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1. Introduction

The theory of Discrete Event Dynamic Systems focuses on the analysis and conduct systems.

This class essentially contains man-made systems that consist of a finite number of resources

(processors or memories, communication channels, machines) shared by several users (jobs,

packets, manufactured objects) which all contribute to the achievement of some common goal

(a parallel computation, the end-to-end transmission of a set of packets, the assembly of a

product in an automated manufacturing line).

Discrete Event Dynamic Systems can be defined as systems in which state variables change

under the occurrence of events. They are usually not be described, like the classical

continuous systems, by differential equations due to the nature of the phenomenon involved,

including the synchronization phenomenon or mutual exclusion. These systems are often

represented by state-transition models. For such systems, arise, among others, three problems:

Performance evaluation (estimate the production rate of a manufacturing system), resource

optimization (minimizing the cost of some resources in order to achieve a given rate of

production). To deal with such problems, it is necessary to benefit of models able to take into

account all dynamic characteristics of these systems. However, the phenomena involved by

Discrete Event Dynamic Systems, and responsible for their dynamics, are much and of diverse

natures: sequential or simultaneous, delayed tasks or not, synchronized or rival. From this

variety of phenomena results the incapacity to describe all Discrete Event Dynamic Systems

by a unique model which is faithful at once to the reality and exploitable mathematically.

The study of Discrete Event Dynamic Systems is made through several theories among which

we can remind for example the queuing theory, for the evaluation of performances of timed

systems, or the theory of the languages and the automatons, for the control of other systems.

The work presented here is in line with theory of linear systems on dioids. This theory

involves subclass of Timed Discrete Event Dynamic Systems where the evolution of the

state is representable by linear recurrence equations on special algebraic structures called

©2012 Hamaci et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
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diod algebra. The behavior of systems characterized by delays and synchronization can be

described by such recurrences [1]. These systems are modeled by Timed Event Graphs (TEG).

This latter constitute a subclasses of Timed Petri Nets with each place admits an upstream

transition and downstream transition. When the size of model becomes very significant, the
techniques of analysis developed for TEG reach their limits. A possible alternative consists

in using Timed Event Graphs with Multipliers denoted TEGM. Indeed, the use of multipliers

associated with arcs is natural to model a large number of systems, for example, when the

achievement of a specific task requires several units of a same resource, or when an assembly

operation requires several units of a same part.

This chapter deals with the performance evaluation of TEGM in dioid algebra. Noting that

these models do not admit a linear representation in dioid algebra. This nonlinearity is due

to the presence of weights on arcs. To mitigate this problem of nonlinearity and to apply the

results used to evaluate the performances of linear systems, we use a linearization method

of mathematical model reflecting the behavior of a Timed Event Graphs with Multipliers in

order to obtain a linear model.

Few works deal with the performance evaluation of TEGM. Moreover, the calculation of cycle

time is an open problem for the scientific community. In the case where the system is modeled

by a TEGM, in the most of works the proposed solution is to transform the TEGM into an

ordinary TEG, which allows the use of well-known methods of performances evaluation. In

[12] the initial TEGM is the object of an operation of expansion. Unfortunately, this expansion

can lead to a model of significant size, which does not depend only on the initial structure of

TEGM, but also on initial marking. With this method, the system transformation proposed

under single server semantics hypothesis, or in [14] under infinite server semantics hypothesis,

leads to a TEG with |θ| transitions.

Another linearization method was proposed in [17] when each elementary circuit of graph

contains at least one normalized transition (i.e., a transition for which its corresponding

elementary T-invariant component is equal to one). This method increases the number of

transitions. Inspired by this work, a linearization method without increasing the number of
transition was proposed in [8]. A calculation method of cycle time of a TEGM is proposed in

[2] but under restrictive conditions on initial marking. We use a new method of linearization

without increasing the number of transition of TEGM [6].

