881 research outputs found

    Potential merits for space robotics from novel concepts of actuation for soft robotics

    Get PDF
    Autonomous robots in dynamic and unstructured environments require high performance, energy efficient and reliable actuators. In this paper we give an overview of the first results of two lines of research regarding the novel actuation principle we introduced: Series-Parallel Elastic Actuation (SPEA). Firstly, we introduce the SPEA concept and present first prototypes and results. Secondly, we discuss the potential of self-healing materials in robotics, and discuss the results on the first self-healing pneumatic cell and selfhealing mechanical fuse. Both concepts have the potential to improve performance, energy efficiency and reliability

    Soft Pneumatic Gelatin Actuator for Edible Robotics

    Get PDF
    We present a fully edible pneumatic actuator based on gelatin-glycerol composite. The actuator is monolithic, fabricated via a molding process, and measures 90 mm in length, 20 mm in width, and 17 mm in thickness. Thanks to the composite mechanical characteristics similar to those of silicone elastomers, the actuator exhibits a bending angle of 170.3 {\deg} and a blocked force of 0.34 N at the applied pressure of 25 kPa. These values are comparable to elastomer based pneumatic actuators. As a validation example, two actuators are integrated to form a gripper capable of handling various objects, highlighting the high performance and applicability of the edible actuator. These edible actuators, combined with other recent edible materials and electronics, could lay the foundation for a new type of edible robots.Comment: Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 201

    Overtwisting and Coiling Highly Enhances Strain Generation of Twisted String Actuators

    Full text link
    Twisted string actuators (TSAs) have exhibited great promise in robotic applications by generating high translational force with low input torque. To further facilitate their robotic applications, it is strongly desirable but challenging to enhance their consistent strain generation while maintaining compliance. Existing studies predominantly considered overtwisting and coiling after the regular twisting stage to be undesirable non-uniform and unpredictable knots, entanglements, and coils formed to create an unstable and failure-prone structure. Overtwisting would work well for TSAs when uniform coils can be consistently formed. In this study, we realize uniform and consistent coil formation in overtwisted TSAs, which greatly increases their strain. Furthermore, we investigate methods for enabling uniform coil formation upon overtwisting the strings in a TSA and present a procedure to systematically "train" the strings. To the authors' best knowledge, this is the first study to experimentally investigate overtwisting for TSAs with different stiffnesses and realize consistent uniform coil formation. Ultra-high molecular-weight polyethylene (UHMWPE) strings form the stiff TSAs whereas compliant TSAs are realized with stretchable and conductive supercoiled polymer (SCP) strings. The strain, force, velocity, and torque of each overtwisted TSA was studied. Overtwisting and coiling resulted in approximately 70% strain in stiff TSAs and approximately 60% strain in compliant TSAs. This is more than twice the strain achieved through regular twisting. Lastly, the overtwisted TSA was successfully demonstrated in a robotic bicep

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society

    Inherently Elastic Actuation for Soft Robotics

    Get PDF

    Electroadhesion Technologies For Robotics:A Comprehensive Review

    Get PDF
    • …
    corecore