a, c and e, are located at 0. Hence,

they are children of the root. Note that the left-to-right order does not matter here,

just the parent-children relationship. Now, from the x-axis perspective, b is after a

and d is after e. Then, b is the child of a and d is the child of e in the tree. The

same applies to the y-tree and the y-axis coordinates. Notice that c is the child of a

because, according to the x-tree, the x coordinate of c is the same than in a, while

b has a higher x coordinate.

a b

c

y

x0,0

Layer 0

e
d

y

x0,0

Layer 1

x-tree

x-tree

a e c

b d

z-order

( a b c d e )

a b

c

y

x0,0

Layer 0

e
d

y

x0,0

Layer 1

y-tree

y-tree

a e b

c

d

Figure 3.2: x-tree, y-tree and z-order for a floorplan configuration of five components
(a to e) in two layers.

The z-order sequence is taken into account to establish the z-axis relationship.

If two nodes with the same z coordinate overlap, the latter in the z-order sequence

is moved to the next layer (notice that all components must have a z coordinate

lower or equal than the number of layers).

In order to decode a DTS representation, the trees are traversed to obtain coor-
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dinates for the x- and y-axis. The z-order sequence is then processed from left to

right to determine the vertical relationship.

In the example shown in Figure 3.2, the x-y planes formed by a, b and c do not

intersect between them. They all have z coordinate equal to 0. However, the plane

formed by d intersects with b and c. Then, d takes the following z coordinate, which

is 1. The plane given by e is compared to the nodes at the current coordinate. Then,

as e does not intersect with d, e also takes z coordinate 1.

In [57], two operations are implemented to perturb a DTS individual:

1. Moving a node in the x-tree or in the y-tree;

2. Swapping two elements in the x-tree, y-tree or z-order.

Each time a perturbation is needed, a node is moved either in the x-tree or in the

y-tree, and a swapping is performed in one of the three structures.

3.1.3 Sequence Pair

Sequence Pair (SP) is another popular codification employed in VLSI layout de-

sign. It was first introduced in [117], where a SA algorithm aims to minimize the

wire length of the connections between the different components. Later, Okada et

al. employed this representation for thermal aware floorplanning in [120]. A Ge-

netic Algorithm (GA) using this codification has also been engineered [49]. This

last proposal allows the rotation of the components and was tested on the MCNC

benchmark for minimum packing area only. Finally, a solution space reduction was

presented in [158].

SP codification requires every component to be uniquely associated to an iden-

tifier i. For the sake of simplicity,

• Let i be a positive integer

• and let I be the set of all the components that are to be placed in a layout
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The SP representation of a floorplan for such a layout consists of two sequences, Γ−

and Γ+, in which all the i ∈ I appear only once. In other words, both Γ− and Γ+

are permutations of all the elements in I.

The extension of SP for 3D stacked chips is straightforward if every component

must be completely embedded in only one layer. Hence, the 3D SP codification is a

list of pairs (Γ−
j ,Γ

+
j ), where j refers to the layer. Thus, from now on, we no longer

refer to the layout but rather to the layers of the 3D stacked chip.

The SP decodification is the process of retrieving the coordinates (xi, yi, zi) of the

left-bottom-back corner of every component i ∈ I, with respect to the left-bottom-

back corner of the layer, given Γ− and Γ+. This process consists of two steps: the

construction of the so-called constraint directed acyclic graphs GH and GV and their

interpretation in order to obtain the coordinates of each component.

Both GH and GV are defined over the set of vertices I and their edges are

obtained with the following procedure (see Figure 3.3):

1. Write Γ+ in the first row of a table. Then, in the next row, write Γ−. Finally

construct | Γ− | empty rows of decreasing size and write Γ− in the diagonal

cells.

2. Pick the first element in Γ− and locate it in Γ+. Let us refer to the element

in Γ− as anchor. Then, form the set containing all the elements in Γ+ to its

right.

3. Pick the first element of the set and locate it in Γ−. If this position is to

the right of the anchor then assign an H to the cell (anchor, element) in the

half-table.

4. Repeat the last step with every element in the block.

5. Repeat the whole procedure with every element in Γ−

6. Two vertices i, j are connected in GH if the cell (i,j) contains an H while GV

has an edge connecting i and j if the cell is empty.



3.1 Common Representations 49

1 2 4 35 6

3

2

6

1

4

5

H

H H H

H H

H

+

-
3 2 6 41 5

G  =
(3,6),(2,6),(2,4),(2,5),
(1,4),(1,5),(4,5)H { {

6

3

2

51

4

B E

G  =
(3,2),(3,1),(3,4),(3,5),
(2,1),(6,1),(6,4),(6,5)V { {

1

4

3

5

6

2

B

E

Figure 3.3: Obtention of GH and GV from the sets (Γ+,Γ−) = (124536, 326145).
The edges of GH correspond to the cells marked with H while the edges of GV

correspond to the cells in blank. The edges connecting Begin(B) and End(E) with
the rest of vertices are not written for clearness.

In the example shown in Figure 3.3, the SP is given by (Γ+,Γ−) = (124536, 326145).

The first anchor is 3. Its corresponding set in Γ+ is {6}, which is to the right of the

anchor. Hence (3,6) is an edge of GH . The second anchor is 2. Its corresponding

block in Γ+ is {4,5,3,6}, but only 4, 5 and 6 are to its right. Hence the edges (2,4),

(2,5), and (2,6) are added to GH , while the cell (2,1) remains empty. This case is

highlighted in the figure. The procedure continues with the remaining elements of

Γ−. The construction of GV is then straightforward as the edges correspond to the

blank cells of the table. Finally Begin and End vertices are added both in GH and

GV connecting with the rest of vertices in the graphs.

Regarding the interpretation of the graphs, a vertex connecting p and q in GH

forces to place component p left to q. Similarly, if the edge (p, q) is in GV , then

component p is must be placed below q. In addition the vertex weight is the com-

ponent’s width or length for GH or GV respectively. Thus, the weight of the longest

path within GH from the vertex B to vertex p is the x coordinate of component p.

Likewise, the y coordinate of component p is obtained with GV .
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According to the features of SP codification, the following operators have been used:

1. Swap adjacent elements inside a given Γ+ or Γ−.

2. Swap components in the same layer.

3. Swap two entire layers.

4. Move one component upwards or downwards.

Table 3.2 illustrates these operators in a synthetic example of a six layers stacked

chip, as if all the operators were applied at the same time on different layers.

Layer j Original Floorplan {Γ+
j ,Γ

−
j } New Floorplan {Γ+

j ,Γ
−
j }

1 {(1, 2, 3), (2, 1, 3)} {(2, 1, 3), (2, 1, 3)}
2 {(4, 5, 6), (5, 6, 4)} {(5, 4, 6), (4, 6, 5)}
3 {(7, 8, 9), (9, 8, 7)} =⇒ {(10, 11, 12), (10, 11, 12)}
4 {(10, 11, 12), (10, 11, 12)} {(7, 8, 9), (9, 8, 7)}
5 {(13, 14, 15), (15, 13, 14)} {(14, 15), (15, 14)}
6 {(16, 17, 18), (16, 18, 17)} {(13, 16, 17, 18), (16, 18, 13, 17)}

Table 3.2: Example of SA operators in SP. (1) swapping 1 and 2 in Γ+
1 , (2) swapping

4 and 5 in layer 2, (3) swapping layers 3 and 4, and (4) moving 13 downwards.

3.1.4 Generalized Polish Expression in 3D (GPE)

This 3D representation was first proposed in [97]. We follow the example presented

in the referred paper to briefly describe the proposal. Figure 3.4 shows the binary

tree for the Polish expression “3 1 6 8 Z H Z 2 7 Z V 5 4 H V”. In this case, a

floorplan is encoded in normalized Polish expressions using the symbols H, V, and

Z to represent horizontal, vertical, and lateral cuts respectively. The integers 1 . . . n

identify the blocks that must be placed (block ID).

It is necessary to break down the 3D slicing structure to evaluate the floorplan.

A splicer algorithm (as referred in [17]) takes as inputs a 3D floorplan and the max-

imum number of layers, and returns a slicing structure for each layer. The trees
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Figure 3.4: The 3D floorplan tree for “3 1 6 8 Z H Z 2 7 Z V 5 4 H V”, its three 2D
layers, and the three slicing floorplan layers (right).

on the right side of Figure 3.4 show the Polish expression divided into the three

layers. The splicer algorithm examines the binary tree for the 3D slicing floorplan,

and removes the Z nodes, leaving a 2D slicing tree with only V and H nodes. All

the Z nodes in the current layer are replaced with their left child while their right

child is inserted into the next layer. Since the maximum number of layers is fixed,

the function wraps around and starts reinserting nodes in the first layer when it

reaches the top layer. More details about the splicer algorithm can be found in [17].

Figure 3.4 also shows the corresponding slicing floorplans, after applying the splicer

algorithm.

The genome consists of an array of records, each of which corresponds to a block

in the problem, composed of three fields: (1) a block ID, which identifies the block

from the dataset, (2) a chain type ID that can be set to one of the following three

operator chains (1=VHVHV..., 2=HVHVHV..., and 3=ZHZV...), and (3) a chain

field length, which defines the maximum length of the associated operator chain.

There are three mutation operators that modify the genome:
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1. Swap the positions of two block IDs.

2. Rotate a randomly chosen block 90 degrees.

3. Change the chain type (for more details see [17]).

The presented representations have been reported successful in the context of the

optimization of 2D and 3D logic circuits. However, the critical thermal restrictions

imposed by large 3D MPSoCs make necessary the validation of these techniques in

the new scenario. In fact, managing thermal constraints is considered one of the key

challenges for 3D integration. The general idea is that a strategically rearranged

floorplan might mitigate the effect of severe hot spots present in strictly regular

configurations [91]. It is therefore necessary to adapt and study the suitability of

the existing proposals for the thermal-aware floorplanning of 3D MPSoCs.

3.2 Comparative Study

In this section we report the comparative study of the state-of-the-art floorplanners

presented in [40]. The four representations explained in Section 3.1 have been used

to perform the thermal-aware floorplanning of large 3D MPSoCs in which both

wire length and temperature are targeted. Such contribution is a valuable

asset as, to the best of our knowledge, the suitability of the compared techniques for

targeting state-of-the-art 3D MPSoCs had never been studied before. The reader

is referred to Chapter 4 for an introduction to multi-objective optimization. The

details of the algorithms and adaptation of these techniques are given below.

3.2.1 Adaptation of the State-of-the-art Floorplanners

Combined Bucket and 2D Array

A Simulated Annealing algorithm is used in this case. As the SA engine

iterates, a new CBA representation is obtained through perturbations. Each time a

floorplan is generated, the corresponding cost function is calculated, i.e. a weighted

sum of temperature and wire length. The SA engine generates more global
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operations in the beginning, i.e. rotation, swap and interlayer swap, while the

temperature of the annealing is high. As it decreases, more local operations are

generated, i.e. move, reverse, z-neighbor swap and z-neighbor move, this way the

perturbations are more likely to be accepted. The perturbed layers and modules are

picked randomly. In the case of starting with an unfeasible solution, critical layers,

i.e. those violating the higher number of boundary constraints, are more likely to be

elected. Furthermore, when the managed candidate solution is unfeasible, the cost

function is penalized according to the exceeded area per layer. The penalization

function is necessary as it provides fast convergence to a feasible solution.

Double-Tree and Sequence

A Simulated Annealing algorithm is also used in this case. The cost func-

tion is a weighted sum of temperature and wire length as well. As for the

previous proposal, a penalization function is defined for this codification in order to

favor the feasibility of the solutions. However, in this case, the penalization is global

to the floorplan, because the per-layer calculation requires a higher computational

effort when using the DTS representation.

Sequence Pair

Alike CBA and DTS, a standard SA algorithm has been employed guided by

a weighted sum of temperature and wire length. In each iteration of the SA,

only one operator is randomly selected and applied. Feasibility is enhanced through

the same penalty function defined for the DTS codification. Finally, orientation of

blocks is fixed so they can not be rotated in order to fit better.

Generalized Polish Expression

The classic GA engine used in [17] has been replaced with NSGA-II [46], a well

known multi-objective evolutionary algorithm. Comparatively, NSGA-II obtains

better results than the classic approach. The phenotype of the candidate solutions

(a normalized Polish expression) is constructed as proposed in [17]. The genome

is order based, thus a permutation-based cycle crossover (CX) [109] is employed.
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Regarding GPE parameters, the population size is fixed to 100, and probabilities

of mutation and crossover to the inverse of total number of blocks and 0.9, respec-

tively (as recommended in [46]). In this case, we approach the optimization in two

different ways targeting:

1. A weighted sum of temperature and wire length (marked as GPEf in

the following)

2. Temperature and wire length as two separate objectives (GPE in the

following)

3.2.2 Experimental Setup

Benchmarks

The studied benchmarks are inspired on the Niagara2 [110] and Niagara3 [33] archi-

tectures. These architectures include SPARC cores, fabricated in a Taiwan Semi-

conductor Manufacturing Company (TSMC) 90nm technology [28] and exhibiting

high power density. Power6 cores are also included with a ratio of 3 SPARC / 1

Power6. These heterogeneous architectures are representative of the future trend

in 3D MPSoC design. In this case, the heterogeneous computing power of the in-

tegrated processors allows for a more efficient workload distribution. Floorplanners

must manage the different power consumption values and areas of the different ele-

ments of the architectures to produce thermally optimal solutions.

These power consumption values and areas are given as inputs to the thermal-

aware floorplanners. In [121] we find that the power consumption of the SPARC is

4W at 1.4GHz. In the case of the POWER6, 2.6W is the estimated power dissipation

[73]. The following areas are considered: 3.24mm2 and 1.5mm2 for the SPARC and

POWER6 respectively (see [121] and [73]). A cell size of 300µm is fixed. Thus, the

length and width of the different components are enlarged to the next multiple of

the considered cell size. This way, there is a free perimeter around each component

used for wire routing. this area overhead is not necessarily relevant as the area of

the targeted architectures is fixed beforehand. The power consumption values and

areas of the memories are found with the CACTI software [67].
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Figure 3.5 depicts the original two layers, based on Niagara2 and Niagara3. Top

and bottom blocks are SPARC (bigger) and Power6 (smaller) cores in the ratio of

3/1. The block at the center is a crossbar while the rest of the blocks are L2 memories

and shared memories. These two layers are alternatively repeated in order to build

three architectures:

1. NH48 : A 48 cores architecture composed of 4 layers

2. NH64 : A 64 cores architecture composed of 5 layers

3. NH128 : A 128 cores architecture composed of 9 layers

Figure 3.5: Original floorplan layers of the Niagara2 (left) and Niagara3 (right)

The area per layer of the 3D stack is set to the original Niagara 3 area. Note

that the area of the Niagara2 layer (left side of Figure 3.5) is therefore increased.

Since all the floorplanners being analyzed can place a variable number of cores in

each layer, the area and power consumption of the crossbar is scaled according to

the maximum number of cores per layer and their required bandwidth. Table 3.3

summarizes the components of these architectures.
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Platform Sparc Power6 Memories Crossbars Total num. Layers
NH48 36 12 72 4 124 4
NH64 48 16 96 5 165 5
NH128 96 32 191 9 328 9

Table 3.3: Description of the Niagara-based architectures

Fitness Function

The floorplanners will place the functional units that compose the 3D multiprocessor

architecture according to the following strategies:

1. Minimizing a weighted sum of wire length and temperature (CBA, DTS, GPE,

MFA and SP)

2. Targeting wire length and temperature as two separate objectives (only GPE)

In addition, for each floorplanner and optimization strategy two different exper-

iments are carried out and compared:

1. Starting the optimization from the original configuration of the blocks

2. Starting the optimization from a random configuration of the blocks

Wire Length The wire length is approximated as the Manhattan distance be-

tween interconnected blocks and is computed as follows,

W = |xi − xj|+ |yi − yj|+ |zi − zj| (3.3)

where xi, yi, and zi are the coordinates of block i. We consider that wires can only be

routed parallel to the X or Y axis as generally done in integrated circuits. Therefore,

this approximation is exact if any two blocks can be connected by a shortest path.

This means that vertical connections between layers are assumed to be optimally

placed.
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Temperature Temperature is measured through the power consumed by the uni-

tary cells of the chip. The approximated model explained in Section 2.5.2 is employed

because of its low computational cost as compared to exact models. For the sake of

clarity, we rewrite the employed approximated thermal model:

T̂ =
�

i<j∈1..n
(dpi ∗ dpj)/(dij) (3.4)

where dp is the density power of block i and dij is the euclidean distance between

blocks i and j.

Table 3.4 shows the following characteristics of the three original benchmarks:

number of cores, total number of blocks, length (number of cells), width (number

of cells), number of layers, approximated wire length in cells according to Eq. (3.3)

and approximated thermal metric according to Eq. (3.4). These benchmarks can be

downloaded from [126].

Benchmark N cores # Blocks Length Width Height Wr T̂r

NH48 48 124 40 35 4 1320 146.66
NH64 64 165 40 35 5 1636 250.55
NH128 128 328 40 35 9 2889 879.09

Table 3.4: Reference values for the three benchmarks.

It is worth highlighting that all the three Niagara-like 3D floorplans present short

wire length but prohibitive maximum temperatures (389.89 K, 400.34 K and 432.94

K for 48, 64 and 128 cores, respectively [38]). These temperatures are physically

unfeasible.

Fixed Time Optimization

All the optimizations (floorplanner + fixed or random seed) were run 10 times.

Given that the analyzed codifications and algorithms are different, all experiments

were run in the same computer until a wall-clock deadline was reached. This limit

was set to:
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• 12 hours for the 48 cores architecture

• 48 hours for the 64 cores architecture

• 96 hours for the 128 cores architecture

3.2.3 Results

Results are shown in Figure 3.6. The symbols � show the front of nondominated

solutions found with the GPE representation. For further details on the concept

of domination, the reader is referred to Section 4.2.1. In the case of CBA, GPEf ,

DTS, and SP the values showed in the figure correspond to the average W and T

obtained over the 10 simulations.

All the approaches improve the original Niagara configurations, which are highly

optimized for wire length, but not for temperature. The multi-objective optimiza-

tion performed with GPE does not reach the thermal optimization achieved with

the other proposals. In the 48 cores scenario, CBA and SP obtain the best config-

urations. DTS and SP are clearly outperformed in the 64 cores scenario while they

present the lowest metrics in the case of 128 cores. It is therefore not clear which

proposal, if any, is most suitable for the 3D thermal-aware floorplanning problem.

It is worth noting that the results presented here correspond to the execution

of CBA, DTS, GPE and SP with a fixed seed, namely the original configurations

explained in Section 3.2.2. In fact, these approaches do not reach feasible solutions

when initialized with a random seed.

3.3 Conclusions

In this chapter, several well-known floorplanning techniques typically employed for

the optimization of 2D logic circuits have been adapted to attack the thermal-aware

floorplanning of large 3D MPSoCs. Three large 3D architectures based on the Nia-

gara 2 and Niagara 3 have been used as benchmarks to compare the suitability of

the different techniques.
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(a) 48 cores scenario

(b) 64 cores scenario

(c) 128 cores scenario

Figure 3.6: Optimized solutions found with GPE, CBA, DTS, and SP in the 48, 64,
and 128 scenarios
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The experimental work shows that designers working with CBA, DTS, GPE and

SP must provide an initial floorplan to reach feasible optimized solutions. This

limitation makes these representations unsuitable for architectural exploration as it

is not always immediate to obtain a feasible configuration. Moreover, the selected

seed might bias the search process, exploring only a limited region of the solution

space. Thus, there is a need for techniques that do not require any initial

knowledge of the configuration of the target architecture.

The multi-objective GPE version does not produce optimal floorplans since the

configurations obtained with CBA, DTS, GPEf, and SP exhibit a shorter wire length

and a lower temperature. However, the solutions obtained with GPE (with NSGA-

II) indicate the existence of a tradeoff between temperature and wire length.

It is therefore necessary to provide a wide range of optimal solutions so that chip

manufacturers can select the most suitable floorplan according to their own criteria.

To approximate as much as possible the optimal set of solutions that simultaneously

minimize wire length and temperature, multi-objective techniques are neces-

sary.

In this work, we use multi-objective heuristics to obtain thermally and perfor-

mance optimized configurations of large 3D MPSoCs. In particular, Multi-Objective

Evolutionary Algorithms are specially suitable for our purpose since these population-

based heuristics approximate in a single run the set of optimal solutions that simul-

taneously minimize the targeted conflictive objectives. Moreover, these techniques

are compatible with several parallel implementations allowing for faster architectural

exploration tasks.



Chapter 4

Heuristics for Multi-objective

Optimization

Heuristics are widely employed to solve complex problems when exact or exhaus-

tive approaches are impractical. Many of the demonstrated NP-problems have a

direct application in everyday life such as the Traveling Salesman Problem, Staff

Scheduling, Production Planning or Job Sequencing among many others. As of to-

day, it is believed that these problems require at least superpolynomial algorithms,

even though it is not discarded that faster algorithms can be found. Alternative

options exhibiting a lower computational complexity are therefore necessary. Typi-

cally, heuristic methods are adopted to find good enough solutions in a short time.

Note that the specific constraints of a given context will determine the management

of the tradeoff between runtime and quality of the solutions. For instance, in a

dynamic context, it might be necessary to obtain good solutions in a really short

time. On the other hand, runtime is not always a hard constraint in design time in

which the optimality of the solutions is mandatory.

A number of heuristics have been proposed for problem solving that can be clas-

sified according to whether a single (Tabu Search, Simulated Annealing) or a group

of candidate solutions are managed (Evolutionary Algorithms, Swarm Intelligence).

We now give a brief overview of the most common heuristics employed for problem

solving:

1) Tabu Search: Presented in [62], this method explores the solution space with
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local search techniques combined with the management of a list of forbidden

(tabu) neighbours.

2) Simulated Annealing: Proposed in [81] and [150], SA reproduces the slow cooling

of metals. In the search procedure, this process is translated into a slow

decrease of the acceptance probability of worse solutions.

3) Evolutionary Algorithms: These algorithms consider a set of solutions that are

iteratively evolved following a process inspired in Darwin’s concept of evolu-

tion.

4) Swarm Intelligence: These decentralized and self-organized methods consider a

number of independent agents that interact with each other and with the en-

vironment according to local rules. The term was introduced by Gerardo Beni

and Jing Wang [14] and has inspired a number of proposals such as Ant Colony

Optimization [47] or Particle Swarm Optimization [80] among others.

In Chapter 3, the need for multi-objective approaches to the thermal-aware floor-

planning of large 3D MPSoCs has been demonstrated. Note that multi-objective

optimization refers to optimization problems in which at least two conflictive ob-

jectives are targeted. As explained in the referred chapter, both SA and EAs are

predominant in previous proposals. Regarding the first, the guiding function of

SA engines in multi-objective contexts is typically a weighted sum of the targeted

objectives, thus reducing several objectives to a unique function. This technique is

extended in some proposals such as [12] where a Pareto Archive is managed to deter-

mine the acceptance probability of new solutions. However, Multi-objective Evolu-

tionary Algorithms (MOEAs) are generally used to tackle multi-objective problems.

These algorithms extend Evolutionary Algorithms with techniques and strategies

that introduce the concept of Pareto optimality. For the fully understanding of the

search process involved in MOEAs, it is necessary to introduce EAs properly.
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4.1 Evolutionary Algorithms

EAs are a subset of the so-called Evolutionary Computation (which in turn falls

within the field of Artificial Intelligence), mainly employed for problem solving and

machine learning. Evolutionary Algorithms have been successfully employed in a

variety of fields such as design, control, robotics, pattern recognition, scheduling,

and classifier systems among many others (see [107] and therein). Moreover, these

algorithms have been tested and shown to be robust with a variety of problems pre-

senting different characteristics such as continuous or discrete variables [48] [152],

low or high dynamism [112], multimodal and deceptive [127] [5], low or high epistasis

[89], etc.

4.1.1 History

Evolutionary computation is inspired in the concept of biological evolution proposed

by Darwin in “On the origin of species by means of natural selection” [43]. Darwin

postulated that evolution was guided by natural selection. In a given environment,

the fittest individuals have a higher survival probability and thus, a higher chance

of transmitting their genetic information to future generations. As was shown later,

random mutations modify the genotype of a given individual, resulting in a mod-

ified fitness, i.e. a different survival probability. Thus, environmental changes are

beneficial for the species better adapted to the new scenario (climate changes etc...).

These evolutionary concepts can be adapted, recreated and simulated with the

aim of solving problems. In this case, candidate solutions evolve throughout

the optimization process. The analogy of biological evolution has been employed

in several optimization approaches that present different procedures such as genetic

operators or replacement policies among others. However, these proposals present

some common features and patterns in the flow of the optimization process. Ar-

guably one of the main features of these bioinspired heuristics is the management of

a population, allowing to simultaneously search in different regions of the solution

space. Note that, the employed terminology follows the analogy of natural evolution.

Thus,
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• Iterations are called generations.

• Candidate solutions are called individuals.

• The set of individuals managed by the algorithm receives the name population.

• In each generation, a new set of individuals is obtained from the current pop-

ulation. New individuals are referred to as offspring.

Depending on the concrete algorithm, genetic information can be exchanged through

crossover, and changes can occur due to randommutations. Evolutionary algorithms

can be classified into the following three main categories:

1 Genetic Algorithms (GA): introduced by John Holland in the 1960s [65], these

algorithms consider a population of chromosomes coded as bit strings that

represent candidate solutions to a given problem. These chromosomes are then

iteratively evolved with the help of several genetic operators. A representative

characteristic is the implementation of a crossover operator that combines the

genetic information of different candidate solutions. Further details of this

strategy are given in the next section.

2 Evolution Strategies (ES): Ingo Rechenberg and Hans-Paul Schwefel initially pro-

posed a loop-based optimization (1 + 1)-Evolution Strategy in which a parent

gives birth to a mutant solution [125, 133]. Then, the best of the two con-

sidered individuals is selected to be the parent of the next generation. This

approach has been modified to obtain several mutants out of a single par-

ent, called (1 + λ) − ES, or to consider several parents and mutants in each

generation (µ,λ)− ES.

3 Genetic Programming (GP): This category is considered an extension of GAs in

which computer programs are evolved to perform a given computational task.

Their invention can be attributed to Lawrence J. Fogel (see [54] and therein)

who approached the discovery of finite-state automata with evolutionary al-

gorithms. However, this area of research was brought into focus by relevant

contributions proposed by Nichael L. Cramer [35] and John R. Koza [87].
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4.1.2 EAs Typical Flow

In a nutshell, initial solutions to a given problem are created in an artificial environ-

ment in which selection takes place according to a designed fitness function. Note

that the initial individuals can be provided or a random population can be created.

These solutions are then evolved by means of selection, crossover, and mutation op-

erators until a stop criterion is met. Next, we describe the different steps involved

in the optimization process as shown in Figure 4.1. Note that, as mentioned above,

some proposals implement only a subset of these steps.

Figure 4.1: EA typical flow



66 Heuristics for Multi-objective Optimization

Solution Coding

To apply the depicted scheme, initial solutions must be created and appropriately

coded. The genetic operators explained later are applied to the coded solutions,

i.e. to their genotype. The representation must be carefully designed as it directly

impacts the cardinality of the solution space, as well as the fitness landscape of a

given problem.

Selection

The Selection operator determines which individuals will be used to generate the

offspring. Generally, the better the fitness of an individual, the higher the probability

of being selected is. However, individuals exhibiting a low fitness value are typically

allowed to transmit their genetic information to the next generation with a reduced

probability. It is due to the fact that, in some scenarios, solutions presenting a low

fitness might exhibit a genotype similar to an optimal solution.