This chapter is organized as follows. After recalling in Section 2 some properties of Petri nets,

we present in Section 3, modeling the dynamic behavior of TEGM, which are a class of Petri

nets, in dioid algebra, precisely in (min,+) algebra. In this section we will show that TEGM are

nonlinear in this algebraic structure, unlike to TEG. This nonlinearity prevents us to use the

spectral theory developed in [5] for evaluate the performances of TEG in (min,+) algebra. To

mitigate this problem of nonlinearity, we will encode the mathematical equations governing

the dynamic evolution of TEGM in a dioid of operators developed in [7], inspired by work

presented in [3]. The description of this dioid and the new state model based on operators

will be the subject of Section 4. To exploit the mathematical model obtained, a linearization

method of this model will be presented in Section 5, in order to obtain a linear model in

(min,+) algebra and to apply the theory developed for performance evaluation. This latter

will be the subject of Section 6. Before concluding, w e give a short example to illustrate this

approach for evaluate the performances of TEGM in dioid algebra.
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2. Petri Net

2.1. Definitions and notations

Petri Nets (PN) are a graphical and mathematical tool, introduced in 1962 by Carl Adam
Petri [15]. They allow the modeling of a large number of Discrete Event Dynamic Systems.
They are particularly adapted to the study of complex processes involving properties of
synchronization and resource sharing.

The behavior over time of dynamical systems, including evaluation of their performance
(cycle time, ...), led to introduce the notion of time in models Petri Net. Several models
Petri Net incorporating time have been proposed. These models can be grouped into two
classes: deterministic models and stochastic models. The former consider the deterministic
values for durations of activity, whereas the latter consider probabilistic values.Among the
existing Timed Petri Net include: the Temporal Petri Net [11] associating a time interval
to each transition and each place, the T-Timed Petri Net [4] associating a positive constant
(called firing time of transition) at each transition and P-Timed Petri Net ; [4], [9] associating a
positive constant (called holding time in the place) at each place of graph. It has been shown
that P-Timed Petri Net can be reduced to T-Timed Petri Net and vice versa [13]. In the next,
for consistency with the literature produced on the dioid algebra, we consider that P-Timed
Petri Net.

A P-Timed Petri Net is a valued bipartite graph given by a 5-tuple (P, T, M, m, τ).

1. P is the finite set of places, T is the finite set of transitions.

2. M ∈ NP×T∪ T×P. Given p ∈ P and q ∈ T, the multiplier Mpq′ (resp. Mqp) specifies the
weight of the arc from transition nq′ to place p (resp. from place p to transition nq).

3. m ∈ NP : mp assigns an initial number of tokens to place p.

4. τ ∈ NP : τp gives the minimal time a token must spend in place p before it can contribute
to the enabling of its downstream transitions.
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Figure 1. Example of a P-Timed Petri Net.

More generally, for a Petri Net, we denote W− = [Mqp] (input incidence matrix), W+ = [Mpq]
(output incidence matrix), W = W+ − W− (incidence matrix) and considering S a possible

409Performance Evaluation of Timed Petri Nets in Dioid Algebra
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firing sequence from a marking mi to the marking mk, then a fundamental equation reflecting
the dynamic behavior of Petri Net, is obtained:

mk = mi + W × S. (1)

S is the characteristic vector of the firing sequence S. In Figure 1, the firing sequence S = {n2},
the characteristic vector is equal to St = (0, 1, 0, 0), and from marking mt

0 = (0, 3, 0, 0, 3, 0), is
reached the marking mt

1 = (0, 0, 0, 3, 0, 0) by firing of the transition n2, after a stay of 2 time
units of tokens in the places P2 and P5.

2.2. Invariants of a Petri Net

There are two types of invariants in a Petri Net; Marking Invariants, also called P-invariant and
Firing Invariant, also called T-invariant [4].

Definition 1. (P-invariant)

Marking Invariants illustrate the conservation of the number of tokens in a subset of places of
a Petri Net.

A vector, denoted Y, which has a dimension equal to the number of places of a Petri Net is a
P-invariant, if and only if it satisfies the following equation:

Yt × W =
→
0 , Y �=

→
0 . (2)

From Equation 1, we deduce that if Y is a P-invariant, then for a given marking, denoted mi,
obtained from an initial marking m0, we have:

Yt × mi = Yt × m0 = k, k ∈ N∗. (3)

This equation represents an invariant marking, it means that if Y is a P-invariant of Petri Net
then the transpose of the vector Y multiplied by the marking vector mi of the Petri Net is
an integer constant regardless of the mi marking reachable from the initial marking m0. All
the places for which the associated component in the P-invariant is nonzero, is called the
conservative component of the Petri Net.

