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INVITED ARTICLES 
Estimating Explanatory Power in a Simple Regression Model Via Smoothers 

  
 

   
 

Rand R. Wilcox 
University of Southern California 

 
 

Consider the regression model ( )Y Xγ ε= + , where ( )Xγ  is some conditional measure of location 

associated with Y , given X . Let Ŷ  be some estimate of Y , given X , and let 2 ( )Yτ  be some measure 

of variation. Explanatory power is 2 2 2ˆ( ) / ( )Y Yη τ τ= . When 0 1( )X Xγ β β= +  and 2 ( )Yτ  is the 

variance of Y , 2 2η ρ= , where ρ  is Pearson's correlation. The small-sample properties of some 
methods for estimating a robust analog of explanatory power via smoothers is investigated. The robust 
version of a smoother proposed by Cleveland is found to be best in most cases.  
 
Key words: strength of association, smothers, effect size, robust methods and nonparametric regression. 
 
 

Introduction 
 
Consider the simple, nonparametric regression 
model  

( )Y Xγ ε= + , (1) 

where X  and ε  are independent random 
variables, and ( )Xγ  is some unknown function 
that represents some conditional measure of 
location associated with Y  given X . A 
fundamental goal is measuring the strength of 

 
 
Rand R. Wilcox (rwilcox@usc.edu) is Professor 
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textbooks on statistics, the most recent of which 
is  Basic Statistics: Understanding Conventional 
Methods and Modern Insights  (2009, New 
York, Oxford University Press) 

 
 
the association between Y  and X . Certainly 
the best-known approach is to assume 
  

0 1( )X Xγ β β= + ,  

estimate 0β  and 1β  via ordinary least squares, 

and then use 2ρ , where ρ  is Pearson's 
correlation. It is well known that Pearson's 
correlation is not robust (e.g., Wilcox, 2005) and 
can yield a highly misleading sense about the 
strength of the association among the bulk of the 
points. Yet another concern is the assumption 
that the regression line is straight. Situations are 
encountered where this assumption seems to be 
a reasonable approximation of reality, but 
experience with nonparametric regression 
methods (e.g. Efromovich, 1999; Eubank, 1999; 
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Fan & Gijbels, 1996; Fox, 2001; Green & 
Silverman, 1993; Gyofri et al., 2002; Hardle, 
1990; Hastie & Tibshirani, 1990), sometimes 
called smoothers, suggest that it is common to 
encounter situations where this is not the case.  

Let Ŷ  be some estimate of Y given X , 

and let 2 ( )Yτ  be some measure of variation 

associated with the marginal distribution of Y . 
Then a general approach to measuring the 
strength of the association between Y  and X , 
called explanatory power, is  

 
2

2
2

ˆ( )

( )

Y
Y

τη
τ

=  (2) 

 
(e.g., Doksum, Blyth, Bradlow, Meng, & Zhao, 
1994; Wilcox, 2003, p. 506). If it is assumed that 
the conditional distribution of Y given X  has 
the form 
 

0 1Y Xβ β ε= + + , 

 

where ( ) 0E ε = , and if 2τ is taken to be the 

usual variance, 2 2η ρ= . It is well-known, 
however, that the usual variance and Pearson's 
correlation are not robust. Roughly, small 
changes in any distribution can substantially 
alter ρ  resulting in a potentially misleading 
sense about the strength of the association 
among the bulk of the points. In particular, slight 
departures from normality can be a practical 
concern when interpreting ρ . 

A simple method for robustifying 2η is 

to take 2τ to be some robust measure of 
variation. Many such measures have been 
proposed, comparisons of which are reported by 
Lax (1985). Based on efficiency, Lax concludes 
that two so-called A-estimators are best, one of 
which corresponds to the percentage bend 
midvariance that was studied by Shoemaker and 
Hettmansperger (1982). It can be designed to 
have a reasonably high breakdown point, its 
efficiency compares well to the usual sample 
variance under normality, and its standard error 
can be substantially smaller than the standard 
error of the sample variance when sampling 
from a heavy-tailed distribution. For these 

reasons it is used here, but this is not to suggest 
that all other measures of variation have no 
practical value for the problem at hand.  

In addition to many robust measures of 
variation, there are many nonparametric 
regression methods that might be used when 
trying to deal with curvature. Here, no attempt is 
made to examine all such methods when 
estimating explanatory power, but rather to 
consider a few methods that appear to deserve 
serious consideration, with the goal of finding 
one method that performs well over a fairly 
broad range of situations when the sample size is 

small. In particular, three estimates of 2η  are 
considered that are based on three nonparametric 
regression estimators: the robust version of the 
method in Cleveland (1979), a particular version 
of a kernel regression estimator derived by Fan 
(1993), and the running interval smoother (e.g., 
Wilcox, 2003, section 11.4.4). Consideration 
was given to a variation of the running interval 
smoother based on bootstrap bagging (e.g., 
Buhlmann & Yu, 2002), but it performed rather 
poorly in the simulations reported here, so 
further details are omitted.  

To add perspective, some results are 
included assuming  

 

0 1( )X Xγ β β= +  
 
with 0β  and 1β  estimated using the robust 

method derived by the Theil (1950) and Sen 
(1968) as well as the ordinary least squares 
estimator. Of course, when there is curvature, 
any method that assumes  
 

0 1( )X Xγ β β= +   

 
has the potential to perform poorly. The issue 
here is how much is sacrificed when a 
nonparametric estimate of the regression line is 
used and the regression line is indeed straight. 
As is well known, there are many robust 
alternatives to the Theil-Sen estimator that have 
excellent theoretical properties. The Theil-Sen 
estimator is used because, in terms of efficiency, 
it seems to perform about as well as the ordinary 
least squares (OLS) estimator when the error 
term has a normal distribution, and it continues 
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to perform well in situations where OLS 
performs poorly (e.g., Wilcox, 2005). If the 
regression line is straight, perhaps there is some 
practical advantage to using some other robust 
estimator, but this issue is not addressed here. 
The primary goal is to consider methods that can 
be used when curvature might exist. Although 
not considered here, another well-known 
approach to nonparametric regression is based 
on what are called splines, and so for 
completeness, some comments seem in order. 
Some informal comparisons with other 
smoothers suggest that sometimes splines are 
not quite as satisfactory as other methods 
(Hardle, 1990; Wilcox, 2005). For this reason, 
they are not considered, but in fairness, it seems 
that an extensive formal comparison with the 
regression methods used here has not been 
made.  

An attempt could be made to fit a 
parametric model in a manner that takes into 
account curvature, but simulating this process is 
difficult. The results reported here suggest that, 
even when fitting a correct parametric model, 
little is gained relative to method C, which is 
described below.  
 

