98 research outputs found

    Electroabsorption modulators used for all-optical signal processing and labelling

    Get PDF

    Label-controlled optical switching nodes

    Get PDF
    Optical networks are evolving from initially static optical circuits and subsequently optical circuit switching towards optical packet switching in order to take advan- tage of the high transport capacity made available by WDM systems in a more °exible and e±cient way. Optically labeling of packets and routing the packets's payload optically under control of its label allows the network nodes to route and forward IP data without having to process the payload, thus keeping it in the optical domain; this is a promising solution to avoid electronic bottlenecks in routers. All-optical label switching can therefore be used to route and forward packets independent of their length and payload bitrate. Several optical signal labeling techniques have been proposed in previous re- search reported in literature; orthogonal labeling and time-serial labeling have been studied in this thesis. This thesis studies two orthogonal modulation label- ing techniques: one based on FSK labels with an IM payload, and another one on SCM labeling for a DPSK modulated payload. A time-serial labeling method based on IM labels with IM or DPSK payload is also presented and studied. The ¯rst two techniques assume electronic processing of the labels in the node, and hence assume that labels can be transmitted at a much lower bitrate than the payload data rate. The third technique assumes all-optical signal processing in the nodes, capable of handling a label at the same bitrate or slightly lower than the payload data. Labels at low bitrate in comparison with the payload bitrate are desirable in systems where the label processing will be conducted in the electrical domain, while labels at the same bitrate as the payload can be used in systems where the processing is conducted in the optical domain, exploiting all-optical processing techniques. These three techniques have been chosen because they are compatible with the existing networks, since the modulation format, bitrates, transmission properties, and other features of the signals are similar to the ones used for commercially available applications. Thus, they can be considered important candidates for migration scenarios from optical circuit switching towards optical burst switching networking. Orthogonal labeling based on FSK/IM is a promising scheme for implementing the labeling of optical signals, and it is the technology of choice in the STOLAS project. This technique o®ers advantageous features such as a relaxed timing de- lineation between payload and label, and ease of label erasure and re-writing of new labels. By using wavelength-agile tunable laser sources with FSK modula- tion capability, wavelength converters, and passive wavelength routing elements, a scalable modular label-controlled router featuring high reliability can be built. In this thesis, several aspects of the physical parameters of an FSK/IM labeling scheme within a routing node have been studied and presented. Optical ¯ltering requires special care, since the combined FSK/IM scheme has a broader spectrum than that of pure intensity modulated signals. The requirements on the limited extinction ratio for the IM signal can be relaxed at low bitrates of the label signal or, alternatively, by introducing data encoding. Optical labeling by using FSK/IM represents a simple and attractive way of implementing hybrid optical circuit and burst switching in optical networks. Architecturally, similar advantages can be mentioned for the second orthogo- nal labeling technique studied in this thesis, based on SCM labels and a DPSK payload. In-band subcarriers carrying low bitrate labels located at a frequency equal to half the bitrate of the payload signal can be inserted introducing only low power penalties. Wavelength conversion can be implemented by using passive highly nonlinear ¯bers and exploiting the four-wave mixing e®ect. This thesis also studies the design of two functional blocks of an all-optical core node proposed in the LASAGNE project, namely the all-optical label and payload separator and the wavelength converter unit for a time-serial labeling scheme. The label and payload processor can be realized exploiting nonlinear e®ects in SOAs. An implementation using polarization division multiplexing to transport the external control light for an IM/IM time-serial scheme was demon- strated. Label and payload processors with self-contained control signals were also demonstrated, either using a DPSK signal to simultaneously transport the payload data and the control signal or inserting a CW dummy in between the label and the payload, which were based on IM-RZ format. A study on single- and multi- wavelength conversion based on FWM in a HNLF was presented. This approach allows transparent wavelength conversion (independent of the data format used) at high bitrates (the nonlinear e®ects in a ¯ber are obtained at ultrafast speeds). The labeling techniques explored have indicated a viable way of migration towards optical burst packet switched networks while signi¯cantly improving the throughput of the routing nodes

    Investigation of high bit rate optical transmission systems employing a channel data rate of 40 Gb/s