Definition 2. (T-invariant)

A nonzero vector of integers θ of dimension | T | ×1 is a T-invariant of Petri Net if and only if
it satisfies the following equation:

W × θ =
→
0 . (4)

From Equation 1, the evolution from a marking mi to a sequence whose characteristic vector
θ back the graph to same marking mk = mi. The set of transitions for which the associated
component in the T-invariant is nonzero is called the support of T-invariant. A T-invariant
corresponding to a firing sequence is called feasible repetitive component.

Definition 3. (Consistent Petri Net)

A Petri Net is said consistent if it has a T-invariant θ covering all transitions of graph. A Petri
Net which has this property is said repetitive.

410 Petri Nets – Manufacturing and Computer Science
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The graph reaches a periodic regime when there is a firing sequence achievable with θ as
characteristic vector.

Definition 4. (Conservative Petri Net)

A Petri Net is said conservative if all places in the graph form a conservative component.

The Petri Nets considered here are consistent (i.e., there exists a T-invariant θ covering all
transitions: {q ∈ T|θ(q) > 0} = T) and conservative (i.e., there exists a P-invariant Y covering
all places: {p ∈ P|Y(p) > 0} = P). Such graphs verify the next properties [13]:

• A PNPetri Net allows a live and bounded initial marking m iff it is consistent and
conservative.

• A consistent Petri Net is strongly connected iff it is conservative.

• A consistent Petri Net has a unique elementary T-invariant.

• The product of multipliers along any circuit of a conservative Petri Net is equal to one.

In the next, we denote by •q (resp. q•) the set of places upstream (resp. downstream) transition
q. Similarly, •p (resp. p•) denotes the set of transitions upstream (resp. downstream) place p.

3. Dynamic behavior of Timed Petri Nets in dioid algebra

Definition 5. An ordinary Timed Event Graph (TEG) is a Timed Petri Net such that each place
has exactly one upstream transition and one downstream transition. Weights of arcs are all
unit.

These graphs are well adapted to model synchronization phenomena occurring in Discrete
Event Dynamic Systems. They admit a linear representation on a particular algebraic structure
called the dioid algebra [1].

Definition 6. A dioid (D,⊕,⊗) is a semiring in which the addition ⊕ is idempotent (∀a, a ⊕
a = a). Neutral elements of ⊕ and ⊗ are denoted ε and e respectively.

• A dioid is commutative when ⊗ is commutative. The symbol ⊗ is often omitted. Due
to idempotency of ⊕, a dioid can be endowed with a natural order relation defined by
a � b ⇔ b = a ⊕ b (the least upper bound of {a,b} is equal to a ⊕ b).

• A dioid D is complete if every subset A of D admits a least upper bound denoted
⊕

x∈A
x,

and if ⊗ distributes at left and at right over infinite sums. The greatest element denoted
T of a complete dioid D is equal to

⊕
x

x∈D
. The greatest lower bound of every subset X of a

complete dioid always exists and is denoted
∧

x∈X
x.

Example 1. The set Z ∪ {±∞}, endowed with (min) as ⊕ and usual addition as ⊗, is a
complete dioid denoted Zmin and usually called (min,+) algebra with neutral elements ε =
+∞, e = 0 and T = −∞.

Example 2. The set Z ∪ {±∞}, endowed with (max) as ⊕ and usual addition as ⊗, is a
complete dioid denoted Zmax and usually called (max,+) algebra with neutral elements
ε = −∞, e = 0 and T = +∞.

411Performance Evaluation of Timed Petri Nets in Dioid Algebra
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Definition 7. A signal is an increasing map from Z to Z ∪ {±∞}. Denote S=(Z ∪ {±∞})Z

the set of signals.