Methodology 
 
The Percentage Bend Midvariance 

The objective now is to summarize how 
the percentage bend midvariance measure of 
dispersion is computed. For a recent summary of 
how this measure of dispersion compares to 
other robust measures of variation, see Wilcox 
(2005, section 3.12). Let 1, , nX X  be a 

random sample. For some β  satisfying 0< β  < 

.5, compute (1- β )n+.5, round the result to the 
nearest integer, and label the result m. The 
choice β =.1 results in good efficiency under 
normality, but a relatively low breakdown point. 
That is, with β =.1, only 10% of the 
observations have to be changed to destroy this 
measure of dispersion. Accordingly, β =.2 is 

used. Let | |i iW X M= − , 1,...,i n= , and let 

(1) ( )... nW W≤ ≤ be the iW  values written in 

ascending order. Set ( )ˆ mWβω = ,and 

ˆ
i

i
X MU

βω
−= . 

Let 1ia =  if 1iU < ; otherwise 0ia = . The 

estimated percentage bend midvariance is  
 

2 2
2

2

( )

( )
i

i

n U
a

βω ψ
τ = 


, (3) 

 
where ( ) max[ 1, min(1, )]x xψ = − . 
 
Fan's Kernel Regression Estimator 

The first of the nonparametric regression 
methods considered here stems from Fan (1993). 

1 1( , ),..., ( , )n nX Y X Y  be a random sample of n 

points. Let ( )K u  be the Epanechnikov kernel 
given by  

23 1
( ) (1 ) / 5

4 5
K u u= −

 
 

If | | 5u < ; otherwise ( )K u =0. Let 

min( , /1.34)h s IQR= , where s  is the 

standard deviation of the X  values and IQR is 
the interquartile range. Bjerve and Doksum 
(1993) take h s= , but it is well known that a 
robust measure of variation, such as the 
interquartile range, can have practical value 
when using a kernel density estimator (e.g., 
Silverman, 1986). 

There is the issue of how to estimate 
IQR. Many quantile estimators have been 
proposed, comparisons of which were made by 
Parrish (1990) as well as Dielman, Lowry, and 
Pfaffenberger (1994). Here the interquartile 
range is estimated via the so-called ideal fourths 
(Frigge, Hoaglin, & Iglewicz, 1989). Perhaps 
some alternative quantile estimator offers a 
practical advantage for the problem at hand, but 
this goes beyond the scope of this paper.  

To be more precise, the ideal fourths are 
computed as follows. Let (1) ( )nX X≤ ≤  be 

the observations written in ascending order. 
Estimates of the lower quartile typically have the 
form 

1 ( ) ( 1)(1 ) j jq X X += − +   
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The ideal fourths are computed by taking j to be 
the integer portion of (n/4)+(5/12) and 

5

4 12

n j= + −  

The estimate of the upper quartile is taken to be 

2 ( 1)(1 ) k kq X X −= − +  where k=n-j+1, in 

which case the interquartile range is estimated 
with 2 1IQR q q= − . Let ( ) ( | )m x E Y X x= = . 

Then ( )m x  is estimated with 0 1ˆ ( )m x b b x= + , 

where 0b  and 1b  are determined via weighted 

least squares with weights (( ) / )i iw K X x h= −
. This will be called method F. 
 
Cleveland's Method 

To outline Cleveland's method, for any 
x, let | |i iX xδ = − . Sort the iδ  values and 

retain the nκ  pairs of points that have the 
smallest iδ  values, where κ is some number 

between 0 and 1 and is called the span. Let  
| |i

i
m

x XQ
δ
−= , and if 0 1iQ≤ < , set 

3 3(1 )i iw Q= − , otherwise 0iw = . Next, use 

weighted least squares to estimate m(x) using 

iw  as weights.  

Cleveland (1979) also discussed a 
robustified version of this method, which is used 
here. In effect, extreme Y  values get little or no 
weight, and so they have little or no impact on 
the smooth. (An outline of these additional 
computations can also be found in Hardle, 1990, 
p. 192.) Both R and S-PLUS provide access to a 
function, called lowess, which performs the 
computations, and the R version was used in the 
simulations reported here using the default value 
κ =.75. This will be called method C. 
 
The Running-Interval Smoother 

Finally, the so-called running interval 
smoother was considered. For some constant f, 
declare x to be close to iX  if  

| |iX x f MADN− ≤ × , 

where MADN=MAD/.6745, MAD is the median 
of the values 1| |, ,| |nX M X M− − , and M
is the usual sample median of the iX  values. Let 

( ) { :| | }i j iN X j X X f MADN= − ≤ × . That is, 

( )iN X  indexes the set of all jX  values that are 

close to iX . Then m( iX ) is taken to be some 

measure of location based on all jY  values such 

that ( )ij N X∈ . Here, a 20% trimmed mean is 

used. It has nearly the same efficiency as the 
mean under normality, but it continues to have 
high efficiency, relative to the usual sample 
mean, when sampling from heavy-tailed 
distributions. It appears that often a good choice 
for the span, f, is f=1 (e.g., Wilcox, 2005) and 
this value is used here. However, results in the 
next section indicate that this choice can be 
relatively ineffective for the problem at hand; a 
smaller value for f seems to be desirable, at least 
with small sample sizes. But even now, all 
indications are that Cleveland's method gives 
superior results. This will be called method R. 
 
The Theil-Sen Estimator 

This section reviews how the Theil-Sen 
estimator is computed. Let iX  and jX  be any 

two X  values such that i jX X>  . Denote the 

slope corresponding to the two points ( , )i iX Y  

and ( , )j jX Y  by 1ijb . The median of all such 

slopes is the Theil-Sen estimate of 1β  and is 

labeled 1tsb . The intercept is estimated with  

0 1ts y ts xb M b M= − ,where yM  and xM  are the 

sample medians corresponding to the Y  and X  
values, respectively. Estimation of explanatory 
power via the Theil-Sen estimator will be called 
method TS. 
 
Estimating Explanatory Power 

Based on the regression estimators just 
described, explanatory power is estimated in an 

obvious way. For each iX , compute îY , the 

estimate of Y  given that iX X= . Then 

explanatory power is estimated with  
2

2
2

ˆˆ ( )
ˆ

ˆ ( )

Y
Y

τη
τ

= , 
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where 2ˆ ( )Yτ  indicates the estimated percentage 

bend midvariance based on 1, , nY Y . 

 
Results 

 
Simulations were used to the check the small 
sample properties of the methods just described 
Here, two types of regression lines are 

considered: Y X ε= +  and 2Y X ε= + . In 
both cases, bias was found to be an important 
issue, as will be seen. It is noted that additional 
simulations were run with Y ε= , in which case 

2 0η = , again bias is an issue, but for brevity, 

no additional details are given. For 2Y X ε= + , 
no results are reported when using OLS and 
method TS, since they are based on the 
assumption that 0 1Y Xβ β ε= + +  and are 

clearly unsatisfactory when in fact 2Y X ε= + . 
Both X  and ε  are assumed to have one of four 
g-and-h distributions (Hoaglin, 1985), which 
contains the standard normal distribution as a 
special case. If Z  has a standard normal 
distribution, and if 0g > , then 
  

2exp( ) 1
exp( / 2)

gZW hZ
g

−=  

 
has a g-and-h distribution where g  and h  are 
parameters that determine the first four 
moments. If 0g = , this last equation is taken to 

be 2exp( / 2)W Z hZ= . The four distributions 

were the standard normal ( 0g h= = ), a 
symmetric heavy-tailed distribution (h=.5, g=0), 
an asymmetric distribution with relatively light 
tails (h=0, g=.5), and an asymmetric distribution 
with heavy tails (g=h=.5). Table 1 shows the 
theoretical skewness ( 1κ ) and kurtosis ( 2κ ) for 

each distribution considered. When h=.5, the 
fourth moment is not defined and the value for 

2κ  is left blank. Additional properties of the g-

and-h distribution are summarized by Hoaglin 
(1985). 
 
