246 research outputs found

    Cooperative resource pooling in multihomed mobile networks

    Get PDF
    The ubiquity of multihoming amongst mobile devices presents a unique opportunity for users to co-operate, sharing their available Internet connectivity, forming multihomed mobile networks on demand. This model provides users with vast potential to increase the quality of service they receive. Despite this, such mobile networks are typically underutilized and overly restrictive, as additional Internet connectivity options are predominantly ignored and selected gateways are both immutable and incapable of meeting the demand of the mobile network. This presents a number of research challenges, as users look to maximize their quality of experience, while balancing both the financial cost and power consumption associated with utilizing a diverse set of heterogeneous Internet connectivity options. In this thesis we present a novel architecture for mobile networks, the contribution of which is threefold. Firstly, we ensure the available Internet connectivity is appropriately advertised, building a routing overlay which allows mobile devices to access any available network resource. Secondly, we leverage the benefits of multipath communications, providing the mobile device with increased throughput, additional resilience and seamless mobility. Finally, we provide a multihomed framework, enabling policy driven network resource management and path selection on a per application basis. Policy driven resource management provides a rich and descriptive approach, allowing the context of the network and the device to be taken into account when making routing decisions at the edge of the Internet. The aim of this framework, is to provide an efficient and flexible approach to the allocation of applications to the optimal network resource, no matter where it resides in a mobile network. Furthermore, we investigate the benefits of path selection, facilitating the policy framework to choose the optimal network resource for specific applications. Through our evaluation, we prove that our approach to advertising Internet connectivity in a mobile network is both efficient and capable of increasing the utilization of the available network capacity. We then demonstrate that our policy driven approach to resource management and path selection can further improve the user’s quality of experience, by tailoring network resource usage to meet their specific needs

    Connecting Vehicles to the Internet - Strategic Data Transmission for Mobile Nodes using Heterogeneous Wireless Networks

    Get PDF
    With the advent of autonomous driving, the driving experience for users of connected vehicles changes, as they may enjoy their travel time with entertainment, or work productively. In our modern society, both require a stable Internet access. However, future mobile networks are not expected to be able to satisfy application Quality of Service (QoS) requirements as needed, e.g. during rush hours. To address this problem, this dissertation investigates data transmission strategies that exploit the potential of using a heterogeneous wireless network environment. To this end, we combine two so far distinct concepts, firstly, network selection and, secondly, transmission time selection, creating a joint time-network selection strategy. It allows a vehicle to plan delay-tolerant data transmissions ahead, favoring transmission opportunities with the best prospective flow-network matches. In this context, our first contribution is a novel rating model for perceived transmission quality, which assesses transmission opportunities with respect to application QoS requirement violations, traded off by monetary cost. To enable unified assessment of all data transmissions, it generalizes existing specialized rating models from network selection and transmission time selection and extends them with a novel throughput requirement model. Based on that, we develop a novel joint time-network selection strategy, Joint Transmission Planning (JTP), as our second contribution, planning optimized data transmissions within a defined time horizon. We compare its transmission quality to that of three predominant state-of-the-art transmission strategies, revealing that JTP outperforms the others significantly by up to 26%. Due to extensive scenario variation, we discover broad stability of JTP reaching 87-91% of the optimum. As JTP is a planning approach relying on prediction data, the transmission quality is strongly impaired when executing its plans under environmental changes. To mitigate this impact, we develop a transmission plan adaptation as our third contribution, modifying the planned current transmission online in order to comply with the changes. Even under strong changes of the vehicle movement and the network environment, it sustains 57%, respectively 36%, of the performance gain from planning. Finally, we present our protocol Mobility management for Vehicular Networking (MoVeNet), pooling available network resources of the environment to enable flexible packet dispatching without breaking connections. Its distributed architecture provides broad scalability and robustness against node failures. It complements control mechanisms that allow a demand-based and connection-specific trade-off between overhead and latency. Less than 9 ms additional round trip time in our tests, instant handover and 0 to 4 bytes per-packet overhead prove its efficiency. Employing the presented strategies and mechanisms jointly, users of connected vehicles and other mobile devices can significantly profit from the demonstrated improvements in application QoS satisfaction and reduced monetary cost

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas

    IP Mobility Support in Multi-hop Vehicular Communications Networks

    Get PDF
    The combination of infrastructure-to-vehicle and vehicle-to-vehicle communications, namely the multi-hop Vehicular Communications Network (VCN) , appears as a promising solution for the ubiquitous access to IP services in vehicular environments. In this thesis, we address the challenges of multi-hop VCN, and investigate the seamless provision of IP services over such network. Three different schemes are proposed and analyzed. First, we study the limitations of current standards for the provision of IP services, such as 802.11p/WAVE, and propose a framework that enables multi-hop communications and a robust IP mobility mechanism over WAVE. An accurate analytical model is developed to evaluate the throughput performance, and to determine the feasibility of the deployment of IP-based services in 802.11p/WAVE networks. Next, the IP mobility support is extended to asymmetric multi-hop VCN. The proposed IP mobility and routing mechanisms react to the asymmetric links, and also employ geographic location and road traffic information to enable predictive handovers. Moreover, since multi-hop communications suffer from security threats, it ensures that all mobility signalling is authenticated among the participant vehicles. Last, we extend our study to a heterogeneous multi-hop VCN, and propose a hybrid scheme that allows for the on-going IP sessions to be transferred along the heterogeneous communications system. The proposed global IP mobility scheme focuses on urban vehicular scenarios, and enables seamless communications for in-vehicle networks, commuters, and pedestrians. The overall performance of IP applications over multi-hop VCN are improved substantially by the proposed schemes. This is demonstrated by means of analytical evaluations, as well as extensive simulations that are carried out in realistic highway and urban vehicular scenarios. More importantly, we believe that our dissertation provides useful analytical tools, for evaluating the throughput and delay performance of IP applications in multi-hop vehicular environments. In addition, we provide a set of practical and efficient solutions for the seamless support of IP tra c along the heterogeneous and multi-hop vehicular network, which will help on achieving ubiquitous drive-thru Internet, and infotainment traffic access in both urban and highway scenarios

