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Abstract—Selection of an appropriate supplier is a crucial and
challenging task in the effective management of a supply chain.
Also, appropriate inventory management is critical to the success
of a supply chain operation. In recent years, there has been
a growing interest in the area of selection of an appropriate
vendor and creating good inventory planning using supplier
selection information. In this paper, we consider both of these
tasks in a two-stage approach employing Interval Type-2 Fuzzy
Sets (IT2FS) and Simulated Annealing (SA). In the first stage, the
supplier selection problem is solved by using IT2FS for ranking
the suppliers. We present an inventory model incorporating
information from the first stage that captures the influence of
supplier risk on the total cost of supply chain operation. In
the second stage, SA is used for solving the inventory planning
problem based on this model improving on both supply chain
operation cost and supplier risk. In this study, we evaluated our
approach using different scenarios and scalarisation techniques
for SA to handle two objectives, simultaneously.

I. INTRODUCTION

For all commercial organisations, the flow of materials

and the relationships between suppliers, manufacturers, ware-

houses, customers and other facilities are critical to their

success, and to them remaining competitive in an increasingly

demanding business environment. Supply Chain Management

(SCM) is the end-to-end management of the flow of materials,

information and the relationships between all partners, from

the procurement of raw materials to the delivery of the end

product [24].

Two key aspects of SCM are i) maintaining a small number

of reliable suppliers, and ii) effectively allocating resources

within the supply chain through inventory planning. Achieving

both of these goals reduces the chances of defective products

and late delivery, while minimising costs associated with

holding stock and inability to satisfy orders.

A. Supplier Selection

Evaluating and selecting suppliers is a difficult problem that

is essential to ensuring that all partners within a supply chain

are able to supply high quality items and minimal cost. Failure

to achieve this results in an inefficient and uncompetitive

operation that is unlikely to succeed. In light of this, supplier

evaluation and selection are of ongoing interest within the

operations management research community. Ho et al. [7] pro-

vided an overview of 78 articles published in the period 2000

- 2008 focusing on the methods used, the criteria selected for

evaluation and the effectiveness of the methods, ranging from

mathematical programming and analytic hierarchy process to

case-based reasoning and genetic algorithm (GA).

Product quality, delivery, price, manufacturing capacity and

quality of service are the most commonly used evaluation

criteria for selecting suppliers (Ho et al. [7]). Hence, this

problem is often considered as a Multiple Attribute Decision

Making (MADM) problem in which the decision involves

a number of alternative suppliers who are selected based

upon the decision maker’s constraints and preference priorities

[1]. Wu and Chen [26] tackled the decision making process

under uncertainty, introduced by the Multiple Attribute Group

Decision Making (MAGDM) problems, by using a linguistic

weighted arithmetic averaging method that is able to deal with

linguistic preference values for each decision criteria.

Previous work on MADM showed that Type-2 Fuzzy Logic

is an appropriate method for dealing with the uncertainties

involved in modelling the decision making process. Chen

and Lee [3] have conducted a series of studies on MADM

using Type-2 Fuzzy Sets (T2FS) in which they proposed

an approach using ranking values and arithmetic operations

of T2FS [2], presented a T2FS TOPSIS method [3] and

showed how Fuzzy Multiple Attribute Group Decision Making

(FMAGDM) problems can be addressed using a method that

ranks Interval Type-2 Fuzzy Sets (IT2FS). Gong [5] presented

an IT2FS approach to FMAGDM problems in which the

weightings of the selection criteria are unknown.

Ordoobadi [19] proposed a method for computing fuzzy

scores for the suppliers, taking the selection criteria into

account. In this approach, suppliers are scored using criteria

modelled with Type-1 Fuzzy Sets (T1FS). The fuzzy scores for

each supplier are then defuzzified and used to rank suppliers

in order of preference. The supplier with the highest ranking

is then chosen. The work also provides more information

about suppliers to the decision maker with regard to rating

and selection of the appropriate suppliers.

B. Inventory Management

Inventory management is an integrated approach to plan

and control inventory while considering the whole network

from suppliers to end users. Efficient inventory management

is critical to the success of companies. Miller et al. [16] [17]978-1-4799-7492-4/15/$31.00 c©2015 IEEE



state that supply chains with well managed inventory avoid

stock outs - where nodes within the chain are unable to satisfy

demand, and holding costs - where stock is stored from one

period to the next.