This set is endowed with a kind of module structure, called min-plus semimodule, the two
associated operations are:

• pointwise minimum of time functions to add signals: ∀t ∈ Z,(x ⊕ y)(t) = x(t)⊕ y(t) =
min(x(t), y(t));

• addition of a constant to play the role of external product of a signal by a scalar: ∀t ∈
Z, ∀ρ ∈ Z ∪ {±∞},(ρ.x)(t) = ρ ⊗ x(t) = ρ + x(t).

Definition 8. An operator Ψ is a mapping defined from Z ∪ {±∞} to Z ∪ {±∞} is linear in
(min,+) algebra if it preserves the min-plus semimodule structure, i.e., for all signals x, y and
constant ρ,

Ψ(x ⊕ y) = Ψ(x)⊕ Ψ(y) (additive property),

Ψ(ρ ⊗ x) = ρ ⊗ Ψ(x) (homogeneity property).

To study a TEG in (min,+) algebra, considered state variable is a counter , denoted xq(t).
This latter denotes the cumulated number of firings of transition xq up to time t (t ∈ Z). To
illustrate the evolution of a counter associated with the transition xq of a TEG, we consider the
following elementary graph:

�

� �
� � ��� 	

	

	

Figure 2. Elementary TEG

xq(t) = min
p∈•q, q′∈•p

(mp + xq′ (t − τp)). (5)

Note that this equation is nonlinear in usual algebra. This nonlinearity is due to the presence
of the (min) which models the synchronization phenomena 1 in the transition xq. However, it
is linear equation in (min,+) algebra:

xq(t) =
⊕

p∈•q, q′∈•p

(mp ⊗ xq′ (t − τp)). (6)

In the case where weight of an arc is greater than one, TEG becomes weighted. This type of
model is called Timed Event Graph with Multipliers, denoted TEGM.

The earliest functioning rule of a TEGM is defined as follows. A transition nq fires as soon as
all its upstream places {p ∈ •q} contain enough tokens (Mqp) having spent at least τp units of
time in place p. When transition nq′ fires, it produces Mpq′ tokens in each downstream place

p ∈ q′•.

1 Synchronization phenomena occurs when multiple arcs converge to the same transition.

412 Petri Nets – Manufacturing and Computer Science
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Figure 3. Elementary TEGM.

Assertion 1. The counter variable associated with the transition nq of an elementary TEGM
(under the earliest firing rule) satisfy the following transition to transition equation:

nq(t) = min
p∈•q, q′∈•p

⌊M−1
qp (mp + Mpq′nq′(t − τp))⌋. (7)

The inferior integer part is used to preserve the integrity of Equation 7. In general, a transition
nq may have several upstream transitions {nq′ ∈ ••q} which implies that the associated
counter variable is given by the min of transition to transition equations obtained for each
upstream transition.

Example 3. Let us consider TEGM depicted in Figure 4.

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

n1(t) = ⌊ 4+3n2(t−1)
2 ⌋,

n2(t) = min(⌊ 2n1(t−1)
3 ⌋, 2 + 2n3(t − 1)),

n3(t) = ⌊ n2(t−1)
2 ⌋.

�
�
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�


 
 � 
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 � 
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Figure 4. Timed Event Graph with Multipliers.

The mathematical model representing the behavior of this TEGM does not admit a linear
representation in (min,+) algebra. This nonlinearity is due to the presence of the integer
parts generated by the presence of the weights on the arcs. Consequently, it is difficult to use
(min,+) algebra to tackle, for example, problems of control and the analysis of performances.
As alternative, we propose another model based on operators which will be linearized in order
to obtain a (min,+) linear model.

413Performance Evaluation of Timed Petri Nets in Dioid Algebra
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4. Operatorial representation of TEGM

We now introduce three operators, defined from Z ∪ {±∞} to Z ∪ {±∞}, which are used for
the modeling of TEGM.

• Operator γν to represent a shift of ν units in counting (ν ∈ Z ∪ {±∞}). It is defined as
follows:

∀t ∈ Z, ∀ nq′ ∈ Z
Z

, nq(t) = γνnq′(t) = nq′(t) + ν.