 
  

There remains the problem of 

determining the population value of 2η  when 

and ε  have some specified distribution. First 
consider the case Y X ε= + , where both X  
and ε  are assumed to have one of four g-and-h 
distributions previously described. Then the 

correct estimate of Y  is Ŷ X= , in which case  
2 2ˆ( ) ( )Y Xτ τ= , which was determined by 

randomly sampling n=100,000 observations 
from the distribution under consideration. As for 

2 ( )Yτ , the following process was used. First 

generate 5000 values for both ε  and X , which 
yields 5000 values for Y . Computing τ  based 
on these 5000 values yields an estimate 
of τ . Here, this process was repeated 5000 
times, and the average of the resulting τ  values 

is taken to be the population value of 2 ( )Yτ . 

And of course, having determined both 2 ˆ( )Yτ  

and 2 ( )Yτ , 2η  is taken be 2 ˆ( )Yτ / 2 ( )Yτ . As 

for the case 2Y X ε= + , the same process was 

used. For Y X ε= + , the values of 2η  were 
found to be .499, .409, .338, .314 corresponding 
to (g,h)=(0,0), (.5,0), (0,.5) and (.5,.5), 
respectively. As for 2Y X ε= + , the values 
were found to be .323, .242, .365 and .330. 

Each replication in the simulations 
consisted of generating n values for X , another 
n values for ε , computing Y X ε= +  or 

2Y X ε= + , and then applying the estimators 
described in the previous section. Two sample 
sizes were considered: n=30 and 100. Here, X  
and ε  have the same g-and-h distribution. 

 
 

Table 1:  
Some properties of the g-and-h distribution 

g h 
1κ  2κ  

0.0 0.0 0.0 3.0 
 

0.0 0.5 0.00 --- 
 

0.5 0.0 0.61 9.7 
 

0.5 0.5 2.81 
 

--- 
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Table 2: Estimated bias  
 
 

g  h   TS    C    F      R  OLS 
 

Y X ε= +  
 

0.0  0.0  .017  .007  -.005  -.109  .019 
 

0.5  0.0  .028  .040  .021   -.052  .094 
 

0.0  0.5  .042  .047  .396  -.015  .158 
 

0.5  0.5  .045  .050  .313  .013  .207 
 

2Y X ε= +  
 

0.0  0.0  ---  .022  .009  -.112  --- 
 

0.5  0.0   ---  .086  .021  -.019  --- 
 

0.0  0.5  ---  .084  -.013  -.003  --- 
 

0.5  0.5  ---  .121  .047  .077  --- 
 

 
Table 3: Estimated squared standard error  

 
g h  TS  C  F  R  OLS 
       

Y X ε= +  
       

0.0  0.0 .031 .034 .037  .035 .038 
0.5  0.0 .029 .035 .051  .051 .062 
0.0  0.5 .035 .039 83.875 .047 .178 
0.5  0.5 .034 .040 6.490 .063 2.452

       

 
2Y X ε= +   

      
0.0  0.0  --- .035 .033  .038  --- 
0.5  0.0  --- .074 .052  .076 --- 
0.0  0.5 ---  .142 .559  .135 --- 
0.5  0.5  --- .159 1.018 .343 --- 
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This process was repeated 1000 times 

yielding 1000 estimates of 2η , say 2 2
1 1000, ,η η . 

Bias was estimate with  

2 21
ˆ( )

1000 iη η−  

and the squared standard error of 2η was 
estimated with  

2 2 21
( )

999 iη η− , 

where 2 2 /1000iη η= . The results are 

summarized in Tables 2 and 3 for the case n=30.  
First consider bias. Method F performs 

well when the regression line is straight and 
when both X  and ε  have symmetric 
distributions. But when the distributions are 
skewed, bias can be severe, suggesting that 
method F be eliminated from consideration. 
Method R performs reasonably well, except 
under normality where it performs poorly. 
Increasing n to 100, it still performs poorly, in 
terms of bias, for this special case. Only method 
C has relatively low bias, and it competes well 
with OLS and method TS, even when the 
regression line is straight. However, when there 
is curvature, now the bias of method C is rather 
high compared to method F. Again, method R is 
found to be unsatisfactory under normality.  

As for the squared standard error of the 
estimators, Table 3 indicates that method F can 
be relatively disastrous when the regression line 
is straight and sampling is from skewed 
distributions. And for heavy-tailed distributions, 
OLS does not perform well compared to 
methods C and R. Method R competes 
reasonably well with method C, but there are 
obvious exceptions. Generally, method C 
performed best among the situations considered.  

To provide some sense of how method 

C improves when 2Y X ε= + , as n gets large, 
some additional simulations were run with 
n=100 for the cases (g, h)=(0.0, 0.5) and (0.5, 
0.5). Now the bias of method C was estimated to 
be .088 and .080, respectively. So for the 
skewed, heavy-tailed distribution considered 
here, the reduction in bias is substantial, but for 
the skewed, light-tailed distribution the amount 
of bias remains about the same. Method F has 
small bias for these situations, but its squared 

standard error is relatively high. Method R has 
about the same amount of bias as method C and 
a smaller standard error, but because it performs 
poorly in other situations, it would seem that it 
should be used with caution. 
 

Conclusion 
One limitation of the results reported here is 
that, when using a smoother, the span was 
chosen to be a fixed constant that is often used 
as the default value. Checks made when using 
method R indicate that a smaller span can 
improve its performance considerably. However, 
it remains unknown how best to adjust the span 
when estimating explanatory power, and even 
for the adjustments considered here (f=.7 and 
.5), it was found that method C remains a bit 
more satisfactory in most situations.  

Although method C offers protection 
against the deleterious effects of outliers among 
the Y  values, it is known that a sufficient 
number of outliers can negatively affect its 
performance relative to method R (Wilcox, 
2005).  

This was one of the main reasons for 
considering method R and it might explain why 
method C can be unsatisfactory when there is 
curvature and when dealing with extremely 
heavy-tailed distributions. Perhaps in most 
practical situations this is not an issue, but the 
extent to which this is true is difficult to 
determine. 

When the usual variance is used, rather 
than the percentage bend midvariance, results in 
Doksum and Samarov (1995) suggest estimating 

explanatory power with 2r , the square of 
Pearson's correlation, rather than with the ratio 

of the variances of Ŷ  and Y . An analog of this 
approach is to use the percentage bend 
correlation (Wilcox, 2005, p. 391). 
Consideration was given to this approach, but it 
proved to be unsatisfactory in the simulations 
described here. 

