398 research outputs found

    Asset management strategies for power electronic converters in transmission networks: Application to HVdc and FACTS devices

    Get PDF
    The urgency for an increased capacity boost bounded by enhanced reliability and sustainability through operating cost reduction has become the major objective of electric utilities worldwide. Power electronics have contributed to this goal for decades by providing additional flexibility and controllability to the power systems. Among power electronic based assets, high-voltage dc (HVdc) transmission systems and flexible ac transmission systems (FACTS) controllers have played a substantial role on sustainable grid infrastructure. Recent advancements in power semiconductor devices, in particular in voltage source converter based technology, have facilitated the widespread application of HVdc systems and FACTS devices in transmission networks. Converters with larger power ratings and higher number of switches have been increasingly deployed for bulk power transfer and large scale renewable integration—increasing the need of managing power converter assets optimally and in an efficient way. To this end, this paper reviews the state-of-the-art of asset management strategies in the power industry and indicates the research challenges associated with the management of high power converter assets. Emphasis is made on the following aspects: condition monitoring, maintenance policies, and ageing and failure mechanisms. Within this context, the use of a physics-of-failure based assessment for the life-cycle management of power converter assets is introduced and discussed

    Advanced Modeling of SiC Power MOSFETs aimed to the Reliability Evaluation of Power Modules