According to Parhizkari et al. [21], recently, there has been

a growing interest in the area of selection of an appropriate

vendor along with good inventory planning. In their work, a

multi-objective technique is used to find the best supplier while

considering inventory management.

Rezaei and Davoodi [22] proposed a multi-item inventory

model considering supplier selection with respect to the quality

of products. In their model, the important issue is to decide

what products to order with which supplier and in which

periods with determined quantities. GA is used to obtain near-

optimal solutions to the problem.

Ghodsypour and O’Brien [4] addressed a multiple sourcing

problem which takes into account components of inventory

management, such as, the cost of logistics, storage costs and

qualitative factors of suppliers. Mohammaditabar et al. [18]

extended the work of Ghodsypour and O’Brien [4] by

allocating orders to selected suppliers. They also provided a

joint order process in order to decrease the overall cost. The

inventory items are categorised into several groups for their

effective management with minimum storage and inventory

cost. It has been observed that the proposed approach reduces

the overall cost of logistics, including inventory holding and

ordering costs, considerably.

As mentioned above, few studies have investigated supplier

selection informed inventory planning. In this study, we de-

scribe an integrated two-stage fuzzy embedded approach to

deal with both supplier selection and inventory planning of a

supply chain problem. In order to rank suppliers, in the first

stage, the supplier selection problem is dealt with using IT2FS.

In the second stage, an inventory model that incorporates

information from the first stage is developed to capture the

influence of supplier risk on the total cost of supply chain

operation. We apply a simulated annealing (SA) approach

to the problem balancing the trade-off between supply chain

operational cost and supplier risk. Five different scenarios

are produced reflecting the attitude of “users” to the cost

versus overall cost trade-off through their weighting and the

performance of the proposed approach is evaluated on those

scenarios.

The rest of paper is organised as follows. In section II,

background on Type-2 Fuzzy Logic (T2FL) and SA are

provided. Section III provides the description of the problem

and the proposed solution method. In section IV, numerical

experiments and results are presented. Section V, concludes

the study and discusses some potential future research direc-

tions.

II. PRELIMINARIES

This section introduces the techniques that have been used in

this study and an overview of related work from the scientific

literature.

A. Type-2 Fuzzy Logic (T2FL)

Fuzzy Logic is a method of reasoning with the uncertain

data, and is based upon Fuzzy Set Theory [27], which itself

is an extension of traditional (crisp) set theory. Fuzzy Sets

provide the means to represent data using intuitive linguistic

variables rather than using ‘crisp’ values that do not take

uncertainty into account, and therefore, may be too restrictive.

For example, fuzzy sets allow us to describe qualitative state-

ments such as ‘The risk associated with Supplier A is High’ or

’The delivery time for Product A is about n days’. Traditional

Fuzzy Logic is also referred to as Type-1 Fuzzy Logic (T1FL).

A limitation of T1FL systems is that they represent uncertainty

in a ’non-fuzzy’ way, i.e., an element’s degree of membership

to a Type-1 Fuzzy Set (T1FS) is represented with a value

in [0,1]. Mendel and John [11] pointed out that the way of

T1FL leads to a number of sources of uncertainty that are not

represented by T1FS, including:

1) The perception of particular words can vary. That is,

words can mean different things to different people.

2) If a group of experts do not agree, the consequent of a

fuzzy system may have a histogram of values associated

with them.

3) The inputs to a T1FL system may be noisy, and therefore

uncertain.

4) The data used to tune the parameters of a T1FL system

may be noisy.

All of these problems are addressed by Type-2 Fuzzy

Sets (T2FS) [27], which represent membership degrees using

T1FSs providing a secondary degree of freedom to model the

additional uncertainty associated with T1FSs [11]. However,

the 3D fuzzy sets produced when using T2FS are extremely

complex, and can be difficult to understand and use in practical

applications.

Because of this complexity computationally simpler Interval

Type-2 Fuzzy Logic (IT2FL) systems have been the focus

of applications of Type-2 Fuzzy Logic to date [6]. Interval

Type-2 Fuzzy Sets (IT2FS) restrict the secondary membership

function to be either 0 or 1. This maintains the ability to model

uncertainty about membership, while significantly reducing the

complexity of reasoning using T2FS [12].