Crossover

The exchange of genetic information between individuals is performed through a

crossover operator. The genotypes of the mated individuals are recombined to create

one or two new individuals. The employed representation must be taken into account

to select or design an appropriate crossover operator as it impacts the exploration

carried out during the search process. To implement an appropriate recombination of

the individuals, both representation and problem characteristics must be considered.

Mutation

The mutation operator performs random and infrequent changes in the genotype

of individuals. These changes can impact the fitness of these individuals, resulting

in a competitive advantage or in a drawback. As in natural evolution, mutations

can also be neutral, meaning that the survival probability of the modified individual

remains unchanged. If a mutation deeply modifies the genetic information of a given

individual, then the search process will explore a different region of the solution

space. On the other hand, when a mutation introduces only a slight change, the

exploitation of a given region of the solution space is performed. Therefore, as for
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the crossover operator, the mutation operator must be representation-dependent

and has a great impact on the search dynamics of the designed algorithm.

Solution Decoding

Coded solutions often need to follow a decoding process to be evaluated. Thus,

the decoding of the solutions can be seen as a function that produces a phenotype

from a genotype. Depending on the representation, this process might exhibit a

high computational complexity, producing a bottleneck in the optimization process.

Again, the design of the representation is important to avoid the potential overhead.

Evaluation

A fitness function is employed to evaluate the different individuals. The fitness

value assigned to each individual impacts on the probability of survival, as well as

on the chances to transmit its genetic information to the following generation. An

inexact design of the fitness function can impede convergence or lead to a suboptimal

solution. Fitness functions often are the bottleneck of these algorithms. Therefore,

a low computational complexity is desirable. A fitness approximation strategy can

be employed when the fitness evaluation exhibits a high computational cost.

Replacement Policies

Once the generated offspring has been evaluated, a replacement strategy selects

the individuals that will survive and form the population of the next generation.

Therefore, the replacement policy impacts the selection pressure of the evolutionary

process, which in turn has an effect on the convergence of the managed population.

There are mainly two replacement schemes employed in the field of evolutionary

computation:

1 Generational: the created offspring entirely replaces the old population

2 Steady-state: the old population and the generated offspring compete to survive.

Elitism, i.e. forcing the survival of fittest individuals, is necessary. Otherwise,

the genetic information obtained in previous generations can be lost, resulting in a

random search of the solution space.
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4.1.3 Tuning of EAs: Exploration vs. Exploitation

Some of the previous procedures present a stochastic behavior that can be controlled

trough hard coded values such as the mutation rate or the crossover probability. A

suitable adjustment of these parameters is crucial for an appropriate operation of the

algorithm. In fact, genetic operators must be designed to obtain a suitable balance

between exploration and exploitation. One of the indicators used to trace this

balance is the diversity of the population. If exploitation prevails over exploration,

the algorithm will exhibit a faster convergence, translated into a faster runtime.

However, the search process is likely to get stuck in local optima. On the other

hand, if the algorithm is not capable of exploiting promising regions of the solution

space, the runtime might be increased and it is also probable to reach suboptimal

solutions. Note that, depending on the specific requirements, a local optimum might

be an acceptable solution if obtained in a reduced convergence time.

Ideally, the search should cover all the interesting regions of the solution space

while focusing on promising regions to gradually improve the discovered solutions.

Following this idea, Moscato [114] proposed the inclusion of local search operators

in the optimization loop giving birth to Memetic Algorithms (see [88] and therein).

The name is inspired in Richard Dawkins concept of meme, defined as a unit of

cultural information [45]. Local search operators are a tool to perform exploitation

of the solutions with a locality basis. To this end, a neighborhood relationship

has to be established between the different candidate solutions by means of an

information-based distance metric. Note that this distance measure is obtained

from the comparison of the genotypes of the different solutions rather than with

their fitness values. The study of the correlation between the genetic information

of the candidate solutions and their fitness receives the name of Fitness Landscape

Analysis. This analysis is specially relevant in the context of heuristic optimization

as it can provide a deep insight on the distribution of local and global optima of a

given problem, and on the suitability of the search dynamics of a given heuristic. The

retrieved information can be then be used to guide the design of suitable EAs [74].
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4.1.4 Fitness Landscape Analysis

It has been shown that different landscapes exhibit a different difficulty for heuristic

problem solving. In fact, problems can be classified according to several measures

retrieved from this analysis such as the distribution of local and global optima,

multimodality (two or more global optima), deception (global optimum cannot be

reached from local optima), or ruggedness (many local optima surrounded by deep

valleys) of the fitness landscape [153]. In the context of heuristic optimization, the

“hardness” of a problem is not necessarily related to its computational complexity.

Thus, problems with the same computational complexity are not necessarily equally

hard for heuristic solving, and high computational complexity problems might be

relatively easy to solve with heuristics. Moreover, instances of the same problem

might present very different fitness landscapes, resulting in very different difficulties

[154]. To illustrate this concept, we present below a typical analysis used to assess

these properties, namely the fitness-distance correlation. Figure 4.2 schematically

shows the analysis of the distance of the solutions to the global optimum and their

fitness in two different scenarios. The first problem (Figure 4.2(a)) can be considered

easy to solve with heuristics as a clear correlation between fitness and distance can

be detected. In such scenario, the closer the solutions are to the global optimum,

the higher their fitness value is. Therefore, a simple heuristic iteratively looking for

the best neighbour would easily reach the optimum solution of the problem. On the

other hand, the case depicted in Figure 4.2(b) does not show any fitness-distance

correlation. Therefore, this problem is likely harder to be solved with heuristic

approaches.

(a) Easy Scenario (b) Hard Scenario

Figure 4.2: Fitness-Distance Correlation Analysis
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4.2 Multi-Objective Evolutionary Algorithms

In this section, we introduce Multi-Objective Evolutionary Algorithms (MOEAs).

These algorithms incorporate the Pareto optimality notion, as opposed to mono-

objective EAs in which linear aggregative functions are used to tackle multi-objective

optimization problems. Some multi-objective optimization concepts must be intro-

duced first to explain the state-of-the-art MOEAs and discuss their suitability for

the thermal-aware floorplanning problem.

4.2.1 Introduction to Multi-Objective Optimization

It can be said that real-world problems are typically multi-objective because sev-

eral goals such as benefits, cost, quality of service, efficiency, time etc. are usually

targeted. For instance, a distribution itinerary planning equivalent to a Traveling

Salesman Problem typically requires optimal solutions minimizing the length of the

path, but also the cost, and the necessary time to perform the whole route. In fact,

cost and time might have an impact on the final benefits associated to the distribu-

tion or on the resulting quality of service.

Initial proposals combined these different objectives into a single objective func-

tion, reducing the search to a mono-objective problem looking for a single optimal

point. However, “true” multi-objective approaches consider a fitness value for each

of the targeted objectives as, generally, there does not exist a single point that si-

multaneously minimizes all the objective functions. Thus, the goal is to obtain a

family of optimal vectors, called the Pareto optimal set or front. The construction of

such set is based on the concept of Pareto optimality introduced by Francis Ysidro

Edgeworth [50] and generalized by Vilfredo Pareto [122]. The vectors forming the

Pareto optimal set receive the name of nondominated. Let is consider a minimiza-

tion problem targeting n objectives, then

Definition 1. A vector u = (u1, u2, ..., un) is dominated by v = (v1, v2, ..., vn) if and

only if ∀i = 1, ..., n, vi ≤ ui ∧ ∃j = 1, ..., n : vj < uj
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However, in real-world problems in which exhaustive approaches are impracti-

cal, it is not possible to assert that a given solution is not dominated by any other

solution. Thus, the goal of multi-objective optimization is not necessarily to obtain

the Pareto Optimal front but rather to approximate it as much as possible. Fig-

ure 4.3 illustrates this idea. An approximated Pareto front (squares) found by a

given heuristic is depicted. All the solutions of this front are the nondominated so-

lutions found in a run of the considered algorithm. On the other hand, the triangles

represent dominated solutions. As explained later, the Pareto dominance concept is

typically used as a criterion to rank and select the fittest solutions.

Figure 4.3: Example of an approximated Pareto front

4.2.2 EAs + Pareto Optimality

MOEAs extend Evolutionary Algorithms with techniques and strategies that intro-

duce the concept of Pareto optimality to guide the managed population towards the

Pareto optimal set. The main advantage of evolutionary algorithms, when applied

to solve multi-objective optimization problems, is the fact that they typically opti-

mize sets of solutions. This allows to compute an approximation of the entire Pareto

optimal front in a single algorithm run.

We now propose a schematic example to clarify the difference between approaches

in which linear aggregative functions are used to tackle multi-objective optimization

problems and proposals that include the notion of Pareto optimality. In the first
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case, as depicted in Figure 4.4, fitness evolution approximately depicts a function

asymptotic to a horizontal line corresponding to the best obtained fitness (Figure

4.4(a)). On the other hand, in a MOEA context, the managed population should

iteratively approximate the Pareto optimal set as illustrated in Figure 4.4(b).

(a) Mono-objective Scenario

(b) Multi-objective Scenario

Figure 4.4: Convergence analysis in Mono-objective and Multi-objective scenarios

MOEAs present different strategies based on the Pareto dominance concept to

rank and select the best fitted individuals. The first MOEA is attributed to Schaffer

[132], who proposed the Vector Evaluation Genetic Algorithm (VEGA) in 1984. In

this proposal, selection is performed considering separately the different objectives

leading to an undesirable speciation phenomenon. In fact, solutions presenting high

fitness values in only one of the targeted objectives prevail, while solutions present-

ing a good overall tradeoff tend to be discarded. As a consequence, the obtained

solutions approximate only partially the Pareto optimal set. The VEGA selection

strategy is schematically illustrated in Figure 4.5.



4.2 Multi-Objective Evolutionary Algorithms 73

(a)

(b)

Figure 4.5: A set of points are depicted in Figure 4.5(a) according to their fitness in
the two targeted objectives. The points selected according to the VEGA strategy
are shown in Figure 4.5(b)

MOEAs did not receive much attention until the mid-1990s when the subject

became a relevant research topic. Later MOEA proposals are classified in two gen-

erations according to Coello [26]. The first is composed of proposals introducing a

hierarchy based on Pareto dominance and niches to maintain the diversity of the

population and avoid premature convergence issues. This idea is illustrated in Figure

4.6, in which the example of Figure 4.5 is extended. As can be seen, a selection strat-

egy based on the the concept of niche allows to completely cover the Pareto front of

nondominated solutions (Figure 4.6(a)) while inappropriate strategies lead to focus

on the exploitation of a region of the solution space as depicted in Figure 4.6(b).

The most representative proposals of the first generation are Nondominated Sorting

Genetic Algorithm (NSGA) [140], Niched-Pareto Genetic Algorithm (NPGA) [66],

and Multi-Objective Genetic Algorithm (MOGA) [55].
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(a)

(b)

Figure 4.6: A set of points selected according to a niche strategy is depicted in
Figure 4.6(a). Figure 4.6(b) shows a scenario in which the selected points are con-
centrated in a given region of the solution space.

The algorithms that belong to the second generation incorporate elitism using se-

lection and a secondary population. This secondary population is often maintained

as an external Pareto archive containing the nondominated solutions found during

the search process. Some of the proposals classified in this category are Strength

Pareto Evolutionary Algorithm (SPEA) [162], Strength Pareto Evolutionary Algo-

rithm 2 (SPEA2) [161], Pareto Archived Evolution Strategy (PAES) [83], Niched

Pareto Genetic Algorithm 2 (NPGA 2) [53], Pareto Envelope-based Selection Algo-

rithm (PESA) [32], and Nondominated Sorting Genetic Algorithm II (NSGA-II) [46]

in the following section.

We focus on the latter, NSGA-II, as it is the algorithm employed later in this

work. In fact, this method together with SPEA-2, has become a standard approach

to deal with multi-objective optimization problems. We present an overview of

NSGA-II.
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4.2.3 NSGA-II

As in its predecessor version NSGA, the main feature of this method is the selection

of the best fitted individuals according to a ranking established on the basis of

Pareto dominance. Thus, a given individual receives a ranking value according to

the number of individuals that dominate it. Several layers of candidate solutions

corresponding to Pareto fronts are then created, and the individuals forming the

best layers are selected for the next generation. If only a few individuals of a given

layer must be selected, a crowded comparison is employed. This strategy does not

need any additional parameter, as opposed to fitness sharing methods. Figure 1

shows the pseudocode of the NSGA-II.

Generate the initial population P (t) of µ individuals, each represented as a set of
real vectors, (xi,ηi), i = 1, ..., µ. Both xi and ηi contain N independent variables:
xi = {xi(1), ..., xi(N)}, ηi = {ηi(1), ..., ηi(N)};
Evaluate the objective vectors of all individuals in P (t);
Calculate the rankings and crowding distances of all individuals;
Execute DominanceChecking(P (t), C, S);
Execute NonDominatedSelection(P (t), C, S, V, µ);
for g ← 1 to NumGenerations do

for i ← 1 to µ/2 do
select two parents Parent1 and Parent2 from P (t) using the tournament
selection method;
recombine Parent1 and Parent2 using the crossover operator to produce
two offspring stored in the temporary population P 2;

end
The population P 2 contains µ individuals;
Mutate individuals in P 2 to generate modified individuals stored in the
temporary population P 3;
Evaluate the objective vectors of all individuals in P 3;
Combine the parent population P (t) with P 3 to generate a population P 4

containing 2µ individuals;
Check the dominance of all individuals in P 4 by executing
DominanceChecking(P 4, C, S);
Select µ individuals from P 4 and store them in the next population P (t+ 1).
The individuals are selected by executing
NonDominatedSelection(P 4, C, S, V, µ);

end
Return the nondominated individuals in the last population;

Algorithm 1: NSGA2 flow
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4.2.4 Tuning of MOEAs

As explained in Section 4.1.3, EAs must be tuned to operate adequately. In the

case of MOEAs, a number of strategies introducing Pareto optimality have been

proposed. These techniques allow to look for nondominated solutions in differ-

ent regions of the solution space in a simultaneous manner. However, convergence

towards the optimal Pareto Set can present several problems, such as setting inap-

propriate weights to the different objectives. As a consequence, the search might

be focused on the optimization of a subset of the objectives. Figure 4.7 illustrates

this idea; it can be seen that the obtained solutions only approximate the Pareto

optimal set partially (obtaining good fitness values only for the first objective).

Figure 4.7: Example of undesired result in a Multi-objective scenario

The search behavior depicted in the figure typically takes place when dealing

with multiple (more than 2) objectives. In fact, several targeted objectives might

happen to be equivalent, resulting in an unbalanced setting of the weights of the

different objectives. A potential solution to the referred problem consists in elimi-

nating redundant objectives. Moreover, dimensionality reduction is a crucial step in

many-objective optimization problems, as it is commonly accepted (although there

is no formal proof) that MOEAs perform poorly with a high number of objectives.

This behavior is due to the fact that most of the individuals tend to become non-

dominated, resulting in a loss of selective pressure [136].

The constraints affecting the feasibility of the candidate solutions and the ranges
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of acceptability of the targeted objectives represent another difficulty for multi-

objective optimization. For instance, in some scenarios such as the thermal-aware

floorplanning, only a range of values (temperatures) result in feasible chips. How-

ever, considering a predetermined range of values might negatively impact the search

process, reaching only a subset of the solution space and impeding convergence to-

wards the whole optimal Pareto set.

In multi-objective contexts, the bottleneck caused by the evaluation step is exac-

erbated as a fitness value is computed for each of the targeted objectives. Therefore,

parallel approaches are often necessary to reduce the required optimization time.

4.3 Parallel Evolutionary Algorithms

Evolutionary Algorithms present an inherent parallelism that can be exploited to

obtain faster runtimes. There are several implementation possibilities that typically

introduce changes in the design of these algorithms, namely in the structure of the

population. These structured populations were engineered to match the architecture

of the hardware platforms in which they were run. Figure 4.8 schematically depicts,

from coarser to finer, the main design alternatives [3]. It is worth noting that the

following proposals were conceived to deal with mono-objective problems. However,

Parallel Evolutionary Algorithms (PEAs) can be adapted and are equally suitable

for multi-objective contexts.

4.3.1 Panmictic Population

This approach, depicted in Figure 4.8(a) corresponds to the classic EA in which all

the individuals form a single population. Thus, any two individuals can be selected

as parents to mate and obtain the offspring. In a similar way, all the individuals

compete against each other to survive and can be replaced by new individuals.

Following this approach, it is typical to parallelize the evaluation step of the

algorithm as it usually represents the bottleneck of the optimization process. To

this end, the parallelization can be implemented using a Master-Worker Model suit-

able for multithreaded architectures in which each worker evaluates a subset of the
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(a) Panmictic Population (b) Island Model

(c) Cellular Model

Figure 4.8: Evolutionary Algorithms with structured populations

population. In such case, the expected speedup would be approximately linear with

the number of threads.

There are also General Purpose Graphic Processor Unit (GPGPU) approaches

that aim to reduce the runtime of the evaluation function, whether or not several

individuals are evaluated concurrently [105].

In this thesis, we will present both a multi-threaded implementation of the

Master-Worker model and a GPGPU evaluation of the population to speedup the

optimization of large 3D MPSoCs.
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4.3.2 Island Model

Figure 4.8(b) shows a PEA implementing a decentralized Island Model in which

individuals are distributed among the different islands. Evolution takes place inde-

pendently in these islands with the exception of migrations. In fact, individuals are

migrated from an island to another to spread the information obtained in a specific

island throughout the system. Such individuals are referred to as migrants. The mi-

gration policy determines the way migrants are selected and how replacement takes

place in the receiving islands. The network structure governing these transactions

receives the name of topology.

This approach is well-adapted for multiprocessors as a given island can be mapped

to a single processor. The island model is also typically employed in clusters, in

which the elevated number of computing resources perfectly fits this distributed

model.

This model is suitable for GPGPU architectures as well. In fact, PEAs can be de-

signed strategically to maximize speedup considering the specific memory hierarchy

restrictions and programing paradigms provided by modern GPUs. For instance,

several CUDA-based ([119]) implementations have been proposed matching blocks

and threads to islands and individuals respectively [147] and [123].

The island model has been proved to be beneficial not only in terms of runtime,

but also in terms of fitness of the obtained solutions. In fact, distributing the search

over several nodes allows for a better exploration of the solution space, leading to

a superlinear speedup with respect to a panmictic scheme run in a single core pro-

cessor [20] and [21]. As a result, it is nowadays usual to design PEAs exhibiting

a higher degree of parallelism than allowed by the hardware platform in which the

algorithm is run. In fact, it is usual to simulate an island model in a single core pro-

cessor. For instance, it might be beneficial to design a PEA with two 50 individual

islands rather than considering a single population with 100 individuals even if the

runtime remains unchanged.

The impact of the network topology [3], [152], [48] and the migration policy
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[4], [68], [103], [128], [5], [111] has been extensively analyzed. In fact, not all the

topologies are suitable for a given problem. Moreover, a recent work shows that the

optimal topological characteristics and the problem structure are correlated [8]. The

design of the network topology governing migrations is in fact crucial to achieve the

necessary balance between exploration and exploitation.

4.3.3 Cellular Evolutionary Algorithms

Cellular Evolutionary Algorithms are decentralized EAs with structured populations

in which each individual interacts with its neighbours exclusively. The established

locality parameter and topology have a great impact in the search dynamic of the

algorithm [60], [59].

This approach is suitable for SIMD architectures, as selection and crossover are

implemented with a locality basis and the mutation and evaluation of the different

individuals can be performed independently.

In this work, we employ MOEAs to perform the optimization of large 3D MP-

SoCs. These algorithms represent a suitable tool to perform the thermal-aware

floorplanning of the studied architectures since exhaustive approaches are impracti-

cal and several objectives must be targeted. The proposed floorplanners are based

on NSGA-II and their correct operation has been statiscally validated. Moreover,

the impact of using different representations is extensively analized. We also propose

parallel approaches resulting in a significantly faster optimization process. In partic-

ular, a Master-Worker model and a GPU implementation are proposed to speedup

the evaluation phase of the proposed techniques,

4.4 Conclusions

In this chapter, we have introduced the family of Evolutionary Algorithms (EAs),

which are population-based heuristics inspired in Darwin’s concept of evolution. In

turn, Multi-Objective Evolutionary Algorithms (MOEAs) incorporate the concept

of Pareto optimality and represent an efficient tool to deal with optimization prob-

lems in which two or more conflicting objectives are targeted. Special focus has
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been dedicated to a state-of-the-art MOEA, namely Nondominated Sorting Genetic

Algorithm II (NSGA-II) as it is employed later in this work. In fact, MOEAs are

specially suitable for the thermal-aware floorplanning problem because both temper-

ature and wire length must be minimized. Several parallel EA approaches resulting

in a faster exploration of the solution space have also been presented.

In previous chapters, we have introduced the state-of-the-art of 3D Integration

and the most relevant floorplanning proposals. We have also described existing ther-

mal models which, together with multi-objective techniques, represent the necessary

tools to attack the thermal-aware floorplanning problem. In the following chapters,

the main contributions of this thesis will be presented.
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Chapter 5

Multi-Objective Techniques for

the Thermal-Aware Floorplanning

As explained in Chapter 2, the optimization of 3D Integrated Circuits can be con-

sidered at different abstraction levels corresponding to different design possibilities.

These approaches differ from each other in the granularity of the units to be stacked.

In this work, the floorplanning of large 3D MPSoCs is approached considering entire

cores and memories as the low redesign effort (2D designs can be reused) makes this

approach plausible in a short-term future. Even if the power and performance of

the different components remain unchanged, it allows to reduce the global wiring of

the whole chip, resulting in a better overall performance. The comparative analysis

presented in Chapter 3 shows that existing floorplanning techniques are not suitable

for the thermal-aware floorplanning of the targeted large 3D platforms. In fact,

the analyzed techniques require an initial feasible floorplan to reach optimal solu-

tions, which might not be immediate. Moreover, the selected seed might bias the

search process, resulting in a limited exploration of the search space. Another ma-

jor drawback of the compared techniques is the adopted mono-objective approach,

which does not allow to deal with the tradeoff between temperature and wire length

in an appropriate manner. Floorplanning algorithms must provide a wide range

of optimal solutions simultaneously minimizing the two referred conflicting objec-

tives. The necessary notions of multi-objective optimization are given in Chapter 4.

Multi-Objective Evolutionary Algorithms are explained in detail as these heuristics

are specially suitable for our purpose, i.e. for floorplanning problems in which two
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or more objectives must be simultaneously minimized.

Thus, in this work, we use Multi-Objective Evolutionary Algorithms to attack

the fixed-outline floorplanning problem considering entire cores and memories. The

studied problem is then equivalent to a multi-objective block placement problem in

which both thermal and performance constraints must be considered. The block

placement problem is formulated as follows:

Block Placement Problem

All the blocks that model the different components of the system must be placed

in the 3D stack, which imposes the physical boundaries of maximum length L, width

W and height H. Every block i in the model Bi(i = 1, 2, . . . , n) is characterized by

a width wi, a height hi and a length li. Note that in the studied cases in this work,

hi = 1 for all the considered components. We define the vector (xi, yi, zi) as the ge-

ometrical location of block Bi, where 0 ≤ xi ≤ L− li, 0 ≤ yi ≤ W −wi, 0 ≤ zi < H

(see Figure 5.1). We use (xi, yi, zi) to denote the back-left-bottom corner of block

Bi while we assume that the coordinate of back-left-bottom corner of the resultant

IC is (0, 0, 0). As opposed to traditional floorplanning problems in 2D, the area of

the chip is not initially targeted as we consider a fixed die size.

This chapter starts with the description of the so-called Multi-Objective Floor-

planning Algorithm (MFA), presented for the first time in [38], as it represents the

starting point of this work. Next, the main following contributions are presented:

• The Multi-Objective Floorplanning Algorithm is validated and compared against

state-of-the-art floorplanners

• A multi-threaded implementation of the Master-Worker Model is employed to

reduce the runtime of the referred floorplanner

• We introduce knowledge by means of a power profiling step previous to the

thermal-aware floorplanning process to better guide the optimization

• We compare the performance and thermal optimization achieved introducing
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different thermal models in the optimization loop.
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5.1 Multi-Objective Floorplanning Algorithm

In the first part of the section, we describe Multi-Objective Floorplanning Algorithm

(MFA) [38], a floorplanner targeting the thermal and performance optimization of

large 3D MPSoCs. A validation of the algorithm is proposed in the second part.

To this end, the convergence of the algorithm is studied, the proposal is compared

against state-of-the-art floorplanners, and the obtained configurations are evaluated

in terms of temperature and wire length.

5.1.1 Description of the Algorithm

MFA is a multi-objective evolutionary algorithm based on NSGA-II (see Chapter 4).

The floorplanner manages coded solutions that are gradually improved in the evo-

lutionary process to provide thermally and performance optimized configurations of

the architecture. MFA can be classified as a hybrid floorplanning approach because

the decoding step implements an incremental floorplanning inspired in constructive

techniques while the MOEA on top of the decoding procedure is essentially itera-

tive. Figure 5.2 illustrates this idea. The details of the algorithm are given in the

following.

Figure 5.2: MFA: a hybrid floorplanning approach
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Representation

A permutation encoding [25] is used in which every chromosome is a string of records

representing the different components of the targeted architecture. These records

gather information relative to a block, namely label, width, and length. Managing

the width and length of the blocks allows to perform rotations, granting further

degrees of freedom to the optimization process. Additional characteristics of the

blocks such as power densities, connections etc. must be managed by the algorithm.

However, this information does not need to be codified in the chromosomes as it

is common to all the individuals. Figure 5.3 depicts the representation used in

MFA, the example shows a candidate solution (individual) of a platform composed

of 6 blocks: 3 processors Ci(i = 1, 2, 3) and 3 memories Li(i = 1, 2, 3). The order

C1, L3, L1, L2, C3, C2 determines the placement sequence. Thus, C1 will be placed

first, followed by L3 and so on.

All the chromosomes must be of size n, where n is the number of blocks to be

placed. Therefore, the cardinality of the considered solution space is n!. The pro-

cedure in charge of the placement of the blocks (decoding of the solutions) which

allows to map lists of components into configurations of the architecture is explained

later.

Figure 5.3: Candidate solution coded with the MFA representation

Operators

The operators designed according to the representation are depicted in Figure 5.4

and briefly described below:
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Selection: The selection operator implements a binary tournament strategy. To this

end, random couples of individuals are formed and the best solution of each pair is

selected.

Crossover: A cycle crossover is used to produce the offspring, this operator must

take into account that all the components must appear once and only once in the

chromosome (see Fig. 5.4(a)).

Mutation: The mutation of the solutions is performed in two ways. The first one

consists in swapping the position of two blocks in the chromosome, resulting in a

change of the placement sequence of the mutated individual (Fig. 5.4(b)). The effect

of the second is the rotation of a block (Fig. 5.4(c)).

(a) Cycle crossover

(b) Swap mutation (c) Rotation

Figure 5.4: MOEA operators: Cycle crossover and two mutation operators (swap or
rotate)
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Solution Decoding

A sophisticated heuristic is in charge of the placement of the different elements of

the architecture (decoding of the solutions). The heuristic performs an incremental

floorplanning in which the components are sequentially placed in the 3D stack follow-

ing the order implied by the solution encoding. In fact, as the exhaustive heuristic

alone is capable of obtaining well performing solutions, the MOEA is designed to

obtain the optimal order of the components given to the placement heuristic.

