24,092 research outputs found

    A Fast Algorithm for the Inversion of Quasiseparable Vandermonde-like Matrices

    Get PDF
    The results on Vandermonde-like matrices were introduced as a generalization of polynomial Vandermonde matrices, and the displacement structure of these matrices was used to derive an inversion formula. In this paper we first present a fast Gaussian elimination algorithm for the polynomial Vandermonde-like matrices. Later we use the said algorithm to derive fast inversion algorithms for quasiseparable, semiseparable and well-free Vandermonde-like matrices having O(n2)\mathcal{O}(n^2) complexity. To do so we identify structures of displacement operators in terms of generators and the recurrence relations(2-term and 3-term) between the columns of the basis transformation matrices for quasiseparable, semiseparable and well-free polynomials. Finally we present an O(n2)\mathcal{O}(n^2) algorithm to compute the inversion of quasiseparable Vandermonde-like matrices

    Direct probing of the Wigner function by time-multiplexed detection of photon statistics

    Full text link
    We investigate the capabilities of loss-tolerant quantum state characterization using a photon-number resolving, time-multiplexed detector (TMD). We employ the idea of probing the Wigner function point-by-point in phase space via photon parity measurements and displacement operations, replacing the conventional homodyne tomography. Our emphasis lies on reconstructing the Wigner function of non-Gaussian Fock states with highly negative values in a scheme that is based on a realistic experimental setup. In order to establish the concept of loss-tolerance for state characterization we show how losses can be decoupled from the impact of other experimental imperfections, i.e. the non-unity transmittance of the displacement beamsplitter and non-ideal mode overlap. We relate the experimentally accessible parameters to effective ones that are needed for an optimised state reconstruction. The feasibility of our approach is tested by Monte Carlo simulations, which provide bounds resulting from statistical errors that are due to limited data sets. Our results clearly show that high losses can be accepted for a defined parameter range, and moreover, that (in contrast to homodyne detection) mode mismatch results in a distinct signature, which can be evaluated by analysing the photon number oscillations of the displaced Fock states.Comment: 22 pages, 13 figures, published versio

    Kondo effect and channel mixing in oscillating molecules

    Full text link
    We investigate the electronic transport through a molecule in the Kondo regime. The tunneling between the electrode and the molecule is asymmetrically modulated by the oscillations of the molecule, i.e., if the molecule gets closer to one of the electrodes the tunneling to that electrode will increase while for the other electrode it will decrease. The system is described by a two-channel Anderson model with phonon-assisted hybridization, which is solved with the Wilson numerical renormalization group method. The results for several functional forms of tunneling modulation are presented. For a linearized modulation the Kondo screening of the molecular spin is caused by the even or odd conduction channel. At the critical value of the electron-phonon coupling an unstable two-channel Kondo fixed point is found. For a realistic modulation the spin at the molecular orbital is Kondo screened by the even conduction channel even in the regime of strong coupling. A universal consequence of the electron-phonon coupling is the softening of the phonon mode and the related instability to perturbations that break the left-right symmetry. When the frequency of oscillations decreases below the magnitude of such perturbation, the molecule is abruptly attracted to one of the electrodes. In this regime, the Kondo temperature is enhanced and, simultaneously, the conductance through the molecule is suppressed.Comment: published versio

    Faster Sparse Matrix Inversion and Rank Computation in Finite Fields

    Full text link
    We improve the current best running time value to invert sparse matrices over finite fields, lowering it to an expected O(n2.2131)O\big(n^{2.2131}\big) time for the current values of fast rectangular matrix multiplication. We achieve the same running time for the computation of the rank and nullspace of a sparse matrix over a finite field. This improvement relies on two key techniques. First, we adopt the decomposition of an arbitrary matrix into block Krylov and Hankel matrices from Eberly et al. (ISSAC 2007). Second, we show how to recover the explicit inverse of a block Hankel matrix using low displacement rank techniques for structured matrices and fast rectangular matrix multiplication algorithms. We generalize our inversion method to block structured matrices with other displacement operators and strengthen the best known upper bounds for explicit inversion of block Toeplitz-like and block Hankel-like matrices, as well as for explicit inversion of block Vandermonde-like matrices with structured blocks. As a further application, we improve the complexity of several algorithms in topological data analysis and in finite group theory

    Faster Sparse Matrix Inversion and Rank Computation in Finite Fields

    Get PDF
    We improve the current best running time value to invert sparse matrices over finite fields, lowering it to an expected O(n^{2.2131}) time for the current values of fast rectangular matrix multiplication. We achieve the same running time for the computation of the rank and nullspace of a sparse matrix over a finite field. This improvement relies on two key techniques. First, we adopt the decomposition of an arbitrary matrix into block Krylov and Hankel matrices from Eberly et al. (ISSAC 2007). Second, we show how to recover the explicit inverse of a block Hankel matrix using low displacement rank techniques for structured matrices and fast rectangular matrix multiplication algorithms. We generalize our inversion method to block structured matrices with other displacement operators and strengthen the best known upper bounds for explicit inversion of block Toeplitz-like and block Hankel-like matrices, as well as for explicit inversion of block Vandermonde-like matrices with structured blocks. As a further application, we improve the complexity of several algorithms in topological data analysis and in finite group theory

    Radon transform and pattern functions in quantum tomography

    Full text link
    The two-dimensional Radon transform of the Wigner quasiprobability is introduced in canonical form and the functions playing a role in its inversion are discussed. The transformation properties of this Radon transform with respect to displacement and squeezing of states are studied and it is shown that the last is equivalent to a symplectic transformation of the variables of the Radon transform with the contragredient matrix to the transformation of the variables in the Wigner quasiprobability. The reconstruction of the density operator from the Radon transform and the direct reconstruction of its Fock-state matrix elements and of its normally ordered moments are discussed. It is found that for finite-order moments the integration over the angle can be reduced to a finite sum over a discrete set of angles. The reconstruction of the Fock-state matrix elements from the normally ordered moments leads to a new representation of the pattern functions by convergent series over even or odd Hermite polynomials which is appropriate for practical calculations. The structure of the pattern functions as first derivatives of the products of normalizable and nonnormalizable eigenfunctions to the number operator is considered from the point of view of this new representation.Comment: To appear on Journal of Modern Optics.Submitted t

    Kondo effect in oscillating molecules

    Full text link
    We consider electronic transport through break-junctions bridged by a single molecule in the Kondo regime. We describe the system by a two-channel Anderson model. We take the tunneling matrix elements to depend on the position of the molecule. It is shown, that if the modulation of the tunneling by displacement is large, the potential confining the molecule to the central position between the leads is softened and the position of the molecule is increasingly susceptible to external perturbations that break the inversion symmetry. In this regime, the molecule is attracted to one of the leads and as a consequence the conductance is small. We argue on semi-classical grounds why the softening occurs and corroborate our findings by numerical examples obtained by Wilson's numerical renormalization group and Schoenhammer-Gunnarsson's variational method.Comment: 5 p., Ustron'08 conference contributio

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)⊗h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page
    • …
    corecore