In the research described here, we will use IT2FSs to

represent the uncertainties inherent in the problem of supplier

selection.

1) Basic Concepts of IT2FS: In this section, we review the

concept of IT2FS as described by Mendel et al. [12].

Definition II.1. A Type-2 fuzzy set Ã in the universe of

discourse X can be represented by a Type-2 membership

function µÃ shown as follows:

Ã = ((x, u), µÃ(x, u))| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1] (1)

where x ∈ X and u ∈ Jx ⊆ [0, 1] in which 0 ≤ µÃ(x, u) ≤ 1.

As the primary membership function is between 0 and 1, thus



can be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1] (2)

where
∫ ∫

denotes a union over all admissible x and u [12].

Definition II.2. Let Ã be a Type-2 fuzzy set in the universe of

discourse X represented by the Type-2 membership function

µÃ. If all µÃ(x, u) = 1 for ∀x ∈ X and u ∈ Jx ⊆ [0, 1], then

Ã is called an interval type-2 fuzzy set, shown as followings:

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u) Jx ⊆ [0, 1] (3)

where Jx ⊆ [0, 1], i.e. [12].

Definition II.3. The upper and lower membership functions

an IT2FS are both Type-1 membership functions, respec-

tively [12].

A trapezoidal IT2FS Ãi in the universe of discourse X
represented by;

Ãi = (ÃU
i , Ã

L
i ) = ((aui1, a

u
i2, a

u
i3, a

u
i4;h1(Ã

U
i ), h2(Ã

U
i )),

(ali1, a
l
i2, a

l
i3, a

l
i4;h1(Ã

L
i ), h2(Ã

L
i ))(4)

where ÃU
i and ÃL

i are T1FS, aui1, a
u
i2, a

u
i3, a

u
i4, a

l
i1, a

l
i2, a

l
i3, a

l
i4

are the reference points of the IT2FS Ãi, hj(Ã
U
i ) denotes

the membership value of the element aui(j+1) in the upper

trapezoidal membership function ÃU
i while 1 ≤ j ≤ 2,

hj(Ã
L
i ) denotes the membership value of the element ali(j+1)

in the lower trapezoidal membership function ÃL
i while 1 ≤

j ≤ 2, h1(Ã
U
i ) ∈ [0, 1], h2(Ã

U
i ) ∈ [0, 1], h1(Ã

L
i ) ∈ [0, 1],

h2(Ã
L
i ) ∈ [0, 1], 1 ≤ i ≤ n. The height of each constituent

membership function is not explicitly defined as it is assumed

to be equal to 1.

B. Simulated Annealing

Many real-world problems are too complex and exact

methods often fail in providing ‘high quality’ solutions in a

‘reasonable’ amount of time. Heuristics, metaheuristics and

hyper-heuristics are alternative methods in problem solving.

Simulated Annealing (SA) is a well-known iterative meta-

heuristic, inspired from the annealing process in the metal-

lurgical industry, for solving computationally difficult optimi-

sation problems (Metropolis et al. [13], Kirkpatrick et al. [10]).

It has been successfully applied to many different real-world

optimisation problems. For example, Miller et al. [15] pro-

posed a method that combined Interval Type-2 Fuzzy Logic

and SA to investigate inventory management problems in real-

world systems. Burke et al. [8] proposed SA-based hyper-

heuristics that combine different methods for mixing multiple

neighbourhood operators and simulated annealing as a move

acceptance method. They tested their approaches across a

variety of problem domains ranging from timetabling to bin

packing.

Algorithm 1 presents the pseudo-code of the approach

[13], [10], [23]. This approach starts with a randomly

Algorithm 1 Pseudo-code of a generic SA algorithm

1: Input: S0, T emp0, T empmin, CoolingRate
2: Output: SBest

3: ∆← 0; SCurrent, SBest ← S0; Temp← Temp0
4: qualityOfCurrent, qualityOfBest ← obj(S0)
5: while (Temp > Tempmin) do