Perhaps the most surprising result is that 
there is little or no advantage to fitting a straight 
line to the data, versus using something like 
method C, when in fact the regression line is 
straight and when using the percentage bend 
variance. Consequently, method C is 
recommended for general use. 
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Comparing Factor Loadings in Exploratory Factor Analysis: 

A New Randomization Test 

W. Holmes Finch                   Brian F. French 
Ball State University              Purdue University 

 
 
Factorial invariance testing requires a referent loading to be constrained equal across groups. This study 
introduces a randomization test for comparing group exploratory factor analysis loadings so as to identify 
an invariant referent. Results show that it maintains the Type I error rate while providing adequate power 
under most conditions. 
 
Key words: Exploratory factor analysis, randomization test, multigroup confirmatory factor analysis, 
invariance testing. 
 
 

Introduction 
 
Score validity evidence can be considered the 
primary focus in instrument development and 
evaluation (AERA, APA, & NCME, 1999). For 
instance, Standard 1.1 of the Standards for 
educational and psychological testing states “A 
rationale should be presented for each 
recommended interpretation and use of test 
scores, together with a comprehensive summary 
of the evidence and theory bearing on the 
intended use or interpretation” (p. 17, AERA et 
al., 1999). Measurement invariance (MI) or 
equivalence is one form of validity evidence that 
is important when scores are used for group 
comparisons. MI refers to the case where an 
assessment measures one or more latent 
constructs identically across groups. The 
presence of this property helps ensure that the 
measurement of the specified construct is the 
same across groups, thus allowing for accurate  
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comparisons in score parameters. Otherwise 
group comparisons may be meaningless, as 
observed differences could be the result of 
ability differences or measurement differences. 

Factor invariance is one form of 
measurement invariance (MI) and is typically 
established using multi-group confirmatory 
factor analysis (MCFA). Through MCFA, an a 
priori theoretically specified latent structure of 
an instrument is evaluated for MI across groups 
(Alwin & Jackson, 1981; Golembiewski, 
Billingsley, & Yeager, 1976). The presence of 
MI is tested using differences in the chi-square 
goodness-of-fit statistics for more (loadings held 
equal across groups) and less restrictive 
(loadings allowed to vary by group) models. If 
the fit of the models differs significantly, as 
measured by the chi-square difference test, the 
researcher concludes a lack of invariance. This 
method is well documented (e.g., Bollen, 1989; 
Byrne, Shavelson, & Muthén, 1989; Jöreskog & 
Sörbom, 1996; Maller & French, 2004; Raju, 
Laffitte, & Byrne, 2002; Reise, Widaman, & 
Pugh, 1993). 

The requirement of an equality 
constraint of a referent indicator across groups in 
MCFA calls for methodological attention 
(Millsap, 2005). Comparison of a latent factor 
model can only occur if the same coordinate 
system is used for all groups in question 
(Wilson, 1981). Model identification procedures 
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ensure this required comparability by assigning 
the same units of measurement to the latent 
variables for groups in question (Jöreskog & 
Sörbom, 1996). Model identification is often 
accomplished by assigning the latent factors to a 
scale based on a common indicator across 
groups, typically either a factor variance or a 
factor loading for a single variable. The most 
common practice is to set one of these parameter 
values to 1.0 across groups, with the factor 
loading method being the most common 
(Brown, 2006; Vandenberg & Lance, 2000). 
This factor loading referent approach requires 
the assumption that the referent loading is equal 
for all groups in the population (i.e. the loading 
is assumed to be invariant).  

When the referent parameter is not 
invariant, estimates of other model parameters, 
such as factor loadings, may be distorted and 
hypothesis tests for the group invariance of these 
other parameters may be inaccurate (Bollen, 
1989; Cheung & Rensvold, 1999; Millsap, 
2001). Therefore, a circular situation exists 
where (a) the referent loading must be invariant, 
(b) invariance of the referent (or any other) 
loading cannot be established without estimating 
a model, and (c) model estimation requires an 
invariant referent loading. Thus, we return to the 
original invariant referent assumption, which is 
commonly not assessed in practice, most likely 
due to the fact that there is not a relatively 
straight forward way of doing so. A procedure to 
locate an invariant referent variable would be 
useful to ensure the remainder of invariance 
assessment is accurate. 

Heretofore, this assumption of referent 
invariance could not be directly tested (Bielby, 
1986; Cheung & Rensvold, 1999; Wilson, 
1981). A search procedure, the factor-ratio test 
and stepwise partitioning procedure, has been 
suggested (Rensvold & Cheung, 2001). The 
procedure uses each variable as the referent in a 
set of models with each other variable 
constrained to be invariant. The iterative 
procedure tests all pairs of variables (i.e., p (p – 
1) / 2 pairs) and becomes quite complex as the 
number of indicator variables increases, making 
it not “user-friendly” for practitioners 
(Vandenberg, 2002). For example, a moderate 
length instrument (i.e., 30 indicators) requires 
435 individual invariance tests to fully identify 

which loadings could be used as a referent in the 
final MCFA analysis. Evaluation of this 
procedure demonstrated adequate (e.g., 
acceptable false and true positives) but not 
perfect performance (French & Finch, 2006a). 

Exploratory factor analysis (EFA) has 
been suggested as an alternative approach for 
identifying an invariant referent loading. In its 
relative simplicity, EFA overcomes the 
limitations associated with the factor-ratio test 
and search procedure. The EFA based approach 
involves conducting a single EFA for each group 
separately and descriptively comparing their 
respective loading estimates to ascertain which 
appear to be invariant in the sample. Such an 
analysis may be considered a weak test of 
factorial invariance (Zumbo, 2003) and is in 
accord with suggestions that EFA be used to 
examine loadings with an “interocular eyeball 
test” (Vandenberg, 2002, p. 152) to judge the 
similarity of loadings to identify referent 
variables. Evaluation of this procedure has been 
favorable (Finch & French, in press), though it 
does not offer a formal hypothesis test of 
invariance, instead allowing for the comparison 
of parameter estimates across groups in order to 
provide a sense of factor loading differences 
without the need to conduct a large number of 
analyses. Specifically, pattern coefficients 
appearing most similar would be eligible for 
serving as a referent variable in the MCFA. The 
obvious limitation to the current EFA procedure 
is the lack of a statistical test to give a formal 
determination about the differences between 
factor loadings.  

The purpose of this study was to 
develop a randomization test based on EFA and 
to assess its utility in identifying invariant factor 
loadings between two groups. This procedure 
would be used prior to conducting the actual 
MCFA, as a purification process for identifying 
a loading that is likely to be group invariant and 
thus eligible for use as the referent parameter. 
The procedure entails conducting one EFA per 
group and then comparing the factor loadings 
(i.e., pattern coefficients) from the separate 
analyses via the test statistic to determine 
differences of individual loadings. Loadings that 
are significantly different would not be used as a 
referent.  
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Factor loading invariance randomization test 
(FLIRT) 

Statisticians have developed exact tests 
for a number of applications involving group 
comparisons (see Good, 1994, for a thorough 
description of exact tests). Regardless of the 
context, every exact test for group comparison 
involves finding all possible permutations of the 
data, with respect to group membership. For 
each of these permutations the test statistic of 
interest is calculated and the collection of these 
statistics across all permutations forms a 
sampling distribution. The test statistic for the 
observed sample is also calculated and, if it is 
more extreme than a predetermined (e.g., 95th) 
percentile of the permutation distribution, the 
null hypothesis of no group difference can be 
rejected. 