    Get PDF
    Das Ziel dieser Doktorarbeit war eine detaillierte Untersuchung von hoch bit ratigen optischen Übertragungssystemen mit einer Kanaldatenrate von 40 Gbit/s, die als wavelength division multiplexing (WDM) Systeme realisiert sind. Die Erkenntnisse, die durch umfangreiche numerische Untersuchungen gewonnen worden sind, wurden für die Erarbeitung von Designkriterien für die Übertragungssysteme der nächsten Generation verwendet. Der Schwerpunkt der Arbeit liegt dabei an 40 Gbit/s basierten WDM Systemen mit amplitudenmodulierten optischen Signalen. Nach einer umfangreichen Beschreibung der Funktionsweise und des Standes der Technik von Systemkomponenten, die in optischen Übertragungssystemen zum Einsatz kommen, wurden die Übertragungseffekte (z.B. chromatische Dispersion, Kerr-Effekt) erklärt und beschrieben, die eine störungsfreie Übertragung von optischen Pulsen in Übertragungsstrecken beeinträchtigen. Wegen der Fokussierung der Arbeit auf amplitudenmodulierte Systeme, wurden Erzeugungsmethoden und Spektraleneigenschaften von zahlreichen amplitude-shift-keying (ASK) basierten Modulationsformaten erklärt. Die untersuchten Modulationsformate wurden in drei Gruppen unterteilt: Non-return-to-zero (NRZ) basierende Formate, Return-to-zero (RZ) basierende Formate und neue Modulationsformate. Zu der Gruppe von NRZ basierten Modulationsformaten gehören konventionelles NRZ und Duobinary Modulation. In der Gruppe von RZ basierten Formaten wurden konventionelles RZ, Carrier-suppressed RZ (CSRZ) und Single-side-band RZ (SSB-RZ) eingeführt. Die Gruppe der neuen Formate beinhaltet Modulationsformate, die vom Autor im Rahmen der Arbeit vorgeschlagen und weiterentwickelt worden sind: Alternate-chirped NRZ (alCNRZ), Novel-chirped RZ (nCRZ), Alternate-polarized NRZ (alPNRZ) und Alternate-polarized RZ (alPRZ). Die Anforderungen, die bei der Entwicklung von neuen Modulationsformaten berücksichtigt worden sind, waren die Verbesserung der nichtlinearen Übertragungseigenschaften (z.B. nichtlineare Toleranz) der Übertragungsstrecke und eine effizientere Ausnutzung der zur Verfügung stehenden Systembandbreite (z.B. Erhöhung der spektralen Effizienz), wobei die vorgeschlagenen Modulationsformate kompatibel mit herkömmlichen Systemkonfigurationen (z.B. Empfänger) sein sollten. Aufgrund numerischer Natur der Arbeit wurden diverse Auswertekriterien eingeführt, die eine genaue Evaluierung der Übertragungsqualität ermöglichen und im Rahmen der Arbeit verwendet worden sind. Die Vor- und Nachteile der Auswertekriterien wie Bitfehlerrate (BER), Q-Faktor, optischer Signalrauschabstand (OSNR) und Augendiagramme wurden erläutert, und ein Vergleich zwischen allen Kriterien ist gemacht worden. Die 40 Gbit/s basierten numerischen Untersuchungen wurden für Einkanal- und Mehrkanalübertragungssysteme durchgeführt. Dabei wurde im Mehrkanalfall zwischen WDM-Systemen mit einer spektralen Effizienz von 0.4 bit/s/Hz und effizienteren dense WDM (DWDM) Systemen mit einer spektralen Effizienz von 0.8 bit/s/Hz unterschieden. Das Ziel dieser Untersuchungen war eine 40 Gbit/s Systemoptimierung durch Bestimmung von optimalen Übertragungsfasern, optimalen Dispersionskompensationsschemen und optimalen Leistungsbereichen, in denen die zukünftigen Systeme betrieben werden sollen. Dabei wurden alle Untersuchungen unter Berücksichtigung von unterschiedlichen Modulationsformaten durchgeführt, um einen Vergleich zwischen den Modulationsformaten gewährleisten zu können. Die Ergebnisse der Einkanaluntersuchungen haben gezeigt, dass NRZ basierten Modulationsformate durch eine hohe Dispersionstoleranz (ca. ±50 ps/nm) und eine niedrige nichtlineare Toleranz charakterisiert sind, was eine Beschränkung der maximaler Übertragungslänge verursacht. Die wichtigsten Störeffekte stellen in diesem Fall Selbstphasenmodulation (SPM) und die Interaktion zwischen SPM und chromatischer Dispersion dar. Die RZ basierten Verfahren zeichnen sich durch eine reduzierte Dispersionstoleranz (ca. ±25 ps/nm) aus, aber ermöglichen wegen erhöhter nichtlinearer Toleranz eine Verbesserung der maximalen Übertragungslänge verglichen zu NRZ Formaten. Die limitierenden Effekte in einer RZ basierten Übertragung sind Intrakanaleffekte (z.B. Intrakanalkreuzphasenmodulation IXPM), die bei höheren Signalleistungen von SPM begleitet sind. Die wichtigste Eigenschaft der neuen Modulationsverfahren ist die große nichtlineare Toleranz, die besonders bei alternierend polarisierten Modulationsverfahren (z.B. alPNRZ, alPRZ) zur Geltung kommt. Es wurde gezeigt, dass in allen