6: SNew ← CreateNeighboringSolution(SCurrent)
7: ∆← obj(SNew) − qualityOfCurrent

8: if ((∆ < 0) OR (e−∆/Temp > rand(0, 1)) then

9: SCurrent ← SNew

10: qualityOfCurrent ← qualityOfCurrent + ∆
11: end if

12: if (qualityOfCurrent ¡ qualityOfBest) then

13: SBest ← SCurrent

14: qualityOfBest ← qualityOfCurrent

15: end if

16: Temp← Temp× CoolingRate
17: end while

generated initial solution (S0). A new solution (SNew) is

generated using a predefined neighbourhood/move operator

(CreateNeighboringSolution) within the vicinity of the

solution in hand and compared to the original solution

(SCurrent). Based on the solution’s ‘objective value’, measur-

ing its quality (fitness) (obj(.)) and the current ‘temperature’

(Temp), new solution is either accepted or rejected (line 8

in Algorithm 1). An improving solution is always accepted.

SA avoids becoming trapped at a local optimum by accepting

worsening solutions with a probability based on temperature,

change in the quality of the solution and current step using the

Metropolis criterion [13] during the search process (rand()

generates a uniform random number in between [0,1]). The

temperature is initially set to a high value (Temp0) that results

in a high probability of inferior solutions being accepted. Then

the temperature is slowly decreased (line 16 in Algorithm 1)

over the course of a run, reducing the probability of inferior

solutions being selected. This iterative process of creating

new solutions, evaluating them and accepting/rejecting them

is repeated until a termination criteria, i.e., maximum number

of iterations or a final temperature (Tmin) is reached. In our

approach, we keep track of the best solution (SBest) visited

by the SA approach and return that solution at termination.

III. AN APPROACH FOR SOLVING A SUPPLY CHAIN

MANAGEMENT PROBLEM

In this study, we describe a two-stage fuzzy based optimi-

sation approach to solve a supply chain management problem.

The first stage of ranking suppliers using an IT2FS method is

followed by invocation of a simulated annealing approach to

optimize both cost and supplier risk, simultaneously.

A. Stage One: Ranking of Suppliers

This stage aims to provide an appropriate way to rank

suppliers by identifying the criteria which have played an

essential role in supplier selection, and evaluating supplier

performance with respect to the selection criteria.



TABLE I
LINGUISTIC WEIGHTS OF THE ATTRIBUTES REPRESENTED BY INTERVAL

TYPE-2 FUZZY SETS

Linguistic terms Interval Type-2 fuzzy sets

Low importance ((0.0,0.0,0.2,0.3),(0.0,0.0,0.2,0.5))

Moderate importance ((0.3,0.4,0.4,0.5),(0.1,0.4,0.4,0.7))

High importance ((0.5,0.6,0.6,0.7),(0.3,0.6,0.6,0.9))

Very High importance ((0.7,0.8,1.0,1.0),(0.5,0.8,1.0,1.0))

TABLE II
LINGUISTIC PERFORMANCE RATES REPRESENTED INTERVAL TYPE-2

FUZZY SETS

Linguistic terms Interval Type-2 fuzzy sets

Poor ((0,0,2,3),(0,0,2,5))

Good ((3,4,4,5),(1,4,4,7))

Very Good ((5,6,6,7),(3,6,6,9))

Excellent ((7,8,10,10),(5,8,10,10))

1) Fuzzy Membership Functions: In work by Or-

doobadi [19] decision makers considered two attributes im-

portant when evaluating suppliers, the weight of the selection

criteria and the rating of each supplier. Turk et al. [25]

extended this work, analysing uncertainty in the supplier

selection problem using IT2FS.

To establish the importance of each criterion experts are

asked to rate each with one of the following linguistic weights:

‘low importance’, ‘moderate importance’, ‘high importance’

and ‘very high importance’ [19].

Table I shows the parameters of the IT2 membership func-

tions used to represent each of the linguistic weights. The

numeric scale defined between 0 and 1 corresponded the fuzzy

numbers.

Table I shows values of trapezoidal T2FS. A trapezoidal

T1FS can be defined by four parameters as a, b, c, d in which

a < b < c < d. In Table I, IT2FS are described using values

of the upper and lower membership functions. The second

column gives the a, b, c and d values in sequence for each

membership function for the lower and upper membership

functions of the IT2FS.

In addition, the performance of a supplier with consideration

for each criterion was elicited by asking experts to assign one

of the following linguistic weights: ‘excellent’, ‘very good’,

‘good’ and ‘poor’. The numeric scale defined between 0

and 10 corresponded to the fuzzy numbers of each criterion

value [19]. The IT2FS are created in the same manner as

explained previously for modelling the importance weights,

and their values are illustrated in Table II.