Property 1. Operator γν satisfies the following rules:

(γν ⊕ γν′
)n′

q(t) = γmin(ν,ν′)n′
q(t).

(γν ⊗ γν′
)n′

q(t) = γν+ν′
n′

q(t).

Indeed, we have

• (γν ⊕ γν′
)n′

q(t) = min(n′
q(t) + ν, n′

q(t) + ν′) = n′
q(t) + min(ν, ν′) = γmin(ν,ν′)n′

q(t).

• (γν ⊗ γν′
)n′

q(t) = γν(n′
q(t) + ν′) = n′

q(t) + ν′ + ν = γν+ν′
n′

q(t).

� � �� �

Figure 5. Operator γν

• Operator δτ to represent a shift of τ units in dating (τ ∈ Z ∪ {±∞}). It is defined as
follows:

∀t ∈ Z, ∀ nq′ ∈ Z
Z

, nq(t) = δτnq′(t) = nq′(t − τ).

Property 2. Operator δτ satisfies the following rules:

(δτ ⊕ δτ′
)n′

q(t) = δmax(τ,τ′)n′
q(t).

(δτ ⊗ δτ′
)n′

q(t) = δτ+τ′
n′

q(t).

• Knowing that the signal nq(t) is non decreasing, we have :

(δτ ⊕ δτ′
)n′

q(t) = min(n′
q(t − τ), n′

q(t − τ′)) = n′
q(t − max(τ, τ′)) = δmax(τ,τ′)n′

q(t).

(δτ ⊗ δτ′
)n′

q(t) = δτn′
q(t − τ′) = n′

q(t − τ′ − τ) = δτ′+τn′
q(t).

�

� �
� � ��

	

Figure 6. Operator δτ

414 Petri Nets – Manufacturing and Computer Science



Performance Evaluation of Timed Petri Nets in Dioid Algebra 9

• Operator μr to represent a scaling of factor r (r ∈ Q+). It is defined as follows:

∀t ∈ Z, ∀ nq′ ∈ Z
Z

, n′
q(t) = μrn′

q′(t) = ⌊r × n′
q′(t)⌋,

with r ∈ Q+(r is equal to a ratio of elements in N).

Property 3. Operator μr satisfies the following rules when composed with operators δτ

and γν :
(μr ⊗ δτ)n′(t) = (δτ ⊗ μr)n

′(t),

(μr ⊗ γν)n′(t) = (γν×r ⊗ μr)n
′(t), for ν ∈ r−1 × N.

Indeed, we have:

• (μr ⊗ δτ)n′(t) = ⌊r × n′(t − τ)⌋ = (δτ ⊗ μr)n′(t).

• ∀ν ∈ r−1 × N, (μr ⊗ γν)n′(t) = ⌊r × ν + r × n′(t)⌋ = r × ν + ⌊r × n′(t)⌋ = (γν×r ⊗
μr)n′(t), since ν × r ∈ N.

� � �� �


 �

Figure 7. Operator μr(r =
a
b )

Denote by Dmin the (noncommutative) dioid of finite sums of operators {μr, γν} endowed
with pointwise min (⊕) and composition (⊗) operations, with neutral elements equal to

ε = μ+∞γ+∞ and e = μ1γ0 respectively. Thus, an element in Dmin is a map p =
⊕k

i=1 μri
γνi

defined from S to S such that ∀ t ∈ Z, p (n(t)) = min
1≤i≤k

(⌊ri(νi + n(t))⌋).

Let a map h : Z → Dmin, τ �→ h(τ) in which h(τ) =
kτ⊕

i=1
μrτ

i
γντ

i . We define the power series

H(δ) in the indeterminate δ with coefficients in Dmin by: H(δ) =
⊕

τ∈Z

h(τ)δτ .

The set of these formal power series endowed with the two following operations:
F(δ)⊕ H(δ): ( f ⊕ h)(τ) = f (τ)⊕ h(τ) = min( f (τ), h(τ)),
F(δ)⊗ H(δ) : ( f ⊗ h)(τ) =

⊕

i∈Z

f (i)⊗ h(τ − i) = inf
i∈Z

( f (i) + h(τ − i)),

is a dioid denoted Dmin[[δ]], with neutral elements ε = μ+∞γ+∞δ−∞ and e = μ1γ0δ0.