untersuchten Fällen die Übertragungsqualität von eine mittleren Faserdispersion (ca. 4-8 ps/nm·km) profitiert und dass Dispersionskompensationsschemen mit einem bestimmten Prozent (variiert von Format zu Format) der Vorkompensation das Optimum darstellen. Die Mehrkanaluntersuchungen haben gezeigt, dass solange die spektrale Effizienz eines 40 Gbit/s basierten WDM systems klein (£ 0.4 bit/s/Hz) ist, die Einkanaleffekte (z.B. SPM, IXPM) die dominierenden Effekten sind. Demzufolge haben WDM und Einkanalsysteme ähnliche optimale Systemparameter, was ein einfaches System- und Kapazitätsupgrade ermöglichen würde. Des weiteren wurde gezeigt, dass für die Realisierung von DWDM Systemen eine schmalbandige optische Filterung sowohl am Sender als auch am Empfänger notwendig ist, deren Folge die Zerstörung der RZ Pulsform ist, wodurch die untersuchten RZ und NRZ basierten Modulationsformate identische Übertragungseigenschaften in DWDM Systemen aufweisen. Eine ähnliche Tendenz wurde auch bei manchen neuen Formaten (z.B. alCNRZ) beobachtet, was mit einem breiten Signalspektrum zu erklären ist. Auf der anderen Seite zeigten alternierend polarisierte Modulationsverfahren (z.B. alPNRZ) auch in DWDM Systemen eine Verbesserung hinsichtlich Filtertoleranz und Toleranz zu Mehrkanaleffekten (z.B. XPM), und empfählen sich als optimaler Kandidat für die zukünftigen 40 Gbit/s Systeme. Es wurde gezeigt, dass der optimale Fasertyp für eine DWDM Übertragung weitgehend unabhängig vom Modulationsformat ist und dass Faser eine möglichst hohe Dispersion besitzen sollen, um eine Unterdrückung der Mehrkanaleffekte ermöglichen zu können. Um zu erkennen, wie eine weitere Verbesserung der Übertragungseigenschaften in 40 Gbit/s Systemen ermöglicht werden könnte, wurden Verfahren wie orthogonal polarisierte Kanäle sowie phase shift keying (PSK) basierte Modulationsformate (z.B. DPSK, DQPSK) untersucht. Es wurde gezeigt, dass die orthogonale Polarisation zwischen den Kanälen als eine Verbesserungsmethode auf eine Übertragungslänge von ca. 200 km begrenzt ist. PSK-Formate ermöglichen eine Verbesserung der Übertragungseigenschaften der Strecke, wobei die notwendigen komplizierten Sender- und Empfängerrealisierungen vom Nachteil sein könnten.The focus of this work was set on 40 Gb/s based optical transmission systems with a varying number of channels and various spectral efficiencies in order to investigate the potential of 40 Gb/s technologies for the implementation in the next generation optical transmission networks. The results of this work can be used as design guidelines enabling a better understanding of propagation limitations in high bit rate transmission systems and give useful insights needed for the capacity upgrade of existing transmission lines. Using conventional amplitude-shift-keying (ASK) based modulation formats and by the author proposed novel modulation formats, the optimization of the system settings is performed in 40 Gb/s based single channel, wavelength division multiplex (WDM) and dense WDM (DWDM) transmission lines, in order to enable a comparison between different modulation formats in terms of the total transmission distance and the maximum achievable spectral efficiency. The signal generation and dominant transmission characteristics of various conventional non return-to-zero (NRZ), return-to-zero (RZ), duobinary, single side band RZ (SSB-RZ), carrier suppressed RZ (CSRZ) - and novel modulation formats alternate chirped NRZ (alCNRZ), novel chirped RZ (nCRZ), alternate polarized (N)RZ (alP(N)RZ) were introduced. The idea behind the development of novel modulation formats was the performance improvement of the existing transmission lines with possibly low signal generation complexity, employing conventional ASK-based receiver configuration for the signal detection. Dividing all modulation formats in two groups NRZ- and RZ-based - their tolerances to linear and nonlinear transmission disturbances are investigated in single channel transmission, indicating that an implementation of NRZ-based modulation formats provides a better dispersion tolerance, but suffers from strong nonlinear limitations. The use of novel NRZ-based formats enables a significant improvement of nonlinear transmission characteristics at the cost of a slightly increased transmitter complexity. RZ-based formats are characterized by an increased sensitivity to residual dispersion and a significant nonlinear tolerance. It is shown that an additional phase or polarization modulation of RZ pulses enables more compact signal