    Get PDF

    Reliability of metal films and interfaces in power electronic devices

    Get PDF

    Methods and Results of Power Cycling Tests for Semiconductor Power Devices

    Get PDF
    This work intends to enhance the state of the research in power cycling tests with statements on achievable measurement accuracy, proposed test bench topologies and recommendations on improved test strategies for various types of semiconductor power devices. Chapters 1 and 2 describe the current state of the power cycling tests in the context of design for reliability comprising applicable standards and lifetime models. Measurement methods in power cycling tests for the essential physical parameters are explained in chapter 3. The dynamic and static measurement accuracy of voltage, current and temperature are discussed. The feasibly achievable measurement delay tmd of the maximal junction temperature Tjmax, its consequences on accuracy and methods to extrapolate to the time point of the turn-off event are explained. A method to characterize the thermal path of devices to the heatsink via measurements of the thermal impedance Zth is explained. Test bench topologies starting from standard setups, single to multi leg DC benches are discussed in chapter 4. Three application-closer setups implemented by the author are explained. For tests on thyristors a test concept with truncated sinusoidal current waveforms and online temperature measurement is introduced. An inverter-like topology with actively switching IGBTs is presented. In contrast to standard setups, there the devices under test prove switching capability until reaching the end-of-life criteria. Finally, a high frequency switching topology with low DC-link voltage and switching losses contributing significantly to the overall power losses is presented providing new degrees of freedom for setting test conditions. The particularities of semiconductor power devices in power cycling tests are thematized in chapter 5. The first part describes standard packages and addressed failure mechanisms in power cycling. For all relevant power electronic devices in silicon and silicon carbide, the devices’ characteristics, methods for power cycling and their consequences for test results are explained. The work is concluded and suggestions for future work are given in chapter 6.:Abstract 1 Kurzfassung 3 Acknowledgements 5 Nomenclature 10 Abbreviations 10 Symbols 12 1 Introduction 19 2 Applicable Standards and Lifetime Models 25 3 Measurement parameters in power cycling tests 53 4 Test Bench Topologies 121 5 Semiconductor Power Devices in Power Cycling 158 6 Conclusion and Outlook 229 References 235 List of Publications 253 Theses 257Diese Arbeit bereichert den Stand der Wissenschaft auf dem Gebiet von Lastwechseltests mit BeitrĂ€gen zu verbesserter Messgenauigkeit, vorgeschlagenen Teststandstopologien und verbesserten Teststrategien fĂŒr verschiedene Arten von leistungselektronischen Bauelementen. Kurzgefasst der Methodik von Lastwechseltests. Das erste Themengebiet in Kapitel 1 und Kapitel 2 beschreibt den aktuellen Stand zu Lastwechseltests im Kontext von Design fĂŒr ZuverlĂ€ssigkeit, welcher in anzuwendenden Standards und publizierten Lebensdauermodellen dokumentiert ist. Messmethoden fĂŒr relevante physikalische Parameter in Lastwechseltests sind in Kapitel 3. erlĂ€utert. ZunĂ€chst werden dynamische und statische Messgenauigkeit fĂŒr Spannung, Strom und Temperaturen diskutiert. Die tatsĂ€chlich erreichbare Messverzögerung tMD der maximalen Sperrschichttemperatur Tjmax und deren Auswirkung auf die Messgenauigkeit der Lastwechselfestigkeit wird dargelegt. Danach werden Methoden zur RĂŒckextrapolation zum Zeitpunkt des Abschaltvorgangs des Laststroms diskutiert. Schließlich wird die Charakterisierung des WĂ€rmepfads vom Bauelement zur WĂ€rmesenke mittels Messung der thermischen Impedanz Zth behandelt. In Kapitel 4 werden Teststandstopologien beginnend mit standardmĂ€ĂŸig genutzten ein- und mehrstrĂ€ngigen DC-TeststĂ€nden vorgestellt. Drei vom Autor umgesetzte anwendungsnahe Topologien werden erklĂ€rt. FĂŒr Tests mit Thyristoren wird ein Testkonzept mit angeschnittenem sinusförmigem Strom und in situ Messung der Sperrschichttemperatur eingefĂŒhrt. Eine umrichterĂ€hnliche Topologie mit aktiv schaltenden IGBTs wird vorgestellt. Zuletzt wird eine Topologie mit hoch frequent schaltenden PrĂŒflingen an niedriger Gleichspannung bei der Schaltverluste signifikant zur ErwĂ€rmung der PrĂŒflinge beitragen vorgestellt. Dies ermöglicht neue Freiheitsgrade um Testbedingungen zu wĂ€hlen. Die Besonderheiten von leistungselektronischen Bauelementen werden in Kapitel 5 thematisiert. Der erste Teil beschreibt GehĂ€usetypen und adressierte Fehlermechanismen in Lastwechseltests. FĂŒr alle untersuchten Bauelementtypen in Silizium und Siliziumkarbid werden Charakteristiken, empfohlene Methoden fĂŒr Lastwechseltests und EinflĂŒsse auf Testergebnisse erklĂ€rt. Die Arbeit wird in Kapitel 6 zusammengefasst und VorschlĂ€ge zu kĂŒnftigen Arbeiten werden unterbreitet.:Abstract 1 Kurzfassung 3 Acknowledgements 5 Nomenclature 10 Abbreviations 10 Symbols 12 1 Introduction 19 2 Applicable Standards and Lifetime Models 25 3 Measurement parameters in power cycling tests 53 4 Test Bench Topologies 121 5 Semiconductor Power Devices in Power Cycling 158 6 Conclusion and Outlook 229 References 235 List of Publications 253 Theses 25

    Multi-timescale Modelling for Reliability Analysis of Power Electronic-Based Systems

    Get PDF

    A Silicon Carbide Based Solid-State Fault Current Limiter for Modern Power Distribution Systems

    Get PDF
    The fault current limiter represents a developing technology which will greatly improve the reliability and stability of the power grid. By reducing the magnitude of fault currents in distribution systems, fault current limiters can alleviate much of the damage imposed by these events. Solid-state fault current limiters in particular offer many improved capabilities in comparison to the power system protection equipment which is currently being used for fault current mitigation. The use of silicon carbide power semiconductor devices in solid-state fault current limiters produces a system that would help to advance the infrastructure of the electric grid. A solid-state fault current limiter utilizing silicon carbide super gate-turn off thyristors (SGTOs) and silicon carbide PiN diodes was designed, built, and tested as a technology demonstrator. The impact of using silicon carbide (SiC) devices in this application was assessed, as well as the associated design challenges. The feasibility of implementing SiC based solid-state fault current limiters for 15 kV class distribution systems was investigated in order to determine the practicality of wide-scale deployment

    Design and Control of Power Converters 2020

    Get PDF
    In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields

    High Efficiency Reversible Fuel Cell Power Converter

    Get PDF
    • 

    corecore