5,431 research outputs found

    Interval type-2 fuzzy modelling and stochastic search for real-world inventory management

    Get PDF
    Real-world systems present a variety of challenges to the modeller, not least of which is the problem of uncertainty inherent in their operation. In this research, an interval type-2 fuzzy model is applied to a real-world problem, the goal being to discover a suitable optimisation configuration to enable a search for an inventory plan using the model. To this end, a series of simulated annealing configurations and the interval type-2 fuzzy model were used to search for appropriate inventory plans for a large-scale real-world problem. A further set of tests were conducted in which the performance of the interval type-2 fuzzy model was compared with a corresponding type-1 fuzzy model. In these tests the results were inconclusive, though, as will be discussed there are many ways in which type-2 fuzzy logic can be exploited to demonstrate its advantages over a type-1 approach. To conclude, in this research we have shown that a combination of interval type-2 fuzzy logic and simulated annealing is a logical choice for inventory management modelling and inventory plan search, and propose that the benefits that a type-2 model offers, can make it preferable to a corresponding type-1 system

    Inventory optimisation with an interval type-2 fuzzy model.

    Get PDF
    The planning of resources within a supply chain can prove to be a deciding factor in the success or failure of an operation. This research continues the authors' previous work using an extended Interval Type-2 Fuzzy Logic supply chain model, with an Evolutionary Algorithm to search for good resource plans. A set of enhanced experiments is conducted to validate our novel approach with optimal configurations, and determine an appropriate Evolutionary Algorithm set up for the given problem

    Design of Closed Loop Supply Chains

    Get PDF
    Increased concern for the environment has lead to new techniques to design products and supply chains that are both economically and ecologically feasible. This paper deals with the product - and corresponding supply chain design for a refrigerator. Literature study shows that there are many models to support product design and logistics separately, but not in an integrated way. In our research we develop quantitative modelling to support an optimal design structure of a product, i.e. modularity, repairability, recyclability, as well as the optimal locations and goods flows allocation in the logistics system. Environmental impacts are measured by energy and waste. Economic costs are modelled as linear functions of volumes with a fixed set-up component for facilities. We apply this model using real life R&D data of a Japanese consumer electronics company. The model is run for different scenarios using different parameter settings such as centralised versus decentralised logistics, alternative product designs, varying return quality and quantity, and potential environmental legislation based on producer responsibility.supply chain management;reverse logistics;facility location;network design;product design

    Neuro-fuzzy inference systems approach to decision support system for economic order quantity

    Get PDF
    Supply chain management (SCM) has a dynamic structure involving the constant flow of information, product, and funds among different participants. SCM is a complex process and most often characterized by uncertainty. Many values are stochastic and cannot be precisely determined and described by classical mathematical methods. Therefore, in solving real and complex problems individual methods of artificial intelligence are increasingly used, or their combination in the form of hybrid methods. This paper has proposed the decision support system for determining economic order quantity and order implementation based on Adaptive neuro-fuzzy inference systems - ANFIS. A combination of two concepts of artificial intelligence in the form of hybrid neuro-fuzzy method has been applied into the decision support system in order to exploit the individual advantages of both methods. This method can deal with complexity and uncertainty in SCM better than classical methods because they it stems from experts’ opinions. The proposed decision support system showed good results for determining the amount of economic order and it is presented as a successful tool for planning in SCM. Sensitivity analysis has been applied, which indicates that the decision sup- port system gives valid results. The proposed system is flexible and can be applied to various types of goods in SC

    A simulated annealing approach to supplier selection aware inventory planning

    Get PDF
    Selection of an appropriate supplier is a crucial and challenging task in the effective management of a supply chain. Also, appropriate inventory management is critical to the success of a supply chain operation. In recent years, there has been a growing interest in the area of selection of an appropriate vendor and creating good inventory planning using supplier selection information. In this paper, we consider both of these tasks in a two-stage approach employing Interval Type-2 Fuzzy Sets (IT2FS) and Simulated Annealing (SA). In the first stage, the supplier selection problem is solved by using IT2FS for ranking the suppliers. We present an inventory model incorporating information from the first stage that captures the influence of supplier risk on the total cost of supply chain operation. In the second stage, SA is used for solving the inventory planning problem based on this model improving on both supply chain operation cost and supplier risk. In this study, we evaluated our approach using different scenarios and scalarisation techniques for SA to handle two objectives, simultaneously
    • …
    corecore