spectra and a further improvement of nonlinear transmission robustness, thus enlarging the maximum transmission distance. Strong intra-channel limitations were indicated as the dominant transmission limitation especially in RZ-based formats characterized by strong interactions of consecutive pulses within the bit stream, due to the fast broadening of short optical pulses at 40 Gb/s. This effect is accompanied by self-phase modulation (SPM) group velocity dispersion (GVD) interplay, which becomes evident in both format groups at larger channel powers. It is shown that the dominance of intra-channel effects requires implementation of transmission fibers with moderate dispersion values. Furthermore, it was shown, that as long as intra-channel effects dominate transmission performance, the best dispersion compensation scheme is characterized by a small amount of dispersion pre-compensation, due to suppression of interactions between adjacent pulses. Thereby, right amount of dispersion pre-compensation is dependent on the modulation format in use, because of the interplay between the pulse internal chirp induced during modulation and the local dispersion in transmission line. The importance of pre-compensation increases in long-haul transmission lines employing dispersion compensation on a span-by-span basis, because of constructive superposition of intrachannel cross-phase modulation (IXPM) contributions in each span. The modulation formats employing polarization switching between consecutive pulses were identified as best solution for the performance enhancement in 40 Gb/s single channel based transmission lines. The 40 Gb/s based WDM systems with spectral efficiency of 0.4 bit/s/Hz showed identical transmission behavior as in single channel transmission for all modulation formats, which can be explained by the dominance of single-channel effects in 40 Gb/s systems with a channel spacing of 100 GHz. This leads to the conclusion that a system upgrade from single channel to WDM at 40 Gb/s channel data rate can be made using identical transmission infrastructure. As in the single channel case, RZ-based formats indicated a significant robustness to nonlinear propagation effects, which could be further improved by the use of novel modulation formats. Basically, RZ-based modulation formats outperform the NRZ-based ones in 40 Gb/s single channel and WDM transmissions, and transmission advantages of RZ based formats become even more evident with an increased transmission distance. It was shown that an increase of spectral efficiency to 0.8 bit/s/Hz in 40 Gb/s based DWDM systems results in increased pulse distortions, because of the reduced tolerance to implemented narrow-band filtering and larger impact of multi-channel nonlinearities (particularly XPM). The differences between RZ- and NRZ-based modulation formats vanish in DWDM transmissions, because of the distortion of RZ pulse shape due to narrow-band filtering needed at the transmitter side. It was shown that transmission performance of DWDM systems could profit from implementation of transmission fibers with a large chromatic dispersion, due to suppression of multi-channel effects independently of the modulation format in use. Accordingly, already deployed fibers (e.g. G.652) can be further used in next generation of DWDM transmission systems. Furthermore, considering concatenation of identical spans in a DWDM transmission line, it was observed that XPM-induced impacts superpose constructively from span to span independently of the implemented dispersion compensation scheme, resulting in an transmission penalty, which is in high power regime proportional to number of concatenated spans. This behavior enables together with already know transmission rules (e.g. Pmax) an efficient estimation of the maximum transmission performance and maximum transmission distance in 40 Gb/s DWDM systems. This work is completed by representation of some promising technologies, e.g. polarization orthogonality between the channels or phase-shift-keying (PSK) based modulation formats, which enable a further increase of spectral efficiency (beyond 0.8 bit/s/Hz) and an enhanced maximum transmission distance. The investigations of PSK-based modulation formats showed that not all recently proposed PSK-based system could compete with ASK-based formats for implementation in DWDM systems. Differential quadrature PSK (DQPSK) based modulation formats were identified as a potential candidate for the implementation in future spectrally efficient DWDM systems