2) Proposed Method for Ranking Suppliers: To evaluate

suppliers and obtain their ranks the following steps are taken:

1) Trapezoidal IT2FS are generated using information

about the importance of the criteria selected by the

decision makers. Let wi denotes the fuzzy importance

Fig. 1. The criteria and sub-criteria used for selection of suppliers [19].

weight of criterion i where i = 1, 2, ..., 10. For instance,

if a criterion’s importance weight is ‘low’ then wi

is denoted as ((0.0, 0.0, 0.2, 0.3), (0.0, 0.0, 0.2, 0.5)) as

indicated in Table I.

2) as shown in Figure 1, all nodes on the same branch

are multiplied by previous node. As an example, w1 is

computed by multiplying the importance weight of the

delivery by importance weight of delivery lead time as;

w1 = ((0.5, 0.6, 0.6, 0.7), (0.3, 0.6, 0.6, 0.9))

((0.5, 0.6, 0.6, 0.7), (0.3, 0.6, 0.6, 0.9))

= ((0.25, 0.36, 0.36, 0.49),

(0.09, 0.36, 0.36, 0.81)) (5)

All weights are computed in the same manner.

3) The linguistic terms describing suppliers’ performance

are dealt with in the same way as criteria importance

(Step 1).

4) The aggregate fuzzy set for each supplier is calculated

by multiplying the fuzzy performance rates matrix by

the fuzzy importance weights.

5) Centroid type-reduction and defuzzification methods are

used to convert fuzzy values into crisp values.

B. Stage Two: Inventory Planning with Consideration of Sup-

plier Risk

The problem used in this study captures the dynamics of

the production of multiple products that are made up of differ-

ent components. There are multiple suppliers, manufacturing

plants and potential customers. The planning horizon for the

inventory is discretized into time periods. The initial period

relies on the initial stock levels to satisfy the demand, while

the subsequent periods require inventory planning to meet the

demand in a cost effective manner with a reduced supplier

risk.

The following assumptions are made in this study:

• All suppliers can supply all plants with any of the

components, each plant can supply any product to any

customer.

• Each supplier/production plant has a fixed capacity for

each component/product.



TABLE III
NOTATION FOR DECISION VARIABLES

Variable Meaning

X(m,i,j,t) Amount of component m from supplier i to plant j in period t

Y(l,j,k,t) Amount of product l from plant j to customer k in period t

Ic(m,j,t) Inventory of component m at plant j in period t

Ip(l,j,t) Inventory of product l at plant j in period t

ISc(m,j) Initial stock of component m at plant j

ISp(l,j) Initial stock of product l at plant j

• The total cost of supply chain operation for the period

of inventory planning consists of batch (order) cost,

production cost, transportation cost, inventory holding

cost and stock out cost.

• Each product has a fixed production cost.

• Stock out cost is considered when an order is not in stock.

In the case of an inability to satisfy demand, items are

purchased at full retail price from a competing producer.

• The distances among suppliers, buyers and plants are

fixed and known.

• Supply chain dynamics is considered as a discrete-time

process.

• A periodic review policy is assumed.

• Initial stock level is determined in the beginning to satisfy

orders in the initial period.

1) Problem Formulation: A supplier, manufacturing plant

and customer is denoted by i, j and k, respectively. Ad-

ditionally, a product, denoted by l, is manufactured using

m components. Each discrete time period is indicated by

t. Tables III and IV summarizes the inventory data and

operational variables used in the model.