Every block Bi is placed considering all the topological constraints, the total wire

length, and the maximum temperature of the chip with respect to all the previously

placed blocks Bj : j < i. The best location for each block is selected depending on

whether the block is a relative heat sink or a heat source. If it is a heat source (like

a core, for example) the best point is the one with lower temperature to ensure an

even thermal distribution. If the block is a heat sink (like a memory) the best point

is the one with lower wire length. With this procedure, the authors try to ensure a

correct thermal optimization. It is reasonable, since large 3D stacks with more than

48 cores reach prohibitive temperatures (more than 400 K, as can be seen in [38]).

Thus, every block is set in the remaining position (xi, yi, zi) minimizing all the

targeted objectives.

Fitness

Once the placement has been performed, the obtained configurations are evaluated

according to the three following objectives:

• The number of topological constraints violated (overlapping between different

blocks or components out of the borders of the chip).

• The wire length approximated as the Manhattan distance between intercon-

nected blocks.

• The maximum temperature of the chip. The computation of this metric de-

pends on the chosen thermal model.



90 Multi-Objective Techniques for the Thermal-Aware Floorplanning

MOEA Parameters

Regarding MFA parameters, the population size is fixed to 100, and the probabilities

of mutation and crossover to the inverse of the number of blocks and 0.9, respectively

(as recommended in [46]).

5.1.2 Experimental Validation

MFA presents an exhaustive heuristic in charge of decoding the solutions that is

highly time consuming. The computational effort of such heuristic forces to set a

low number of generations of the MOEA managing the coded solutions. Therefore,

it is necessary to study the convergence of the algorithm to make sure that a reduced

number of generations is enough to reach convergence while the managed population

exhibits appropriate levels of diversity throughout the search process.

Convergence of the MOEA

As explained in Chapter 4, EAs present an inherent tradeoff between exploration

and exploitation that must be managed to ensure the correct behavior of the al-

gorithm. Otherwise the exploration of the solution space will be guided towards a

region, avoiding others which might be more promising. Generally, in the initial

phase of the evolutionary process, the population presents a high diversity which

decreases gradually as the population converges towards a reduced number of so-

lutions. Depending on the problem, it might be desirable to keep high levels of

diversity during a shorter or longer period.

The analysis of the convergence is a straightforward method for verifying that

premature convergence issues such as getting stuck in local optima are avoided. At

the same time, it reveals whether the EA is well engineered or there is room for

improvement. A slow convergence with good final results is usually due to a poor

representation or not appropriate genetic operators.

Although MFA tackles a three objective problem (feasibility, wire length, and

temperature), convergence is studied only in terms of the wire length (W ) and ther-

mal response (T ) of feasible solutions. Thus, valuesW and T of feasible solutions are
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registered in the bidimensional arrays Wr,g and Tr,g respectively, where r = 1 . . . 30

represents the run and g the generation (g = 1 . . . 250 in the 48 cores scenario and

g = 1 . . . 366 for 128). Then, six matrices are constructed in the following way:

Wmin(r, g) = min {Wr,g} ,
Wmean(r, g) = mean {Wr,g} ,
Wmax(r, g) = max {Wr,g} .

Tmin(r, g) = min {Tr,g} ,
Tmean(r, g) = mean {Tr,g} ,
Tmax(r, g) = max {Tr,g} .

This procedure is done for both the 48 and 128 core configurations. Finally,

all six matrices are scaled between the minimum and maximum wire length and

thermal response respectively, and plotted as shown in Figure 5.5. Note that the

convergence in the 64 cores scenario is not studied since we consider that the analysis

of architectures composed of 48 and 128 cores is enough to generalize the behavior

of the algorithm.

The left-most pictures, corresponding to the minimum values in each generation

and optimization run of W and T , show a decreasing behavior eventually reaching

the global minimum in almost all optimization runs for 48 cores and, at much slower

rate, for 128 cores. The middle pictures show convergence of the mean values of W

and T . Their trend is decreasing, starting at 1/2 of the upper bound down to 1/4

in the best cases and 1/3 in the worst. Finally, the convergence of maximum values

of W and T is shown in the right-most pictures. Values decrease down to 1/3 of the

upper bound in most of the optimization runs.

To the light of these results it is clear that candidate solutions are better fitted

as evolution advances. Moreover, since the mean of the last generation is quite close

to the maximum in both objectives, less fitted individuals still have a considerable

probability of being chosen, attesting that diversity is maintained.

On the other hand, the slow convergence of the mean values, especially in the
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Figure 5.5: Convergence evolution of the minimum, mean and maximum values
for objectives W (wire length) and T (thermal response), considering only feasible
individuals; for 48 cores (above) and 128 cores (below).
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larger problem of 128 cores, indicates that the representation could be better engi-

neered (this goal will be pursued along this thesis).

Comparison Against State-of-the-art Floorplanners

We now extend the comparative study of state-of-the-art floorplanners presented in

Section 3.2 with the results obtained with MFA using the same time deadlines. The

results are shown in Figure 5.6.

It can be seen that MFA presents a singular behavior and that no domination

relationship is established with the other proposals. In fact, MFA explores a different

region of the solution space as compared to the rest of representations. Moreover,

the difference increases with the number of cores, i.e. when the thermal impact of

the architecture is higher. It is due to two facts:

1. MFA does not start with a fixed seed, namely the original Niagara platforms

2. The heuristic employed in MFA to determine the position of a given block

depends on whether the component is a core (T̂ is minimized) or a memory

(W is minimized). Thus, the design of MFA might be leading to reach better

temperatures sacrificing wire length.

Regarding the second point, in [38] it was shown that the algorithm finds floorplans

exhibiting a low enough temperature even when the number of cores increases.

CBA, SP, DTS, and GPE representations do not achieve an appropriate ther-

mal optimization, mainly because they were initially developed to reduce area or

wire length. In the thermal aware floorplanning problem, hottest elements must be

placed as far as possible in the 3D stack. These representations however place hot

elements (cores) right next to each other producing hotspots.

This analysis has showed that MFA produces thermally optimized solutions as

compared to the rest of representations. However, the thermal impact has been mea-

sured with an approximate model. In order to study the feasibility of the obtained

solutions, a thermal analysis with exact simulators is required.
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(a) 48 cores scenario

(b) 64 cores scenario

(c) 128 cores scenario

Figure 5.6: Optimized solutions found with MFA, GPE, CBA, DTS, and SP in the
48, 64, and 128 scenarios

Thermal Analysis

We present here the thermal analysis performed in the 48 and 128 cores scenarios,

corresponding to the smaller and the larger architectures.
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Wire L. TMAX TMEAN GradMAX

48 orig. 6733 411.82 K 344.29 K 109.75
48 opt. 6875 345.30 K 331.75 K 31.81

Table 5.1: Thermal response of the 48 cores configurations

48-cores configuration We compare an optimized configuration of the 48-cores

heterogeneous platform to the original 48-cores Niagara platform represented in Fig-

ure 5.7. This configuration corresponds to a regular arrangement of the components

of the architecture. As a consequence, the SPARC cores (SPC) are placed above the

others producing hotspots. On the other hand, Figure 5.8 shows the thermal maps

of the different layers of a nondominated solution returned by the thermal-aware

floorplanner. This figure shows an optimized placement of the SPARC cores (SPC),

Power6 cores (P6), memories (L2) and crossbars (Cross) achieved by the floorplan-

ner. In this configuration the hottest elements (SPARC cores) are generally placed

in the borders of the chip and in the outer layers, separated as much as possible. In

fact, the floorplanner avoids placing cores above the others as vertical heat spread is

also taken into account. The crossbars are placed in intermediate layers to minimize

the wire length.

The metrics considered for the thermal analysis of these two platforms are the

maximum and mean temperature of the chip and the maximum thermal gradient.

In Table 5.1 we present the thermal response of these two different configurations.

These results show that our floorplanner proposes thermally optimized configura-

tions. The peak temperature of 411.82K found in the original configuration is re-

duced to 345.30K while the mean temperature is reduced in 12.54K. We can see

that the maximum thermal gradient of the optimized configuration is reduced from

109.75K to 31.81K. Therefore, not only the temperature of the chip is reduced but

it is also more evenly distributed. On the other hand, the wire length of the op-

timized configuration is a 2.11% greater than the original which translates into a

small performance penalty.

128-cores configuration For this larger configuration, we analyze one of the op-

timal floorplans obtained with our parallel implementation. Figure 5.9 shows the
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Figure 5.7: Thermal map of the 4 layers of the baseline configuration of the 48 cores
platform

thermal map of the chosen solution. As for the 48-cores platform, we can see that

the SPARC cores tend to be placed in the outer layers and at the borders of the chip.

The memories and the crossbars are placed in the inner layers. This way both chip

temperature and wire length are minimized. Nevertheless hotspots appear in this

configuration. Table 5.2 shows the thermal response of an optimized configuration

of the 128 cores platform. Note that the results obtained from the simulation of the

original 128 cores configuration are not presented here since the achieved tempera-

tures are extremely high, making such configuration not appropriate as benchmark

for comparison. The hotspot visible in the first layer of the chip corresponds to the

peak temperature of the chip reaching 396.84K. The mean temperature is 362.50K

while the maximum thermal gradient is 75.80K. Given that the obtained working

temperatures are still far from the safety region, further research and simulations
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Figure 5.8: Thermal map of the 4 layers of a nondominated solution of the 48 cores
platform

with cooling techniques are required to study the feasibility of these architectures.

Wire L. TMAX TMEAN GradMAX

128 opt. 31587 396.84 K 362.50 K 75.80

Table 5.2: Thermal response of the 128 cores configuration

5.1.3 Conclusions

Current and short term future 3D many-core architectures require thermal-aware

floorplanning techniques able to reduce peak and mean temperatures. In this sec-

tion, it has been verified that MFA provides optimized configurations for systems
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Figure 5.9: Thermal map of the 9 layers of a nondominated solution of the 128 cores
platform
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composed of 48 and 128 heterogeneous processor cores. Moreover, the performed

study of the convergence of the floorplanner shows an appropriate behavior of the

algorithm in the optimization process. However, current floorplanning techniques

such as MFA that take into account thermal issues spend the most of the execution

time dealing with decoding and evaluation of solutions. It is therefore necessary to

speedup the floorplanning process to allow for a more efficient exploration of the

solution space.

5.2 Master-Worker Model Parallel Floorplanner

We present a master-worker model implementation for MFA, described in the pre-

vious section. The effort of parallelization is justified as the evaluation phase of the

algorithm takes over 99% of the execution time. This bottleneck appears because

every individual of the population has to be decoded and thermally evaluated in

every generation of the process.

5.2.1 Details of Parallelization

The master-worker model is used because, even though the fitness is based on a sim-

plified thermal model, the computational cost of this evaluation increases quadrati-

cally with the number of components. Therefore, it is interesting to exploit the fact

that evolutionary algorithms are intrinsically parallel and carry out the evaluation

of the population in a concurrent manner. Figure 5.10 depicts the approach used in

this work.

The master distributes the population among n workers, splitting the computa-

tional load in n ways so it does not carry out any evaluation. Once the workers have

finished their task, they send the outcome together with the received population

subset to the master. Although the algorithm stops and waits for all workers to

finish, it is clearly much faster than the sequential execution as long as each subset

is large enough for compensating communication times.

We propose a multi-threaded implementation where only the master executes

the main thread of the algorithm. Since only the workers execute the evaluation of
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Figure 5.10: Master-Worker configuration

different subsets of the population, a speed-up similar to the number of cores in the

processor that executes the algorithm is expected.

5.2.2 Experimental Setup

The experimental work will analyze the speedup obtained with the parallel version

of the MOEA while making clear that the quality of the solutions remains the same.

We consider the 48 and 128 cores architectures presented in Section 3.2.2. For

the sake of clarity, their main features are rewritten here and summarized in Table

5.3. The first architecture is composed of 48 processor cores: 36 SPARC and 12

Power6 cores; 72 memories and 4 crossbars for inter-processor are added summing

up a total of 124 components. In the second architecture, 128 cores are included: 96

SPARC plus 32 Power6. In addition, 191 memories and 9 crossbars are considered,

therefore 328 components need to be placed in this scenario. The floorplanner will

place the processors, the local memories and the crossbars in 4 and 9 layers respec-

tively.

Platform Sparc Power6 Memories Crossbars Total num. Layers
NH48 36 12 72 4 124 4
NH128 96 32 191 9 328 9

Table 5.3: Description of the Niagara-based architectures
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5.2.3 Results

In the first analysis, we study the speedup obtained with the parallel version of the

floorplanner. Then, the results obtained with the parallel and sequential version are

compared to validate the master-worker approach.

Speedup Analysis

We aim to find the optimal number of workers leading to the maximum speedup.

Note that each worker is mapped to a different thread. To this end, we perform a

parametric sweep of the number of workers, from 1 to 9, both in the 48 and 128

core scenarios. In order to obtain the execution time of these optimizations, we run

each one of the worker configurations five times, obtaining the average execution

time and speedup for both scenarios. The experiments were carried out in a dedi-

cated Intel Core-i5 machine, a 4-core processor, running at 2.80GHz. We set a fixed

population size of 100 individuals and 250 generations as the MOEA parameters for

the 48 core scenario optimization. Table 5.4 shows the average execution times and

corresponding speedups for these runs, with a number of workers ranging from 1 to 9.

# workers 1 2 3 4 5 6 7 8 9
time (s) 24171 12398 8904 6918 6380 6421 6665 6502 6386
speedup 1 1.95 2.72 3.49 3.79 3.76 3.63 3.72 3.79

Table 5.4: Average execution times and speedups obtained in the 48 cores scenario

Figure 5.11 shows the obtained speedups in the 48 core scenario. As can be

seen, the speedup increases almost linearly until the number of workers reaches the

number of cores in the processor used for these optimizations (4-core processor).

In our master-worker scheme, the particular set of individuals assigned to a given

worker determines its execution time. Then, if the worker receives a set of individuals

that need more time to be evaluated, the worker will slow down the overall process.

On the contrary, if the individuals need less time to be evaluated, the worker will be

idle until all workers finish their assigned task. Therefore, the optimization follows

this behavior: the population is divided into as many sets as declared workers, then
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Figure 5.11: Average speedup values obtained in the 48 cores scenario

each set of individuals is sent to a different worker and the evaluation begins. Once

the workers finish their evaluation task, they send the computed results to the mas-

ter and remain idle until the slowest worker has finished. As a result, the slowest

worker establishes the execution time of the evaluation of each generation.

Each worker is run in a different thread, and the load assigned to one thread

cannot be divided into different processor cores. As a consequence, if the number of

workers is higher than 4, the operating system scheduler will distribute the execu-

tion of the threads among the 4 cores. Then, the cores will swap between different

threads, advancing on the execution of each one. As can be seen in Figure 5.11,

results for 5 workers and above present an asymptotic trend on speedup because the

usage of resources is already maximized. The particular case of the 5 workers con-

figuration obtains the maximum speedup because it maximizes the resources and,

at the same time, avoids unnecessary swaps between threads. These results confirm

that the parallelization of the evaluation phase with the master-worker scheme con-

tributes to significant speedups. In addition, there is no remarkable penalty due to

the parallelization, because the speedup values above 4 cores tend to be similar.

In order to strengthen this hypothesis, the same tests were run for the 128 cores

scenario, where the evaluation time for each individual is much longer. Here, the

number of generations of the MOEA has to be scaled up because the number of com-

ponents is increased. Therefore we consider a number of generations equal to the
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total number of components, which is 328: 128 cores, 191 memories and 9 crossbars.

The population size remains set to 100 individuals. Table 5.5 shows the speedup

obtained in this scenario, considering a number of workers ranging from 1 to 9. Fig-

ure 5.12 displays the speedup trend for these data.

# workers 1 2 3 4 5 6 7 8 9
speedup 1 1.47 2.14 3.11 3.19 2.55 2.69 2.54 2.86

Table 5.5: Speedups obtained in the 128 cores scenario

Figure 5.12: Average speedup values obtained in the 128 cores scenario

The 128 cores scenario presents the same behavior as the 48 cores one. The re-

sources of the CPU are maximized from the 5 workers configuration on, and higher

numbers of workers obtain similar speedup values. However, the performance im-

provement is lower than in the 48 cores configuration. This behavior occurs because

the individual evaluation time is much higher in this 128 cores scenario, and the

execution time of the threads does not differ so much. In the 48 cores case, the

available processor slots, due to the different execution time between threads, allow

the evaluation of more individuals than in the 128 cores configuration. As a conse-

quence, the workers waiting for free processor cores advance more in their execution,

obtaining higher speedups. On the contrary, the workers of the 128 cores scenario
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are not able to exploit the processor free slots to evaluate as many individuals as in

the 48 cores case, therefore obtaining lower speedup values.

Validation of the Solutions

Since EAs are intrinsically heuristic, two executions will not produce exactly the

same results unless the seed of the used random generators is previously fixed.

Hence, in order to prove that our proposal is valid it is necessary to define a mea-

sure that analyzes the outputs (solution sets) both from sequential and parallel

executions.

Such a measure is usually referred to as Indicator I. In this work the Hyper-

volume indicator, proposed by Zitzler and Thiele [162], has been used. The hyper-

volume I(A) gives a measure of how much of the objective space is ‘covered’ by an

obtained solution set A; returning the hypervolume of that portion of the objective

space that is weakly dominated by A. To this end, the objective space must be

bounded. Otherwise a reference point that must be at least weakly dominated by

all solutions in A is used. Finally, higher values of I correspond to higher quality of

the measured set.

The comparison has been carried out between the sequential execution, the 4-

workers and the 5-workers versions of the parallel implementation. This choice

was motivated because these configurations had obtained the highest non-saturated

speed-ups. The results shown in Figure 5.13 were obtained after running 30 op-

timizations, each one with 250 and 328 generations in the 48 cores and 128 cores

scenarios respectively. As expected, the three boxplots inside each figure show a

similar outcome; with 25th and 75th percentiles almost identical within the 48 and

128 core plots.

5.2.4 Conclusions

In this section we have presented a parallel implementation using a master-worker

scheme of MFA, a thermal-aware Multi-objective Evolutionary Algorithm for 3D

floorplanning. This model provides optimized configurations for systems composed
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Figure 5.13: Hypervolumes for 48 cores (left) and 128 cores (right); both measured
in the sequential and in the parallel execution, the latter with 4 and 5 workers. The
central line is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers, which
are plotted individually (+ mark)

of 48 and 128 heterogeneous processor cores in a reduced time. We have shown that

the highest speedup values are obtained when the number of workers is closer to the

number of cores of the processor that runs the algorithm. In our experiments, run

on a 4-core processor, we have obtained maximum speedup values of 3.79 and 3.19

respectively for the 48 and 128 cores platforms with 5 workers.

As shown in Section 5.1.2, the thermal optimization achieved with MFA leads

to a significant temperature reduction. However, in the larger 128 cores scenario,

the obtained configurations are not feasible since a prohibitive peak temperature of

396.84K is reached. Therefore, chip temperature must still be reduced. To this end,

we propose to incorporate additional knowledge to the optimization by means of a

power profiling step previous to the floorplanning process.
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5.3 Power Profiling-Guided Floorplanner

In this section, we add knowledge to the thermal-aware floorplanning problem by

means of a power profiling step. In fact, the temperature of a given chip depends

on physical factors such as the power dissipation of the processors, the size of the

memories etc. but it also depends on the dynamic profile of the applications. One of

our contributions is to consider energy profiles based on the simulation of real world

applications executed on powerful MPSoCs. In fact, this problem is generally ap-

proached considering only the worst case scenario in terms of power dissipation. The

power profiles are obtained with OVPsim [76], which is a high level multiprocessor

simulator for architectural exploration.

5.3.1 Power Profiling Methodology

Studied Architectures

In this case, we do not considered the Niagara architectures presented in Section 3.2.2

as OVPsim does not fully support the simulation of Power6 processors. In this case,

we study different 3D many-core architectures composed of memories and SPARC,

ARM CORTEX-A9 and POWERPC 440 9SF processors. We study three scenar-

ios that differ from each other in the number and distribution of cores. In the

first architecture there are 30 cores with a small proportion of low-power proces-

sors: 20 SPARC, 5 CORTEX-A9 and 5 PPC440. The second platform is composed

of a medium number of cores with an homogeneous distribution: 22 SPARC, 22

CORTEX-A9 and 22 PPC440 adding up to a total of 66 cores. Finally, in the last

scenario, there are 129 cores: 43 SPARC, 43 ARM and 43 PPC. This case corre-

sponds to a scaled up version of the 66 processors architecture. In all cases, there

is a shared memory common to all the processors (used for the inter-processor com-

munication) and a local memory for every core. The size of the local memories must

be small, as manycore architectures with big local memories are not easy to fabri-

cate. The components composing the three proposed architectures are summarized

in Table 5.6.
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Platform Sparc Cortex-A9 PPC440 Memories Total num. Layers
P30 20 5 5 31 61 3
P66 22 22 22 67 133 4
P129 43 43 43 130 259 5

Table 5.6: Description of the three studied architectures

Application Benchmarks

We work with ParMiBench [77] which is composed of parallel versions of typical

applications. We select 11 applications grouped into six different categories: Calcu-

lus, Network, Security, Office, Multimedia and Mixed. Therefore we have 6 different

benchmarks corresponding to several applications that will exhibit very different

execution profiles. As a result, the power profiles obtained are different from one

benchmark to another. These benchmarks are simulated on bare machines. When

an operating system is considered, the power consumption, and hence the temper-

ature tends to be homogeneous due to the execution of the kernel. Therefore, we

decide to avoid this overhead in our power profiles. The benchmarks need to be

adapted for execution with OVPsim (mapping the compiled code into specific mem-

ory regions, replacing the system calls etc.). To obtain the profiling statistics for a

given benchmark, we assign a parallel application and a shared memory region to

each of the groups of processors working together. Table 5.7 shows a task distri-

bution example where 7 groups of six processors compute a Dijkstra shortest path

algorithm and two groups of 12 processors compute a Patricia algorithm. The IDs

in this table correspond to processor IDs. The processors in the same row form a

group that will execute a given parallel application. With these task distributions,

we aim to simulate scenarios that could happen on a real platform. Further details

of the task distributions used to obtain the profiles of the different applications are

given in [7].

To compute the power dissipated by each of the processors and memories of the

studied architectures, we perform simulations of the 3 platforms and 6 benchmarks

(18 simulations). We split the simulation of a given benchmark in time slices called

windows and study the evolution of the dissipated power versus time for every

element. For each of these windows we count the executed instructions and the
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Application SPARC ID CORTEX-A9 ID PPC440 ID
pat1 0,1,2,3 22,23,24,25 44,45,46,47
pat2 4,5,6,7 26,27,28,29 48,49,50,51
dijk1 8,9 30,31 52,53
dijk2 10,11 32,33 54,55
dijk3 12,13 34,35 56,57
dijk4 14,15 36,37 58,59
dijk5 16,17 38,39 60,61
dijk6 18,19 40,41 62,63
dijk7 20,21 42,43 64,65

Table 5.7: Task distribution of the Network benchmark for the 66 core architecture

idle cycles per processor, as well as the read and write accesses per memory (local

and shared). We set the window period to 128ms. This value is chosen to be long

enough to reduce the impact on performance of the profiling phase, but short enough

to capture the dynamic behavior with the required accuracy.

Memories

We set the size of the local memories to 512KB and the size of the shared memory

to 4MB, 8MB and 16MB for the 30, 66 and 129 cores platforms respectively. We

consider both the local and shared memories to be direct mapped SRAM memories,

with a block size of 64 bytes and a transistor size of 45 nm. We obtain the energy

consumption and area values with the CACTI software [67]. The energy per write

access Ew value is approximated by Ew = Er ∗ 1.5, where Er is the energy per read

access (see [67]).

Processors

To obtain realistic power profiles of heterogeneous platforms, we have chosen three

processor architectures with a different computing power. In fact, we are specially

interested in understanding the effect of synchronization and communication in the

temperature of the chip. Figure 5.14 shows a typical power dissipation pattern of

three different processors working together. We can see clearly how the activity of

the SPARC core changes periodically over time, waiting for slower processors.
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Figure 5.14: Common power consumption pattern caused by synchronization

We assume that the energy consumption of a given processor depends on its

working frequency and its state. We consider two states: active or idle. To compute

the power densities of the processors, we need their areas and a power consumption

value for both the active and idle states. In [121] we find that the power consump-

tion of the SPARC is 4W at 1.4GHz. In the case of the CORTEX-A9, we find that

0.4W is the estimated power dissipation working at 830 MHz while the PPC440

9SF dissipates 1.1W at 667MHz (see [6] and [72]). As in [10], we approximate the

power dissipated in the idle state with Pidle = Pactive/10. We consider the following

areas: 3.24mm2, 1.5mm2 and 6.2mm2 for the SPARC, CORTEX-A9 and PPC440

respectively (see [121], [6] and [72]).

Power Profiling Overhead

Obtaining these power consumption profiles represents a significant overhead in

the optimization process. However, such process must only be executed once and

is obtained in a preliminary phase of the floorplanning process. As can be seen

in Table 5.7, the different tasks are assigned to independent groups of processors

working together. By combining or replicating the activity of these reduced groups,

it is possible to obtain the profiles of new architectures of varied sizes. For more

details of the methodology involved in the retrieval of the power profiles, the reader

is referred to [7].
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5.3.2 Multi-Objective Evolutionary Algorithm

The validated MFA explained in Section 5.1 is used to perform the temperature and

performance optimization. The multi-objective optimization targets the following

objectives:

1) The first objective is determined by the topological relations among placed

blocks. It represents the number of violated topological constraints (over-

lapping between placed blocks).

2) The second objective is the wire length approximated as the Manhattan distance

between interconnected blocks.

The following objectives (3, 4, . . . ,m) are a measure of the thermal impact, each

one based on a profile of power consumption. We use the simplified thermal model

presented in Section 2.5.2 in which both the power densities of the different blocks

and the contribution of their neighbors are considered. Thus, our remaining objec-

tives can be formulated as:

Jk∈3..m =
�

i<j∈1..n
(dpk−2

i ∗ dpk−2
j )/(dij) (5.1)

where k refers to a power profile, dppi is the power density of block i for power con-

sumption p, and dij is the Euclidean distance between blocks i and j.

In our case, we obtain up to 600 different power consumption values (100 time

windows × 6 applications). Obviously, 600 objectives is too high for a MOEA, since

it will converge too slow or will not converge at all. Therefore, we discuss how to

reduce this number of objectives in the next section.

5.3.3 Experimental Setup

The experimental work will analyze the thermal optimization achieved by the floor-

planner in the three different scenarios presented in Section 5.3.1 (30, 66 and 129

cores architectures). The floorplanner will place the processors, the local and shared

memories of the 3D manycore platforms in 3, 4 and 5 layers respectively. For each

of the three scenarios, we obtain four different floorplans:
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1) As we do not have any original configuration to compare with, we propose as

baseline a performance optimized floorplan targeting only the feasibility and

the wire length. From now on, this configuration will be called BAS.

In order to obtain the thermally optimized floorplans, it is not possible to take

directly into account all the data retrieved from our simulations. In fact, if the power

dissipation of every element for every benchmark and time window was considered,

the floorplanner would target 600 objectives and would hardly converge. Therefore,

to obtain the other three floorplans, we consider different power metrics computed

with the data retrieved from the simulation of 100 time windows for the 6 different

execution profiles.

2) The first one of the remaining configurations is obtained considering the mean

power dissipation for each element and profile (AVG). Then, the floorplan-

ner looks for feasible solutions that minimize six thermal objectives (one per

profile) and the wire length.