Elements of Dmin[[δ]] allow modeling the transfer between two transitions of a TEGM. A
formal series of Dmin[[δ]] can also represent a signal n as N(δ) =

⊕

τ∈Z

n(τ) δτ , simply due

to the fact that it is also equal to n ⊗ e (by definition of neutral element e of Dmin).

Assertion 2. The counter variables of an elementary TEGM satisfies the following equation
in dioid Dmin[[δ]]:

Nq(δ) =
⊕

p∈•q, q′∈•p
μM−1

qp
γmp δτp μMpq′

Nq′ (δ). (8)

415Performance Evaluation of Timed Petri Nets in Dioid Algebra
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• Nq(δ) is the counter nq(t) associated with the transition nq, encoded in Dmin[[δ]]. It is equal to
the counter Nq′(δ) shifted by the composition of operators μMpq′

, δτp , γmp and μM−1
qp

connected

in series. Let us express some properties of operators γ, δ, μ in dioid Dmin[[δ]].

Proposition 1. Let a, b ∈ N, we have:

1. γaδb = δbγa, μaδb = δbμa (commutative properties).

2. μa−1μb = μ(a−1b).

3. Let N(δ) such that, ∀t ∈ Z, n(t) is a multiple of a, then μa−1γbN(δ) = γ⌊a−1b⌋μa−1 N(δ).

4. γbμa = μaγa−1b, or equivalently, μaγb = γabμa.

Proof:

• Point 1 is obvious.

• Point 2: μa−1μbN(δ) corresponds to ⌊a−1⌊b n(t)⌋⌋ = ⌊a−1b n(t)⌋ which leads to
μ(a−1b)N(δ).

• Point 3: μa−1γbN(δ) correspond to ⌊a−1(b + n(t))⌋ = ⌊a−1b⌋+ a−1n(t) since n(t) ∈ Z ∪

{±∞} is a multiple of a, which leads to γ⌊a−1b⌋μa−1 N(δ).

• Point 4: γbμaN(δ) corresponds to b + ⌊a n(t)⌋ = ⌊a(a−1b + n(t))⌋ which leads to

μaγa−1b N(δ).

Example 4. The TEGM depicted in Figure 4 admits the following representation in Dmin[[δ]]:

⎛

⎜
⎜
⎜
⎜
⎝

N1

N2

N3

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

ε μ1/2γ4δ1μ3 ε

μ1/3δ1μ2 ε γ2δ1μ2

ε μ1/2δ1 ε

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

N1

N2

N3

⎞

⎟
⎟
⎟
⎟
⎠

5. Linearization of TEGM

The presence of integer part modeled by operator μ induces a nonlinearity in Equation 8 used
to represent a TEGM. So, as far as possible, we seek to represent a TEGM with linear equations
in order to apply standard results of linear system theory developed in the dioid setting, which
leads to transform a TEGM into a TEG (represented without operator μ).

5.1. Principle of linearization

A consistent TEGM has a unique elementary T-invariant in which components are in N∗. The
used method is based on the use of commutation rules of operators and the impulse inputs
(Proposition 1 and 2).

In the next, we suppose that all tokens in a TEGM are "frozen" before time 0 and are available
at time 0 which is a classical assumption in Petri Nets theory. Hence, with each counter

416 Petri Nets – Manufacturing and Computer Science
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variable of a TEGM is added a counter variable corresponding to an impulse input e (i.e.,
e(t) = 0 for t < 0 and e(t) = +∞ for t ≥ 0). These initial conditions are weakly compatible.
For more details, see [10].

To linearize the expression of counters variables written as Equation 8, one expresses each
counter according to an entry impulse. This latter will permit to linearize the mathematical
model reflecting the behavior of a TEGM in order to obtain a linear model in (min, +) algebra.

�

�

� 
 � � �

Figure 8. Impulse (Point of view of counter).