In this study, there are two objectives to optimize; (i)

minimise exposure to risk due to the supplier selection and (ii)

minimize the total cost of the supply chain, subject to a set of

constraints. The weighted sum and Tchebycheff scalarisation

are used to convert the bi-objective problem of minimizing the

vector TotalF itness (TF ) into a scalar problem:

minimise TF = w1TR+ w2TC (6)

where TR is the total risk associated with a supply chain

(Equation 9), TC is the total cost (Equation 9), their respective

weights are w1 and w2 and w1 +w2 = 1. On the other hand,

Tchebycheff problem is of the form:

minimise TF = max{w1(TR− µTR)/(maxTR − µTC),

w2(TC − µTC)/(maxTC − µTC)}
(7)

where µTR is the utopian total risk associated with a supply

chain, µTC is the e ideal total cost, maxTR, maxTC are the

maximum values in 100 experiments for TR and TC, the m

TABLE IV
NOTATION FOR PARAMETERS

Notation Meaning

α(m, i) Capacity of supplier i for component m

β(m, i) Cost of component m at supplier i

βT (m, i, j) Transportation cost of component m from supplier i to plant j

βO(m, i) Order cost of component m from supplier i

Ds(i, j) Distance from supplier i to plant j

R(i) Rank of supplier i

Ri(i) Risk of supplier i

θ(l, j) Capacity of plant j for product l

γ(l, j) Cost of manufacturing product l in plant j

γO(l, j) Setup cost of product l in plant j

σ(l, j) Percentage of holding cost of product l in plant j

γT (l, j, k) Transportation cost of product l from plant j to customer k

γpI(l, j) Inventory cost of product l in plant j

γcI(m, j) Inventory cost of component m in plant j

γpS(l, j) Shortage cost of product l in plant j

γcS(m, j) Shortage cost of component l in plant j

Dp(j, k) Distance from plant j to customer k

ω(l, k, t) Demand of customer k for product l for each period t

λ(l, k) Selling price of product l for customer k

m(l, k) Missing amount of product l for customer k

their respective weights are w1 and w2 and w1+w2 = 1 [14].

TC =
∑
l

∑
j

γpI(l, j)Ip(l,j,t) +
∑
m

∑
j

γcI(m, j)Ic(m,j,t)

+
∑
l

∑
j

∑
k

Y(l,j,k,t)Dp(j, k)γT (l, j, k)

+
∑
m

∑
i

∑
j

X(m,i,j,t)Ds(i, j)βT (m, i, j)

+
∑
m

∑
i

∑
j

βO(m, i)X(m,i,j,t)

+
∑
l

∑
j

∑
k

γO(l, j)Y(l,j,k,t)

+
∑
l

∑
j

∑
k

γ(l, j)Y(l,j,k,t)

+
∑
l

∑
j

γpS(l, j)Ip(l,j,t)

+
∑
m

∑
j

γcS(m, j)Ic(m,j,t)

+
∑
l

∑
k

m(l, k)λ(l, k)

for ∀t.

(8)

TR =
∑
m

∑
i

∑
j

X(m,i,j,t)Ri(i) (9)

The equation 8 represents the total cost of supply chain under

consideration. The first row of the objective function is the

sum of the inventory cost for the components and products

respectively. In the second and third rows, total transportation



cost is represented for both components and products. The next

line demonstrates order cost of components. In the following

two lines, setup cost and production cost are described. The

seventh and eighth lines show how the total shortage cost for

components and products is computed. The final line shows

the penalty cost if the production amount does not satisfy the

demand of customers.

A given problem can be optimized using a generic optimi-

sation algorithm with respect to the the weighted sum of two

objectives, subject to the following constraints which model

the computations of risk from suppliers, supplier capacities,

plant capacities, and inventory-control of both components and

products.

Ri(m) =
∑
i

R(i)/R(m) (10)

Equation 10 shows the computation of a supplier risk coeffi-

cient for each supplier by normalising the ranks of suppliers

shown in Table V.∑
j

X(m,i,j,t) ≤ α(m, i) for ∀ m,i,t (11)

∑
k

Y(l,j,k,t) ≤ θ(l, j) for ∀ l,j,t (12)

Equation 11 is the capacity of the supplier for each period and

Equation 12 depicts plant capacity for each period.∑
j

Y(l,j,k,t) ≤ ω(l, k, t) for ∀ l,k,t (13)

Equation 13 stipulates that the production quantities are not

less than the order quantities of customer.∑
i

X(m,i,j,t) + ISc(m,j) =

∑
l

∑
k

Y(l,j,k,t) + Ic(l,j,t) for ∀ l,j,t
(14)

Equation 14 represents the inventory-control constraints for

each component.∑
j

∑
k

Y(l,j,k,t) +
∑
j

ISp(l,j) =

∑
k

ω(l, k, t) +
∑
k

Ip(k,l,t) for ∀ l,t
(15)

Equation 15 describes inventory-control constraints for each

product.

