48 research outputs found

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Energy Performance Analysis of Software Applications on Servers

    Get PDF
    The power cost of running a data center is a significant portion of its total annual operating budget. Although the hardware subsystems, namely, processors, memory, disk, and network interfaces of a server actually consume power, it is the software activities that drive the operations of the hardware subsystems leading to varying dynamic power cost. With the aim of reducing power bills of data centers, "Green Computing" has emerged with the primary goal of making software more energy efficient without compromising the performance. Developers play an important role in controlling the energy cost of data center software while writing code. Bearing green principles in mind during design and coding stages of the software life-cycle can have a great impact on the energy efficiency of the final software product. There are a number of ways to optimize application programs at their design stages but it is difficult for the developers to analyse their applications in terms of power cost on the real servers. Reading big data, moving large amount of data from one server to another, compressing data to gain storage space, and decompressing it back are some key operations that are performed extensively on large scale servers in data centers. In the first part of this thesis, we present the design of an automated test bench to measure the power cost of an application running on a server. We show how our test bench can be used by software developers to measure and improve the energy cost of two Java file access methods. Another benefit of our test bench has been demonstrated by comparing the energy footprint measurements of compression and decompression features provided by two popular Linux packages: 7z and rar. This information will be helpful in choosing a Green Software among others to perform a desired function. In the second part, we show how software developers can contribute to energy efficiency of servers by choosing energy efficient APIs (Application Programming Interface) with the optimal choice of parameters while implementing file reading, file copy, file compression and file decompression operations in Java. We performed extensive measurements of energy cost of those operations on a Dell Power Edge 2950 machine running Linux and Windows servers. Measurement results show that energy costs of various APIs for those operations are sensitive to the buffer size selection. The choice of a particular Java API for file reading with different buffer sizes has significant impact on the energy cost, giving an opportunity to save up to 76%. To save energy while copying files, it is important to use APIs with tunable buffer sizes, rather than APIs using fixed size buffers. In addition, there is a trade off between compression ratio and energy cost: because of higher compression ratio, xz compression API consumes more energy than zip and gzip compression APIs. The third part of the thesis presents a design of a framework in which one developer generates energy cost models for the common design options. Afterwords, other developers can make use of those models to find the energy costs for the same design options instead of direct measurements. Overall, this thesis makes a contribution to reduce the perception gap between high level programs and the concept of energy efficiency

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Working Papers: Astronomy and Astrophysics Panel Reports

    Get PDF
    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities

    Research and technology, 1992

    Get PDF
    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the Center's varied and productive research efforts for 1992

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    AI in Learning: Designing the Future

    Get PDF
    AI (Artificial Intelligence) is predicted to radically change teaching and learning in both schools and industry causing radical disruption of work. AI can support well-being initiatives and lifelong learning but educational institutions and companies need to take the changing technology into account. Moving towards AI supported by digital tools requires a dramatic shift in the concept of learning, expertise and the businesses built off of it. Based on the latest research on AI and how it is changing learning and education, this book will focus on the enormous opportunities to expand educational settings with AI for learning in and beyond the traditional classroom. This open access book also introduces ethical challenges related to learning and education, while connecting human learning and machine learning. This book will be of use to a variety of readers, including researchers, AI users, companies and policy makers
    corecore