205 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Diseños de capa cruzada para redes inalámbricas de área corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalámbricas en redes de área corporal (WBAN), donde el modelo clásico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones más relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Además, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications

    Resource Allocation in Service Area based Networks

    Get PDF
    By applying joint transmission in the downlink and joint detection in the uplink, the novel service area architecture allows multiple mobile stations to be simultaneously active on the same OFDM subcarrier without causing interference to each other. Moreover, the proposed adaptive subcarrier and power allocation techniques are shown to be able to improve the spectral efficiency significantly in service area based networks. The significance of the frequency selectivity of wireless channels, the correlation among users’ spatial signatures and the presence of interferences to resource allocation is also assessed through simulations.Durch den Einsatz von Joint Detection in der Aufwärtsstrecke und Joint Transmission in der Abwärtsstrecke ermöglicht die neuartige Service Area Architektur es mehreren Mobilstationen in dem selben OFDM-Subträger gleichzeitig interferenzfrei aktiv zu sein. Darüber hinaus wrid gezeigt, dass die vorgeschlagenen adaptiven Subträger- und Leistungsallokationstechniken die spektrale Effizienz eines Service Area basierten Mobilfunksystems erheblich erhöhen können. Die Bedeutung der Frequnzselektivität der Funkkanäle, der Korrelation zwischen räumlichen Signaturen der Teinehmer und der Existenz der Interferenz für die adaptive Ressourcenallokation wird ebenfalls durch Computersimulationen bewertet

    Cooperative Resource Management and Interference Mitigation for Dense Networks

    Get PDF

    Performance evaluation of user mobility on QoS classes in a 3G network

    Get PDF
    The popularity of IP services is increasing and the demand for managing traffic with different QoS classes has become more challenging. The stability of the system is affected by the rate of voice traffic. Mobility allows users to be connected at all time where handover may occur as it is not always possible to be connected to the same base station. Mobility and handover cause severe interference, which affects overall throughput and capacity of the system. The system requires greater capacity with more coverage area. This study deals with the impact of user mobility on voice quality in IP based application in a 3G Network. The aim is to improve the system performance in mixed traffic environment. A mathematical model is used to analyse the impact of using different type of coder on packet end-to-end delay and packet loss. The simulation results indicate that types of coder affect the system performance. Application of scheduling based on weight and load balancing technique can improve the system performance. The deployment of scheduling based on weight and a load balancing technique have been investigated to reduce the end-to-end delay and to improve overall performance in mixed traffic environment. The results under different conditions are analysed and it is found that by applying scheduling scheme, the quality of voice communication can be improved. In addition, load balancing technique can be used to improve the performance of the system. Apart from the decrease in delay, the technique can increase the capacity of the system and the overall stability of the system can be further improved. Finally, network security is another important aspect of network administration. Security policies have to be defined and implemented so that critical sections of the network are protected against unwarranted traffic or unauthorized personnel. The impact of implementing IPSec has been tested for voice communication over IP in a 3G network. Implementing the security protocol does not significantly degrade the performance of the system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    System Level Analysis of LTE-Advanced:with Emphasis on Multi-Component Carrier Management

    Get PDF

    Cross layer optimization in 4G Wireless mesh networks

    Get PDF
    Wireless networks have been rapidly evolving over the past two decades. It is foreseen that Fourth generation (4G) wireless systems will involve the integration of wireless mesh networks and the 3G wireless systems such as WCDMA. Moreover their wireless mesh routers will provide service to wireless local networks (WLANs) and possibly incorporate MIMO system and smart admission control policies among others. This integration will not only help the service providers cost effectiveness and users connectivities but will also improve and guarantee the QoS criteria. On the other hand, cross layer design has emerged as a new and major thrust in improving the quality of service (QoS) of wireless networks. Cross layer design involves the interaction of various layers of the network hierarchy which could further improve the QoS of the 4G integrated networks. In this work we seek new techniques for improving the overall QoS of integrated 4G systems. Towards this objective we start with the local low tier WLAN access. We then investigate CDMA alternatives to the TDMA access for wireless mesh networks. Cross layer design in wireless mesh networks is then pursued. In the first phase of this thesis a new access mechanism for WLANs is developed, in which users use an optimum transmission probability obtained by estimating the number of stations from the traffic conditions in a sliding window fashion, thereby increasing the throughput compared to the standard DCF and RTS/CTS mechanism while maintaining the same fairness and the delay performance. In the second phase we introduce a code division multiple access/Time division duplex technique CDMA/TDD for wireless mesh networks, we outline the transmitter and receiver for the relay nodes and evaluate the efficiency, delay and delay jitter performances. This CDMA based technique is more amenable to integrating the two systems (Mesh networks and WCDMA or CDMA 2000 of3G). We compare these results with the TDMA operation and through analysis we prove that the CDMA system outperforms the TDMA counterparts. In the third phase we proceed to an instance of cross layer optimized networks, where we develop an overall optimization routine that finds simultaneously the best route and the best capacity allocation to various nodes. This optimization routine minimizes the average end to end packet delay over all calls subject to various contraints. In the process we use a new adaptive version of Spatial TDMA as a platform for comparison purposes of the MAC techniques involved in the cross layer design. In this phase we also combine CDMA/TDD and optimum routing for cross layer design in wireless mesh networks. We compare the results of the CDMA/TDD system with results obtained from the STDMA system. In our analysis we consider the parallel transmissions of mesh nodes in a mesh topology. These parallel transmissions will increase the capacity resulting in a higher throughput with a lower delay. This will allow the service providers to accommodate more users in their system which will obviously reduce the colt and the end users will enjoy a better service paying a lower amount
    corecore