C. Simulated Annealing for Inventory Planning

Simulated annealing approach requires design of several

domain specific components, such as, solution representation,

neighbourhood/move operator and algorithmic settings, such

as, maximum number of iterations and cooling schedule. In

this section, we provide the details of the SA approach used as

a generic optimisation algorithm for solving the supply chain

management problem described in the previous subsection. A

real-valued solution representation is used in SA. A solution

consists of a 4 dimensional array that represents an inventory

plan. The dimensions correspond to the source node, desti-

nation node, component/product and time period respectively.

Each element of the array contains a value in [0,1] that denotes

the amount of stock added to the inventory of a source node,

for a destination node, of a product in a particular time period.

For example, if currentP lan[1,2,3,4] contains the value 0.5,

this indicates that source node 1 receives/produces 50% of

its capacity of product 3 for destination node 2 in period 4.

This method of representing inventory ensures that a node

can never supply/produce more than its capacity in one time

period. Inventory values are also restricted by a minimum

order quantity, and order quantities. For example, we might

set a minimum order quantity of 100 for a particular product

at a particular node, and then restrict orders to units of 100

(e.g. 500, 600, 700, 800 etc.).

TF (Equation 6) is used to evaluate the quality (fitness) of

a candidate solution during the search process. Although it is

a challenge to decide on how much weight to apply to each of

the objectives [9]. These settings can be considered to reflect

the attitude of a “decision maker” towards cost and risk in

our study. More importantly and additionally, by running the

algorithm with different weight settings, we can obtain a set

of solutions indicating the trade-off between those objectives

and the “decision maker” can choose one of the solutions as

appropriate.

The algorithm generates an initial solution randomly, con-

taining values in [0,1] that represent the proportion of capacity

added to each supply node for each destination node of each

product in each time period. Then, SA attempts to improve

this initial solution iteratively by applying a neighbourhood

operator and then deciding whether to accept or reject the

resultant solution. A parametrized neighbourhood operator is

implemented for perturbing a solution. At each step, a new

solution is generated by this operator modifying the settings of

a number of randomly selected elements with random values

and the number of elements being a discrete parameter value

in between 1 and 10. This operator is an adaptive operator

using reinforcement learning for parameter control [20]. The

number of elements altered is chosen using a reinforcement

learning method in which a set of counters is used to record

the most successful number of changes. A utility value/score is

maintained using a counter for each parameter setting. Initially,

a random number of elements between 1 and 10 is chosen

and the solution is altered accordingly. At any time, if the

changes to the selected elements result in a non-worsening

solution, the counter for that parameter value is incremented,

otherwise it is decremented. When the next perturbation needs

to be made, the algorithm looks for the number of elements

with the maximum score, i.e., the most successful. If there are

multiple numbers with the maximum value, one is chosen at

random. This method encourages the SA algorithm to select

the number of changes that has resulted in the largest ratio of

improvements to changes detrimental to solutions.



TABLE V
SCORES FOUND FOR SUPPLIERS

Suppliers Crisp Scores Rank Risk

Supplier A 10.29 2 3.24

Supplier B 23.08 1 1.45

IV. NUMERICAL EXPERIMENTS

A. Experimental Setup

The supply chain problem instance used in this study

contains two different products that are made up of four

different components. There are two suppliers (denoted as A

and B, two manufacturing plants and two potential customers.

The planning horizon contains three discrete time periods.

In the first stage, the importance of each criterion and per-

formance of suppliers with respect to each one are determined

by the decision makers. Then these values are used in an

Interval Type-2 fuzzy model to rank the suppliers as described

in Section III-A.

We tested SA on the problem instance using the information

from the previous stage considering 6 different weight settings

for w1, while w2 = 1.0−w1 yielding 6 different scenarios for

optimizing TF with weighted sum and Tchebycheff scalari-

sations of cost and risk objectives as provided in Equations 6

and 7, respectively. Each scenario Scn-1, Scn-2, Scn-3, Scn-4

and Scn-5 uses 0.0, 0.2, 0.5, 0.8 and 1.0 as a setting for w1,

respectively. The last scenario (Scn-6) generates 100 random

settings for w1 in (0,1] with w2 = 1.0−w1. A single SA run

is performed with each setting generating 100 solutions. This

experiment is performed to observe the trade-off solutions for

the given instance. The cooling schedule for the temperature

within SA is geometric, resulting in a slow and consistent

reduction of temperature over the course of a run. The initial

temperature is fixed as 10,000. The cooling rate is computed

to allow 100,000 iterations and then SA terminates. Each SA

experiment is repeated 30 times, except for Scn-6.

