100 research outputs found

    Technical and Fundamental Features Analysis for Stock Market Prediction with Data Mining Methods

    Get PDF
    Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.154 - Katedra financívyhově

    Study on stock trading and portfolio optimization using genetic network programming

    Get PDF
    制度:新 ; 報告番号:甲3002号 ; 学位の種類:博士(工学) ; 授与年月日: 2010/3/15 ; 早大学位記番号:新525

    Integrated computational intelligence and Japanese candlestick method for short-term financial forecasting

    Get PDF
    This research presents a study of intelligent stock price forecasting systems using interval type-2 fuzzy logic for analyzing Japanese candlestick techniques. Many intelligent financial forecasting models have been developed to predict stock prices, but many of them do not perform well under unstable market conditions. One reason for poor performance is that stock price forecasting is very complex, and many factors are involved in stock price movement. In this environment, two kinds of information exist, including quantitative data, such as actual stock prices, and qualitative data, such as stock traders\u27 opinions and expertise. Japanese candlestick techniques have been proven to be effective methods for describing the market psychology. This study is motivated by the challenges of implementing Japanese candlestick techniques to computational intelligent systems to forecast stock prices. The quantitative information, Japanese candlestick definitions, is managed by type-2 fuzzy logic systems. The qualitative data sets for the stock market are handled by a hybrid type of dynamic committee machine architecture. Inside this committee machine, generalized regression neural network-based experts handle actual stock prices for monitoring price movements. Neural network architecture is an effective tool for function approximation problems such as forecasting. Few studies have explored integrating intelligent systems and Japanese candlestick methods for stock price forecasting. The proposed model shows promising results. This research, derived from the interval type-2 fuzzy logic system, contributes to the understanding of Japanese candlestick techniques and becomes a potential resource for future financial market forecasting studies --Abstract, page iii

    Machine Learning-Driven Decision Making based on Financial Time Series

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Financial time series predicting using machine learning algorithms

    Get PDF
    Financial time series prediction is a challenging task due to the fluctuation of trading or economic exchange that is difficult to predict. Researchers from different fields have been attracted to perform several techniques for identifying reliability of the financial time series prediction. Finding of research papers, the financial trend patterns repeat itself in the history. Thus, this research motivates and aims to investigate the repeat behaviour and pattern of trends from the historical financial time series data, and utilise the strength of machine learning techniques to develop a promising financial time series predictor engine. In this research, two frameworks are proposed for financial time series prediction. In the first proposed framework, candlestick pattern is utilised as technical analysis method to identify the financial trends. Thereafter, Artificial Neural Network (ANN) and Support Vector Machine (SVM) algorithms are implemented separately to train with the trend patterns for predicting the movement direction of financial trends. In the second proposed framework, Linear Regression Line (LRL) is utilised to identify the trend patterns from historical financial time series, which is supported by ANN and SVM for classification process separately. Subsequently, Dynamic Time Warping (DTW) algorithm is utilised through brute force to predict the trend movement. The experimental results showed that the second proposed model is consistent with the hypothesis, which provides better accuracy of prediction. Therefore, the findings of this research help in improving the accuracy of prediction model

    Data Science: Measuring Uncertainties

    Get PDF
    With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems

    Stop Hunt Detection using Indicators and Expert Advisors in the Forex Market

    Get PDF
    Foreign exchange trading activities are one of the businesses that can generate big profits, and provide freedom for business people without the need to provide a large capital. Traders often suffer losses due to uncertainty in the market. One of them is market manipulation carried out by brokers or banks. For this reason, this research was conducted to detect any manipulation that occurred in the foreign exchange market. This research tries to combine trading systems, indicators and expert advisors that aim to help traders detect fake market price movements to minimize losses that occur due to errors in making transaction decisions. The results of the study produce an indicator that is able to detect the potential of certain patterns used by the market maker to reverse the direction of market prices, and is supported by the presence of expert advisors who are able to pinpoint potential market manipulation, so traders can avoid large losses

    A dynamic trading rule based on filtered flag pattern recognition for stock market price forecasting

    Full text link
    [EN] In this paper we propose and validate a trading rule based on flag pattern recognition, incorporating im- portant innovations with respect to the previous research. Firstly, we propose a dynamic window scheme that allows the stop loss and take profit to be updated on a quarterly basis. In addition, since the flag pat- tern is a trend-following pattern, we have added the EMA indicator to filter trades. This technical analysis indicator is calculated both for 15-min and 1-day timeframes, which enables short and medium terms to be considered simultaneously. We also filter the flags according to the price range on which they are de- veloped and have limited the maximum loss of each trade to 100 points. The proposed methodology was applied to 91,309 intraday observations of the DJIA index, considerably improving the results obtained in the previous proposals and those obtained by the buy & hold strategy, both for profitability and risk, and also after taking into account the transaction costs. These results seem to challenge market efficiency in line with other similar studies, in the specific analysis carried out on the DJIA index and is also limited to the setup considered.The fourth author of this work was partially supported by MINECO, Project MTM2016-75963-P.Arévalo, R.; García, J.; Guijarro, F.; Peris Manguillot, A. (2017). A dynamic trading rule based on filtered flag pattern recognition for stock market price forecasting. Expert Systems with Applications. 81:177-192. https://doi.org/10.1016/j.eswa.2017.03.0281771928

    El valor de las series de tiempo de acciones: un estado del arte de técnicas computacionales para la generación de expectativas en portafolios de inversión

    Get PDF
    El proceso de selección de portafolio ha dado origen a diferentes modelos, orientados a optimizar el conjunto de ti-tulos valor disponibles para un inversionista, con base en diferentes criterios de decisión tales como el riesgo, el re-torno esperado, horizonte de planeación, entre otros. El enfoque clásico de estos modelos cubre las dos fases del proceso de selección de portafolio, y está definido por disciplinas tales como la econometría, el análisis técnico y las finanzas corporativas. Pero el nacimiento de la computación financiera define el uso de nuevas técnicas bajo la necesidad del procesamiento automático de grandes volúmenes de información. Este artículo es un estado del arte de esas nuevas técnicas, desde el punto de vista de la ingeniería de sistemas y sus modelos computacionales, apli-cados particularmente a la generación de expectativas de inversión en portafolios.Selecting an investment portfolio has inspired several models aimed at optimising the set of securities which an in-vesttor may select according to a number of specific decision criteria such as risk, expected return and planning hori-zon. The classical approach has been developed for supporting the two stages of portfolio selection and is supported by disciplines such as econometrics, technical analysis and corporative finance. However, with the emerging field of computational finance, new and interesting techniques have arisen in line with the need for the automatic processing of vast volumes of information. This paper surveys such new techniques which belong to the body of knowledge con-cerning computing and systems engineering, focusing on techniques particularly aimed at producing beliefs regar-ding investment portfolios
    corecore