    Mesh-Mon: a Monitoring and Management System for Wireless Mesh Networks

    Get PDF
    A mesh network is a network of wireless routers that employ multi-hop routing and can be used to provide network access for mobile clients. Mobile mesh networks can be deployed rapidly to provide an alternate communication infrastructure for emergency response operations in areas with limited or damaged infrastructure. In this dissertation, we present Dart-Mesh: a Linux-based layer-3 dual-radio two-tiered mesh network that provides complete 802.11b coverage in the Sudikoff Lab for Computer Science at Dartmouth College. We faced several challenges in building, testing, monitoring and managing this network. These challenges motivated us to design and implement Mesh-Mon, a network monitoring system to aid system administrators in the management of a mobile mesh network. Mesh-Mon is a scalable, distributed and decentralized management system in which mesh nodes cooperate in a proactive manner to help detect, diagnose and resolve network problems automatically. Mesh-Mon is independent of the routing protocol used by the mesh routing layer and can function even if the routing protocol fails. We demonstrate this feature by running Mesh-Mon on two versions of Dart-Mesh, one running on AODV (a reactive mesh routing protocol) and the second running on OLSR (a proactive mesh routing protocol) in separate experiments. Mobility can cause links to break, leading to disconnected partitions. We identify critical nodes in the network, whose failure may cause a partition. We introduce two new metrics based on social-network analysis: the Localized Bridging Centrality (LBC) metric and the Localized Load-aware Bridging Centrality (LLBC) metric, that can identify critical nodes efficiently and in a fully distributed manner. We run a monitoring component on client nodes, called Mesh-Mon-Ami, which also assists Mesh-Mon nodes in the dissemination of management information between physically disconnected partitions, by acting as carriers for management data. We conclude, from our experimental evaluation on our 16-node Dart-Mesh testbed, that our system solves several management challenges in a scalable manner, and is a useful and effective tool for monitoring and managing real-world mesh networks

    Defending Against IoT-Enabled DDoS Attacks at Critical Vantage Points on the Internet

    Get PDF
    The number of Internet of Things (IoT) devices continues to grow every year. Unfortunately, with the rise of IoT devices, the Internet is also witnessing a rise in the number and scale of IoT-enabled distributed denial-of-service (DDoS) attacks. However, there is a lack of network-based solutions targeted directly for IoT networks to address the problem of IoT-enabled DDoS. Unlike most security approaches for IoT which focus on hardening device security through hardware and/or software modification, which in many cases is infeasible, we introduce network-based approaches for addressing IoT-enabled DDoS attacks. We argue that in order to effectively defend the Internet against IoT-enabled DDoS attacks, it is necessary to consider network-wide defense at critical vantage points on the Internet. This dissertation is focused on three inherently connected and complimentary components: (1) preventing IoT devices from being turned into DDoS bots by inspecting traffic towards IoT networks at an upstream ISP/IXP, (2) detecting DDoS traffic leaving an IoT network by inspecting traffic at its gateway, and (3) mitigating attacks as close to the devices in an IoT network originating DDoS traffic. To this end, we present three security solutions to address the three aforementioned components to defend against IoT-enabled DDoS attacks

    Comnet: Annual Report 2013

    Get PDF

    Trustworthy Knowledge Planes For Federated Distributed Systems

    Full text link
    In federated distributed systems, such as the Internet and the public cloud, the constituent systems can differ in their configuration and provisioning, resulting in significant impacts on the performance, robustness, and security of applications. Yet these systems lack support for distinguishing such characteristics, resulting in uninformed service selection and poor inter-operator coordination. This thesis presents the design and implementation of a trustworthy knowledge plane that can determine such characteristics about autonomous networks on the Internet. A knowledge plane collects the state of network devices and participants. Using this state, applications infer whether a network possesses some characteristic of interest. The knowledge plane uses attestation to attribute state descriptions to the principals that generated them, thereby making the results of inference more trustworthy. Trustworthy knowledge planes enable applications to establish stronger assumptions about their network operating environment, resulting in improved robustness and reduced deployment barriers. We have prototyped the knowledge plane and associated devices. Experience with deploying analyses over production networks demonstrate that knowledge planes impose low cost and can scale to support Internet-scale networks

    Comnet: Annual Report 2012

    Get PDF
    • …
    corecore