One common problem in the actual 
application of permutation tests is that, even for 
modestly sized samples, the number of 
permutations that must be determined can be 
large. For example, for a simple two group 
comparison with a total sample of 30 individuals 
(15 per group), the number of permutations 
would be 155,117,520. The computer time 
necessary to conduct analyses for each of these 
permutations would be prohibitive for any real 
application. An alternative approach to using all 
possible permutations is known as 
randomization, or Monte Carlo, testing 
(Edgington, 1980). With this methodology, a 
random sample of the permutations is selected 
and the test statistic of interest is calculated for 
each to create the sampling distribution as 
described above. As with the full permutation 
testing approach, the test statistic value obtained 
from the observed data is compared with this 
distribution and, if it is more extreme than some 
predetermined (e.g. 95th) percentile, the null 
hypothesis of no group difference is rejected. 
The description of the specific randomization 
test statistic for comparing two groups’ factor 
loadings appears below. 

The factor loading invariance 
randomization test (FLIRT) for comparing two 
groups’ factor loadings is based upon the 
supposition that there exists configural 
invariance for the two groups; i.e., the basic 
factor structure is the same, though the actual 
factor loading values may not be. To test the null 

hypothesis of equal (invariant) group loadings 
for a single indicator variable, EFA is run 
separately for the two groups and the difference 
in the loadings for the target indicator is 
calculated. Next, 100 random samples are taken 
from the population of all possible permutations 
and for each of these EFA is conducted by 
group. The difference in the target loadings is 
calculated for each permutation to develop a 
distribution against which the group loading 
difference for the observed data is compared. If 
this observed difference is larger than the 95th 
percentile from the randomization distribution, 
the null hypothesis of no group differences on 
the target loading is rejected. The current study 
evaluated FLIRT through the use of a Monte 
Carlo simulation, as well as the analysis of a real 
dataset. The performance of the test was judged 
in terms of power and Type I error under a 
variety of conditions (e.g., sample size, factor 
model) in the simulation study, and by 
comparing hypothesis test results for the 
observed data with those presented in Thompson 
(2004). 
 

Methodology 
 

Simulated data were used to control 
variables that could influence the magnitude of 
factor loading estimates, with 1,000 replications 
for each combination of conditions described 
below. Simulations and analyses were 
completed in SAS, V9.1 (The SAS Institute, 
2003). Conditions were held as consistent as 
possible with previous studies (e.g., Finch & 
French, 2008 in press) for comparability of 
results. Second, a real data set, the LibQUAL+ 
study (Thompson, 2004), was employed to 
provide an applied example. 
 
Number of Factors and Indicators 

Data were simulated from both 1- and 2-
factor models, with interfactor correlations set at 
.50 to represent moderately related factors, and 
simple structure for continuous and normally 
distributed subtest level data. The number of 
indicators per factor was 6. 
 
Sample Size 

The necessary sample size to obtain 
reasonable estimates in factor analysis varies 
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depending on the data conditions. Four sample 
size conditions were simulated: 100, 250, 500, 
and 1,000 per group in order to reflect small, 
medium and large samples. These values are 
consistent with other factor analysis simulation 
studies (Cheung & Rensvold, 2002; Lubke & 
Muthén, 2004; Meade & Lautenschlager, 2004), 
ranging from poor (n = 100) to excellent (n = 
1,000) (Comery & Lee, 1992), and may not be 
of much concern here as communalities were 
high (MacCallum, Widaman, Zhang, & Hong, 
1999). 
 
Magnitude of Difference with the Non-Invariant 
Indicators 

Six levels of factor loading values for 
the non-invariant indicator were simulated. A 
baseline condition was established where no 
group differences in loadings were present, with 
all variables having a loading value of 0.75, 
including the target. The remaining 5 conditions 
were characterized by declines in the target 
loading from 0.10 to 0.50 in increments of 0.10 
(i.e., 0.65, 0.55, 0.45, 0.35, and 0.25). This wide 
range of levels was selected since there is no 
effect size, at least to our knowledge, for what 
represents a meaningful difference (Millsap, 
2005) and the range covers previously used 
values in MCFA simulation work (e.g., French 
& Finch, 2006b; Meade & Lautenschlager, 
2004). 
 
Contamination 

The location of invariant parameters 
may be influenced by the number of indicators 
that lack invariance (Millsap, 2005; Yoon & 
Millsap, 2007). Thus, the presence of a factor 
loading, other than for the target indicator, 
exhibiting a group difference was varied as 
either present or absent. In other words, for half 
of the simulated conditions only the target 
indicator loading was contaminated, while for 
the other half of the simulations a second target 
indicator loading also was contaminated at the 
same difference as the target indicator. This 
allowed assessment of the influence of 
additional contaminated variables. 
 
Analysis 

All analyses were conducted by group 
using maximum likelihood factoring with 

PROMAX rotation in the 2-factor condition. 
These settings follow recommendations for 
using EFA for a referent indicator search and are 
more consistent with educational and 
psychological data (e.g., presence of 
measurement error, correlated factors; 
(Vandenberg, 2002). 
 
Evaluation Criteria 

The outcomes of interest for this study 
were the power and Type I error rates of the 
FLIRT. Specifically, the Type I error rate was 
calculated as the proportion of simulation 
replications for which the test statistic rejected 
the null hypothesis when the groups’ loadings 
on a target indicator did not differ. In similar 
fashion, power was calculated as the proportion 
of the simulation replications for which the test 
statistic rejected the null hypothesis when the 
groups’ loadings on the target indicator did in 
fact differ. To determine which conditions 
influenced the outcomes of interest, ANOVA 
and variance components analysis were used 
with each of the manipulated factors serving as 
an independent variable. For the applied data set 
results are presented in terms of locating 
differences in factor loadings as would be for an 
application. 
 

Results 
 
Simulation study 
Type I error 

None of the manipulated factors, or their 
interactions, was identified by the ANOVA as 
being significantly related to the Type I error 
rate of the FLIRT. Table 1 contains these Type I 
error rates by each of the manipulated variables. 
Overall, there is a very slight elevation of the 
error rate above the nominal 0.05, with the most 
notable difference between the 1 and 2 factor 
conditions. However, none of the sample 
differences evident in this table were statistically 
significant, suggesting that they may not be 
present in the population as a whole. 
 