3) Another configuration is obtained considering only the highest power consump-

tion per element (WOR). Hence, three objectives are targeted: feasibility, a

thermal objective and the wire length. This case corresponds to the strategy

followed by other thermal-aware floorplanners.

4) Finally, a weighted sum of the power consumptions of the different profiles (all

weights are equal) is considered for each element (WSM). In this case, the

algorithm targets feasibility, a thermal objective and the wire length.

We run the evolutionary algorithm with a population of 100 individuals and 500

generations. The crossover probability pc is fixed to 0.90 and the mutation proba-

bility pm to 1/#blocks (see [46]). We consider a fixed area equal to the total sum of

the areas of the different elements. This value is increased in a 15% corresponding to

the minimal area overhead necessary for wire routing. The configurations obtained

are chosen among a front of nondominated solutions returned by the floorplanner.

In all the studied cases, we select the configuration that minimizes the wire length.
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5.3.4 Results

As explained in the previous section, we obtain four different floorplans (BAS, AVG,

WOR and WSM) for each of the three considered scenarios (30, 66 and 129 cores

platforms). In this section, we compare the thermal profiles of these different con-

figurations. To evaluate them, we propose two experiments. The temperatures

presented in this work are given in degrees Kelvin and obtained with the thermal

simulator 3D-ICE presented in [138] (see Section 2.5.2).

Thermal Response in the Worst Case

In the first experiment, the obtained floorplans are evaluated with the highest power

dissipation per element. This case corresponds to the worst scenario. The metrics

considered for the analysis of the experimental results are the mean and maximum

temperature of the chip and the maximum thermal gradient. These metrics are usu-

ally found in thermal-related analysis. In Table 5.8, we present the thermal profiles

of the four different configurations.

#cores 30 66 129
Tmax Tmean GrMax Tmax Tmean GrMax Tmax Tmean GrMax

BAS 416.30 355.22 108.44 440.24 357.35 136.10 443.15 361.56 137.57
AVG 394.80 350.10 84.93 410.187 352.41 101.92 396.33 355.32 87.06
WOR 388.42 349.03 73.46 401.27 349.55 91.22 414.45 355.98 104.59
WSM 387.68 349.73 74.12 403.34 349.40 91.742 400.44 354.63 91.75

Table 5.8: Worst case

The results show that our power profiling-guided floorplanner produces thermally

optimized configurations. The hotspots found in the performance optimized floor-

plans (reaching 443.15K) justify the thermal optimization presented in this work.

Compared to the baseline, we can see that in all the cases our floorplanner reduces

the peak and mean temperatures and the thermal gradient. Therefore, not only

the temperature of the chip is reduced but it is also more evenly distributed. For

example, we can appreciate that the dramatic peak temperature of 416.30K found

in the baseline is reduced to 387.68K in the WSM configuration of the 30 core plat-

form. We illustrate this example in Figure 5.15 where we show the thermal maps of
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the first layer of the BAS and WSM configurations. In the baseline configuration,

the floorplanner tends to place the processors near their local memories ignoring

the presence of hotspots. In the other, the hottest elements (the SPARC cores) are

separated as much as possible, generally placed at the borders of the chip. As a

consequence, we observe a much better thermal response of the WSM configuration.

Vertical heat spread is also taken into account. Hence, the floorplanner avoids plac-

ing cores above the others. In both cases the shared memory is placed in the second

layer to minimize the wire length.

Figure 5.15: Thermal map of the first layer of the 30 cores BAS(left) and WSM(right)
configurations

The baseline configuration (BAS) is not an acceptable solution, in fact it reaches

peaks of 443.15K in the 129 cores configuration. Moreover, the peak temperature

increases with the number of cores in all of the cases. Therefore, from now on we will

use the baseline to compare the wire length of the thermally optimized floorplans,

but we will not study its thermal response. Choosing a configuration among the

thermally optimized floorplans is not immediate. It is due to the fact that some of

these configurations present a better performance (wire length) while others have a

better thermal behavior. We propose a selection criterion in section 5.3.4.

Thermal Response for the Different Benchmarks

In the second experiment, we evaluate the same floorplans in a more realistic way.

The thermal behavior of the different configurations is simulated for 100 time win-

dows with the power dissipation values obtained from our execution profiles. Three
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metrics are considered in this case to compare the different configurations. The mean

of the maximum temperatures of the different time windows is computed as well as

its standard deviation. This metric is a good indicator of the existence of hotspots

in the studied chip. We also compute the overall mean temperature of the chip and

the mean of the maximum thermal gradients as well as their respective standard

deviations. Table 5.9 shows the metrics retrieved for the six studied benchmarks in

the 30, 66 and 129 cores scenarios. We now comment the results obtained in the

three different scenarios.

30 cores scenario The results obtained for the peak temperatures are not con-

clusive as none of the configurations clearly outperforms the others. The highest

difference is obtained in the case of the first Benchmark where the temperature

reached by the WSM is 2.8K and 5.02K lower than the one obtained with the WOR

and AVG configurations respectively. The mean temperatures are very similar for

all the configurations. In fact there is a maximum difference of 1.12K between the

different configurations (Benchmark 5). As for the peak temperatures, a first anal-

ysis of the maximum thermal gradients does not lead to an immediate selection of

the best configuration.

66 cores scenario The peak temperatures obtained in the WSM are lower than

those obtained in the AVG configuration saving up to 7.22K. Only in the case of

the Benchmark 1 the peak temperature of the WOR configuration is the lowest one,

with a difference of 1.63K over the WSM. On the other hand, selecting WSM leads

to a maximum reduction of 2.63K in the peak temperature for the Benchmark 3.

Once again, there are no significant differences between the mean temperatures of

the studied configurations. In the case of the maximum thermal gradients, the re-

sults are similar to those obtained for the peak temperature: the WSM outperforms

the other configurations in five out of six cases, reducing up to 10.05K the gradi-

ent of the AVG (Benchmark 5) and 3.09K the gradient of the WOR (Benchmark

3). In the case of the Benchmark 1, the best thermal gradient is obtained for the

WOR configuration, with a difference of 1.27K and 4.75K with the WSM and AVG

configurations respectively.
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30
Tmax

BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6
AVG 340.956.58 342.554.56 340.227.80 310.353.15 348.332.68 343.753.38
WOR 338.737.44 345.512.66 341.1211.09 311.432.82 347.482.60 340.293.22
WSM 335.936.30 345.563.79 340.8010.02 309.372.89 346.652.56 341.382.63

Tmean
BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6

AVG 322.436.14 320.112.26 324.705.59 306.281.95 331.411.65 325.562.86
WOR 322.195.79 319.822.19 324.335.49 306.241.91 330.291.58 324.802.70
WSM 322.506.07 319.962.36 324.645.65 306.211.98 331.371.64 325.492.95

Tgrad
BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6

AVG 35.885.83 39.454.58 34.406.32 8.472.63 42.702.43 38.733.60
WOR 31.856.25 40.662.65 32.257.97 9.541.95 36.522.08 31.574.45
WSM 29.364.44 41.993.99 34.058.39 7.032.24 36.592.10 34.182.83

66
Tmax

BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6
AVG 334.179.35 365.437.36 386.493.14 369.641.64 349.523.12 369.164.64
WOR 329.775.60 366.916.16 385.905.75 369.601.94 342.912.63 368.725.68
WSM 331.406.28 364.667.52 383.271.96 369.331.62 342.302.62 367.965.62

Tmean
BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6

AVG 319.615.22 325.631.06 338.793.43 324.900.60 328.271.51 324.630.62
WOR 318.364.16 325.910.92 337.963.81 324.770.54 325.231.36 324.510.71
WSM 318.574.40 325.270.96 337.293.18 324.330.55 325.401.36 323.830.65

Tgrad
BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6

AVG 29.508.42 62.357.65 80.752.22 66.991.87 44.483.04 66.254.98
WOR 24.753.95 64.356.60 79.995.51 67.352.24 35.352.56 66.426.43
WSM 26.024.93 61.417.94 76.901.23 66.912.02 34.432.38 65.456.59

129
Tmax

BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6
AVG 342.317.94 357.950.78 373.184.97 352.951.50 370.424.13 331.632.46
WOR 354.088.90 363.765.07 382.009.27 352.402.51 387.545.19 338.282.93
WSM 349.024.73 363.990.87 371.204.10 351.141.54 373.874.34 336.102.68

Tmean
BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6

AVG 327.325.80 328.681.34 338.784.53 321.701.86 344.242.36 322.201.57
WOR 328.255.95 329.191.49 339.014.77 321.571.89 344.872.40 322.571.61
WSM 327.995.52 328.521.43 338.204.99 320.561.98 344.122.35 322.551.59

Tgrad
BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6

AVG 36.086.31 54.771.00 66.813.52 51.021.07 62.043.77 25.862.14
WOR 47.757.79 60.064.79 75.958.28 50.701.97 78.824.80 32.122.56
WSM 43.713.80 61.040.91 65.843.22 49.451.14 66.283.98 31.902.49

Table 5.9: Thermal metrics retrieved in the 30, 66, and 129 cores scenarios
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129 cores scenario The best peak temperature is obtained for the AVG configu-

ration in four out of six benchmarks saving up to 17.12K and 6.71K comparing with

the WOR (Bench 5) and WSM (Bench 1) configurations respectively. The WSM

outperforms the others in the remaining two cases, reducing up to 10.80K the max-

imum temperature of the WOR configuration and 2.98K the one of the AVG. The

mean temperatures obtained are again homogeneous. The results for the thermal

gradients are similar to the ones obtained for the peak temperature. Globally, the

WOR configuration shows a worse thermal behavior than the WSM or AVG. Never-

theless, it is the configuration that presents the best performance (wire overhead),

therefore it can not be discarded.

Further analysis is required to obtain the best overall solutions as the achieved

temperatures seem to show a random behavior. In the next section, we perform a

deeper analysis of the quality of the solutions in terms of wire length and thermal

behavior in each of the three scenarios. The proposed method shows that there is

an optimal metric to guide the floorplanning of the studied architectures.

Performance/Temperature Tradeoff

As showed before, there is a tradeoff between performance (translated into the extra

wiring) and temperature. We propose a method to evaluate the different solutions

and select the one with the best overall behavior. To this end, we consider 21

different experiments: 3 architectures × (worst case + 6 benchmarks). For each of

the scenarios and thermal metrics studied (TMax, Tmean and GradMax) we establish

a confidence interval. In a second step we see whether or not the retrieved metrics

fall into these ranges of acceptable values. We observe that the thermal metrics

retrieved fit to a normal distribution. The intervals are obtained by adding and

subtracting the standard deviation to the mean of the considered metric, resulting

in 68% confidence intervals. We apply this procedure in all the studied scenarios

to obtain the confidence intervals. However, we only show the intervals obtained in

the case of Benchmark 4 in the 30 cores platform as a motivational example:

• TMax: The confidence interval is obtained by adding and subtracting the stan-

dard deviation σTmax to the mean of the peak temperature of the different
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configurations called µTmax. The resultant interval is:

[µTmax−σTmax;µTmax+σTmax] � [310.38−1.03; 310.38+1.03] � [309.35; 311.41]

• Tmean: The same method is used to obtain the confidence interval for the mean

temperatures:

[µTmean−σTmean;µTmean+σTmean] � [306.24−0.035; 306.24+0.035] � [306.205; 306.275]

• GradMax: In a similar way, we obtain the range of acceptable values for the

maximum thermal gradient:

[µMaxGr − σMaxGr;µMaxGr + σMaxGr] � [8.35− 1.26; 8.35 + 1.26] � [7.09; 9.61]

These intervals allow to group similar values into the same thermal level. In fact

a difference of 1K might not be relevant to decide which configuration is better.

On the other hand, stepping from a 15% of wire overhead to 25% would result in

a dramatic decrease of the chip performance. Once we have these intervals, we see

which metrics fall into these intervals (marked as
√

in the following example) and

which ones do not (X). There is a third possibility where the metric considered

is even below the confidence interval (marked as
√√

), which is the most desirable

situation as the goal is to minimize the wire length and the different thermal met-

rics. We perform the analysis of the worst case scenario and the 6 benchmarks for

the three considered architectures (30, 66 and 129 cores). Based on the obtained

confidence intervals, we decide which is the best configuration for each of the 21

considered cases. Table 5.10 shows the result of this analysis for the Benchmark 4

in the 30 cores scenario. In this example, only the WSM configuration satisfies all

the constraints.

30 Tmax Tmean GradMax

AVG
√

X
√

WOR X
√ √

WSM
√ √ √√

Table 5.10: BENCHMARK 4

In order to select the configuration with the best overall behavior, we take into

account the thermal response and the wire length of the different configurations (see
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Table 5.11). We now summarize the results of this analysis.

#cores 30 66 129
AVG 36.88% 16.19% 24.81%
WOR 23.24% 26.68% 17.69%
WSM 13.15% 17.25% 22.31%

Table 5.11: Wire overhead of the different configurations

30 cores scenario In this scenario, the AVG configuration only presents accept-

able values in one of the seven scenarios. The WSM and WOR configurations satisfy

all the constraints in six out of seven benchmarks. They offer a satisfactory perfor-

mance while respecting the different thermal metrics studied in this work. However

the WSM offers a better performance as it presents 10.09% less of wire overhead.

Therefore the WSM is the best configuration for the 30 cores scenario.

66 cores scenario The WOR configuration offers a poor performance. The AVG

presents the best performance but it does not satisfy the thermal constraints in four

out of seven benchmarks, including the worst case scenario. Therefore it offers a poor

response in extreme situations, leading to hotspots. Only the WSM configuration

satisfies all the constraints in all the cases. It presents the best overall thermal

behavior while only the AVG presents a slightly better performance (1.06%). Hence,

the WSM is also chosen in this scenario as the best configuration.

129 cores The selection of the best configuration is not as immediate as in the

previous scenarios. Even though the WOR configuration presents the best perfor-

mance, it is discarded as the metrics retrieved do not fall in the acceptance intervals

for four out of seven benchmarks, reaching 414.45K in the worst case scenario. Both

AVG and WSM satisfy all the constraints in all the cases. While the AVG offers

a better overall thermal response, the WSM configuration presents a shorter wire

length increasing the performance in 2.5%. Therefore, in this scenario, there is a tie

between these two configurations.
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Globally, the WSM configuration always presents an acceptable performance.

In addition, the thermal constraints are satisfied in 20 out of 21 cases. The AVG

and WOR configurations only present an acceptable thermal response in 10 and

14 cases respectively. Moreover, these two configurations do not offer acceptable

performances: the wire overhead of the AVG reaches 36.88% in the 30 cores scenario

while in the 66 cores scenario the WOR configuration presents a 26.68% of extra

wire. Furthermore, the convergence analysis shows that using the WSM metric leads

to an average convergence time reduction of 43.1% and 36.2% as compared to the

WOR and AVG metrics respectively. Therefore, the WSM presents the best overall

behavior, outperforming AVG and the traditionally used WOR metric. It is due to

the fact that targeting a weighted sum of the power consumption of the different

benchmarks has allowed to relax the thermal constraints. This relaxation, in turn,

has led to a better exploration of the solution space. As a result, solutions presenting

a better overall temperature and performance are found.

5.3.5 Conclusion

This work has proposed an efficient approach that incorporates power-profiling in-

formation to guide a thermal-aware floorplanner for 3D multiprocessor architectures.

The implementation of the tool with evolutionary algorithms has provided thermal-

optimized floorplans as compared with a baseline heterogeneous system. The pro-

posed analysis of the tradeoff between thermal behavior and performance shows that

considering the worst power consumption does not lead to optimal floorplans. In

fact, the configurations targeting a weighted sum of the power consumption of the

different benchmarks present a better overall behavior. Such configuration offers a

better thermal response in extreme conditions reducing in 14.01K and 12.84K the

peak temperature and the thermal gradient of the chip respectively.

However, this study has also revealed the hardness of including dynamic power

consumption information in the floorplanning process. In this work, thermal metrics

are retrieved from the dynamic power profiles to guide the process, thus simplifying

the problem. In fact, if all the candidate solutions were evaluated with the power

traces extracted from all the benchmark applications, the runtime overhead of the

optimization would be extreme. Moreover, a reduced number of targeted objectives
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is required when working with multi-objective evolutionary algorithms.

This work has showed that a correct guiding of the search process has a critical

impact on the quality of the retrieved solutions. Therefore, it is interesting to ex-

plore other parameters such as the integrated thermal model as it might lead to a

better exploration process.

5.4 The Impact of the Thermal Model

As explained in Section 2.5.2, the thermal models used in related works that evaluate

the thermal response of 3D chips present a tradeoff between runtime and quality. In

the optimizations performed earlier in this work, the use of an approximated thermal

model is motivated by its low computational cost. However, in this section, the

proposed thermal optimization is guided for the first time by accurate simulations

based on a Neural Network model. The suitability of different thermal metrics to

guide the optimization is also compared. This way, we either reduce the runtime

of the optimization algorithm or achieve a better thermal behavior, resulting in an

optimal tool for architectural exploration and post-design thermal optimization.

5.4.1 Floorplanner

As in the previous sections, we employ the MFA floorplanner. Therefore, the floor-

planning problem is approached as a multi-objective problem targeting feasibility,

wire length, and temperature. We study the impact of considering different thermal

models, namely:

1) APPROX: The approximated thermal model explained in Section 2.5.2. APPROX

is the model used in the previous sections.

2) 3D − ICE: The exact thermal simulator explained in Section 2.5.2.

3) NNTM The Neural Network Thermal Model introduced in Section 2.5.2. Note

that both CPU and GPGPU implementations of this model are available.
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5.4.2 Experimental Setup

The purpose of the experimental work is threefold. First, we study the feasibility

and the performance impact caused by the integration of an accurate thermal sim-

ulator in our floorplanner. Then, we compare the temperature and wire length of

the solutions obtained with the different thermal models explained in Section 2.5.2.

Finally, we compare the thermal behavior of the configurations obtained targeting

different metrics. In particular, we minimize the maximum and mean temperature of

the chip and analyze the resulting thermal gradient. To this end, we consider the 30

and 66 manycore heterogeneous architectures proposed in the previous section and

summarized in Table 5.12. Note that, in the 129 cores scenario, exact approaches

are not feasible due to their dramatic execution time. Therefore, the larger 129 cores

architecture has not been included in these experiments.

Platform Sparc Cortex-A9 PPC440 Memories Total num. Layers
P30 20 5 5 31 61 3
P66 22 22 22 67 133 4

Table 5.12: Description of the two studied architectures

A cell size of 600µm×600µm is considered. The die size is fixed to 9600×9000µm

and 12000× 11400µm for the 30 and 66 cores architectures respectively. The power

inputs considered correspond to the WSM case (weighted sum of the power con-

sumptions of different profiles) as considering these inputs leads to optimal solutions

(see Section 5.3). The neural network is trained with a proximity parameter set to

6000µm and 10000µm respectively (see Section 2.5.2).

5.4.3 Results

In this section we study the impact of integrating each of the two following models in

our floorplanner: original 3D-ICE and NNTM. To this end, we compare the runtime

and the thermal optimization achieved using these two models with the standard

MFA guided by the approximated thermal model (APPROX).
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Performance Analysis

The thermal simulation together with the decoding of the solutions is the bottleneck

of the MFA thermal-aware floorplanner taking more than 99% of the execution

time. Therefore, the performance of our floorplanner is directly related to the time

consumed by the thermal evaluation. Figure 5.16 shows the execution time of the

different implementations in the 30 and 66 cores scenarios. The experiments are

carried out with an Intel Core-i5 composed of 4 cores running at 2.80GHz.

Figure 5.16: Execution Time of the different implementations of the thermal evalu-
ation in the 30 and 66 cores scenario

We can see that in all cases the execution time grows linearly with the number

of evaluations. The approximated thermal model is the fastest in the 30 and 66

cores scenarios, followed by the NNTM and the 3D-ICE. In fact, the long execu-

tion times required by the original 3D-ICE version justify the usage of the NNTM

presented in this work. For example, in the 30 cores scenario the evaluation us-

ing the NNTM performs 2.42 times faster than the original 3D-ICE. However, the

complexity of the NNTM increases with the size of the studied architecture. More-

over, the complexity of the Neural Network is determined by the number of thermal

cells and the chosen proximity parameter (see Section 2.5.2). As a consequence, the

speedup obtained with the use of this model in the 66 cores scenario is reduced to

1.15. Nevertheless, the NNTM admits a massively parallel implementation which

allows a dramatically faster execution to alleviate the impact of the number of cores.
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We propose to use of a GPGPU version of the NNTM to speedup the evalua-

tion phase. Figure 5.17 compares the execution time of the approximated model,

the CPU version of the NNTM and a CUDA [119] implementation of the NNTM

running on a graphics processor unit. The device used in this test is a NVIDIA

GeForce GTX570 composed of 480 CUDA cores and 1280MB of GDDR5 memory.

In the 30 cores scenario, the evaluation running on GPU is 8.54 times faster than

the CPU version and 2.14 times faster than the approximated model. This speedup

is increased to 16.4× and 2.82× respectively in the case of the 66 cores architecture.

Therefore, the GPU implementation of the NNTM performs faster than any other of

the studied thermal models. Furthermore, the speedup obtained with this massively

parallel version increases with the size of the architecture.

Figure 5.17: Execution Time of the evaluation run on CPU and GPU in the 30 and
66 cores scenario working with the NNTM

The performance analysis has shown that replacing an approximated thermal

metric with an exact model such as 3D-ICE has a severe impact on performance

leading to a non efficient tool. On the other hand, a significant speedup can be

achieved with the introduction of a GPU implementation of the NNTM. The next

section studies the thermal behavior and the performance of the solutions obtained

with the integration of the 3D-ICE and NNTM model in the floorplanner as com-

pared to the approximated model.
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Thermal Analysis

In this section we compare the suitability of different thermal metrics and the ther-

mal optimization achieved with the integration of the different thermal models stud-

ied in this work: approximated thermal model, 3D-ICE and NNTM. We run the

multi-objective evolutionary algorithm with a population of 100 individuals and 250

generations. The crossover probability pc is set to 0.90 and the mutation probability

pm to 1/#blocks.

For each scenario (30 and 66 cores) and thermal model (APPROX, 3D-ICE

and NNTM), we perform 20 runs of the algorithm. The solutions obtained are

then evaluated with the 3D-ICE thermal simulator. The metrics considered for the

analysis of the solutions are the maximum temperature and gradient of the chip and

the wire length.

Thermal Metrics: Thermal-aware floorplanning is a multi-objective optimiza-

tion problem in which both performance and temperature constraints need to be

satisfied. To this end, thermal metrics must be employed to guide the optimiza-

tion process. However, the efficiency of multi-objective evolutionary algorithms and

NSGA-II in particular, tends to decrease when the number of objectives increases.

Therefore, the selection of the thermal metric used to guide the floorplanner has

a great impact on the behavior of the optimized configurations. In this section

we compare the optimization obtained targeting two thermal metrics typically em-

ployed in thermal-aware design: the maximum and the mean temperature of the

chip. The first metric is employed to reduce the effect of severe hot-spots while the

latter tries to reduce, in a homogeneous manner, the temperature of the chip. Note

that, in the study presented in Section 5.3, several power inputs are considered to

guide the optimization while, in this case, different thermal metrics are targeted.

Figure 5.18 shows the wire length, peak temperature and maximum thermal gra-

dient of the configurations obtained with the NNTM using these two metrics. The

analysis of the thermal gradient is especially relevant as this metric is directly re-

lated to the reliability of these architectures. The results obtained with the 3D-ICE

are not shown here because of space issues, however it is made clear in the next

section that the thermal optimization achieved with the NNTM and 3D-ICE mod-
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els is equivalent. Note that this study is not extensible to the approximate thermal

model as it does not provide an insight of the global behavior of the chip. In fact,

the approximated model only targets the distance between the hottest components

of the architecture.

Figure 5.18: Peak temperatures and maximum thermal gradient obtained with the
NNTM. The thermal optimization is achieved targeting TMAX (marked with � sym-
bols) and TMEAN (represented with �) in the 30 cores scenario.

To compute the thermal gradient, a series of 100 random power values per com-

ponent of the architecture is generated. Then, the maximum thermal gradient of

a given configuration is retrieved from the thermal simulation of the 100 power in-

puts. The justification of this procedure is based on the fact that the maximum

thermal gradient does not appear when all the elements exhibit a maximum power

consumption. In fact, it is when some components are active and others are idle

that the largest temperature differences are found.

As can be seen in the figure, targeting TMAX leads to a significant peak tempera-

ture reduction. For example, a solution targeting TMAX presents a peak temperature

reduction of 35.41K as compared to a solution obtained targeting TMEAN with the

same wire length (60.0mm). In all cases, the thermal gradient remains in acceptable

levels. However, we can see that solutions presenting a similar wire length minimize

the thermal gradient when the maximum temperature is targeted. For instance, a
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solution minimizing TMAX presents a wire length of 71.1mm and a maximum gra-

dient of 14.28K while a solution targeting TMEAN exhibits 71.40mm of total wire

and a thermal gradient of 19.58K. Note that the thermal gradient presented here

corresponds to the maximum horizontal gradient of the chip because the higher

temperature differences are found between components placed on the same layer.

Moreover, in the following we simulate the inclusion of cooling channels that allevi-

ate the vertical thermal gradients.

The performed analysis shows that targeting the maximum temperature leads to

a reduction in both peak and gradient temperatures. Therefore, the TMAX metric

is used in the remaining of the section.

Thermal Models: We now compare the solutions obtained using the APPROX,

NNTM and 3D-ICE models during the optimization process. Figure 5.19 shows the

maximum temperature and the wire length of the nondominated fronts of solutions

found by the floorplanner using the three different thermal models in the 30 cores

scenario. Note that the solutions obtained in the three independent optimization

scenarios have been simulated with 3D-ICE at a later stage. In this figure, two

different facts can be observed. First, the optimization achieved using the NNTM

and 3D-ICE models can be considered similar. However, we have already demon-

strated how the NNTM implementation presents lower computational complexity,

less simulation time and scales better with the number of integrated cores. Second,

the solutions obtained with the 3D-ICE and NNTM models outperform the results

obtained with the approximated model. In fact, integrating these accurate models

leads to a reduction of the maximum temperature while preserving a similar wire

length. In particular, the solution obtained with the approximated model presenting

the lowest peak temperature reaches 398.61K and exhibits an approximated wire

length of 66.6mm. On the other hand, a solution obtained with the 3D-ICE model

presents a maximum temperature of 387.48K and a wire length of 62.4mm while

a solution obtained with the NNTM reaches 387.34K and reduces the wire length

to 60.0mm. Thus, the maximum temperature is reduced in 11.30K and 11.27K

while the wire length is reduced in a 6.3% and 9.9% respectively thanks to the more

accurate thermal model.
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Figure 5.19: Thermal optimization in the 30 cores scenario using the APPROX,
3D-ICE and NNTM models during the optimization process targeting TMAX

Fixed Time Optimization: In the previous section, we have fixed the num-

ber of iterations of the optimization process to compare the performance and the

thermal behavior of the configurations obtained with the different thermal models.

However, as showed in Section 5.4.3, these models exhibit different execution times.

In fact, the GPU implementation of the NNTM performs 2.14× and 20.67× faster

than the APPROX model and the 3D-ICE run on CPU. In this section, we analyze

the thermal optimization achieved with a fixed time deadline. As the NNTM run of

GPU is the fastest one, we compare the configurations achieved with the different

thermal models at time TNNEND
, i.e. the time needed for the floorplanner to perform

250 generations with the NNTM run on GPU. Figure 5.20 shows the nondominated

solutions found with the different models at the referred instant.