Proposition 2. let E an impulse input, we have : ∀a ∈ N, β ∈ Q+,

μβγaδτE(δ) = γ⌊βa⌋δτE(δ). (9)

Proof: Thanks to Proposition 1.3, μβγaδτ E(δ) corresponds to ⌊β× (a+ e(t− τ))⌋ = ⌊β× a⌋+

e(t − τ) since for t ≥ 0 e(t) �→ +∞, hence e(t) is a multiple of β, which leads to γ⌊βa⌋δτE(δ).

We now give the state model associated to the dynamic of counters of a TEGM. Consider the
vector N composed of the counter variable. The counter variables corresponding to impulse
input e added with each transition ni:

N(δ) = A ⊗ N(δ)⊕ E(δ). (10)

Knowing that such equation admits the following earliest solution:

N(δ) = A∗ ⊗ E(δ), (11)

A∗ = e ⊕ A ⊕ A2 ⊕ · · · .

Proposition 3. For initial conditions weakly compatible, consistent and conservative TEGM is
linearizable without increasing the number of its transitions.

Proof: Consider a consistent and conservative TEGM represented by the equation A(δ) = A⊗
N(δ)⊕ E(δ). Using Equation 11, and then apply the Proposition 2, we obtain a linear equation
between transitions of graph (corresponding to a linear TEG). This linearization method may
be applied to all transitions of graph, since for any transition, one can involve an impulse
input.

Example 5. The TEGM depicted in Figure 9 admits the elementary T-invariant θt = (3, 2, 1).
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Figure 9. TEGM with impulse inputs added to each transition.

The inputs e correspond to the impulse inputs. They have not influence on the evolution of
the model. Indeed, ∀t ≥ 0, ∀nq ∈ T , min(nq(t), e(t)) = nq(t), since e(t) �→ +∞.
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⎠

⎛
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⎜
⎜
⎜
⎝
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⎞

⎟
⎟
⎟
⎟
⎠

⊕

⎛

⎜
⎜
⎜
⎜
⎝

E

E

E

⎞

⎟
⎟
⎟
⎟
⎠

.

Using Equation 11, N(δ) = A∗E(δ). The Proposition 2 allows to calculate A∗E(δ):

A∗E(δ) = (e ⊕ A ⊕ A2 ⊕ A3 ⊕ ...)E(δ)

= ( E(δ)⊕ A E(δ)⊕ A ⊗ AE(δ)
︸ ︷︷ ︸

A2E(δ)

⊕ A ⊗ A2E(δ)
︸ ︷︷ ︸

A3E(δ)

⊕ ...).

A∗ E(δ) =

⎛

⎜
⎜
⎝

(γ2δ2)(γ3δ4)∗

δ1(γ1δ2)∗

δ4(γ1δ4)∗

⎞

⎟
⎟
⎠

E(δ),

which is the earliest solution of the following equations:

⎛

⎜
⎜
⎝

N1(δ)

N2(δ)

N3(δ)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

γ3δ4

γ1δ2

γ1δ4

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

N1(δ)

N2(δ)

N3(δ)

⎞

⎟
⎟
⎠

⊕

⎛

⎜
⎜
⎝

γ2δ2

δ1

δ4

⎞

⎟
⎟
⎠

E(δ).

Let us express these equations in usual counter setting (dioid Zmin), we have, ∀t ∈ Z:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

n1(t) = 3 ⊗ n1(t − 4)
⊕

2 ⊗ e(t − 2),

n2(t) = 1 ⊗ n2(t − 2)
⊕

e(t − 1),

n3(t) = 1 ⊗ n3(t − 4)
⊕

e(t − 4).
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These equations are quite (min,+) linear. It turns out that the TEG depicted in Figure 10,
composed of three elementary circuits: (n1, n1), (n2, n2), (n3, n3), is a possible representation
of the previous equations.

�

� � � � � �� � �

���

Figure 10. TEG (Linearized TEGM).

6. Performance evaluation of TEGM

• General case: To evaluate the performance of a TEGM returns to calculate the cycle time
and firing rate associated with each transition of a graph.

Definition 9. [16] The cycle time, TCm, of a TEGM is the average time to fire once the
T-invariant under the earliest firing rule (i.e., transitions are fired as soon as possible) from
the initial marking.