Power 

Based on the results of the ANOVA and 
variance components analysis, the interaction of 
sample size by the difference in the groups’ 
target loadings, as well as the main effects of  
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sample size and difference in target loadings 
were statistically significant and contributed 
more than 10% of the variance to the power of 
the test statistic. Specifically, the interaction 
accounted for 38.4% of the variance as did the 
main effect of difference in loading values, 
while the main effect of sample size contributed 
an additional 20.2% to the variation of power. 
contains power rates by the interaction of sample 
size and group loading differences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the largest sample size condition, power was 
well above 0.95 regardless of the difference 
between the groups’ loadings. Thus, even when 
the target loadings only differed by 0.1 the test 
statistic would virtually always identify this 
divergence. On the other hand, for samples of 
100 per group, the test had power rates below 
0.8 for differences of 0.1 and 0.2. In general, 
across the lower sample size conditions (100 and 
250 most particularly), power was 

Table 1: Type I Error Rates by Sample Size, Number of Factors, 
and Level of Contamination 

Sample size Type I error rate 
100 0.067 
250 0.064 
500 0.059 

1000 0.060 
Factors 

1 0.069 
2 0.057 

Contamination 
No 0.061 
Yes 0.064 

Table 2: Power by Sample Size and Group Difference in Target Loading 
Sample size per group Difference Power 

100 

0.1 0.23 
0.2 0.61 
0.3 0.87 
0.4 0.96 
0.5 0.97 

250 

0.1 0.49 
0.2 0.92 
0.3 0.96 
0.4 1.00 
0.5 1.00 

500 

0.1 0.80 
0.2 1.00 
0.3 1.00 
0.4 1.00 
0.5 1.00 

1000 

0.1 0.97 
0.2 1.00 
0.3 1.00 
0.4 1.00 
0.5 1.00 
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somewhat low for a difference of 0.1 but rose to 
above 0.8 for discrepancies in target loadings of 
0.3 or more. 

Table 3 shows power rates by the 
number of factors and level of contamination. 
Neither of these terms contributed more than 3% 
to the variance in power. A perusal of the results 
in this table shows that there were essentially no 
differences in power for 1 and 2 factors or when 
another loading beyond the target loading 
differed between the groups. 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis of real data 

To demonstrate the FLIRT in real world 
conditions, data taken from the LibQUAL+ 
study were analyzed. For a more complete 
discussion of this dataset and the study from 
which it was drawn, the interested reader is 
encouraged to consult Thompson (2004). The 12 
items included on this survey could be divided 
into three factors, including service provided by 
library staff, the environment of the library and 
the quality of the library’s holdings. Each factor 
was represented by 4 items, which were on a 
rating scale with response options ranging from 
1 to 9. The dataset used, which is available in 
Thompson (2004), included a random sample of 
200 survey respondents, 100 of whom were 
graduate students and 100 who were faculty 
members. 

Thompson described differences in 
factor loading values between graduate students 
and faculty members for item 6, “A meditative 
place”. To demonstrate the utility of the FLIRT 
with real data, the faculty and student loadings 
for item 6 were compared using this new 
statistic. The factor loading values by group 
were 0.7587 for graduate students and 0.9079 
for faculty, leading to an observed loading 
difference of 0.1492. The distribution of 

differences across the 100 randomized datasets 
appears in Figure 1, a visual examination of 
which shows that the observed difference falls in 
the 99th percentile of the randomized values. 
Thus, if α= 0.05, we would conclude that there 
is a statistically significant difference between 
the loading values for the two groups, which is 
in line with the conclusion reached by 
Thompson. The two groups loadings for item 5, 
“A haven for quiet and solitude”, were also 
compared. This was not identified by Thompson 
as differing between the groups. The loading for 
the students was 0.9114, and 0.9342 for the 
faculty, leading to an observed difference of 
0.0228. This value fell at the 46th percentile of 
the randomized loading differences, which 
would lead to a conclusion of no significant 
difference between group loadings at the 
aforementioned level of 0.05. 

The purpose of this analysis with 
previously analyzed real data using MCFA was 
to demonstrate the potential utility of FLIRT. If 
FLIRT had been used as a step prior to the 
MCFA in this example, item 6 would not have 
been selected as a referent variable whereas item 
5 could have been. The results presented are in 
accord with those of Thompson (2004), thus 
providing further evidence, beyond the 
simulation study, that this new statistic does 
appear to be reasonably accurate in correctly 
identifying group loading differences, even for 
samples as small as 100 per group. 
 

Conclusion 
 

The results suggest that in many instances, the 
FLIRT may be a useful tool for identifying 
potential indicator variables with invariant factor 
loadings across groups for use in a subsequent 
MCFA. This outcome was especially evident 
when the differences between loadings and/or 
the sample sizes were large. However, even for 
differences in loadings as small as 0.2 and 
samples of 100 per group, FLIRT was able to 
find differences more than 60% of the time. In 
all but one case, when sample size was 250 or 
more per group, the rates for correctly detecting 
loading differences were at least 0.8, and often 
near 1.0. Furthermore, the Type I error rates 
(identifying loadings as differing when they do 
not) were very close to the nominal rate of 0.05 

Table 3: Power by Number of Factors and 
Contamination 

Number of factors Power 
1 0.90 
2 0.88 

Contamination 
No 0.89 
Yes 0.89 
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for all studied conditions. The combination of 
these results supports the use of the new FLIRT 
statistic in conjunction with EFA for accurately 
detecting a non-invariant loading that could then 
be used as the referent in a subsequent MCFA. 

Correct specification of an invariant 
referent loading is a crucial step in MCFA. 
Failure to do so could lead to biased parameter 
estimates and, in turn, compromise other 
analyses, such as latent mean comparisons. The 
primary method suggested for identifying 
invariant indicators is the factor-ratio test and SP 
procedure (Rensvold & Cheung, 2001), which 
can be a very complex and time consuming 
multi-step technique. While this procedure does 
work reasonably well in identifying invariant 
referent loadings, it can become intractably time 
consuming with increasing model complexity 
(French & Finch, 2006a). To overcome such 
limitations, EFA is one approach that has been 
advocated for use in practice and involves 
comparison of factor loading estimates between 
two groups (Vandenberg, 2001; Zumbo, 2003). 
While this method does not have the advantage 
of significance testing that is offered by the 
factor-ratio test, it is much simpler to conduct. 
We have attempted to overcome the inference 
limitation of EFA, while maintaining its 
advantage of simplicity, by developing the 
FLIRT. 

The results seem to indicate that in need 
to locate an invariant referent for use in MCFA 
they may find that this simple approach 
performs well in a fairly wide variety of study 
FLIRT generally provides an accurate conditions 
such as those simulated; EFA with assessment 
of identifying the variables that may lack 
invariance. Therefore, when practitioners 
conditions. The FLIRT is more accurate (i.e., 
greater power) with larger sample sizes and a 
greater magnitude of difference between 
loadings and appears to have Type I error rates 
that are always close to the nominal level. 
 