In this case, the NNTM leads to a better optimization in peak temperature

and wire length than the 3D-ICE. It is due to the fact that in the latter case,

fewer iterations of the optimization process have taken place. In a similar way,

the differences in wire length between the solutions obtained with the NNTM and

APPROX models increase as the minimum wire length obtained with the latter is

augmented in a 15.48%.
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Figure 5.20: Fixed-time optimization of the 30 cores architecture with the APPROX,
3D-ICE and NNTM models

Cooling Cost Analysis: In the previous sections, we have showed that the

inclusion of the NNTM in the optimization flow leads to a significant reduction of

maximum chip temperatures. However, thermal-aware floorplanning alone is not

enough to reduce peak temperatures to acceptable levels. It is, in fact, mandatory

to combine floorplanning optimization with other cooling techniques to ensure the

feasibility of these architectures. To this end, we consider the inclusion of microflu-

idic channels in additional layers stacked between the active layers of the 3D chip.

Figure 5.21 (retrieved from [138]) shows a traversal view of a four-layered 3D IC

with liquid cooling. In the figure, the added layers contain micro-channels placed

in a homogeneous manner. In the 30 cores architecture considered in this work, we

place 16 channels in each of the two additional cooling layers. The width of the

micro-channels is 300µm and the height is equal to 100µm. A liquid coolant, for

instance water, runs through these channels at a fixed flow rate. The higher the flow

rate, the higher the cooling effect but also the higher the power needed to pump the

water through the channels.

We now analyze through simulations the impact of varying the flow rate on the

maximum temperature of two optimized configurations of the 30 cores architecture.

The first corresponds to a solution obtained with the approximated thermal model

presenting a wire length of 57.3mm and a peak temperature of 401.184K. The
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Figure 5.21: Four-layered 3D IC with liquid cooling

second is a solution obtained with the NNTM reaching 387.474K and exhibiting a

wire length of 60.0mm. In both cases the selected nondominated solution presents

the best tradeoff between temperature and wire length. We also analyze the cooling

power consumption needed to reach acceptable levels of temperature. To this end, we

retrieve an integrated micro pump power consumption value from [93]. In the cited

work, Lee et. al. report a micro pump that exhibits a power consumption of 1W per

microchannel while producing a flow rate of 6ml/min. In the following, we assume

that the power consumption of the referred pump depends linearly on the flow rate.

Figure 5.22 shows the cooling effect obtained with a coolant flow rate ranging from 1

to 10 ml/min. Note that the leftmost point of the x-axis (0 ml/min) corresponds to a

chip without liquid cooling. The peak temperature of both configurations gradually

decreases when the flow rate is incremented. To compare the two solutions, we

fix the maximum temperature threshold proposed in [34] to 358K (85 ◦C), and we

obtain the necessary coolant rate and the corresponding pump power consumption

to meet the constraint. Thus, the liquid cooling power consumption is 0.95W in the

case of the solution obtained with the NNTM while 1.15W are required to cool the

APPROX configuration down to an acceptable temperature. Therefore, introducing

the NNTM in the optimization flow leads to a cooling energy saving of 17.4%. Note

that the low power consumption values presented in this work are increased to

unaffordable levels when a higher number of channels is considered. In that case,

the presented power saving becomes more significant as it remains proportional to
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the required flow rate.

Figure 5.22: Cooling Cost Analysis in the 30 cores scenario

In this scenario, the solutions obtained with the 3D-ICE and NNTM models are

more interesting from a designer point of view as both temperature and wire length

are minimized. However, the NNTM allows to reduce significantly the runtime of

the floorplanning process (see Section 5.4.3) while achieving a similar optimization.

Therefore, it is best suited for architectural exploration tasks. Once we have chosen

the optimal thermal model for our purpose, we run the optimization of the 66 cores

platform.

66 Cores Platform: We show in Figure 5.23 the maximum temperature and

the wire length of the nondominated fronts of solutions obtained for the 66 cores

architectures. As in the 30 cores scenario, the integration of the NNTM leads to an

improvement of the quality of the solutions. In this case, the solution found with

the approximated thermal model presenting the shortest wire length (164.10mm)

reaches 414.27K. However, this solution presents a performance overhead of 5.85%

when compared to a configuration that reaches 412.49K found with the NNTM.

The thermal problems encountered for the 30 cores platform are exacerbated

here as peak temperatures reach up to 422.08K. Therefore, it is again necessary

to simulate the inclusion of micro-channels to reduce these temperatures down to
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Figure 5.23: Nondominated Fronts returned in the 66 cores scenario

acceptable levels. In accordance with the size of the architecture, we include three

additional cooling layers and the number of microchannels is scaled to 19. Next, we

analyze the power needed to cool down a solution found with the NNTM reaching

412.49K and presenting 154.5mm of total wire. Figure 5.24 shows the impact of a

varying flow rate in the peak temperature of the referred solution. In this case, the

power needed to reduce the maximum temperature to 358K increases to 1.75W .

Figure 5.24: Cooling Cost Analysis in the 66 cores scenario
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5.4.4 Conclusions

In this section, we have shown that the solutions obtained with the NNTM minimize

both temperature and wire length. The thermal optimization achieved is translated

into a power consumption reduction of 17.4% as less energy is needed to reduce peak

temperature down to acceptable levels. Also, replacing the approximated model

with a GPU implementation of the NNTM leads to a speedup of 2.14×. Hence, the

NNTM is the most suitable for architecture exploration as it eliminates the tradeoff

between accuracy and runtime.

It has also been shown that additional cooling techniques such as the employed

microfluidic channels are necessary to achieve feasible temperatures. However, the

cooling effect of these microchannels has an impact on the thermal constraints of the

targeted architectures that has not been considered in the floorplanning optimization

loop. Therefore, considering the new thermal constraints during the floorplanning

process will certainly lead to better solutions.

Another major improvement could be achieved with the use of a more suitable

representation of the solutions for the 3D thermal-aware floorplanning problem. In

fact, most of the floorplanning proposals are based on representations that require

time consuming heuristics to the decode the solutions. A new representation al-

lowing a direct mapping of the individuals into configurations of the architecture

would alleviate the computational cost of the algorithm as the decoding step would

be avoided. Furthermore, it would eliminate heuristics that might limit the explo-

ration space and cause premature convergence problems. Thus, such a representa-

tion would be more suitable for fixed-outline floorplanning problems.



Chapter 6

Direct Mapping: a New

Representation for 3D MPSoCs

In Chapter 3, it is made clear that the design of modern three dimensional Multipro-

cessor Systems on Chip (3D MPSoCs) requires new approaches. For instance, when

considering 3D MPSoCs, it is common to work with a fixed die size and, more im-

portantly, the thermal impact becomes the most restrictive constraint. In fact, when

the thermal constraints are considered, existing representations such as Combined

Bucket and 2D Array, Double-Tree and Sequence, Sequence Pair, and Generalized

Polish Expression fail to produce thermally optimized configurations as they were

engineered to optimize area and wire length of logic circuits. Moreover, the effi-

ciency of these proposals is severely penalized as obtaining the thermal behavior of

the different configurations becomes the bottleneck of the different floorplanners.

To avoid such overhead, different techniques to speedup the thermal optimization of

the targeted architectures is proposed in Chapter 5. First, a Master-Worker imple-

mentation of the employed evolutionary floorplanner is presented. Second, a GPU

implementation of an exact thermal simulation is used as a guiding cost function in

the optimization loop.

However, the speed of the optimization process is not the only factor that should

be analyzed to design a floorplanning representation or algorithm. In fact, the search

process might benefit from additional knowledge such as the introduced power pro-

files (see Section 5.3). From a practical point of view, it is also important to provide
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designers with an homogeneous toolchain covering all the steps of the fabrication of

new 3D chips. In fact, the lack of standards in the design of 3D chips is one of the

limiting factors that is delaying the production of these platforms at a larger scale

(see Chapter 2). Therefore, new proposals should take into account the valuable con-

tributions and validated tools provided by the VLSI community. For example, the

resulting configurations of the floorplanning process should be easily simulated with

the state-of-the-art thermal simulators. For instance, RC based thermal simulators

such as 3D-ICE [138] split the layers of the chip in grid-like structure, assigning

a power consumption value to every “thermal cell”. These simulators are rarely

used in the optimization step as the resulting process would be highly consuming

in terms of time. Nevertheless, there is a widespread use of these simulators as a

validation step following the floorplanning process. The problem is that the parti-

tioning performed by these simulators might not correspond to the one used in the

optimization process resulting in an inaccurate assignment of power consumption

values to the thermal cells. Thus, even if the optimization and validation processes

perform correctly independently, the mismatch in the toolchain leads to a lack of

accuracy in the validation of the solutions. Therefore, floorplanning tools should

provide an output compatible with the state-of-the-art thermal simulators.

In this chapter, we propose a new representation that leads to outperform

the multi-objective evolutionary floorplanner MFA presented in [38]. In the

referred work, the solutions are coded as ordered lists of components and a sophis-

ticated but time consuming heuristic is in charge of the placement of the different

elements of the architecture (decoding of the solutions). Such heuristic performs an

incremental floorplanning in which the components are sequentially placed in the

remaining position minimizing all the targeted objectives. In fact, as the exhaustive

heuristic alone is capable of obtaining well performing solutions, the MOEA is de-

signed to obtain the optimal order of the components given to the placing heuristic.

Thus, even though a huge search-space of cardinality n! is considered (permutations

of the n components of the architecture), the cited approach explores a reduced

solution space of the 3D MPSoCs floorplanning problems. Therefore, our insight is

that the provided solutions might correspond to suboptimal solutions. Moreover,

the heuristic in charge of decoding the solutions might bias the search process. These
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two facts lead to reconsider the existing floorplanning proposals in order to provide

a useful tool for architectural exploration that satisfies the requirements imposed by

current 3D MPSoCs.
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6.1 Direct Mapping Thermal-Aware Floorplanner

As in our previous proposals, the thermal-aware 3D floorplanning is approached as

a multi-objective optimization problem targeting both temperature and wire length.

As MFA, the proposed thermal-aware floorplanner is based on Nondominated Sort-

ing Genetic Algorithm II (NSGA-II), a well-known Multi-Objective Evolutionary

Algorithm (MOEA). However, in this case, a different codification of the solutions

is employed, namely Direct Mapping (DM).

6.1.1 Representation

As explained in Chapter 2, the thermal-aware floorplanning of 3D ICs can be con-

sidered at different abstraction levels corresponding to different design possibilities.

The referred 3D approaches range from coarse to fine grained, depending on the

granularity of the unit to be stacked, namely:

1. Entire cores and memories

2. Functional unit blocks

3. Logic gates

4. Transistors

Direct Mapping is suitable for both the first (entire cores and memories) and sec-

ond (Functional Unit Blocks) levels of integration. The proposed representation is

suitable for fixed-outline floorplanning problems and allows a direct mapping of the

individuals into configurations of the architecture. This is a major advantage as this

representation does not require a placing heuristic that might limit the exploration

space and cause premature convergence problems in the case of evolutionary algo-

rithms. Furthermore, with the use of this representation, the computational cost of

the decoding step is avoided.

Also, this cell-level representation is in accordance with current thermal simula-

tors such as 3D-ICE [138] that split the IC into thermal cells. Therefore, the thermal

error due to the different cell sizes used in the optimization and validation processes

is eliminated. Thus, a better thermal optimization can be achieved.
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In order to work with this representation, the IC is split into a mesh of cells. The

choice of the cell size determines the granularity of the problem. In fact, considering

big cells leads to a fast optimization process that may speedup the architectural ex-

ploration task. On the other hand, the smaller the cell size, the higher the accuracy

of the thermal simulations is, but also the higher the complexity of the problem.

In particular, floorplanning problems that consider the placement of Trough Silicon

Vias (TSVs) are specially challenging as the pitch diameter of the TSVs is gener-

ally two orders of magnitude smaller than the components of the architecture. In

order to deal with this increased difficulty, some proposals like [37] split the opti-

mization process in two different steps performing the thermal optimization and the

TSV placement in a sequential manner. A different workaround is possible adopting

a “TSV-as-cell” approach. The proposed representation is compatible with both

strategies, and can minimize the area loss in the latter case considering a smaller

cell size.

Figure 6.1 shows a configuration and the corresponding representation of an ar-

chitecture composed of 3 processors (C1, C2 and C3) and 3 memories (L1, L2 and

L3). Each component of the architecture is characterized with a coordinate and a

boolean flag. The coordinate determines the location of the left-bottom corner of

the element while the flag indicates whether or not the given element is rotated.

Therefore, the decoding of the solutions is direct and does not require a placement

heuristic. In fact, as opposed to other techniques, the exact location of each com-

ponent is already coded in the chromosome.

Figure 6.1: Configuration and representation of a simple architecture
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This grid-like representation admits a high level of parallelism and is well adapted

for execution in massively parallel architectures such as GPUs. Nevertheless, ap-

propriate operators need to be defined to ensure the generation of feasible solutions

and the preservation of the diversity of the population.

6.1.2 Initial Population

We need a suitable method to create the initial population managed by the evolu-

tionary algorithm. Given the proposed representation, random coordinates for each

component could be generated. However, we have observed that the so-constructed

solutions present an elevated number of overlapping components. Thus, they are

not appropriate as an initial population. We propose a fast and simple procedure

to deal with the initialization of the population in which all the components are

sequentially placed in a random order according to a First Fit strategy. The pseu-

docode of this procedure is shown in Algorithm 2.

int pos[numSolutions][numComponents];
bool rotated[numSolutions][numComponents];
int ids[numComponents];
for i ← 0 to numSolutions− 1 do

ids[i] = i;
end
for i ← 0 to numSolutions− 1 do

randomShuffle(ids);
for j ← 0 to numComponents− 1 do

int id=ids[j];
int isRotated = rand()%2;
if (isRotated==0) then

rotated[s][id] = false;
else

rotated[s][id] = true;
end
int coord = firstFeasibleCell(s,id);
pos[s][id] = corners;

end

end

Algorithm 2: Generation of the initial population
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The solutions obtained with this method do not necessarily correspond to feasible

configurations. However, this placing heuristic avoids overlapping to some extent

and the initial solutions present a random behavior. Thus, this method provides a

good enough starting point for the optimization process.

6.1.3 Operators

We now describe the employed operators. It is important to note that the crossover

and mutation operators have been specifically designed for this representation.

Selection

The selection operator implements a binary tournament strategy. To this end, ran-

dom couples of individuals are formed and the best solution of each pair is selected.

Tuning the size of the tournament selection allows to adjust the selective pressure

of the evolutionary process. In our case, the size of the tournament (two) was deter-

mined empirically since, with that value, an appropriate behavior of the evolutionary

process was observed.

Crossover

We apply an innovative and problem specific crossover operator. In fact, with the use

of the proposed representation, typical crossovers such as Single-Point fail to produce

feasible offspring because overlapping of different components occurs frequently. As

a result, the evolutionary process exhibits premature convergence problems with the

use of such operators. The designed operator is based on a Single-Point crossover,

in which two children (Child1 and Child2 ) are obtained from the selected parents

Parent1 and Parent2. However, we extend the classical version of the operator to

obtain feasible solutions while maintaining most of the genetic information of the

parents (see Figure 6.2). To obtain feasible children, we proceed in three steps as

follows.

1. First, we randomly select a point in [1..size], where size is the number of

components of the architecture.
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2. Then, the components Ci of Parent1 and Parent2 such that i < point are

copied into Child1 and Child2 respectively.

3. After this first step, the locations of the components Cj such that j ≥ point

of Parent1 have to be transmitted to Child2 while Child1 must inherit from

Parent2. If any of these components overlaps with an already placed block,

then such component is relocated according to a First Fit strategy.

For the sake of clarity, the pseudocode of this procedure is shown in Algorithm 3.

int indexPoint = rand() % size;

for i ← 0 to indexPoint− 1 do

copyComponent(Parent1,Child1,i);

copyComponent(Parent2,Child2,i);

end

for i ← indexPoint to size− 1 do

if (feasible(Child2,Parent1,i)) then

copyComponent(Parent1,Child2,i);

end

else if (feasible(Child2,Parent2,i)) then

copyComponent(Parent2,Child2,i);

else

placeFirstFreePosition(Child2,i);

end

if (feasible(Child1,Parent2,i)) then

copyComponent(Parent2,Child1,i);

else if (feasible(Child1,Parent1,i)) then

copyComponent(Parent1,Child1,i);

else

placeFirstFreePosition(Child1,i);

end

end

Algorithm 3: Crossover Operator
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(a) Parent 1

(b) Parent 2

(c) Offspring 1

(d) Offspring 2

Figure 6.2: Crossover operator: A simple example considering a two layer architec-
ture with six components
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Mutation

The mutation of the solutions is performed in three ways, each with the same prob-

ability:

1. Swapping the position of two elements of the chromosome, resulting in a change

of the placement of the two involved components (Figure 6.3(b)).

2. Rotation of a component (Figure 6.3(c)).

3. Randomly moving a component one cell in one of the following directions: up,

down, left, right, forward, or backwards (Figure 6.3(d)).

Note that the mutation is not performed if, as a result of the operator, two or more

blocks completely overlap or if a block is entirely positioned out of the borders of

the chip. However, we allow modules to partially overlap or to be partly placed

out of the chip. Such inappropriate configurations are penalized (see Fitness section

below) but contribute to increase the diversity of the population and thus to avoid

premature convergence issues.

6.1.4 Fitness Functions

At every generation, the different individuals are evaluated according to the three

following objectives:

• The number of violated topological constraints (overlapping between different

blocks and area less or equal than maximum area).

• The wire length.

• The temperature of the chip.

Note that the computation of the wire length and temperature depends on the

selected models.

6.2 Direct Mapping vs State-of-the-art Proposals

In this section, we compare the described algorithm and representation to existing

and validated proposals. To this end, we extend the comparative study presented
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(a) Original Configuration

(b) Swap between components M1 and M3

(c) Rotation of component M1

(d) Component Shift (M1 moved forward)

Figure 6.3: Mutation operator: A simple example considering a two layer architec-
ture with six components
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in previous chapters. In Chapter 3, several well-known floorplanning proposals are

adapted for the optimization of 3D MPSoCs and their suitability is compared. The

results obtained with MFA are added to the comparative study in Chapter 5. In

the referred analysis the optimization targeted the following objectives:

Wire Length The wire length is approximated as the sum of the Manhattan

distance between interconnected blocks and is computed as follows,

W =
�

i<j∈1..n
|xi − xj|+ |yi − yj|+ |zi − zj| (6.1)

where xi, yi, and zi are the coordinates of block i.

Temperature Temperature is measured with the approximated model explained

in Section 2.5.2, rewritten here for clarity:

T̂ =
�

i<j∈1..n
(dpi ∗ dpj)/(dij) (6.2)

where dp is the power density of block i and dij is the euclidean distance between

blocks i and j.

6.2.1 Experimental Setup

To validate the optimization achieved with Direct Mapping, we reproduce the exper-

imental conditions described in Section 3.2. Therefore, the same three Niagara-based

benchmarks are optimized. For the sake of clarity, the main features of the targeted

architectures are rewritten in Table 6.1: number of cores, total number of blocks,

length (number of cells), width (number of cells), number of layers, approximated

wire length (in cells) and approximated thermal metric. These platforms include

an elevated number of SPARC cores exhibiting high power density, thereby exacer-

bating the thermal issues found in 3D ICs. Smaller Power6 cores are also included

to provide a higher degree of freedom to the optimization process. The varied sizes

and power densities of the different components help evaluating whether or not the
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compared proposals exploit the extra optimization opportunities inherent to hetero-

geneous architectures.

Benchmark N cores # Blocks Length Width Height Wr T̂r

NH48 48 124 40 35 4 1320 146.66
NH64 64 165 40 35 5 1636 250.55
NH128 128 328 40 35 9 2889 879.09

Table 6.1: Reference values for the three benchmarks.

It is important to note that, for each of the compared floorplanners, two different

strategies are followed to perform the optimization:

1. Starting the optimization from the original configuration of the blocks

2. Starting the optimization from a random configuration of the blocks

Each optimization scenario (benchmark + fixed or random seed) was replicated

10 times. All these experiments were carried out in the same computer used in

previous experiments. Thus, the same time deadlines were used to perform the

experiments, namely:

• 12 hours for the 48 cores architecture

• 48 hours for the 64 cores architecture

• 96 hours for the 128 cores architecture

6.2.2 Results

The results of the different optimization scenarios are shown in Figure 6.4. Note

that, in each scenario, the front of nondominated solutions is retrieved from all the

solutions obtained in the 10 runs of the algorithm.

In the three scenarios, Direct Mapping is the best strategy as each and every

solution obtained with any of the other representations is dominated by at least a

solution found with DM.

Moreover, the proposed floorplanner returns fronts of nondominated solutions

covering a wide range of temperatures and wire lengths. Therefore, it can be said
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(a) 48 cores scenario

(b) 64 cores scenario

(c) 128 cores scenario

Figure 6.4: Optimized solutions found with DM, MFA, GPE, CBA, DTS, and SP
in the 48, 64, and 128 scenarios
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that the implemented multi-objective optimization deals with the tradeoff between

the conflicting objectives in an appropriate manner. On the other hand, the other

multi-objective proposals, namely GPE and MFA, tend to focus in a limited region

of the solution space. Therefore, using DM leads to a wider range of solutions, which

represents the ideal case in multi-objective optimization contexts.

Another relevant fact is the difference between the fronts obtained with and

without a fixed seed, i.e. whether or not the population was initialized with the

original feasible configuration of the benchmark. It is important to note that the

configurations obtained with GPE, GPEf, CBA, DTS, and SP all correspond to op-

timizations starting from the original benchmarks. In fact, no feasible solutions were

retrieved when starting with a random seed. Therefore, the results obtained with

DM are in accordance with previous experiments as the region of the solution space

explored when a fixed seed is set matches the results obtained with other proposals.

We now comment individually each of the three considered scenarios:

48 Cores Scenario

In this scenario, the optimization achieved with a fixed seed (DMf) returns a front

that dominates the solutions found with MFA, GPE, GPEf, and DTS. However, no

clear domination relationship can be established between DMf and the optimization

carried out with CBA and SP. In fact, the solutions obtained with these two repre-

sentations exhibit similar wire length and temperature as compared to some of the

solutions of the DMf front.

On the other hand, starting the optimization from random configurations (DMr)

clearly leads to outperform all the other proposals. In fact, the retrieved front

is composed of solutions presenting simultaneously shorter wire lengths and lower

temperatures.

64 Cores Scenario

The same comments made for the optimization of the 48 cores platform apply to

this scenario. In fact, the DMr front clearly presents the best solutions in terms of
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temperature and wire length. Furthermore, in this case, the configurations corre-

sponding to the optimization initialized with the original benchmarks (DMf) also

dominate the results obtained with all the other proposals. It is probably due to

the longer time available for the optimization. In fact, each replica of the algorithm

is executed for 48 hours while in the previous scenario the fixed deadline was set

to 12 hours. Therefore, the increased size of architecture (from 124 to 165 total

blocks) does not match the increment of the running time. It can be said that, in

this scenario, the optimization benefits from a proportionally longer optimization

phase resulting in a better exploitation of the discovered solutions. Thus, better

temperature and performance are obtained.

128 Cores Scenario

The solutions corresponding to the DMf front still dominate the solutions obtained

with GPE, GPEf, DTS, and SP. However, in this case, the performed optimization

is clearly differentiated from the 48 and 64 scenarios as DMr does not behave as

in the previous cases. This front still outperforms MFA, however no clear domina-

tion relationship can be established with DMf, GPE, GPEf, CBA, DTS, and SP.

In fact, even though a better thermal optimization is achieved, the referred front

does not return any solution exhibiting a wire length in the range of the mentioned

proposals. This issue might be caused by the procedure in charge of creating the

solutions, which might be biasing the search process. In fact, it has already been

made clear that the initialization of the population has a great impact on the ex-

ploration process. Thus, such initialization method might not be suitable for larger

architectures.

6.2.3 Parallelization

Evolutionary Algorithms are intrinsically parallel. In fact, these heuristics typically

manage a population composed of several candidate solutions that must be inde-

pendently evaluated and modified by means of genetic or local search operators. In

order to speedup the optimization with a parallel implementation, it is necessary to

detect the bottlenecks of the considered algorithm. To this end, we show in Table

6.2 the runtime profile of the sequential version of the algorithm in the 48, 64, and
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128 scenarios. Note that the profilings have been replicated 10 times. Thus, the

presented values correspond to the averaged times of these executions.

Scenario 48 cores 64 cores 128 cores
Runtime 44.71s 74.63s 274.86s

Init 02.43% 02.72% 02.45%
Selection 00.03% 00.00% 00.00%
Crossover 14.37% 11.64% 06.44%
Mutation 00.17% 00.11% 00.07%
Evaluation 80.07% 83.75% 90.52%
Ranking 02.23% 01.41% 00.39%
Reduction 00.37% 00.37% 00.12%

Table 6.2: Runtime profiling of the proposed floorplanner in three different sce-
narios. The presented results correspond to the execution of 1000 generations the
evolutionary algorithm with a population of 100 individuals

The values shown in the table correspond to the total runtime (in seconds) and to

the percentage of the execution consumed by the different methods involved in the

multi-objective evolutionary algorithm. It can be appreciated that the evaluation

phase of the algorithm consumes most of the execution time in the three cases as it

represents respectively a 80.07%, 83.75%, and 90.52% of the total execution time.

Moreover, the percentage of the runtime increases with the size of the architecture

due to the quadratical computational complexity of the employed approximated

thermal model. It is therefore necessary to implement a parallel version of the eval-

uation phase of this algorithm.

We propose a CPU-GPU version of the algorithm, implemented with CUDA

[119]. Note that, only the evaluation step is parallelized as it represents the bot-

tleneck of the algorithm. Moreover, the performed attempts to parallelize other

involved methods such as the crossover and the ranking of the solutions resulted in

worse performances. For further details of implementation of NSGA-II in CUDA,

the reader is referred to [156]. The execution times of the CPU and CPU-GPU ver-

sions of the floorplanner in the three scenarios are shown in Figure 6.5(a). Figure

6.5(b) shows the speedup obtained with the parallel implementation. The experi-

ments are carried out with an Intel Core-i5 composed of 4 cores running at 2.80GHz
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and a NVIDIA GeForce GTX570 composed of 480 CUDA cores and 1280MB of

GDDR5 memory.

(a) Execution Times

(b) Speedups

Figure 6.5: Execution times of the CPU and CPU-GPU implementations of the
floorplanner (a) and speedup (b) in the 48, 64, and 128 cores scenarios running 1000
generations of the evolutionary process with a population of 100 individuals

In Figure 6.5(a), the need for the parallel implementation of the algorithm can

be appreciated as the execution time of the CPU version increases dramatically

with the size of the architecture. On the other hand, the execution time of the

CPU-GPU implementation seems to increase linearly when larger architectures are

optimized. In fact, as depicted in Figure 6.5(b), speedups of 3.95×, 4.99×, and

8.84× are obtained in the 48, 64, and 128 cores scenarios respectively. The linear

increase of the optimization time is crucial as typically, the larger the architecture,

the higher the required number of generations is. In larger scenarios, the high

number of blocks could saturate the memory available in the GPU device. In such

case, the execution time will not increase linearly anymore as more evaluations

would be sequentialized. However, such issue does not represent a major drawback
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as GPU devices incorporate more and more memory and larger architectures are

not expected in the short term future.