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Transparent heterogeneous terrestrial optical communication networks with phase modulated signals

    Get PDF
    This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented

    Towards an Optimal Photonic Network: Optimising Performance, Cost and Flexibility

    Get PDF
    This thesis investigates optical fibre transmission system technologies, and their impact on network architectures with the objective of lowering unit cost ($/Gb/s/km) of data transmission in long-haul, and ultra long-haul dense wavelength division multiplexing (DWDM) photonic networks. The importance of this work is driven by the exponential growth in Internet traffic of around 40% p.a., and economic pressures constraining network operators’ ability to invest in their networks. Optical transport networks must therefore be designed to meet future bandwidth demands of end users, with optimum performance, cost and flexibility. Dynamic gain equalisers (DGEs) are a key sub-system of ultra long-haul networks, enabling increased un-regenerated transmission reach and elimination of expensive optical-electrical-optical (OEO) regeneration. A theoretical framework was developed integrating models of wideband power variation, together with narrowband nonlinear propagation simulations using the split-step Fourier method. The optimum spacing of the also costly DGEs was determined for a 3,000km network field deployment. Optimum power pre-emphasis profiles were predicted and compared with simple linear calculations, showing <0.7dB performance penalty using the much faster, simplified method. Optical dispersion management schemes were studied, with optical dispersion compensating fibre placed after every other span resulting in 6% cost reduction and little performance degradation compared to compensation after every span. A techno-economic comparison of optical and electronic dispersion compensation (EDC) strategies showed 25% cost reduction using EDC. Tolerance to fibre nonlinearities is reduced compared to optical compensation; splitting the EDC function equally between transmitter and receiver optimises performance. Economic benefits of a single flexible, multi-reach DWDM system were investigated showing almost 20% cost savings compared to separate long-haul and ultra long-haul systems. Finally, the techno-economic benefits of optical bypass in meshed networks were analysed for increasing levels of optical transparency: from OEO regenerated to multi-degree reconfigurable optical add-drop multiplexers (MD-ROADMs), enabling up to 46% cost saving

    An Optical Grooming Switch for High-Speed Traffic Aggregation in Time, Space and Wavelength

    Get PDF
    In this book a novel optical switch is designed, developed, and tested. The switch integrates optical switching, transparent traffic aggregation/grooming, and optical regener-ation. Innovative switch subsystems are developed that enable these functionalities, including all-optical OTDM-to-WDM converters. High capacity ring interconnection between metro-core rings, carrying 130 Gbit/s OTDM traffic, and metro-access rings carring 43 Gbit/s WDM traffic is experimentally demonstrated. The developed switch features flexibility in bandwidth provisioning, scalability to higher traffic volumes, and backward compatibility with existing network implementations in a future-proof way

    Compensation of fibre impairments in coherent optical systems

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    High speed nonlinear optical components for next-generation optical communications

    Get PDF
    Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pressure on existing core router infrastructure. To implement optical signal processing functionalities, it is necessary to exploit the nonlinear optical properties of suitable materials such as III-V semiconductor compounds, silicon, periodically-poled lithium niobate (PPLN), highly nonlinear fibre (HNLF) or chalcogenide glasses. However, nonlinear optical (NLO) components such as semiconductor optical amplifiers (SOAs), electroabsorption modulators (EAMs) and silicon nanowires are the most promising candidates as all-optical switching elements vis-à-vis ease of integration, device footprint and energy consumption. This PhD thesis presents the amplitude and phase dynamics in a range of device configurations containing SOAs, EAMs and/or silicon nanowires to support the design of all optical switching elements for deployment in next-generation optical networks. Time-resolved pump-probe spectroscopy using pulses with a pulse width of 3ps from mode-locked laser sources was utilized to accurately measure the carrier dynamics in the device(s) under test. The research work into four main topics: (a) a long SOA, (b) the concatenated SOA-EAMSOA (CSES) configuration, (c) silicon nanowires embedded in SU8 polymer and (d) a custom epitaxy design EAM with fast carrier sweepout dynamics. The principal aim was to identify the optimum operation conditions for each of these NLO device configurations to enhance their switching capability and to assess their potential for various optical signal processing functionalities. All of the NLO device configurations investigated in this thesis are compact and suitable for monolithic and/or hybrid integration
    corecore