Limitations and directions for future research 

The generalizability of the results is 
limited to the conditions simulated in this study. 
First, the factor models examined were fairly 
simple (1 or 2 factors with 6 indicators each). 
Thus, in future research the FLIRT should be 
evaluated with more complex models and data 

(e.g., greater number of factors, different 
variables, various levels of communalities). 
Second, a related area that deserves attention is 
the combination of loadings for the observed 
variables. In this study, all of the loadings were 
set at 0.75 (unless contaminated). Given that this 
is the first investigation of the randomization test 
to accurately identify invariant referent 
variables, clarity of result interpretation was 
considered paramount, and thus non-target 
loadings were not varied. However, further 
investigation should be carried out for a more 
complex combination of loading values and 
factor models, as well as data conditions (e.g., 
ordinal variables) before the test is applied 
unequivocally. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Distribution of randomized loading 
differences for item 6 
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Type I Error Rates of the Kenward-Roger F-test for a Split-Plot Design 
with Missing Values and Non-Normal Data 
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The Type I error of the Kenward-Roger (KR) F-test was assessed through a simulation study for a 
between- by within-subjects split-plot design with non-normal ignorable missing data. The KR-test for 
the between- and within-subjects main effect was robust under all simulation variables investigated and 
when the data were missing completely at random (MCAR). This continued to hold for the 
between-subjects main effect when data were missing at random (MAR). For the interaction, the KR 
F-test performed fairly well at controlling Type I under MCAR and the simulation variables investigated.  
However, under MAR, the KR F-test for the interaction only provided acceptable Type I error when the 
within-subjects factor was set at 3 and 5% missing data. 
 
Keywords: missing values, Kenward-Roger F-test, robustness, mixed models, split-plot design, 
non-normal data, and covariance heterogeneity. 
 
 

Introduction 
 
Linear mixed-effects, or mixed models, have 
become increasingly popular in analyzing data 
from split-plot designs such as longitudinal 
research designs. The increased popularity can 
be attributed to at least three factors. Linear 
mixed-effects models (LMEM) offer modeling 
flexibility in that the fixed effects, random 
effects, and the covariance structure can all be 
modeled. Also, parameters of LMEMs are 
estimated via maximum likelihood and hence 
have the asymptotic properties of being unbiased 
and efficient.  In addition, because LMEM 
parameters are estimated through ML, the 
parameters can still be consistently estimated 
with missing data as long as the data are missing 
completely at random (MCAR) or missing at 
random (MAR)  
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(Rubin, 1976). It is this last property which may 
ultimately account for the increased popularity 
of LMEMs. Even so, it is unclear exactly under 
which conditions LMEMs will have consistent 
parameter estimates when there are missing data. 

When applying LMEM to split-plot 
designs, it is usually inferences about the fixed 
effects that are of main interest. Within this 
endeavor, a typical strategy is to try to fit a 
model for the means and select an appropriate 
covariance structure. The model is then tested 
for fit and appropriate modifications are made if 
required in order to test for inferences of interest 
(Wolfinger, 1993). A likelihood ratio, score, or 
Wald test can be used to test hypothesis about 
the fixed effect, but the Wald test is more 
commonly used (Schaalje, McBride, & 
Fellingham, 2002b; Brown & Prescott, 2006). 
The Wald test has good large sample properties, 
but they begin to dwindle with smaller sample 
sizes. However, using Satterthwaite-type 
degrees of freedom (Fai & Cornelius, 1996) can 
improve Wald test small sample properties. In 
addition to adjusting the degrees of freedom, the 
Wald test’s small sample properties can further 
be enhanced by adjusting the covariance matrix 
(Kenward & Roger, 1997). Several simulation 
studies have shown that tests based on the 
Satterthwaite (SW) and Kenward-Roger (KR) 
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adjustments tend to behave well (Keselman et 
al., 1998; Schaalje, McBride, & Fellingham, 
2002a; Padilla & Algina, 2007). In particular, 
the KR-test tends to behave well even with 
missing data (Padilla et al., 2007). 

The small sample situation can further 
be complicated by missing data. It is a common 
occurrence in research and can have dramatic 
affects on the properties of standard statistical 
models, such as ordinary least squares 
regression. The way in which missing data will 
affect statistical models largely depends on the 
type of missing data mechanism and the way in 
which the missing data is handled. As an 
example, by far the most common method for 
handling missing data is to perform listwise 
deletion, also known as complete case analysis. 
This is most likely because it is the default in 
most popular statistical packages (e.g., SAS, 
SPSS, etc.).  Nevertheless, if the data are MAR, 
parameter estimates can be biased and hence 
inference can be inaccurate. Additionally, there 
will be some loss of power in that participants 
with at least one missing value will be 
completely discarded from the analysis. If the 
small sample condition is added to this situation 
then the problems only worsen, adding another 
layer of uncertainty about inferences being 
drawn. 

There are two major alternatives to 
handling missing data: multiple imputation (MI) 
and maximum likelihood (ML). Although both 
methods are a vast improvement over listwise 
deletion – and virtually any other method for 
handling missing data – the focus here will be on 
ML within the framework of split-plot designs 
and LMEMs. The reader interested in MI is 
referred to Schafer (1997) and Little & Rubin 
(2002). 
 The split-plot design is commonly used 
in behavioral research, such as educational and 
psychological research (Keselman et al., 1998b).  
It is, in essence, a hybrid of a between- and 
within-subjects designs incorporating elements 
of both. A longitudinal study is a typical 
split-plot design in that it has a between-subjects 
factor represented by subjects that are randomly 
assigned to treatment groups and a 
within-subjects factor represented by the 
measured multiple time points for each subject. 
Split-plot designs have various ways in which to 

analyze the data they generate and each of those 
methods have their strengths and limitations in 
terms of analyzing the data and how they handle 
missing values or data. However, the one 
promising technique for analyzing data from a 
split-plot with missing values is the linear mixed 
or mixed-effects model estimated through ML. 
Before delving on, the three missing data 
mechanisms are described. 
 
Missing Data Mechanisms 

The three general definitions of missing 
data, ordered from most restrictive to least 
restrictive, are missing completely at random 
(MCAR), missing at random (MAR), and not 
missing at random (NMAR) (Rubin, 1976; Little 
& Rubin, 2002, p. 12).  As described by Verbeke 
& Molenberghs (2000), let ( )| , ,i i if r y X ψ  

denote the distribution of the missing data 
indicator or missing data mechanism for the ith 
participant, where ir  is a 1K ×  vector 

containing zero for missing and one for observed 
scores in the corresponding  1K ×  iy  vector of 

repeated measurements or variables, iX  is the 

design matrix for the factors, and  ψ  contains 

the parameters of the relationship of ir  to iy  and 

iX .  Furthermore, iy  can be partitioned as 

( ) ( )( )i i obs i miss
′′ ′=y y y  where ( )i obs′y  has 

observed scores and ( )i miss′y  has missing scores 

for the ith participant.  The full data density can 
then be factorized as: 
 

( ) ( ) ( ), |, , , | , | , ,i i i i i i i if f f=y r X θ ψ y X θ r y X ψ
                                  (1) 

where ( ), ′′ ′=θ β σ , β contains the fixed effects 

parameters, and σ contains the nonredundant 
parameters of the covariance matrix. This 
factorization is the foundation of selection 
modeling because the factor to the far right 
corresponds to the selection of individuals into 
observed or missing groups.  The missing data 
are MCAR if ( ) ( )| , , | ,i i i i if f=r y X ψ r X ψ , 

that is, the distribution of the missing data 
indicators does not depend on the repeated 
measures or variables. The missing data are 
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MAR if ( ) ( )( )| , , | , ,i i i i ii obsf f=r y X ψ r y X ψ , 

that is, the distribution of the missing data 
indicator does not depend on the variables in 
which the ith participant has missing scores. In 
general, missing data are NMAR if they are not 
MCAR or MAR. However, it is generally 
defined as  

( ) ( )( )| , , | , ,i i i i ii missf f=r y X ψ r y X ψ , that is, 

the distribution of the missing data indicator 
depends on the missing values in the data. 