6.2.4 Conclusions

A novel representation well adapted for fixed-outline thermal-aware floorplanning

of 3D MPSoCs has been introduced. Such representation allows for a direct map-

ping of the candidate solutions into configurations of the architecture, avoiding the

overhead of decoding heuristics that might limit the exploration of the solution

space. A multi-objective evolutionary algorithm based on NSGA-II together with

representation-specific crossover and mutation operators have been designed to man-

age the proposed representation.

The adoption of the Direct Mapping representation has led to outperform the

results obtained with MFA, GPE, GPEf, CBA, DTS, and SP in three scenarios

corresponding to large 3D MPSoCs architectures composed of 48, 64, and 128 cores

respectively. The designed algorithm and the corresponding operators have been

successfully designed as the performed search returns fronts of configurations cover-

ing a wide range of temperatures and wire lengths.

The proposed representation allows to start the optimization process with pre-

designed initial configurations or with random solutions. The latter has been shown

to be beneficial in the 48 and 64 cores scenarios. On the other hand, appropriate

initial solutions seem to be necessary to optimize the larger 128 cores architecture.

The comparison performed in this section is fair as all the optimization strategies

have been executed with the same time deadline. However, it is beneficial to reduce

these elevated optimization times to provide a tool capable of performing architec-

tural exploration tasks in a faster way. To this end, a CPU-GPU implementation of

the algorithm has been introduced. This version leads to a speedup of up to 8.84×.

More importantly, with the proposed parallel implementation, the optimization time

increases linearly with the size of the architecture, resulting in a fast and scalable

tool to perform architectural exploration tasks.
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6.3 Optimization with Microfluidic Cooling

In the previous chapter (Section 5.4), the suitability of several thermal models in

the context of 3D MPSoCs optimization is compared. It is concluded that accurate

thermal models such as 3D-ICE or the Neural Network Thermal Model lead to a

similar thermal optimization. Additionally, both outperform the results obtained

with APPROX, a simplified thermal model.

In the referred section, it is also demonstrated that large 3D MPSoCs architec-

tures composed of highly power consuming components such as SPARC cores reach

temperatures above the acceptable range. In fact, cooling techniques are mandatory

when dealing with such architectures. Microfluidic cooling channels were included

in the thermal simulations of the resulting configurations. This way, peak tempera-

tures were reduced to feasible values.

However, these microchannels were not taken into account in the optimization

process. Therefore, the floorplanner could not play with the extra optimization

opportunities available in this new scenario. For instance, placing hot components

above the others might not lead to severe hotspots if a cooling channel is situated

between them in an intermediate layer.

In this section, we compare the thermal optimization achieved with and without

the inclusion of microfluidic channels in the thermal simulations performed during

the optimization. To this end, we integrate 3D-ICE in the Direct Mapping floor-

planner presented in Section 6.1. Note that 3D-ICE allows to simulate 3D stacks

with or without microchannels.

To illustrate the targeted 3D chips, we show in Figure 6.6 a four-level 3D chip

with intermediate cooling layers. In order to simplify the experimental setup we

consider microchannels placed in a homogeneous manner (as depicted in the figure).

Moreover, we consider a constant flow rate running through all the channels.
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Figure 6.6: Four-layered 3D IC with liquid cooling [138]

6.3.1 Experimental Setup

We perform the optimization of the two smaller Niagara-based architectures used

previously with (3D-ICEc) and without (3D-ICE) the inclusion of the cooling chan-

nels in the optimization process. Note that these exact approaches are not feasible

in the 128 cores scenario due to the dramatic execution time. Therefore, the larger

128 cores architecture has not been included in these experiments. The main char-

acteristics of the studied platforms are summarized in Table 6.3.

Benchmark N cores # Blocks Length Width Height Wr T̂r

NH48 48 124 40 35 4 1320 146.66
NH64 64 165 40 35 5 1636 250.55

Table 6.3: Reference values for the three benchmarks.

As in previous experiments, the multi-objective optimization targets both tem-

perature and wire length. The latter is approximated with the Manhattan distance

between interconnected blocks while the thermal behavior of the configurations is

obtained with 3D-ICE. The optimization starts from random configurations as bet-

ter results were obtained with this strategy (see Section 6.2.2). It is worth noting

that the 3D-ICE simulation time is increased when microchannels are considered.

Therefore, two series of experiments are proposed.

• First, a fixed-time optimization is performed setting the following time dead-

lines: 4 and 6 hours for the 48 cores and 64 architectures respectively. This
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experiment will show if there is a tradeoff between optimization time and

quality of the retrieved solutions.

• In the second series of experiments, the number of generations fixed to 500.

This way, we will show whether or not including the microchannels in the

optimization loop allows to benefit from the extra optimization opportunities

available in 3D chips with liquid cooling.

Three and four intermediate cooling layers are introduced in the 48 and 64 cores

platforms. The width and the distance between channels are both equal to 300µm

while the height is 100µm. Each of the cooling layers includes 39 microchannels and

the flow rate remains constant at 12.0ml/min.

Thus, the number of experiments amounts to eight (two platforms + with or

without cooling + fixed time or fixed generations). Each optimization scenario is

replicated 10 times. All these experiments are carried out with an Intel Core-i5

composed of 4 cores running at 2.80GHz.

6.3.2 Results

We compare the configurations obtained with the two proposed experimental setups.

Fixed-time Optimization

Figure 6.7 shows the nondominated solutions retrieved from the 10 replicas of the

experiments with the proposed time deadlines. Note that the temperatures shown

in this section have been obtained with 3D-ICE including the corresponding cooling

layers.

In both scenarios, the thermal optimization achieved considering microchannels

leads to a better thermal behavior of the configurations. However, the solutions

obtained with the standard 3D-ICE present a better performance. For instance,

in the 48 cores scenario, a configuration obtained with the 3D-ICE model without

liquid cooling reaching 368.6K presents a wire length 5.1% shorter than a solution

presenting a peak temperature of 368.8K obtained with the inclusion of microchan-

nels in the optimization process. A similar behavior can be observed in the 64 cores
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(a) 48 cores scenario

(b) 64 cores scenario

Figure 6.7: Optimized solutions found with and without including microchannels in
the optimization process in the 48, and 64 scenarios considering a fixed time

scenario. As in the previous case, the solutions resulting from the incorporation of

liquid cooling in the floorplanning process present a lower temperature but also a a

longer wire length.

Thus, to achieve an optimal thermal optimization, it is necessary to consider

the new thermal constraints resulting from the considered cooling technique. In

fact, the severe thermal constraints imposed by large 3D architectures are relaxed

as severe hotspots are avoided. Floorplanners must benefit from the higher degree

of freedom allowed by the inclusion of cooling techniques. For instance, hot compo-

nents might be placed on top of each other if a microchannel is placed between them.
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The difference in performance might be due the fact that considering microfluidic

cooling has an impact in the runtime of the thermal simulation. As a result, fewer

generations of the evolutionary floorplanner are executed. Therefore, it might be

possible to achieve thermally and performance optimized configurations with 3D-

ICEc if a longer number of iterations of the optimization process are run. Thus, we

compare the configurations obtained with the two studied thermal models with a

fixed number of generations.

Fixed Generations

Figure 6.8 shows the nondominated solutions retrieved from the 10 replicas of the

experiments with 500 generations. As in the previous figures, temperatures have

been obtained with 3D-ICE including the corresponding cooling layers.

In the 48 cores scenario, the solutions obtained with 3D-ICEc reach a lower

temperature while they exhibit a similar wire length. For example, the solution

obtained with 3D-ICE presenting the shortest wire length reaches a temperature of

372.2K while a solution obtained with 3D-ICEc exhibiting a similar performance

presents a maximum chip temperature of 366.4K. Thus, the front of nondominated

solutions obtained with 3D-ICEc dominates the set of configurations retrieved with

the standard 3D-ICE.

The suitability of the 3D-ICEc model is confirmed in the 64 cores scenario. The

configurations retrieved with the referred model still present temperature up to

7.8K lower. Moreover, the performance difference is clearly increased. In fact, the

so-obtained configurations present a performance improvement in the range of 5.3%

to 10.7%.

Therefore, it is clearly necessary to include the microfluidic cooling in the opti-

mization process as it leads to simultaneously reduce temperature and wire length

of the studied architectures.
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(a) 48 cores scenario

(b) 64 cores scenario

Figure 6.8: Optimized solutions found with and without including microchannels in
the optimization process in the 48, and 64 scenarios considering a fixed number of
generations

6.3.3 Conclusions

In this section, we have integrated two accurate thermal models in the Direct Map-

ping floorplanner. The first model is the standard 3D-ICE while the second simulates

the inclusion of intermediate cooling layers in the 3D stack. The added layers con-

tain micro-channels placed in a homogeneous manner. A liquid coolant runs through

these channels at a fixed flow rate. These layers allow to relax the severe thermal

constraints imposed by large 3D MPSoCs. As a result, there are extra optimization

opportunities that must be exploited by thermal-aware floorplanners.
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The proposed Direct Mapping floorplanner is capable of exploiting these op-

portunities. In fact, considering the inclusion of microchannels in the optimization

process simultaneously reduces temperature and wire length of the targeted large

3D MPSoCs.

The integration of the 3D-ICEc model leads to a long optimization time that

must be reduced. However, we have already studied in Chapter 5 the possibility

of training a neural network to mimic the results of 3D-ICE (NNTM model). Such

procedure could be reused here to reproduce the results of 3D-ICEc, reducing the

runtime of the thermal simulation of the optimized architectures with liquid cool-

ing. The NNTM model would still be suitable for GPU implementation, ensuring

the adequacy of the proposed methodology.



Chapter 7

Conclusions and Future Work

The conclusions presented in previous chapters are summarized in the following.

We also discuss possible improvements and potential future works. Finally, we give

the references of the publications resulting from the presented research and of the

projects and grants with which this work has been funded.

7.1 Conclusions

In this thesis, we have faced a relevant real-world problem, the thermal aware floor-

planning of large 3D MPSoCS. The silicon industry is moving towards chips with a

large number of integrated processors. However, these platforms are limited by the

elevated number and high latency of bus transactions. 3D integration is accepted

as a viable way to reduce the overall wire length of the chip while increasing the

bandwidth between vertical layers by means of Through-Silicon Vias. Therefore,

these architectures are expected to provide the demanded performance increase in

the coming years.

It has been demonstrated that the temperatures reached by large 3D MPSoCs re-

main in acceptable levels. Thermal-aware floorplanning alone allows to significantly

reduce chip temperature. However, the prohibitive peak temperatures appearing in

the targeted architectures make necessary the incorporation of additional cooling

techniques. We have simulated the inclusion of microfluidic channels disposed in a

homogeneous manner between the active layers of the 3D chip. A liquid coolant such
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as water runs along these channels at a fixed flow rate. The considered technique

allows to dramatically reduce chip temperature, achieving feasible temperatures.

The power consumption required by such cooling technique is expected to remain

in admissible values, even though the specific values will depend on the number of

channels and the specific characteristics of the involved micropump(s).

We have showed the necessity for new techniques capable of dealing with the

severe thermal constraints imposed by large 3D MPSoCs. Relevant floorplanning

proposals such as Combined Bucket and 2D Array, Double-Tree and Sequence, Se-

quence Pair, and Generalized Polish Expression have been employed to perform the

optimization of three platforms based on the Niagara architecture. A comparative

study has showed that the cited techniques do not reach feasible solutions when an

initial configuration of the architecture is not provided. Moreover, there is a need

for multi-objective techniques as the studied chips present a tradeoff between tem-

perature and wire length. In fact, floorplanning tools must provide a wide range

of solutions presenting a good tradeoff between the referred conflicting objectives

so that chip manufacturers can select the best configuration according to their own

criteria.

Multi-Objective Evolutionary Algorithms have been employed to deal with the

above mentioned tradeoff between performance and temperature. These algorithms

extend Evolutionary Algorithms with the incorporation of the concept of Pareto

optimality in the optimization process. MOEAs represent a suitable tool to face

complex multi-objective problems, obtaining a set of solutions simultaneously opti-

mizing two or more conflicting objectives in a reduced time.

New methodologies have been proposed leading to a temperature reduction

and performance enhancement of the targeted architectures. A previous proposal,

namely the Multi-objective Floorplanning Algorithm (MFA) has been improved in

several ways:

1) First, we have accelerated the optimization process with a parallel implementa-

tion. In particular, a multi-threaded Master-worker model has been adopted

producing a relevant speedup in the architectural exploration task.
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2) We have introduced dynamic knowledge in the floorplanning process, a typically

static optimization technique. To this end, we have considered power profiles

retrieved from architectural simulations. However, including such knowledge

in the optimization phase has revealed to be a hard task. In fact, the added

information has been reduced to several metrics since the considered MOEAs

do not perform well when an elevated number of objectives is targeted.

3) We have evaluated the impact of integrating different thermal models in the op-

timization process as a tradeoff between runtime of the thermal model and

accuracy has typically been assumed. We have considered an exact model,

namely 3D-ICE and an approximated but fast thermal model. Additionally,

we have incorporated to our floorplanner the recently proposed Neural Network

Thermal Model. Such model is trained to mimic the outputs of 3D-ICE and

had never been used before in a floorplanning context. Moreover, a GPGPU

version of such model has been employed, eliminating the referred tradeoff be-

tween runtime and accuracy. In fact, the trained neural network is faster than

the approximated thermal model and performs accurate simulations. Thus,

with a fixed optimization time, the results obtained with the NNTM outper-

form the optimized configurations achieved with other thermal models.

A major contribution of this thesis is the proposal of Direct Mapping, a new rep-

resentation designed for fixed-outline floorplanning problems that allows to perform

architectural exploration tasks in an efficient manner. Direct Mapping exploits the

modular design enabled by 3D integration as the components of a given architecture

are treated as IP blocks. Moreover, it is totally compatible with existing tools such

as thermal simulators that split the surface of a chip in rectangular thermal cells.

Therefore, the proposed method perfectly fits in a toolchain covering different steps

of the architectural design process such as architectural exploration, optimization,

and validation among others. This representation allows for a direct mapping of the

individuals into configurations of the architecture avoiding the costly decoding step

of optimization algorithms. Furthermore, it eliminates heuristics that might limit

the exploration space and cause premature convergence problems.
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A Multi-Objective Evolutionary Algorithm based on NSGA-II has been designed

to take advantage of the proposed representation. The new floorplanning proposal

has been validated and compared against state-of-the-art floorplanners. The per-

formed experiments show that the use of Direct Mapping together with the proposed

problem-specific operators leads to optimal results, outperforming all the analyzed

techniques.

It has been shown that the inclusion of microfluidic channels in intermediate lay-

ers of the 3D chip greatly impacts the thermal profile of the targeted architectures.

We have demonstrated that it is necessary to consider this cooling effect during the

optimization process to achieve an optimal thermal behavior and performance. In

fact, floorplanners must benefit from the extra optimization opportunities provided

by the relaxation of the thermal restrictions.

In summary, we have proposed bioinspired heuristics that successfully tackle

the optimization of large 3D MPSoCs. We have outperformed previous proposals

by means of introducing problem-specific knowledge to the floorplanning process

in the form of power profiles, suitable thermal models, and a new representation.

Moreover, parallel approaches have been implemented to provide an efficient tool

capable of performing the architectural exploration of large 3D MPSoCs.
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7.2 Future Work

This work has shown that large 3D platforms are feasible in terms of temperature

and provide performance improvement due to a reduced wire length. There are

two main ways of extending the techniques presented in this thesis. The first way

consists in considering further architectural constraints in the optimization process.

Second, some of the proposed techniques have the potential to be improved.

Regarding the architectural constraints, even though 3D integration technolo-

gies are continuously evolving, it is possible to incorporate more features such as a

realistic interprocessor communication. For instance, the architectures based on the

Niagara platform studied in this work contain a set of crossbars for communication.

However, there is a trend towards the implementation of a Network-on-Chip (NoC)

when the number of integrated processors is high. In such designs, a packet-based

communication is enabled with a procedure similar to the Internet Protocol. Pack-

ets pass through switches that must be floorplanned appropriately. Moreover, the

number of total switches must be minimized to reduce power consumption. The

design of these embedded networks alone represents a challenging problem and is

becoming a relevant research topic [15], [116], [11], and [61]. Just as accurate ther-

mal simulators have been employed in this work, it is necessary to consider realistic

communication models. This way, the performance improvement provided by large

3D MPSoCs will be obtained in a more accurate manner.

Another architectural issue not addressed in this work is the TSV placement.

Note that this problem has already been approached within the research group by

David Cuesta et al. [38] and [36], and that the cited works are compatible with the

methodologies presented in this thesis. Broadly speaking, the placement of TSVs

can be performed in two ways. The first approach consists in a two phase procedure

in which the placement of TSVs is performed after the placement of the compo-

nents of the architectures or vice versa. The other possibility is the adoption of a

“TSV-as-cell” approach, in which both components and vias are modeled as blocks

that must be placed in the same floorplanning step. The proposed Direct Mapping

representation is compatible with both alternatives although the latter would result
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in a significant area overhead since the areas of the considered components must be

at least equal to the size of the fixed cell (300µm in the performed experiments).

The employed cooling technique also presents room for improvement as explained

in [39]. We have simulated the integration of microfluidic channels with fixed flow

rate to demonstrate the feasibility of the studied large 3D architectures. However,

depending on the specific pump characteristics, it could be possible to allow a vari-

ant flow rate so that power consumption is minimized while temperature remains

in acceptable levels. Moreover, the floorplanning and number of channels can be

considered from early stages, allowing new optimization opportunities.

With respect to the proposed techniques, we have successfully employed MOEAs,

obtaining configurations presenting a good tradeoff between temperature and wire

length. It has also been demonstrated that the retrieved configurations outperform

the results obtained with other well-known floorplanning techniques. Moreover,

other proposals based on Simulated Annealing such as Combined Bucket and 2D

Array (CBA) are not suitable for architectural exploration of large 3D MPSoCs as

they require an initial feasible floorplan. In fact, these techniques carry out a fine

tuning of an initial configuration mainly by means of local search operators. It

would be therefore beneficial to combine the exploration capability of the studied

MOEAs with the exploitation performed by methods such as CBA. A two step op-

timization process could easily be implemented in which, in the first place, a front

of nondominated solutions would be obtained with a MOEA. Later, CBA would be

applied to the most promising configurations of the retrieved front.

Another approach could be adopted to take advantage from dynamic informa-

tion such as the considered power profiles. Note that, in the methodology proposed

in Section 5.3, several metrics were extracted from the power traces to guide the

thermal optimization. In fact, candidate architectures cannot be simulated with all

the retrieved execution traces due to optimization time constraints. However, faster

simulators would allow to analyze the thermal behavior of the different floorplans

while executing real-world applications. This, in turn, would allow to study the evo-

lution of metrics such as the maximum thermal gradient over time, directly related



7.2 Future Work 165

to the Average Chip Lifetime or Mean Time Between Failures. Therefore, exploiting

the dynamic information retrieved from the execution traces can be used to guide

3D MPSoC design towards more reliable and long-lasting architectures.

Also, in the absence of quicker simulation tools, a more complex but faster

acquisition of knowledge from the execution traces is possible. In a recent work

[157], Wu et al. propose a load-aware Dynamic Voltage and Frequency Scaling

technique. The workloads are also retrieved from simulations but, in this case,

the obtained traces are transformed to the frequency domain. With this elegant

approach, the amount of information managed by the algorithm is significantly

reduced and the dynamic information can be fully exploited. The management of

this dynamic information can be used to exploit low-power modes in the design

stage of the optimization process. This way, voltage islands techniques can be

applied (see [106] and [70]), resulting in a better energy efficiency which leads to

lower temperatures.
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7.3 Discussion

This works proposes bioinspired heuristics for the floorplanning of large 3D MPSoCs.

It is relevant to note the difference between heuristic and architectural validation

as these two worlds somehow collide in some aspects of this work. The appropriate

performance of heuristics must be statistically validated by means of a reproducible

experimental setup. On the other hand, in an architectural design context, obtaining

a single solution satisfying existing constraints such as temperature, feasibility and

wire length might suffice. However, when working with Evolutionary Algorithms,

it is not trivial to deal with the referred constraints. In fact, we have detected

that imposing hard constraints usually has a negative effect in the search dynamics.

For instance, it would be reasonable to set maximum temperature or wire length

thresholds during the search process to discard bad performing candidate solutions.

However, we have empirically noticed that imposing such hard constraints leads to

a partial exploration of the solution space, producing suboptimal solutions.

Broadly speaking, the goal is to provide best possible conditions for the heuristic

search process. Such optimal conditions are sometimes counter-intuitive. To illus-

trate this idea, the reader is referred to Section 5.3, where we discuss the suitability

of several thermal metrics as guiding cost function of the optimization process. It is

shown that peak temperatures are reached when all the components exhibit a max-

imum power consumption. However, it is not beneficial to consider these maximum

power consumptions in the optimization process to reduce the final peak temper-

atures. In fact, a relaxation of the thermal restrictions during the floorplanning

process results in a better thermal optimization.

Another choice that deeply impacts the dynamics of the search process is the

chosen representation. In fact, different representations lead to different solution

spaces. These solution spaces might not only present a different cardinality but

also a different distribution of global and local optima. Thus, some representations

will lead to fitness landscapes better adapted for heuristic search than others. A

brief introduction to Fitness Landscape Analysis is given in Section 4.1.4 in the

context of mono-objective optimization. However, there is a lot of research needed
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to better understand the information retrieved from such analyses. The final goal of

fitness landscape analysis should be to find optimal algorithms for a given landscape.

However, this step is typically missing in most of the works dealing with the subject.

Such analysis would be extremely useful in the context of complex problem solv-

ing in which typically heuristics are employed. The main challenge remains the

huge cardinality of the studied solution spaces. Sampling techniques such as random

walks are usually employed to assess properties describing the analyzed landscapes

(ruggedness, deception, multimodality etc..). Some promising works have revealed

that the distribution of global and local optima in the solution space are far from

being random [42]. However, the presented results are not necessarily universal and

the proposed technique is hardly scalable as it is based on exhaustive procedures.

However, the current development of data-mining techniques for BigData scenarios

might provide a greater knowledge of the distribution of the searched optima. All

these difficulties are incremented when multi-objective problems are analyzed. In

such case, it is possible to analyze the relation between solutions or between fronts

(sets) of solutions as explained in [151], a promising work by S. Verel.

In brief, it can be said that researchers are only starting to discover how the

solutions of a given problem relate to each other, how to classify the different prob-

lems according to Fitness Landscape Analysis techniques, and how to design efficient

algorithms for the analyzed landscapes.
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7.4 Publications

We now give the references of the publications resulting from this work:

Journal publications:

• Arnaldo, I.; Risco-Mart́ın, J.L.; Ayala, J.L.; Hidalgo, J.I.: Power profiling-

guided floorplanner for 3D multiprocessor systems-on-chip, Circuits, Devices

& Systems, IET, vol.6, no.5, pp.322-329, Sept. 2012.

• I. Arnaldo, J. L. Risco-Mart́ın, J.L. Ayala, J.M. Colmenar, and A. Cuesta-

Infante: Boosting the 3D thermal-aware floorplanning problem through a master-

worker parallel MOEA. Concurrency and Computation: Practice and Experi-

ence, Wiley, 2013.

• Arnaldo, I., Contreras, I., Millán-Ruiz, D., Hidalgo, J. I. and Krasnogor, N.

Matching island topologies to problem structure in parallel evolutionary algo-

rithms. International Journal of Soft Computing: Special Issue on Bio-inspired

Algorithms with Structured Populations, Springer, 2013.

Workshops and congress publications:

• I. Arnaldo, J. L. Risco-Mart́ın, J. L. Ayala, and J. I. Hidalgo. Power Profiling-

Guided Floorplanner for Thermal Optimization in 3D Multiprocessor Architec-

tures, in Integrated Circuit and System Design. Power and Timing Modeling,

Optimization, and Simulation, ser. Lecture Notes in Computer Science, J. Ay-

ala, B. Garćıa-Cámara, M. Prieto, M. Ruggiero, and G. Sicard, Eds. Springer

Berlin / Heidelberg, 2011, vol. 6951, pp. 11-21.

• Arnaldo, I., Risco-Mart́ın, J., Ayala, J., Colmenar, J. M., Cuesta-Infante,

A. and Hidalgo, J. I. Parallel MOEA Implementation for Fast Evaluation of

the 3D Thermal-Aware Floorplanning Probem. In 4th Workshop on Parallel

Architectures and Bioinspired Algorithms, WPABA. 2011.

• Arnaldo, I., Risco-Mart́ın, J., Ayala, J., Colmenar, J. M., Cuesta-Infante, A.

and Hidalgo, J. I. AEMO Paralelo para Resolver el Problema del Floorplanning

Térmico en 3 Dimensiones. In VIII Congreso Español sobre Metaheuŕısticas,

Algoritmos Evolutivos y Bioinspirados, MAEB. 2011.
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• Arnaldo, I., Vicenzi, A., Ayala, J., Risco-Martin, J., Hidalgo, J. I., Ruggiero,

M. y Atienza, D. Fast and Scalable Temperature-driven Floorplan Design in

3D MPSoCs. En 13th IEEE Latin American Test Workshop (LATW). 2011.

Master thesis (first Phd year):

• Arnaldo, I. Evolutionary Approaches to Solve the 3D Thermal-Aware Floor-
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Universidad Complutense de Madrid, 2011.
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[93] Changgu Lee and L.G. Fréchette. A Silicon Microturbopump for a Rankine-

Cycle Power Generation Microsystem. Part I: Component and System Design.

Microelectromechanical Systems, Journal of, 20(1):312 –325, feb. 2011.

[94] H Lee and K Chakrabarty. Test Challenges for 3D Integrated Circuits. Design

Test of Computers, IEEE, PP(99):1, 2009.



BIBLIOGRAPHY 181

[95] Xin Li, Yuchun Ma, and Xianlong Hong. A novel thermal optimization flow

using incremental floorplanning for 3D ICs. In ASPDAC, pages 347–352. IEEE

Press, 2009.

[96] S.K. Lim. Physical design for 3D system on package. Design Test of Comput-

ers, IEEE, 22(6):532 – 539, nov.-dec. 2005.

[97] Chang-Tzu Lin, De-Sheng Chen, and Yi-Wen Wang. GPE: a new represen-

tation for VLSI floorplan problem. In Computer Design: VLSI in Computers

and Processors, 2002. Proceedings. 2002 IEEE International Conference on,

pages 42 – 44, 2002.

[98] Jai-Ming Lin and Yao-Wen Chang. TCG: a transitive closure graph-based

representation for non-slicing floorplans. In Proceedings of the 38th annual

Design Automation Conference, DAC ’01, pages 764–769, New York, NY,

USA, 2001. ACM.

[99] C.C. Liu, I. Ganusov, M. Burtscher, and Sandip Tiwari. Bridging the

processor-memory performance gap with 3D IC technology. Design Test of

Computers, IEEE, 22(6):556 – 564, nov.-dec. 2005.

[100] Jing Liu, Weicai Zhong, Licheng Jiao, and Xue Li. Moving block sequence and

organizational evolutionary algorithm for general floorplanning with arbitrar-

ily shaped rectilinear blocks. Evolutionary Computation, IEEE Transactions

on, 12(5):630 –646, oct. 2008.

[101] Gabriel H. Loh and Yuan Xie. 3D Stacked Microprocessor: Are We There

Yet? Micro, IEEE, 30(3):60 –64, may-june 2010.

