3,263 research outputs found

    Cable Robot Performance Evaluation by Wrench Exertion Capability

    Get PDF
    Although cable driven robots are a type of parallel manipulators, the evaluation of their performances cannot be carried out using the performance indices already developed for parallel robots with rigid links. This is an obvious consequence of the peculiar features of flexible cables-a cable can only exert a tensile and limited force in the direction of the cable itself. A comprehensive performance evaluation can certainly be attained by computing the maximum force (or torque) that can be exerted by the cables on the moving platform along a specific (or any) direction within the whole workspace. This is the idea behind the index-called the Wrench Exertion Capability (WEC)-which can be employed to evaluate the performance of any cable robot topology and is characterized by an efficient and simple formulation based on linear programming. By significantly improving a preliminary computation method for the WEC, this paper proposes an ultimate formulation suitable for any cable robot topology. Several numerical investigations on planar and spatial cable robots are presented to give evidence of the WEC usefulness, comparisons with popular performance indices are also provided

    Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control

    Design of a planar cable-driven parallel robot for non-contact tasks

    Get PDF
    Cable-driven parallel robots offer significant advantages in terms of workspace dimensions and payload capability. Their mechanical structure and transmission system consist of light and extendable cables that can withstand high tensile loads. Cables are wound and unwound by a set of motorized winches, so that the robot workspace dimensions mainly depend on the amount of cable that each drum can store. For this reason, these manipulators are attractive for many industrial tasks to be performed on a large scale, such as handling, pick-and-place, and manufacturing, without a substantial increase in costs and mechanical complexity with respect to a small-scale application. This paper presents the design of a planar overconstrained cable-driven parallel robot for quasi-static non-contact operations on planar vertical surfaces, such as laser engraving, inspection and thermal treatment. The overall mechanical structure of the robot is shown, by focusing on the actuation and guidance systems. A novel concept of the cable guidance system is outlined, which allows for a simple kinematic model to control the manipulator. As an application example, a laser diode is mounted onto the end-effector of a prototype to perform laser engraving on a paper sheet. Observations on the experiments are reported and discussed

    Natural oscillations of underactuated cable-driven parallel robots

    Get PDF
    Underactuated Cable-Driven Parallel Robots (CDPR) employ a number of cables smaller than the degrees of freedom (DoFs) of the end-effector (EE) that they control. As a consequence, the EE is underconstrained and preserves some freedoms even when all actuators are locked, which may lead to undesirable oscillations. This paper proposes a methodology for the computation of the EE natural oscillation frequencies, whose knowledge has proven to be convenient for control purposes. This procedure, based on the linearization of the system internal dynamics about equilibrium con_gurations, can be applied to a generic robot suspended by any number of cables comprised between 2 and 5. The kinematics, dynamics, stability and stiffness of the robot free motion are investigated in detail. The validity of the proposed method is demonstrated by experiments on 6-DoF prototypes actuated by 2, 3, and 4 cables. Additionally, in order to highlight the interest in a robotic context, this modelling strategy is applied to the trajectory planning of a 6-DoF 4-cable CDPR by means of a frequency-based method (multi-mode input shaping), and the latter is experimentally compared with traditional non-frequency-based motion planners

