77 research outputs found

    Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions

    Get PDF
    The likelihood ratio (LR) for testing if the covariance matrix of the observation matrix X is R has some invariance properties that can be exploited for covariance matrix estimation purposes. More precisely, it was shown in Abramovich et al.(2004, 2007, 2007) that, in the Gaussian case, LR(\R0|X), where R0 stands for the true covariance matrix of the observations \X, has a distribution which does not depend on R0 but only on known parameters. This paved the way to the expected likelihood (EL) approach, which aims at assessing, and possibly enhancing the quality of any covariance matrix estimate (CME) by comparing its LR to that of R0. Such invariance properties of LR (R0|X) were recently proven for a class of elliptically contoured distributions (ECD) in Abramovich and Besson (2013) and Bession and Abramovich (2013) where regularized CME were also presented. The aim of this paper is to derive the distribution of LR(R0|X) for other classes of ECD not covered yet, so as to make the EL approach feasible for a larger class of distributions

    Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach - Part 1: The Over-Sampled Case

    Get PDF
    In \cite{Abramovich04}, it was demonstrated that the likelihood ratio (LR) for multivariate complex Gaussian distribution has the invariance property that can be exploited in many applications. Specifically, the probability density function (p.d.f.) of this LR for the (unknown) actual covariance matrix R0\R_{0} does not depend on this matrix and is fully specified by the matrix dimension MM and the number of independent training samples TT. Since this p.d.f. could therefore be pre-calculated for any a priori known (M,T)(M,T), one gets a possibility to compare the LR of any derived covariance matrix estimate against this p.d.f., and eventually get an estimate that is statistically ``as likely'' as the a priori unknown actual covariance matrix. This ``expected likelihood'' (EL) quality assessment allows for significant improvement of MUSIC DOA estimation performance in the so-called ``threshold area'' \cite{Abramovich04,Abramovich07d}, and for diagonal loading and TVAR model order selection in adaptive detectors \cite{Abramovich07,Abramovich07b}. Recently, a broad class of the so-called complex elliptically symmetric (CES) distributions has been introduced for description of highly in-homogeneous clutter returns. The aim of this series of two papers is to extend the EL approach to this class of CES distributions as well as to a particularly important derivative of CES, namely the complex angular central distribution (ACG). For both cases, we demonstrate a similar invariance property for the LR associated with the true scatter matrix \mSigma_{0}. Furthermore, we derive fixed point regularized covariance matrix estimates using the generalized expected likelihood methodology. This first part is devoted to the conventional scenario (T≥MT \geq M) while Part 2 deals with the under-sampled scenario (T≤MT \leq M)

    Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach - Part 2: The Under-Sampled Case

    Get PDF
    In the first part of this series of two papers, we extended the expected likelihood approach originally developed in the Gaussian case, to the broader class of complex elliptically symmetric (CES) distributions and complex angular central Gaussian (ACG) distributions. More precisely, we demonstrated that the probability density function (p.d.f.) of the likelihood ratio (LR) for the (unknown) actual scatter matrix \mSigma_{0} does not depend on the latter: it only depends on the density generator for the CES distribution and is distribution-free in the case of ACG distributed data, i.e., it only depends on the matrix dimension MM and the number of independent training samples TT, assuming that T≥MT \geq M. Additionally, regularized scatter matrix estimates based on the EL methodology were derived. In this second part, we consider the under-sampled scenario (T≤MT \leq M) which deserves a specific treatment since conventional maximum likelihood estimates do not exist. Indeed, inference about the scatter matrix can only be made in the TT-dimensional subspace spanned by the columns of the data matrix. We extend the results derived under the Gaussian assumption to the CES and ACG class of distributions. Invariance properties of the under-sampled likelihood ratio evaluated at \mSigma_{0} are presented. Remarkably enough, in the ACG case, the p.d.f. of this LR can be written in a rather simple form as a product of beta distributed random variables. The regularized schemes derived in the first part, based on the EL principle, are extended to the under-sampled scenario and assessed through numerical simulations

    Robust Multiple Signal Classification via Probability Measure Transformation

    Full text link
    In this paper, we introduce a new framework for robust multiple signal classification (MUSIC). The proposed framework, called robust measure-transformed (MT) MUSIC, is based on applying a transform to the probability distribution of the received signals, i.e., transformation of the probability measure defined on the observation space. In robust MT-MUSIC, the sample covariance is replaced by the empirical MT-covariance. By judicious choice of the transform we show that: 1) the resulting empirical MT-covariance is B-robust, with bounded influence function that takes negligible values for large norm outliers, and 2) under the assumption of spherically contoured noise distribution, the noise subspace can be determined from the eigendecomposition of the MT-covariance. Furthermore, we derive a new robust measure-transformed minimum description length (MDL) criterion for estimating the number of signals, and extend the MT-MUSIC framework to the case of coherent signals. The proposed approach is illustrated in simulation examples that show its advantages as compared to other robust MUSIC and MDL generalizations

    Semiparametric CRB and Slepian-Bangs formulas for Complex Elliptically Symmetric Distributions