[102] Gabriel H. Loh, Yuan Xie, and Bryan Black. Processor Design in 3D Die-

Stacking Technologies. Micro, IEEE, 27(3):31 –48, may-june 2007.

[103] Manuel Lozano, Francisco Herrera, and José Ramón Cano. Replacement
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Appendix A

Resumen

A.1 Introducción

En 2006, Dr. Wang, el entonces director ejecutivo de Samsung Electronics dijo: “La

rápida adopción de la tecnoloǵıa de integración 3D parece esencial e inevitable” [71].

Desde entonces se han realizado importantes avances en este paradigma tecnológico

y se han comercializado distintos productos. Sin embargo, todav́ıa no se ha alcan-

zado todo el potencial de la integración en tres dimensiones.

Aunque la integración en 3D se propuso a principios de la década de 1980, la

propuesta pasó desapercibida hasta los años 2000 y siguientes, cuando empezaba a

quedar claro el ĺımite f́ısico de los dispositivos fabricados en silicio. Hoy en d́ıa se

está invirtiendo grandes cantidades de recursos en mejorar las tecnoloǵıas necesarias

para la fabricación de arquitecturas tridimensionales. Para explicar esta tendencia,

es necesario recapitular la evolución y las decisiones estratégicas de la industria de

semiconductores desde mediados de los noventa. Desde entonces, no sólo el número

de chips fabricados se ha disparado sino que el gran poder computacional alcanzado

se encuentra al alcance de la mano con el desarrollo masivo de dispositivos móviles.

No obstante, el camino no ha sido fácil para ingenieros y diseñadores, ya que éstos

han tenido que lidiar con numerosas dificultades. Como se detalla a continuación,

algunos de los problemas encontrados se han resuelto de manera brillante mientras

que otros tal vez hayan sido pospuestos a un futuro cercano.



190 Resumen

Inicialmente, las innovaciones arquitectónicas junto con el escalado de frecuencia

permitieron grandes incrementos en el rendimiento. Sin embargo el aumento de la

frecuencia de reloj se fue frenando a principio de la década del 2000 debido a que,

sobrepasado un cierto umbral, el aumento de frecuencia deja de ser eficiente desde

un punto de vista energético. Además, las altas temperaturas alcanzadas son per-

judiciales para la fiabilidad y la vida media de los dispositivos de silicio.

Por lo tanto, la industria se decantó hacia arquitecturas dotadas de múltiples

procesadores con una menor frecuencia de funcionamiento. Aśı, pese a que la fre-

cuencia se estancase o incluso disminuyera, el número de instrucciones ejecutadas

por segundo continuó creciendo.

La siempre creciente necesidad de mayor rendimiento llevó a incrementar el

número de procesadores por chip. Este aumento fue posible gracias a la reducción

progresiva del tamaño de los transistores, lo que permit́ıa una mayor densidad de

integración. Aśı, chips de generaciones consecutivas presentaban una área similar.

T́ıpicamente se ha doblado el número de procesadores en cada generación debido

a la estrategia de replicación adoptada, resultando en una mayor demanda de an-

cho de banda. Por otra parte, procesadores recientes han reincorporado técnicas de

Multithreading Simultáneo, lo que conlleva una mayor virtualización y una todav́ıa

mayor necesidad de ancho de banda ya que se realizan más transacciones de bus.

Al mismo tiempo, las mejoras realizadas para reducir los retardos debidos al

cableado no han seguido el ritmo marcado por el incremento de frecuencia. Este

problema es cada vez más relevante dado que se espera un incremento del área de

los chips debido al alcance del ĺımite f́ısico de la densidad de integración. En efecto,

a medida que se reduce el tamaño de los transistores, la corriente de fuga aumenta

y la variabilidad empeora. Ya que no será posible seguir reduciendo el tamaño de

los transistores, el área requerida para integrar un mayor número de procesadores

aumentará siginificativamente. Como consecuencia, el porcentaje de área del chip

accesible en un ciclo seguirá disminuyendo en cada generación. Esta reducción, a su

vez, conlleva mayores latencias por transacciones de bus. Aśı, el mayor número de

transacciones y su mayor latencia limitarán el incremento de rendimiento propor-
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cionado por la integración de un mayor número de procesadores en un sólo chip [16].

En resumen, se puede decir que ya no será posible obtener incrementos de

rendimiento de forma sencilla. La industria de los semiconductores tendrá por lo

tanto que realizar cambios drásticos para responder a la demanda de redimiento [91].

Integrar un mayor número de procesadores en un sólo chip sólo será beneficioso si se

proporciona un mayor ancho de banda y se reduce la distancia entre componentes

conectados. Aqúı es donde la integración 3D entra en escena. En efecto, apilar

circuitos integrados conectados verticalmente permite reducir el cableado global y

proporciona un mayor ancho de banda entre las capas conectadas. Por ejemplo,

un diseño particionado en dos capas de un Pentium IV resultó en un aumento del

rendimiento de un 15% gracias a un mejor diseño de los pipelines [102]. A grandes

rasgos, en arquitecturas 3D, se espera que el cableado total disminuya en un factor de

(Ncapas)
1/2, mientras que en las arquitecturas 2D éste aumenta cuadráticamente [44].

Además, las conexiones verticales entre capas implementadas mediante Through Sil-

icon Vias (TSVs) proporcionan un acho de banda masivo. Esta mayor capacidad

puede explotarse, entre otras aplicaciones, para acelerar los accesos a memoria si

procesadores y memorias están conectados mediante TSVs.

Por lo tanto, la integración 3D se considera una tecnoloǵıa clave para hacer frente

a la demanda de rendimiento en los próximos años. Dicha tecnoloǵıa en combinación

con la reducción del tamaño de los transistores se consideró inicialmente como una

v́ıa para alcanzar niveles de integración más altos que los predecidos por la Ley de

Moore [113] (“More than Moore” [101]). Además, el diseño en tres dimensiones

puede llevar a otras mejoras. En efecto, la reducción del cableado también acarrea

un descenso del consumo de potencia y elimina problemas de timing debidos a

fenómenos de clock skew y de jitter [102]. Por otra parte, se posibilita la integración

heterogénea ya que diferentes procesos tecnológicos pueden ser combinados en una

misma plataforma. Finalmente, la integración modular de las distintas capas puede

reducir el coste global y el esfuerzo de diseño [52]. En resumen, la integración 3D

proporciona:

1. Mayor rendimiento debido a la reducción de la longitud del cableado y al mayor

ancho de banda proporcionado por las TSVs.
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2. Disminución del consumo de potencia gracias a una reducción de la longitud

de las redes de reloj y de alimentación (comparando con una arquitectura

equivalente 2D.

3. Integración heterogénea.

4. Integración modular, reduciendo el esfuerzo de diseño.

Como consecuencia, la integración en 3D ha suscitado un gran interés tanto en el

mundo de la industria como en el académico. La Tabla A.1 muestra algunas de las

organizaciones involucradas en proyectos de investigación y desarrollo realcionados

con la integración en 3D (ver [124]).

AMERICA ASIA EUROPE

Albany Nanotech Amkor 3D-PLUS
Cubic Wafer ASE CEA-LETI
Freescale ASET EMFT Munich
Ga Tech Chartered Fraunhofer IZM
IBM Elpida IMEC
Intel Fujikura Infineon

Lincoln Labs Hitachi NXP
Micro IME Sensonor
MIT ITRI Siemens

NC State KAIST SINTEF
RPI NEC STM
RTI Oki TU Chemnitz

SANDIA National Labs Renesas VTI
Sematech Samsung
Stanford Sanyo

Texas Instruments Sharp
Tezzaron Sony

Univ. Arkansas STATSChipPAC
Univ. Minn Tohoku Univ.

Xilinx Toshiba
Ziptronix TSMC

ZyCube

Table A.1: Actividad relacionada con la integración en 3D según lo expuesto en [124]
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La integración 3D engloba varias alternativas tecnológicas que dan lugar a una

gran variedad de productos finales. Algunas aplicaciones comerciales basadas en un

empaquetado simple ya están comercializadas. Sin embargo, todav́ıa no ha comen-

zado la producción en masa de Circuitos Integrados 3D debido a que los requisitos

tecnológicos no pueden ser satisfechos con costes lo suficientemente reducidos [124].

Por otra parte, el salto necesario para adoptar la tecnoloǵıa 3D constituye una dif́ıcil

decisión estratégica por parte de la industria ya que los riesgos asociados son mayores

que en cambios tecnológicos anteriores. Varias de las etapas del proceso de fabri-

cación tienen que ser mejoradas, tales como la formación de vias, el alineamiento

de los wafers, o su unión [92]. Otras dificultades están relacionadas con los proced-

imientos de test [94] y la falta de herramientas de Electronic Design Automation

(EDA) adecuadas para el diseño 3D [104], [92]. En efecto, la industria necesita la

creación de estandars y de una suite de herramientas para facilitar la integración

3D. En particular, se necesitan urgentemente algoritmos de place-and-route en 3D,

modelos de timing y de potencia y métodos de floorplanning [56]. La Figura A.1

muestra el estado de la Investigación y Desarrollo de la integración 3D en el año

2009 [94].

Como se muestra en la figura, existe una carencia de herramientas de diseño au-

tomático. Estas herramientas deben evitar temperaturas altas y elevados gradientes

térmicos ya que estos dos factores perjudican el rendimiento, la fiabilidad y la vida

media de los chips [44], [90]. Estos problemas cŕıticos se magnifican en entornos

3D por dos motivos principales. En primer lugar, la densidad de potencia aumenta

con el número de capas, ya que se obtiene una mayor densidad de integración. En

segundo lugar, las capas adicionales se apilan cada vez más lejos de la base del chip,

siendo más dif́ıcil la disipación de calor. Por ello, lidiar con las restricciones térmicas

es de vital importancia para la viabilidad de la fabricación a gran escala de produc-

tos basados en integración 3D [102], [52], [104].

El floorplanning térmico se emplea para reducir la temperatura máxima del

chip, tratando de encontrar una disposición óptima de los componentes que minim-

ice área, temperatura y cableado (traducido en rendimiento). La idea principal que

motiva esta técnica es que disposiciones estrictamente regulares no presentan las
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Figure A.1: Estado de la Investigación y Desarrollo de la integración 3D

caracteŕısticas térmicas requeridas. En efecto, si un bloque caliente se ubica entre

bloques fŕıos, tiene lugar una difusión lateral del calor y, como resultado, se reduce

la temperatura del bloque caliente [131].

Las técnicas de floorplanning térmico son cada vez más necesarias ya que la

reducción del tamaño de los transistores y el escalado de frecuencia han llevado a

alcanzar altas densidades de potencia que provocan temperaturas extremas. Existe

una gran variedad de propuestas que atacan la optimización de circuitos lógicos que

han sido extendidas para lidiar con plataformas 3D. Sin embargo, estos métodos no

suelen proporcionar en un tiempo reducido configuraciones óptimas desde un punto

de vista térmico. Como se demostrará en este trabajo, existe una necesidad de

nuevos métodos idóneos para el nuevo entorno tridimensional.

Aunque todav́ıa no se ha introducido una suite completa de herramientas que

cubran todas las etapas del diseño de chips 3D, ya existen algunas propuestas útiles

para realizar tareas de exploración arquitectónica. Por ejemplo, se han propuesto

distintos simuladores térmicos, generalmente empleados para garantizar que las con-
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figuraciones estudiadas no alcanzan temperaturas extremas ni elevados gradientes

térmicos [75], [24], [145], [149] y [138]. Otro ejemplo es la simulación de refrig-

eración ĺıquida necesaria para un gran número de arquitecturas 3D, en particular

para los MPSoCs en 3D [9], [41] y [130]. Como quedará de manifiesto en este

trabajo, el enfriamiento proporcionado por esta técnica de refrigeración ha de ser

considerado en el proceso de optimización para obtener configuraciones que presen-

ten simultáneamente un rendimiento y una temperatura óptimos.

Desde el punto de vista de la complejidad computacional, el problema del floor-

planning se clasifica com NP-Duro (ver [17] y [58]). Añadir una tercera dimensión

resulta en un espacio de diseño todav́ıa mayor ya que se explora un una mayor

variedad de configuraciones. Además, las plataformas estudiadas presentan un com-

promiso entre perfil térmico y rendimiento, ambas caracteŕısticas fundamentales de

las plataformas 3D. Por lo tanto, se necesitan métodos apropiados para explorar el

espacio de soluciones de manera eficiente y aśı obtener soluciones optimizadas tanto

en temperatura como en rendimiento.

En este trabajo, se utilizan Algoritmos Evolutivos Multiobjetivo (AEMOs) para

atacar el problema del floorplanning térmico de MPSoCs 3D. Estos algoritmos con-

stituyen una extensión de los Algoritmos Evolutivos (AEs). En breve, los AEs son

metaheuŕısticas poblacionales inspiradas el el concepto Darwinista de evolución ca-

paces de obtener buenas soluciones de problemas complejos en un corto periodo de

tiempo. Por su parte, los AEMOs incorporan el concepto de optimalidad de Pareto

y constituyen una herramienta eficiente para encontrar soluciones con un buen com-

promiso entre dos o más objetivos conflictivos. Por lo tanto, los AEMOs son una

herramienta idónea para optimizar las arquitecturas estudiadas, obteniendo config-

uraciones que minimizan simultáneamente temperatura y cableado.

Dada la importancia de los MPSoCs 3D y la falta de herramientas para su

optimización, establecemos los siguientes objetivos:

• Confirmar la viabilidad de estas arquitecturas, verificando para que se mejora

el rendimiento y que las temperaturas máximas se mantienen en niveles acept-

ables.
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• Estudiar la idoneidad de propuestas de floorplanning existentes en la literatura

adpatadas para la optimización de las arquitecturas estudiadas. De la misma

manera, se han de comparar las técnicas ya validades con nuevas representa-

ciones y algoritmos.

• Es necesario proporcionar una gran diversidad de soluciones óptimas con un

buen compromiso entre rendimiento y temperatura. Aśı, los fabricantes de

estas arquitecturas podrán elegir la mejor configuración de acuerdo con sus

propios criterios.

• Proponer estrategias de floorplanning paralelas para acelerar el proceso de

exploración arquitectónica.

• Comparar la idoneidad de varios modelos térmicos existentes en un contexto

de floorplanning.

• Estudiar la necesidad de otras técnicas de enfriamiento como la refrigeración

ĺıquida. En caso de ser necesario, considerar el efecto de dicha refrigeración en

el proceso de optimización.

Una vez motivado el estudio del floorplanning térmico de MPSoCs 3D y habi-

endo fijado los objetivos del trabajo, pasamos a describir la estructura de esta tesis

con una breve introducción de los caṕıtulos que la componen.

En el Caṕıtulo 2, motivamos el estudio de MultiProcessor Systems-on-Chip en

tres dimensiones. Para ello, presentamos las tecnoloǵıas existentes y estudiamos su

compatibilidad con diferentes enfoques de diseño. También se introducen en este

caṕıtulo varios modelos térmicos empleados a lo largo del trabajo para obtener la

reacción térmica de las arquitecturas estudiadas.

A continuación, en el Caṕıtulo 3, presentamos las propuestas de floorplanning

más relevantes adaptadas para optimizar tres arquitecturas complejas basadas en

la plataforma Niagara. El estudio comparativo evidencia la necesidad de nuevas

técnicas para lidiar con las restricciones térmicas impuestas por los multiproce-
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sadores de tres dimensiones.

Los Algoritmos Evolutivos Multiobjetivo utilizados en este trabajo para atacar

el problema del floorplanning térmico se explican el el Caṕıtulo 4. Con el fin de

introducir estos métodos, se proporciona una introducción a la optimización multi-

objetivo. También se introducen los Algoritmos Evolutivos y las principales técnicas

de paralelización empleadas para acelerarlos.

En el Caṕıtulo 5 se recapitulan varias contribuciones de esta tesis. En primer

lugar se presenta una versión paralela de un floorplanner evolutivo multiobjetivo con

el fin de acelerar el proceso de optimización. También se introduce conocimiento

al problema por medio de perfiles de potencia obtenidos mediante simulaciones en

una etapa previa para guiar el proceso de optimización. Por último, se compara

la optimización térmica y el rendimiento alcanzados utilizando diferentes modelos

térmicos en el proceso de floorplanning.

La nueva representación Direct Mapping se presenta en el Caṕıtulo 6. El uso de

dicha representación en conjunción con un AEMO diseñado para realizar la opti-

mización de MPSoCs 3D lleva a mejorar las propuestas anteriores de floorplanning.

Además, el algoritmo propuesto está guiado por simulaciones térmicas que incluyen

el efecto refrigerador de microcanales ubicados en capas intermedias del chip.

Aunque se han incluido conclusiones parciales en los caṕıtulos previos, las más

relevantes están resumidas en el Caṕıtulo 7. También se comentan posibles mejoras

y trabajos futuros. Por último, se proporcionan las referencias a las publicaciones

asociadas a esta tesis, aśı como a los proyectos y becas con los que este trabajo ha

sido subvencionado.

A.2 Principales Contribuciones

En este trabajo, atacamos el problema del floorplanning térmico con área fija. El

problema estudiado es por lo tanto equivalente a un problema de ubicación de blo-

ques en el que se deben considerar restricciones térmicas y de rendimiento. El
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problema de la colocación de bloques se formula como sigue:

Problema de la ubicación de bloques

Todos los bloques que modelan los distintos componentes del sistema deben ser

colocados en la pila 3D, que impone una longitud máxima L, un ancho W y una al-

tura H. Cada bloque Bi (i = 1, 2, . . . , n) del modelo se caracteriza por un ancho wi,

una altura hi y una longitud li. Es importante notar que en los casos estudiados en

este trabajo, hi = 1 para todos los componentes. Definimos el vector (xi, yi, zi) como

las coordenadas geométricas del bloque Bi, donde 0 ≤ xi ≤ L− li, 0 ≤ yi ≤ W −wi,

0 ≤ zi < H (véase la Figura A.2). Se emplea (xi, yi, zi) para denotar la esquina

izquierda inferior del bloque Bi mientras que se supone que las coordenadas de la

esquina inferior izquierda del chip son (0, 0, 0). A diferencia de los enfoques tradi-

cionales de problemas de floorplanning en 2D, no se trata de minimizar el área ya

que ésta se fija de antemano.

Y

X

Length

W
idth

(x,y)

Layer 2

Layer 3

Layer 1

3D Chip

Figure A.2: Block representation

En esta sección se exponen brevemente las diferentes contribuciones de esta tesis:

• Se proporciona la descripción del algoritmo llamado Multi-objective Floor-

planning Algorithm (MFA), presentado por primera vez en [38], ya que éste

representa el punto de partida de este trabajo.

• Se presenta una implementación multi-hilo siguiendo un modelo Maestro-

Trabajador para reducir el tiempo de ejecución del proceso de floorplanning
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• Se presenta una estrategia que permite introducir conocimiento en el proceso

de floorplanning. Aśı, se obtienen perfiles dinámicos de consumo de potencia

en una etapa previa al proceso de floorplanning con el fin de guiar mejor la

optimización térmica.

• Comparamos el rendimiento y la optimización térmica logrados al introducir

diferentes modelos térmicos en el proceso de optimización.

• Proponemos la representación Direct Mapping junto con un AEMO diseñado

para realizar la optimización de MPSoCs 3D.

• Estudiamos el impacto en las configuraiones finales de considerar técnicas de

refrigeración ĺıquida durante el proceso de optimización.

A.2.1 Multi-Objective Floorplanning Algorithm

Multi-Objective Floorplanning Algorithm (MFA) es un algoritmo evolutivo mul-

tiobjetivo basado en NSGA-II (véase el Caṕıtulo 4). Este floorplanner gestiona

soluciones codificadas que mejoran gradualmente a medida que se desarrolla el pro-

ceso evolutivo, con el fin de proporcionar configuraciones óptimas desde un punto

de vista del rendimiento y del perfil térmico. MFA se puede clasificar como un floor-

planner h́ıbrido ya que la heuŕıstica de decodificación implementa un floorplanning

incremental inspirada en técnicas constructivas, mientras que el AEMO en que en-

globa dicha heuŕıstica es esencialmente iterativo. La Figura A.3 ilustra esta idea.

Los detalles del algoritmo se proporcionan a continuación.

Para ilustrar el funcionamiento de MFA, analizamos la optimización de una

plataforma de 48 núcleos heterogénea inspirada en la arquitectura Niagara. La

configuración original de dicha plataforma se muestra en la Figura A.4. Se puede

apreciar una disposición regular de los componentes de la arquitectura. Como con-

secuencia, los núcleos SPARC (SPC) son ubicados los unos encima de los otros pro-

duciendo puntos calientes. Por otro lado, la Figura A.5 muestra los mapas térmicos

de las diferentes capas de una solución no dominada encontrada por MFA. Esta

figura muestra una colocación optimizada de los núcleos SPARC (SPC), POWER6

(P6), memorias (L2) y Crossbars (Cross). En esta configuración los componentes
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Figure A.3: MFA: un floorplanner h́ıbrido

más calientes (los núcleos SPARC) han sido ubicados en los bordes del chip y en

las capas exteriores, y tienden a estar separados entre śı. De hecho, el floorplanner

evita la superposición vertical de éstos procesadores ya que la propagación vertical

de calor vertical también se tiene en cuenta. Los crossbars se colocan en capas in-

termedias para minimizar la longitud global del cableado.

En la Sección 5.1 de esta tesis, se comprueba que las arquitecturas multiproce-

sador 3D actuales y del futuro a corto plazo requieren técnicas de floorplanning

térmico capaces de reducir las temperaturas máximas alcanzadas. Se demues-

tra también que MFA proporciona configuraciones optimizadas para sistemas het-

erogéneos dotados de 48 y 128 núcleos. Además, se realiza un estudio de la conver-

gencia de dicho floorplanner que revela un comportamiento adecuado del algoritmo

en el proceso de optimización. Sin embargo, las técnicas actuales floorplanning tales

como MFA que tienen en cuenta restricciones térmicas presentan un cuello de botella

en la decodificación y evaluación de las soluciones. Por tanto, es necesario acelerar

el proceso de floorplanning para permitir una exploración del espacio de soluciones

más eficiente.
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Figure A.4: Mapas térmicos de las 4 capas de la configuración original de la
plataforma de 48 cores

Figure A.5: Mapas térmicos de las 4 capas de la configuración optimizada de la
plataforma de 48 cores

A.2.2 Floorplanner basado en el modelo Maestro-Trabajador

En la Sección 5.2, se presenta una implementación paralela de MFA siguiendo un

modelo Maestro-Trabajador. El esfuerzo de paralelización está justificado ya que la
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fase de evaluación del algoritmo conlleva más del 99% del tiempo de ejecución. Este

cuello de botella aparece porque cada individuo de la población tiene que ser decod-

ificado y evaluado térmicamente en todas las generaciones del proceso evolutivo.

Se emplea el modelo Maestro-Trabajador porque, aunque el fitness se establece

mediante modelo térmico simplificado, el coste computacional de esta evaluación

aumenta cuadráticamente con el número de componentes. Por lo tanto, es intere-

sante para aprovechar el hecho de que los algoritmos evolutivos son intŕınsecamente

paralelos y llevar a cabo la evaluación de la población de manera concurrente. La

Figura A.6 representa el enfoque utilizado en esta sección.

Figure A.6: Master-Worker configuration

El Maestro distribuye la población entre los n trabajadores y no lleva a cabo

ninguna evaluación. Aśı, la carga computacional se divide en n tareas. Una vez

los trabajadores han terminado su tarea, éstos envian el correspondiente resultado

junto con el subconjunto de la población recibido al Maestro. Aunque el algoritmo se

detiene y espera a que todos los trabajadores hayan terminado, esta implementación

es claramente más rápida que la ejecución secuencial (siempre que cada subconjunto

sea lo suficientemente grande como para compensar tiempos de comunicación).

Proponemos una implemetación multi-hilo en el que únicamente el maestro eje-

cuta el hilo principal del algoritmo. Dado que sólo los trabajadores ejecutan la

evaluación de los diferentes subgrupos de la población, se obtiene una aceleración

del orden del número de núcleos del procesador en el que se ejecuta el algoritmo.
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Aśı, en nuestros experimentos ejecutados en un procesador de 4 núcleos, se han

obtenido valores máximos de aceleración de 3.79 y 3.19 para las plataformas de 48

y 128 núcleos respectivamente con 5 trabajadores.

A.2.3 Floorplanner guiado por perfiles de potencia

En la Sección 5.3, se añade conocimiento al problema del floorplanning térmico por

medio de una etapa de simulación en la que se obtienen perfiles de consumo poten-

cia. De hecho, la temperatura de un chip dado depende de factores f́ısicos tales como

la disipación de potencia de los procesadores, el tamaño de las memorias, etc, pero

también del perfil dinámico de las aplicaciones. Una de nuestras contribuciones es

considerar perfiles de enerǵıa obtenidos mediante la simulación de aplicaciones reales

ejecutadas en MPSoCs de grandes dimensiones. Es importante resaltar que tradi-

cionalmente, este problema se ha enfocado considerando sólo el caso peor en términos

de disipación de enerǵıa. Los perfiles de potencia se obtienen con OVPsim [76], un

simulador de alto nivel para la exploración arquitectónica de multiprocesadores. En

efecto, uno de los principales objetivos de este trabajo es comprender el efecto de la

sincronización y la comunicación entre distintos procesadores en la temperatura de

chips heterogéneos. La Figura A.7 muestra un patrón t́ıpico disipación de potencia

de tres procesadores con diferente capacidad de cómputo trabajando juntos. Pode-

mos ver claramente cómo la actividad del núcleo SPARC cambia periódicamente

con el tiempo, ya que éste tiene que esperar a procesadores más lentos.

Figure A.7: Common power consumption pattern caused by synchronization
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Los perfiles de potencia obtenidos mediante simulación se componen de 600 val-

ores diferentes (100 ventanas temporales × 6 programas simulados). Obviamente,

600 objetivos son demasiados para un AEMO, ya que convergeŕıa demasiado despa-

cio o no convergeŕıa en absoluto. Por lo tanto, se consideran cuatro estrategias para

reducir el elevado número de objetivos. Para cada uno escenarios de optimización

considerados, se obtienen cuatro configuraciones diferentes:

1) Como no tenemos ninguna configuración original para comparar las arquitec-

turas estudiadas, se propone como referencia una configuración optimizada

únicamente en rendimiento, denominada BAS.

Para obtener las otras tres configuraciones, consideramos diferentes métricas térmicas

computadas a partir de los datos recuperados de la simulación de 100 ventanas de

tiempo para 6 perfiles de ejecución diferentes.

2) La primera de las configuraciones restantes se obtiene considerando la disipación

de potencia media de los distintos componentes en cada uno de los perfiles

analizados (AVG). Por lo tanto, el floorplanner busca soluciones factibles que

minimicen seis objetivos térmicos (uno por cada perfil) y la longitud del ca-

bleado.

3) Se obtiene otra configuración considerando únicamente el mayor consumo de

enerǵıa por elemento (WOR). Por lo tanto, se atacan tres objetivos: viabilidad,

un objetivo térmico y cableado. Este caso corresponde a la estrategia utilizada

por otros floorplanners térmicos.

4) Finalmente, se considera una suma ponderada de los consumos de enerǵıa de los

diferentes perfiles (todos los pesos son iguales) para cada elemento de la arqui-

tectura (WSM). En este caso, el algoritmo trata de optimizar tres objetivos:

viabilidad, un objetivo térmico y la longitud del cableado.

