1,585 research outputs found

    Invariant–based performance analysis of timed Petri net models

    Get PDF
    In timed Petri nets, temporal properties are associated with transitions as transition firing times (or occurrence times). For net models which can be decomposed into a family of place invariants, performance analysis can be conveniently performed on the basis of its components. The paper presents an approach to finding place invariants of net models and proposes an incremental method which, for large models, can significantly reduce the required amount of computations

    A Forward Reachability Algorithm for Bounded Timed-Arc Petri Nets

    Full text link
    Timed-arc Petri nets (TAPN) are a well-known time extension of the Petri net model and several translations to networks of timed automata have been proposed for this model. We present a direct, DBM-based algorithm for forward reachability analysis of bounded TAPNs extended with transport arcs, inhibitor arcs and age invariants. We also give a complete proof of its correctness, including reduction techniques based on symmetries and extrapolation. Finally, we augment the algorithm with a novel state-space reduction technique introducing a monotonic ordering on markings and prove its soundness even in the presence of monotonicity-breaking features like age invariants and inhibitor arcs. We implement the algorithm within the model-checker TAPAAL and the experimental results document an encouraging performance compared to verification approaches that translate TAPN models to UPPAAL timed automata.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Petri net modeling and analysis of an FMS cell

    Get PDF
    Petri nets have evolved into a powerful tool for the modeling, analysis and design of asynchronous, concurrent systems. This thesis presents the modeling and analysis of a flexible manufacturing system (FMS) cell using Petri nets. In order to improve the productivity of such systems, the building of mathematical models is a crucial step. In this thesis, the theory and application of Petri nets are presented with emphasis on their application to the modeling and analysis of practical automated manufacturing systems. The theory of Petri nets includes their basic notation and properties. In order to illustrate how a Petri net with desirable properties can be modeled, this thesis describes the detailed modeling process for an FMS cell. During the process, top-down refinement, system decomposition, and modular composition ideas are used to achieve the hierarchy and preservation of important system properties. These properties include liveness, boundedness, and reversibility. This thesis also presents two illustrations showing the method adopted to model any manufacturing systems using ordinary Petri nets. The first example deals with a typical resource sharing problem and the second the modeling of Fanuc Machining Center at New Jersey Institute of Technology. Furthermore, this thesis presents the analysis of a timed Petri net for cycle time, system throughput and equipment utilization. The timed (deterministic) Petri net is first converted into an equivalent timed marked graph. Then the standard procedure to find the cycle time for marked graphs is applied. Secondly, stochastic Petri net is analyzed using SPNP software package for obtaining the system throughput and equipment utilization. This thesis is of significance in the sense that it provides industrial engineers and academic researchers with a comprehensive real-life example of applying Petri net theory to modeling and analysis of FMS cells. This will help them develop their own applications
    corecore