    Full text link
    The main aim of this paper is to extend the semiparametric inference methodology, recently investigated for Real Elliptically Symmetric (RES) distributions, to Complex Elliptically Symmetric (CES) distributions. The generalization to the complex field is of fundamental importance in all practical applications that exploit the complex representation of the acquired data. Moreover, the CES distributions has been widely recognized as a valuable and general model to statistically describe the non-Gaussian behaviour of datasets originated from a wide variety of physical measurement processes. The paper is divided in two parts. In the first part, a closed form expression of the constrained Semiparametric Cram\'{e}r-Rao Bound (CSCRB) for the joint estimation of complex mean vector and complex scatter matrix of a set of CES-distributed random vectors is obtained by exploiting the so-called \textit{Wirtinger} or CR\mathbb{C}\mathbb{R}-\textit{calculus}. The second part deals with the derivation of the semiparametric version of the Slepian-Bangs formula in the context of the CES model. Specifically, the proposed Semiparametric Slepian-Bangs (SSB) formula provides us with a useful and ready-to-use expression of the Semiparametric Fisher Information Matrix (SFIM) for the estimation of a parameter vector parametrizing the complex mean and the complex scatter matrix of a CES-distributed vector in the presence of unknown, nuisance, density generator. Furthermore, we show how to exploit the derived SSB formula to obtain the semiparametric counterpart of the Stochastic CRB for Direction of Arrival (DOA) estimation under a random signal model assumption. Simulation results are also provided to clarify the theoretical findings and to demonstrate their usefulness in common array processing applications.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: substantial text overlap with arXiv:1807.08505, arXiv:1807.0893

    Robustness of subspace-based algorithms with respect to the distribution of the noise: application to DOA estimation

    Get PDF
    International audienceThis paper addresses the theoretical analysis of the robustness of subspace-based algorithms with respect to non-Gaussian noise distributions using perturbation expansions. Its purpose is twofold. It aims, first, to derive the asymptotic distribution of the estimated projector matrix obtained from the sample covariance matrix (SCM) for arbitrary distributions of the useful signal and the noise. It proves that this distribution depends only of the second-order statistics of the useful signal, but also on the second and fourth-order statistics of the noise. Second, it derives the asymptotic distribution of the estimated projector matrix obtained from any M-estimate of the covariance matrix for both real (RES) and complex elliptical symmetric (CES) distributed observations. Applied to the MUSIC algorithm for direction-of-arrival (DOA) estimation, these theoretical results allow us to theoretically evaluate the performance loss of this algorithm for heavy-tailed noise distributions when it is based on the SCM, which is significant for weak signal-to-noise ratio (SNR) or closely spaced sources. These results also make it possible to prove that this performance loss can be alleviated by replacing the SCM by an M-estimate of the covariance for CES distributed observations, which has been observed until now only by numerical experiments

    Methodologies in factor modeling

    Get PDF

    Generalized Elliptical Distributions: Theory and Applications

    Get PDF
    The thesis recalls the traditional theory of elliptically symmetric distributions. Their basic properties are derived in detail and some important additional properties are mentioned. Further, the thesis concentrates on the dependence structures of elliptical or even meta-elliptical distributions using extreme value theory and copulas. Some recent results concerning regular variation and bivariate asymptotic dependence of elliptical distributions are presented. Further, the traditional class of elliptically symmetric distributions is extended to a new class of `generalized elliptical distributions' to allow for asymmetry. This is motivated by observations of financial data. All the ordinary components of elliptical distributions, i.e. the generating variate, the location vector and the dispersion matrix remain. Particularly, it is proved that skew-elliptical distributions belong to the class of generalized elliptical distributions. The basic properties of generalized elliptical distributions are derived and compared with those of elliptically symmetric distributions. It is shown that the essential properties of elliptical distributions hold also within the broader class of generalized elliptical distributions and some models are presented. Motivated by heavy tails and asymmetries observed in financial data the thesis aims at the construction of a robust dispersion matrix estimator in the context of generalized elliptical distributions. A `spectral density approach' is used for eliminating the generating variate. It is shown that the `spectral estimator' is an ML-estimator provided the location vector is known. Nevertheless, it is robust within the class of generalized elliptical distributions. The spectral estimator corresponds to an M-estimator developed 1983 by Tyler. But in contrast to the more general M-approach used by Tyler the spectral estimator is derived on the basis of classical maximum-likelihood theory. Hence, desired properties like, e.g., consistency, asymptotic efficiency and normality follow in a straightforward manner. Not only caused by the empirical evidence of extremes but also due to the inferential problems occuring for high-dimensional data the performance of the spectral estimator is investigated in the context of modern portfolio theory and principal components analysis. Further, methods of random matrix theory are discussed. They are suitable for analyzing high-dimensional covariance matrix estimates, i.e. given a small sample size relative to the number of dimensions. It is shown that the Marchenko-Pastur law fails if the sample covariance matrix is used in the context of elliptically of even generalized elliptically distributed and heavy tailed data. But substituting the sample covariance matrix by the spectral estimator resolves the problem and the classical arguments of random matrix theory remain valid

    Vol. 7, No. 2 (Full Issue)

    Get PDF
    • …
    corecore