    Reconfigurable cable driven parallel mechanism

    Get PDF
    Due to the fast growth in industry and in order to reduce manufacturing budget, increase the quality of products and increase the accuracy of manufactured products in addition to assure the safety of workers, people relied on mechanisms for such purposes. Recently, cable driven parallel mechanisms (CDPMs) have attracted much attention due to their many advantages over conventional parallel mechanisms, such as the significantly large workspace and the dynamics capacity. In addition, it has lower mass compared to other parallel mechanisms because of its negligible mass cables compared to the rigid links. In many applications it is required that human interact with machines and robots to achieve tasks precisely and accurately. Therefore, a new domain of scientific research has been introduced, that is human robot interaction, where operators can share the same workspace with robots and machines such as cable driven mechanisms. One of the main requirements due to this interaction that robots should respond to human actions in accurate, harmless way. In addition, the trajectory of the end effector is coming now from the operator and it is very essential that the initial trajectory is kept unchanged to perform tasks such assembly, operating or pick and place while avoiding the cables to interfere with each other or collide with the operator. Accordingly, many issues have been raised such as control, vibrations and stability due the contact between human and robot. Also, one of the most important issues is to guarantee collision free space (to avoid collision between cables and operator and to avoid collisions between cables itself). The aim of this research project is to model, design, analysis and implement reconfigurable six degrees of freedom parallel mechanism driven by eight cables. The main contribution of this work will be as follow. First, develop a nonlinear model and solve the forward and inverse kinematics issue of a fully constrained CDPM given that the attachment points on the rails are moving vertically (conventional cable driven mechanisms have fixed attachment points on the rails) while controlling the cable lengths. Second, the new idea of reconfiguration is then used to avoid interference between cables and between cables and operator limbs in real time by moving one cable’s attachment point on the frame to increase the shortest distance between them while keeping the trajectory of the end effector unchanged. Third, the new proposed approach was tested by creating a simulated intended cable-cable and cable-human interference trajectory, hence detecting and avoiding cable-cable and cable-human collision using the proposed real time reconfiguration while maintaining the initial end effector trajectory. Fourth, study the effect of relocating the attachment points on the constant-orientation wrench feasible workspace of the CDPM. En raison de la croissance de la demande de produits personnalisés et de la nécessité de réduire les coûts de fabrication tout en augmentant la qualité des produits et en augmentant la personnalisation des produits fabriqués en plus d'assurer la sécurité des travailleurs, les concepteurs se sont appuyés sur des mécanismes robotiques afin d’atteindre ces objectifs. Récemment, les mécanismes parallèles entraînés par câble (MPEC) ont attiré beaucoup d'attention en raison de leurs nombreux avantages par rapport aux mécanismes parallèles conventionnels, tels que l'espace de travail considérablement grand et la capacité dynamique. De plus, ce mécanisme a une masse plus faible par rapport à d'autres mécanismes parallèles en raison de ses câbles de masse négligeable comparativement aux liens rigides. Dans de nombreuses applications, il est nécessaire que l’humain interagisse avec les machines et les robots pour réaliser des tâches avec précision et rapidité. Par conséquent, un nouveau domaine de recherche scientifique a été introduit, à savoir l'interaction humain-robot, où les opérateurs peuvent partager le même espace de travail avec des robots et des machines telles que les mécanismes entraînés par des câbles. L'une des principales exigences en raison de cette interaction que les robots doivent répondre aux actions humaines d'une manière sécuritaire et collaboratif. En conséquence, de nombreux problèmes ont été soulevés tels que la commande et la stabilité dues au contact physique entre l’humain et le robot. Aussi, l'un des enjeux les plus importants est de garantir un espace sans collision (pour éviter les collisions entre des câbles et un opérateur et éviter les collisions entre les câbles entre eux). Le but de ce projet de recherche est de modéliser, concevoir, analyser et mettre en œuvre un mécanisme parallèle reconfigurable à six degrés de liberté entraîné par huit câbles. La principale contribution de ces travaux de recherche est de développer un modèle non linéaire et résolvez le problème de cinématique direct et inverse d'un CDPM entièrement contraint étant donné que les points d'attache sur les rails se déplacent verticalement (les mécanismes entraînés par des câbles conventionnels ont des points d'attache fixes sur les rails) tout en contrôlant les longueurs des câbles. Dans une deuxième étape, l’idée de la reconfiguration est ensuite utilisée pour éviter les interférences entre les câbles et entre les câbles et les membres d’un opérateur en temps réel en déplaçant un point de fixation du câble sur le cadre pour augmenter la distance la plus courte entre eux tout en gardant la trajectoire de l'effecteur terminal inchangée. Troisièmement, la nouvelle approche proposée a été évaluée et testée en créant une trajectoire d'interférence câble-câble et câble-humain simulée, détectant et évitant ainsi les collisions câble-câble et câble-humain en utilisant la reconfiguration en temps réel proposée tout en conservant la trajectoire effectrice finale. Enfin la dernière étape des travaux de recherche consiste à étudiez l'effet du déplacement des points d'attache sur l'espace de travail réalisable du CDPM

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Cable Driven Robot to Simulate Low Gravity and Its Applications in Underwater Humanoid Robots

    Get PDF
    [Abstract] This paper addresses the main results obtained during the design and analysis of a cable-driven robot able to simulate the dynamic conditions existing in underwater environment. This work includes the kinematic and dynamic modeling as well as the analysis of the tension of the cables along different trajectories. The low-gravity simulator application is novel in the context of cable-driven robots and it is aimed to be implemented in an underwater humanoid robot. Therefore, this work can be seen as a test case of the complementary research contributions of the group of Robotics and Intelligent Machines at CAR in the recent years.The research leading to these results has received funding from the Spanish Government CICYT project Ref. DPI2014-57220-C2-1-P, DPI2013-49527-EXP, the Universidad Politécnica de Madrid project Ref. AL14-PID-15, and the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EUUniversidad Politécnica de Madrid; AL14-PID-15Comunidad de Madrid; S2013/MIT-2748https://doi.org/10.17979/spudc.978849749808

    Kinematic directional index for the performance of redundant manipulators

    Get PDF
    Performance indexes are a powerful tool to evaluate the behavior of industrial manipulators throughout their workspace and improve their performance. When dealing with intrinsically redundant manipulators, the additional joint influences their performance; hence, it is fundamental to consider the influence of the redundant joint when evaluating the performance index. This work improves the formulation of the kinematic directional index (KDI) by considering redundant manipulators. The KDI represents an improvement over traditional indexes, as it takes into account the direction of motion when evaluating the performance of a manipulator. However, in its current formulation, it is not suitable for redundant manipulators. Therefore, we extend the index to redundant manipulators. This is achieved by adopting a geometric approach that allows identifying the appropriate redundancy to maximize the velocity of a serial manipulator along the direction of motion. This approach is applied to a 4-degree-of-freedom (DOF) planar redundant manipulator and a 7-DOF spatial articulated one. Experimental validation for the articulated robot is presented, demonstrating the effectiveness of the proposed method and its advantages
    corecore