B. Results

The stage one fuzzy approach described in Section III-A

yields the output as shown in Table V. Supplier B has a better

ranking than A due to low risk. This information is fed into the

SA solver described in Section III-B for inventory planning.

SA indeed discovers high quality inventory plans based on

the described model for those scenarios as shown in Table VI.

Clearly, SA produces lower mean TR values (higher TC
values) as the weight of total supplier risk increases (total cost

of the supply chain operation decreases) when weighted sum is

used. SA provides flexibility for the decision makers enabling

them to try out different risk weightings (representing risk-

avoiding or risk-taking strategies), and observe how this choice

influences inventory planning in terms of the total supplier

risk and cost of the supply chain operation. It seems that the

SA using Tchebycheff scalarisation spends more effort on the

improvement of TR as compared to TC.

Fig. 2. Behaviour of the SA algorithm in a single run for each scenario using
weighted sum scalarisation.

Fig. 3. TR vs TC from 100 runs (each with a random weight setting) of
the SA algorithm based on weighted sum (on the left) and Tchebycheff (on
the right) scalarisations. Circles indicate the pareto front.

As for the behaviour of the SA during the search process,

Figure 2 provides the progress plot of the weighted sum based

objective value (TF ) of the current solution in a single run

for each scenario as an example. The objective value oscillates

radically during the initial phases of the search process. This

indicates that large moves are accepted initially as expected,

and this behaviour settles down in time and the algorithm

seems to reach a plateau for all scenarios. This is likely due to

the chosen cooling rate and initial temperature. Although we

tested a set of different values for parameter tuning purposes,

we did not observe much performance improvement over what

has been reported in here.

Figure 3 provides the scatter plot of TR versus TC,

obtained after applying the SA using weighted sum and

Tchebycheff scalarisation approaches under Scn-6. The former

approach produces a slightly better pareto front than the

latter one with a hypervolume [28] of 0.75 versus 0.74.

In the overall, the results indicate that there is certainly a

trade-off between risk and cost. The trade-off solutions can

be obtained using a simple weighted sum approach via a

generic SA optimisation algorithm. Hence, it is possible for

decision makers to choose an appropriate strategy based on

their aversion to risk and cost. The proposed system could be

used in What-If scenarios to see how varying attitudes to risk

affect inventory planning. A decision maker can alternatively

choose a solution from the set of trade-off solutions.

V. CONCLUSIONS

In this study, we provided a formulation for a supply chain

management problem integrating supplier selection and inven-

tory planning and proposed a two-stage solution method based

on an Interval Type-2 fuzzy system and simulated annealing.



TABLE VI
BEST AND AVERAGE RESULTS IN TERMS OF TR, TC OBTAINED FROM 30 RUNS FOR EACH SCENARIO FOR WEIGHTED SUM AND TCHEBYCHEFF

SCALARISATION

Weighted sum Tchebycheff

Average Best Average Best

Scenario TR TC TR TC TR TC TR TC

Scn-1 14867 2769 15504 2630 14867 2769 15504 2630

Scn-2 13004 2995 14605 2743 14557 3144 13706 3063

Scn-3 12259 3151 12628 2908 14881 2756 15863 2640

Scn-4 12179 3350 12628 2888 14875 2752 15853 2630

Scn-5 11839 8145 12269 5600 11839 8145 12269 5600

In the first stage, IT2FSs are used to rank suppliers for

supplier selection. In the second stage, SA is used to minimize

supplier risk and operational costs for inventory planning,

simultaneously. SA performed well using a learning move

operator with an adaptive parameter control. The proposed

approach is capable of capturing the trade-off between risk and

cost via scalarisation of both objectives, giving flexibility to

the decision makers to choose from a set of trade-off solutions

for supply chain management. We tested weighted sum and

Tchebycheff scalarisation approaches and as a future work, we

will investigate the performance of the other multi-objective

optimisation approaches to tackle this problem.
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