This cycle time is equivalent to the average time between two successive firing of a transition.
It is calculated by the following relation:

TCm =
θq

λmq

. (12)

• θq is the component of T-invariant associated with transition nq, and λmq is the firing rate
associated with transition nq of TEGM corresponding to the average number of firing of one
transition per unit time.

• For an industrial system, the cycle time corresponds to the average manufacturing time of a
piece, and the firing rate is the average number of pieces produced per unit of time.

• Particular case: Elements of performance evaluation for TEG. We recall main results
characterizing an ordinary TEG modeled in the dioid Zmin. Knowing that a TEG is a TEGM
with unit weights on the arcs, and their components of T-invariant are all equals 1.

Definition 10. A matrix A is said irreducible if for any pair (i,j), there is an integer m such that
(Am)ij �= ε.

Theorem 1. [5] Let A be a square matrix with coefficient in Zmin. The following assertions
are equivalent:

• Matrix A is irreducible,

• The TEG associated with matrix A is strongly connected.

419Performance Evaluation of Timed Petri Nets in Dioid Algebra
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One calls eigenvalue and eigenvector of a matrix A with coefficients in Zmin, the scalar λ and
the vector υ such as:

A ⊗ υ = λ ⊗ υ.

Theorem 2. [5] Let A be a square matrix with coefficients in Zmin. If A is irreducible, or
equivalently, if the associated TEG is strongly connected, then there is a single eigenvalue
denoted λ. The eigenvalue can be calculated in the following way:

λ =
n⊕

j=1

(
n⊕

i=1

(Aj)ii)
1
j . (13)

λ corresponds to the firing rate which is identical for each transition. This eigenvalue λ can
be directly deduced from the TEG by:

λ = min
c∈ C

M(c)

T(c)
, (14)

• C is the set of elementary circuits of the TEG.

• T(c) is the sum of holding times in circuit c.

• M(c) is the number of tokens in circuit c.

In the case of Ordinary TEG strongly connected, The inverse of eigenvalue λ is equivalent to
cycle time, denoted TC.

TC =
1

λ
, (15)

Example 6. The TEG depicted in Figure 10, which is not strongly connected, is composed of
three circuits : (n1, n1), (n2, n2) and (n3, n3). Each circuit admits a T-invariant composed of one
component equals 1.

Using the Definition 9 and Equation 15, one deduce that each circuit, which is an elementary
TEG strongly connected, admits the following cycle time:

• Circuit (n1, n1), TC = 4
3 .

• Circuit (n2, n2), TC = 2
1 .

• Circuit (n3, n3), TC = 4
1 .

The cycle time of TEGM depicted in Figure 4, corresponds to the time required to fire each
transition a number of times equal its corresponding elementary T-invariant component.
Hence

TC1 = 3 ×
4

3
, TC2 = 2 ×

2

1
, TC3 = 1 ×

4

1
.

Note that the cycle time is identical for all transitions of the graph which is equal to 4 time
units. This means that each transition is asymptotically fired once every four time units.
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About the firing rate associated with each transition of the graph, using the relation (12):

λm1 =
3

4
, λm2 =

1

2
, λm3 =

1

4
.

Confirmation of these results can be deducted directly to the following marking graph of the
initial TEGM.
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Figure 11. Marking graph of the initial TEGM.

• kni/t: after t time units, the transition ni is firing k time.

7. Conclusion

Performance evaluation of TEGM is the subject of this chapter. These graphs, in contrast
to ordinary TEG, do not admit a linear representation in (min,+) algebra. This nonlinearity
is due to the presence of weights on the arcs. For that, a modeling of these graphs in an
algebraic structure, based on operators, is used. The obtained model is linearized, by using
of pulse inputs associated with all transitions of graphs, in order to obtain representation in
linear (min+) algebra, and apply some results basic spectral theory, usually used to evaluate
the performance of ordinary TEG. The work presented in this chapter paves the way for
other development related to evaluation of performance of these models. In particular, the
calculation of cycle time for any timed event graph with multipliers is, to our knowledge, an
open problem to date.
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