De esta manera se propone un enfoque eficiente que incorpora información en

forma de perfiles de consumo de potencia para orientar el floorplanning térmico de

arquitecturas multiprocesador 3D. El análisis propuesto muestra un compromiso en-

tre el comportamiento térmico y el rendimiento y revela que considerar el consumo

de enerǵıa en el caso peor no permite encontrar configuraciones óptimas. De hecho,
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cuando se trata de minimizar el la suma ponderada del consumo de potencia de los

diferentes perfiles de potencia (WSM) se alcanza un mejor comportamiento global.

Tal configuración ofrece una mejor respuesta térmica en condiciones extremas re-

duciendo en 14.01K y 12.84K la temperatura máxima y el gradiente térmico del chip

respectivamente.

A.2.4 El impacto del modelo térmico

Como se explica en la Sección 2.5.2, los modelos térmicos utilizados en otros tra-

bajos de floorplanning para evaluar la respuesta térmica de los chips 3D presentan

un compromiso entre tiempo de ejecución y precisión. En las propuestas anteriores,

el uso de un modelo aproximado está motivado por su bajo coste computacional.

Sin embargo, en esta sección, la optimización térmica se gúıa por primera vez por

simulaciones precisas mediante un modelo basado en una red neuronal. De esta

manera, se reduce el tiempo de ejecución del algoritmo de floorplanning y se alcanza

un mejor comportamiento térmico. Por lo tanto, se obtiene una herramienta óptima

para la exploración arquitectónica.

Igual que en las secciones anteriores, empleamos el floorplanner MFA. Por lo

tanto, el problema del floorplanning se plantea como un problema multiobjetivo en

el que se trata de minimizar la longitud del cableado y la temperatura. Se estudia

el impacto de considerar diferentes modelos térmicos, a saber:

1) APPROX: El modelo térmico aproximado explicado en la Sección 2.5.2. APPROX

es el modelo utilizado en las secciones anteriores.

2) 3D − ICE: El simulador térmico exacto presentado en la Sección 2.5.2.

3) NNTM : El modelo denominado Neural Network Thermal Model introducido

en la Sección 2.5.2. Cabe destacar que existen versiones tanto CPU como

GPGPU de este modelo.

En esta sección, se demuestra que las soluciones obtenidas con NNTM minimizan

tanto la temperatura como la longitud del cableado. La optimización térmica al-

canzada se traduce en una reducción del consumo de potencia del 17.4% ya que se
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necesita una menor enerǵıa para reducir las temperaturas máximas a niveles acept-

ables. Además, reemplazar el modelo aproximado por una implementación GPU del

modelo NNTM conduce a una aceleración de 2.14×. Por lo tanto, NNTM es el mod-

elo más adecuado para la exploración arquitectónica, ya que elimina el compromiso

entre precisión y tiempo de ejecución. También se demuestra que son indispensables

técnicas de enfriamiento adicionales tales como la refrigeración ĺıquida para man-

tenerse en el rango de temperaturas viables.

A.2.5 Direct Mapping: una nueva representación para MP-

SoCs 3D

En la Sección 6.1, se propone una nueva representación que lleva a superar los

resultados obtenidos con MFA. Siguiendo la ĺınea de las propuestas explicadas ante-

riormente, el floorplanning térmico 3D se plantea como un problema de optimización

multiobjetivo en el que se trata de minimizar tanto la temperatura como la longitud

global del cableado. Al igual que MFA, el floorplanner térmico propuesto se basa

en el algoritmo Non Dominated Sorting Genetic Algorithm II (NSGA-II), un cono-

cido Algoritmo Evolutivo Multiobjetivo. Sin embargo, en este caso, se emplea una

codificación diferente de la soluciones, a saber, Direct Mapping.

Representación La representación Direct Mapping es idónea para optimizar ar-

quitecturas considerando bloques de alto nivel (núcleos y memorias). Dicha repre-

sentación es adecuada para problemas floorplanning con área prefijada y permite una

traducción directa de individuos del Algoritmo Evolutivo a configuraciones de la ar-

quitectura. Se trata de una ventaja importante ya que el proceso de decodificación

de las soluciones no requiere el uso de una heuŕıstica encargada de la ubicación

de los componentes. Dicha heuŕıstica podŕıa limitar el espacio de exploración y

causar problemas de convergencia prematura en el caso de los algoritmos evolutivos.

Además, con el uso de esta representación, se evita el coste computacional de la

etapa de decodificación.

Además, esta representación es compatible con simuladores térmicos actuales

tales como 3D-ICE [138] que dividen la superficie del chip en celdas térmicas. De
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esta manera, se elimina el error ocasionado por los distintos a los tamaños de celda

utilizados en los procesos de optimización y de validación. Por lo tanto, se puede

lograr una mejor optimización térmica.

La Figura A.8 muestra una configuración y la correspondiente representación de

una arquitectura compuesta de 3 procesadores (C1, C2 y C3) y 3 memorias (L1,

L2 y L3). Cada componente de la arquitectura se caracteriza con una coordenada

y un valor booleano. La coordenada determina la ubicación de la esquina infe-

rior izquierda del elemento, mientras que el valor booleano indica si el elemento en

cuestión ha sido rotado. Esta representación de tipo malla admite un alto nivel

de paralelismo y es compatible con el uso de arquitecturas masivamente paralelas

como las GPUs. Sin embargo, se deben definir operadores operadores adecuados

para asegurar la generación de soluciones factibles y la preservación de la diversidad

de la población.

Figure A.8: Configuración de una arquitectura simple y su representación

Población Inicial Se propone un procedimiento rápido y simple para inicializa-

cizar la población. Los componentes se ubican secuencialmente siguiendo un orden

aleatorio utilizando una estrategia First Fit (primera posición vaćıa). Las soluciones

obtenidas con este método no son necesariamente configuraciones factibles. Sin em-

bargo, esta heuŕıstica evita hasta cierto punto el solapamiento de componentes y

las soluciones iniciales presentan un comportamiento aleatorio. Por lo tanto, este

método proporciona un buen punto de partida para el proceso de optimización.



208 Resumen

Selección El operador de selección implementa una estrategia de torneo binario.

Aśı, se forman parejas aleatoriamente y se selecciona el mejor individuo de cada una

para generar la siguiente generación.

Cruce Aplicamos un operador de cruce innovador y espećıfico para este problema.

El operador diseñado está basado en una heuŕıstica simple que permite obtener solu-

ciones factibles, manteniendo la mayor parte de la información genética de los padres

(ver Figura A.9). Para obtener descendientes factibles, se reubica estratégicamente

algunos componentes del segundo padre.

Mutation La mutación de las soluciones se lleva a cabo de tres formas distintas,

todas con la misma probabilidad:

1. intercambiando la posición de dos elementos del cromosoma, lo que resulta en

un cambio de ubicación de los dos componentes implicados (Figura A.10(b)).

2. rotando un componente (Figura A.10(c)).

3. desplazando aleatoriamente un componente en una de las siguientes direc-

ciones: arriba, abajo, izquierda, derecha, adelante, o atrás (Figura A.10(d)).

Validación La representación descrita ha sido comparada con propuestas exis-

tentes y validadas. Para ello, se ampĺıa el estudio comparativo presentado en el

Caṕıtulo 3. Aśı, se ha demostrado que el uso de la representación Direct Mapping

ha llevado a superar los resultados obtenidos con Multiobjective Floorplanning Al-

gorithm, Generalized Polish Expression, Combined Bucket and 2D Array, Double

Tree and Sequence y Sequence Pair a la hora de optimizar tres MPSoCs 3D com-

puestos por 48, 64 y 128 núcleos. El algoritmo y sus operadores correspondientes

han sido diseñados con éxito ya que la búsqueda realizada devuelve frentes de config-

uraciones que abarcan una amplia gama de temperaturas y longitudes de cableado.

Además, la representación propuesta no requiere una configuración inicial factible

para comenzar la optimización.
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(a) Padre 1

(b) Padre 2

(c) Hijo 1

(d) Hijo 2

Figure A.9: Operador de cruce: el ejemplo muestra una arquitectura simple com-
puesta por 6 componentes distribuidos en dos capas.
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(a) Configuración Original

(b) Intercambio de posición entre M1 y M3

(c) Rotación del componente M1

(d) Desplazamiento del componente M1 (hacia adelante)

Figure A.10: Operador de mutación: el ejemplo muestra una arquitectura simple
compuesta por 6 componentes distribuidos en dos capas.
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Paralelización Con el fin de proporcionar una herramienta capaz de realizar tar-

eas de exploración de una manera más rápida, se implementa una versión CPU-GPU

del floorplanner propuesto. Esta versión proporciona una aceleración de hasta 8.84×.

Además, con esta implementación paralela, el tiempo de optimización aumenta lin-

ealmente con el tamaño de la arquitectura, garantizando aśı su escalabilidad.

A.2.6 Optimización con canales de refrigeración ĺıquida

Anteriormente se ha mostrado que las plataformas MPSoCs 3D dotadas de com-

ponentes con un alto consumo energético (tales como los núcleos SPARC) alcan-

zan temperaturas por encima de los ĺımites aceptables. De hecho, son obligatorias

técnicas de enfriamiento adicionales cuando se considera este tipo de arquitecturas.

Aśı, se incluyeron canales microflúıdicos en las simulaciones térmicas de las con-

figuraciones resultantes. De esta manera, las temperaturas máximas se manteńıan

en valores factibles. Sin embargo, estos microcanales no se tuvieron en cuenta en

el proceso de optimización. Por lo tanto, el floorplanner no pod́ıa jugar con las

oportunidades de optimización adicionales disponibles en este nuevo escenario. Por

ejemplo, la superposición vertical de dos componentes calientes no tiene que ser

evitada necesariamente si un canal de refrigeración está situado entre ellos en una

capa intermedia del chip.

En la Sección 6.3, se compara la optimización térmica alcanzada con y sin la

inclusión de los canales de refrigeración en las simulaciones térmicas realizadas du-

rante el proceso de floorplanning. Con este fin, integramos el simulador 3D-ICE en

el floorplanner basado en la representación Direct Mapping. Cabe destacar que la

herramienta 3D-ICE permite realizar la simulación térmica de chips 3D con micro-

canales o sin ellos. Los resultados obtenidos demuestran que la incluir los micro-

canales en el proceso de optimización lleva a una reducción simultánea de temper-

atura y cableado en arquitecturas MPSoCs 3D de gran tamaño. En efecto, el floor-

planner propuesto es capaz de explotar las nuevas oportunidades de optimización

que surgen a partir de la relajación de las restricciones térmicas de las plataformas

estudiadas.
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A.3 Conclusiones y trabajo futuro

Presentamos aqúı las conclusiones de esta tesis. También se discuten posibles mejo-

ras y trabajos futuros que extenderán la investigación presentada.

A.3.1 Conclusiones

En esta tesis, nos hemos enfrentado a un problema relevante y real, el floorplan-

ning térmico de MPSoCS 3D de gran tamaño. La industria de semiconductores se

está decantando por chips con un gran número de procesadores. Sin embargo, estas

plataformas están limitadas por el elevado número de transacciones de bus y su alta

latencia. La integración 3D está considerada como una manera viable de reducir la

longitud del cableado global del chip y aumentar el ancho de banda entre las capas

conectadas verticalmente por medio de TSVs. Por lo tanto, se espera que estas ar-

quitecturas proporcionen el aumento de rendimiento necesario en los próximos años.

Se ha demostrado la viabilidad de MPSoCs 3D de grandes dimensiones ya que

las temperaturas alcanzadas permanecen en niveles aceptables. El floorplanning

térmico permite reducir significativamente la temperatura del chip. Sin embargo,

las temperaturas máximas prohibitivas que aparecen en las arquitecturas estudiadas

hacen necesaria la incorporación de nuevas técnicas de enfriamiento. Se ha simu-

lado la inclusión de canales microflúıdicos dispuestos de forma homogénea entre las

capas activas del chip 3D. Un refrigerante ĺıquido (agua) fluye a través de estos

canales, con un flujo fijo. La técnica considerada permite reducir drásticamente la

temperatura del chip, alcanzando temperaturas viables. Se espera que el consumo

de enerǵıa requerido por dicha técnica de enfriamiento se mantenga en valores ad-

misibles, a pesar de que los valores espećıficos dependerán del número de canales y

de las caracteŕısticas espećıficas de la(s) micro-bomba(s) involucrada(s).

Hemos mostrado la necesidad de nuevas técnicas capaces de lidiar con las limita-

ciones térmicas impuestas por MPSoCs 3D de grandes dimensiones. Se han adaptado

varias propuestas relevantes de floorplanning tales como Combined Bucket and 2D

Array, Double Tree and Sequence, Sequence Pair y Generalized Polish Expression

para realizar la optimización de tres plataformas basadas en la arquitectura Niagara.
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Un estudio comparativo ha mostrado que las técnicas citadas no encuentran solu-

ciones factibles cuando no se proporciona la configuración inicial de la arquitectura.

Además, el problema requiere técnicas multiobjetivo ya que los chips estudiados

presentan un compromiso entre temperatura y longitud global del cableado. De

hecho, las herramientas de floorplanning han de proporcionar una amplia gama de

soluciones que presenten un equilibrio adecuado entre los objetivos conflictivos con-

templados. De esta manera los fabricantes de estos chips podrán seleccionar la mejor

configuración de acuerdo con sus propios criterios.

Se han empleado Algoritmos Evolutivos Multiobjetivo para tratar el compromiso

entre rendimiento y temperatura mencionado anteriormente. Estos algoritmos ex-

tienden los Algoritmos Evolutivos con la incorporación del concepto de optimalidad

de Pareto en el proceso de optimización. Los AEMOs constituyen una herramienta

adecuada para hacer frente a problemas multiobjetivo complejos, permitiendo hal-

lar un conjunto de soluciones que optimizan simultáneamente dos o más objetivos

conflictivos en un tiempo reducido.

Las nuevas metodoloǵıas que se han propuesto permiten la reducción de temper-

atura y a la mejora de rendimiento de las arquitecturas consideradas. Se ha mejorado

de varias maneras una propuesta previa, a saber, el Multiobjective Floorplanning

Algorithm (MFA) :

1) En primer lugar, hemos acelerado el proceso de optimización con una imple-

mentación paralela. En particular, se ha adoptado un modelo Maestro-Trabajador

multi-hilo para obtener una aceleración significativa de la tarea de exploración

arquitectónica.

2) Hemos introducido conocimiento dinámico en el proceso floorplanning, que tradi-

cionalmente ha sido tratado como una técnica de optimización estática. Para

este fin, se han considerado perfiles de potencia obtenidos mediante simula-

ciones arquitectónicas. No obstante, incluir estos perfiles en la fase de opti-

mización ha resultado ser una tarea dif́ıcil. De hecho, se ha reducido dicha

información a una serie de métricas ya que los AEMOs utilizados no son ca-

paces de manejar un número elevado de objetivos.
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3) Hemos evaluado el impacto de la integración de diferentes modelos térmicos en

el proceso de optimización ya que tradicionalmente se ha asumido un com-

promiso entre tiempo de ejecución del modelo térmico y su precisión. Hemos

considerado el modelo exacto 3D-ICE y un modelo aproximado pero rápido.

Además, hemos incorporado en nuestro floorplanner un modelo propuesto re-

cientemente basado en una red neuronal entrenada para reproducir los resul-

tados del simulador 3D-ICE (NNTM). Cabe destacar que este modelo nunca

hab́ıa sido utilizado en un contexto floorplanning. Además, se ha empleado

una versión GPGPU de dicho modelo, eliminando el compromiso entre tiempo

de ejecución y precisión. De hecho, la red neuronal es más rápida que el mod-

elo térmico aproximado y realiza simulaciones precisas. Por lo tanto, con un

tiempo de optimización fijo, las configuraciones alcanzadas con NNTM mejo-

ran los resultados obtenidos con los demás modelos térmicos.

Una contribución importante de esta tesis es la propuesta de Direct Mapping,

una nueva representación diseñada para problemas de floorplanning con área fija

que permite realizar tareas de exploración arquitectónica de manera eficiente. Di-

rect Mapping explota el potencial del diseño modular habilitado por la integración

3D ya que los distintos componentes de una arquitectura son tratados como bloques

IP. Además, es totalmente compatible con herramientas existentes tales como los

simuladores térmicos que dividen la superficie de un chip en celdas térmicas rectan-

gulares. Por lo tanto, el método propuesto es integrable en una suite de herramientas

que abarquen las diferentes etapas del proceso de diseño de estas arquitecturas, tales

como exploración arquitectónica, optimización y validación entre otras. Esta rep-

resentación permite una asociación directa de los individuos en configuraciones de

la arquitectura optimizada, evitando la costosa etapa de decodificación de los al-

goritmos de optimización. Además, se eliminan heuŕısticas que pueden limitar la

exploración del espacio de búsqueda y causar problemas de convergencia prematura.

Un Algoritmo Evolutivo Multiobjetivo basado en NSGA-II ha sido diseñado para

explotar la representación propuesta. La novedosa propuesta de floorplanning ha

sido validada y comparada con floorplanners representativos del estado del arte. Los

experimentos realizados demuestran que el uso de Direct Mapping junto con oper-
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adores espećıficos para el problema conduce a resultados óptimos, superando todas

las técnicas analizadas.

Se ha demostrado que la inclusión de los canales de refrigeración ĺıquida en las

capas intermedias de los chips 3D afecta en gran medida al perfil térmico de las

arquitecturas estudiadas. Hemos demostrado que es necesario tener en cuenta este

efecto de enfriamiento durante el proceso de optimización para conseguir un com-

portamiento térmico y un rendimiento óptimos. De hecho, los floorplanners deben

aprovechar las oportunidades de optimización adicionales proporcionadas por la re-

lajación de las restricciones térmicas.

En resumen, hemos propuesto una serie de heuŕısticas bioinspiradss que realizan

con éxito la optimización de MPSoCs 3D de gran tamaño. Hemos mejorado prop-

uestas anteriores por medio de la introducción de conocimiento espećıfico para el

proceso floorplanning en forma de perfiles de potencia, adecuados modelos térmicos

y una nueva representación. Además, se han realizado implementaciones paralelas

para proporcionar una herramienta eficaz capaz de realizar la exploración arqui-

tectónica de MPSoCs 3D complejos.

A.3.2 Trabajo Futuro

En este trabajo se ha demostrado que las plataformas 3D estudiadas son factibles en

términos de temperatura y que proporcionan una mejora de rendimiento debido a la

reducción del cableado global. Hay dos formas principales de extender las técnicas

presentadas en esta tesis. La primera consiste en considerar nuevas restricciones

arquitectónicas en el proceso de optimización. En segundo lugar, se puede mejorar

algunas de las técnicas propuestas.

En cuanto a las restricciones arquitectónicas, a pesar de que las tecnoloǵıas de in-

tegración 3D están en constante evolución, es posible incorporar otras caracteŕısticas

como una comunicación realista entre procesadores. Por ejemplo, las arquitecturas

basadas en la plataforma Niagara estudiadas en este trabajo contienen un conjunto

de crossbars para asegurar dicha comunicación. Sin embargo, hoy en d́ıa se tiende

a implementar una Network-on-Chip (NoC) cuando el número de procesadores in-
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tegrados es elevado. En tales diseños, se habilita una comunicación basada en pa-

quetes mediante un procedimiento similar al del Protocolo de Internet. Aśı, los

paquetes pasan a través de switches que se deben ser ubicados apropiadamente. Por

otra parte, el número total de estos switches debe ser minimizado para reducir el

consumo de enerǵıa. El diseño de estas redes integradas representa un problema

dif́ıcil y está ganando relevancia como tema de investigación [15], [116], [11], y [61].

Del mismo modo que se han empleado simuladores térmicos precisos, es necesario

considerar modelos realistas de comunicación. Aśı, la mejora de rendimiento pro-

porcionada por los MPSoCs 3D estudiados se obtendrá de una manera más precisa.

Otro problema arquitectónico no abordado en este trabajo es la ubicación de las

TSVs. Es importante notar que que este problema ya ha sido tratado en el grupo de

investigación en trabajos previos de David Cuesta et al. [38] y [36], y que estos tra-

bajos son compatibles con las metodoloǵıas presentadas en esta tesis. En términos

generales, la colocación de TSVs se puede realizar de dos maneras. El primer en-

foque consiste en un procedimiento de dos fases en el que se realiza la colocación de

TSVs despuś de ubicar los componentes de las arquitecturas o viceversa. La otra

posibilidad es considerar que una TSV abarca la totalidad de una celda (“ TSV-

as-cell”), de modo que tanto los componentes como las v́ıas son modelados como

bloques que deben ser colocados en la misma etapa del proceso de floorplanning.

La representación Direct Mapping es compatible con ambas alternativas aunque la

segunda podŕıa conllevar un aumento significativo del área total ya que las áreas de

los componentes ubicados debe ser al menos igual al tamaño de celda fijado (300µm

en los experimentos realizados).

La técnica de enfriamiento empleada también es susceptible de ser mejorada

como se explica en [39]. Se ha simulado la integración de canales microflúıdicos

con flujo constante para demostrar la viabilidad de las arquitecturas 3D analizadas.

Sin embargo, dependiendo de las caracteŕısticas espećıficas de la bomba utilizada,

podŕıa ser posible manejar un flujo variable con el fin de minimizar el consumo de

enerǵıa, asegurando en todo momento que la temperatura se mantiene en niveles

aceptables.
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Con respecto a las técnicas propuestas, se han empleado con éxito diferentes AE-

MOs, alcanzando configuraciones que presentan un buen compromiso entre temper-

atura y cableado. También se ha demostrado que las configuraciones obtenidas mejo-

ran los resultados obtenidos con otras técnicas validadas de floorplanning. Además,

otras propuestas basadas en Simulated Annealing, tales como Combined Bucket and

2D Array no son adecuadas para la exploración arquitectónica de MPSoCs 3D de

grandes dimensiones, ya que requieren una configuración inicial factible. De hecho,

estas técnicas realizan un ajuste fino de la configuración inicial, principalmente por

medio de operadores de búsqueda local. Por tanto, seŕıa beneficioso combinar la

capacidad de exploración de los AEMOs estudiados con la explotación llevada a

cabo por métodos como CBA. Se podŕıa implementar fácilmente un proceso de op-

timización dividido en dos etapas en el que, en primer lugar, se obtendŕıa un frente

de soluciones no dominadas con un AEMO. Más adelante, se aplicaŕıa el método

CBA a las configuraciones más prometedoras del frente obtenido.

También se pueden estudiar otros métodos para aprovechar información dinámica

(tales como los perfiles de consumo de potencia) en el proceso de floorplanning. Es

importante ver que, en la metodoloǵıa propuesta en la Sección 5.3, se calculan

varias métricas a partir de las trazas de consumo de enerǵıa con el fin de guiar

la optimización térmica. En un trabajo reciente [157], Wu et al. proponen una

técnica de Dynamic Voltage and Frequency Scaling (DVFS) que utiliza información

dinámica de la carga de trabajo de los distintos componentes de la arquitectura.

Las cargas de trabajo también se obtienen mediante simulaciones pero, en este

caso, las trazas obtenidas son transformadas al dominio de la frecuencia. Con este

elegante enfoque, la cantidad de información manejada por el algoritmo se reduce

drásticamente y la información dinámica puede ser explotada por completo.

A.3.3 Discusión

Este trabajo propone el uso de heuŕısticas bioinspiradas para realizar el floorplanning

MPSoCs 3D dotados de un gran número de procesadores. Es importante señalar la

diferencia entre los procedimientos de validación de heuŕısticas y los de validación

de arquitecturas, ya que estos dos mundos chocan de alguna manera en algunos

aspectos de este trabajo. El funcionamiento adecuado de una heuŕıstica debe ser
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validado estad́ısticamente por medio de un proceso experimental reproducible. Por

otro lado, en un contexto de diseño arquitectónico, la obtención de una única solución

que satisfaga las restricciones existentes, tales como la temperatura, la viabilidad

y la longitud de cableado puede ser suficiente. Sin embargo, cuando se trabaja

con Algoritmos Evolutivos, no es trivial lidiar con las restricciones mencionadas.

De hecho, hemos detectado que la imposición de restricciones duras suele tener un

efecto negativo en la dinámica de la búsqueda. Por ejemplo, seŕıa razonable es-

tablecer umbrales de temperatura máxima o de longitud de cableado durante el

proceso de búsqueda para descartar soluciones candidatas no prometedoras. Sin

embargo, hemos observado emṕıricamente que la imposición de tales restricciones

conduce a una exploración parcial del espacio de soluciones, produciendo soluciones

subóptimas.

En términos generales, el objetivo es proporcionar las mejores condiciones posi-

bles para el proceso de búsqueda heuŕıstica. Tales condiciones óptimas no son in-

tuitivas en la mayoŕıa de los casos. Para ilustrar esta idea, se remite al lector a

la Sección 5.3, donde se discute la conveniencia de varias métricas térmicas como

función de fitness del proceso de optimización. En dicha sección, se muestra que

las temperaturas máximas se alcanzan cuando todos los componentes presentan un

consumo de potencia máximo. Sin embargo, no es beneficioso para considerar estos

consumos de potencia máxima en el proceso de optimización para reducir los picos

de temperatura. De hecho, una relajación de las restricciones térmicas durante el

proceso de floorplanning resulta en una mejor optimización térmica.

Otro factor que afecta profundamente la dinámica del proceso de búsqueda es

la representación elegida. De hecho, diferentes representaciones implican distintos

espacios de soluciones. Estos espacios de soluciones no sólo pueden presentar una

cardinalidad diferente, sino también una distribución diferente de los óptimos locales

y globales. Por lo tanto, algunas representaciones conllevan Fitness Landscapes más

idóneos para búsquedas heuŕısticas que otras. En la Sección 4.1.4 se proporciona

una breve introducción al análisis de Fitness Landscapes en el contexto de la opti-

mización mono-objetivo. Sin embargo, todav́ıa se requieren trabajos de investigación

para comprender mejor la información recaudada de dichos análisis. El objetivo fi-



A.3 Conclusiones y trabajo futuro 219

nal del análisis de estos Fitness Landscapes debe ser encontrar algoritmos óptimos.

Sin embargo, este proceso se obvia en la mayoŕıa de los trabajos que tratan este tema.

Este tipo de análisis seŕıa muy útil en el contexto de la resolución de proble-

mas complejos en los que normalmente se emplean técnicas heuŕısticas. El princi-

pal reto sigue siendo la gran cardinalidad de los espacios de soluciones estudiadas.

Las técnicas de muestreo, tales como Random Walk se emplean generalmente para

determinar las propiedades de los Fitness Landscapes analizados (multimodalidad

etc.). Algunos trabajos prometedores han revelado que la distribución de óptimos

globales y locales en el espacio de soluciones no es aleatoria [42]. Sin embargo, los

resultados presentados no son necesariamente generalizables y la técnica propuesta

es dif́ıcilmente escalable, ya que se basa en procedimientos exhaustivos. El desarrollo

actual de técnicas de mineŕıa de datos para escenarios BigData podŕıa proporcionar

un mayor conocimiento de la distribución de los óptimos buscados. Todas estas di-

ficultades se incrementan cuando se analizan problemas multiobjetivo. En tal caso,

es posible analizar la relación entre las soluciones o entre los frentes (conjuntos) de

soluciones, como se explica en [151], un prometedor trabajo por S. Verel.

En resumen, se puede afirmar que la investigación realizada no ha hecho más

que empezar a descubrir como se relacionan las diferentes soluciones de un prob-

lema, como clasificar los distintos problemas en función del análisis de su Fitness

Landscape y como diseñar algoritmos eficientes para los problemas analizados.
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