A general method for consistent ML 
estimation of θ is obtained by including both the 
missing data indicators (ri) and the parameters of 
their relationship to iy  and iX  (ψ) in the 

likelihood. The likelihood of the full data 
density can then be written as: 
 

( ) ( ), | , , , | , ,i i i i i iL f∝θ ψ X y r y r X θ ψ          (2) 

 
             If the missing data mechanism is MCAR 
or MAR and if θ and ψ are disjoint, ML 
estimators of θ will be consistent if ri and ψ are 
excluded from the analysis (Rubin, 1976).  
Dropping ri and ψ is referred to as ignoring the 
missing data mechanism. Hence, MCAR or 
MAR missing data mechanisms are ignorable 
when model parameters (θ) are estimated via 
ML. If data are MCAR, listwise deletion and 
ML ignoring the missing data mechanism will 
produce consistent estimators, but ML 
estimators will be more precise because they use 
all available data. 
 In addition, Rubin (1976) showed that 
MCAR missing data mechanisms are ignorable 
for inferences based on sampling distributions.  
Thus, listwise deletion or ML ignoring the 
missing data mechanism can be used for 
inferences if the data are MCAR, but ML will 
result in more powerful inferences and narrower 
confidence intervals because it does not delete 
individuals with only partially observed scores 
on iy . 

On the other hand, the validity of ML 
based inferences for a MAR missing data 
mechanism will depend on how the sampling 
covariance matrix is estimated. When the 
missing data mechanism is MAR, it will be 

ignorable if inferences are based on the sampling 
covariance obtained from the observed 
information matrix (Kenward & Molenberghs, 
1998). This is in line with arguments from Efron 
& Hinkley (1978) in that the observed 
information matrix provides much better 
precision than the expected information matrix; 
that is, better variance component estimates. If 
ML inferences are based on the sampling 
covariance obtained from the expected 
information matrix, the MAR missing data 
mechanism may not be ignorable. The expected 
information matrix must take into account the 
actual sampling process implied by the MAR 
mechanisms in order for inferences to be valid 
(Kenward et al., 1998).   
 When the missing data mechanism is 
NMAR, then it is non-ignorable for purposes of 
ML estimation. In order to obtain consistent ML 
estimates in this particular case, the pattern of 
the missing values must be taken into account. A 
selection model that incorporates the missing 
values indicators (ri) or using a pattern mixture 
model that stratifies the data on the basis of the 
pattern of missing values can be used to obtain 
consistent ML estimates under an NMAR 
framework (Albert & Follmann, 2000; Diggle & 
Kenward, 1994; Fitzmaurice, Laird, & Shneyer, 
2001; Kenward et al., 1998; Kenward, 1998; 
Troxel, Harrington, & Lipsitz, 1998; Algina & 
Keselman, 2004a; Algina & Keselman, 2004b; 
Little, 1995). 
 
Linear Mixed-Effects Model 
 The linear mixed-effects model 
(LMEM) can be written as 
 

y Xβ Zu ε= + +  (3) 

 
where X and β are the design matrix and its 
corresponding fixed effects vector, Z and u are 
the design matrix and its corresponding random 
effects vector, and ε is the vector of random 
errors. It is generally assumed that u and ε are 
independent, hence 
 

,N
u 0 G 0
ε 0 0 R

æ öé ù é ù é ù÷çê ú ê ú ê ú÷ç ÷çê ú ê ú ê ú÷÷çè øë û ë û ë û
  (4) 
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Based on this assumption, ( )E y Xβ=  and 

( )Var y V ZGZ R¢= = + . A common estimator 

for β is  
 

( ) 1
1 1ˆ ˆ ˆβ X V X X V y

-- -¢ ¢=  (5) 

 

Also, ( ) ( ) 1
1ˆ ˆVar β X V X

--¢=  is the estimated 

generalized least-squares covariance of β̂ . 
Let L be a contrast matrix of full row 

rank r. Then the main effect and interaction 
hypothesis about the between- and 
within-subjects factors can be expressed as 

0 :H Lβ 0= . The common test statistic for this 
hypothesis is the Wald 
 

( ) ( ) ( )
11

1

,

ˆ ˆˆ

r ddfF
r

---æ ö¢ ÷ç ¢ ¢÷ç ÷çè ø
=

Lβ L X V X L Lβ
 (6) 

 
where ddf is the denominator degrees of 
freedom. It should be noted that, under the null 
hypothesis, the Wald ,r ddfF  approximately 

follows an F distribution. However, there are 
times when it follows an F distribution exactly. 
Even so, when there is no missing data, 

( ) 1
1ˆX V X

--¢  tends to underestimate 

( ) 11X V X
--¢  and hence is a biased estimate 

because it fails to take into account the 
uncertainty introduced by using V̂  (Booth & 
Hobert, 1998; Kackar & Harville, 1984; Prasad 
& Rao, 1990). 
 
Kenward-Roger F-Test 

Better estimates were developed as a 
response to the poor statistical properties of 

( )ˆVar β . The first estimate, denoted as 

( )@ @ˆ ˆVar β m= , was proposed by Harville & 

Jeske (1992).  Subsequently, Kenward & Roger 
(1997) developed an alternative estimator, 

denoted as ( )ˆ ˆ
AVar =ΦAβ . Additionally, 

Kenward & Roger derived the test statistic 

( ) ( ) ( )1

*
,

ˆ ˆˆ
A

r dF λ
r

ΦLβ L L Lβ
-¢ ¢

  (7) 

 
where λ is a scaling factor and d is the 
approximate denominator degrees of freedom. 

As in the case of ,r ddfF , *
,r dF  is assumed to 

follow an F distribution under the null 
hypothesis. Both λ and d are calculated from the 

data. First, ˆ
AΦ  is estimated to account for small 

sample bias in ( ) 1
1ˆX V X

--¢  and variability 

introduced by using V̂ (Kackar et al., 1984). 
Then d is approximated by using the spectral 

decomposition of ( ) 1ˆ
A

-
¢ΦL L  concurrently with 

repeated applications of the single degree of 
freedom t-test (Fai et al., 1996; Giesbrecht & 
Burns, 1985). The Kenward-Roger (KR) F-test 
is implemented in SAS PROC MIXED, but uses 

@m̂  instead of ˆ
AΦ . (See Padilla & Algina, 

2007) for how to specify model parameters 
using the mean vector and an indicator matrix 
for the missing values.) 

Some research has been conducted 
investigating the Type I error rate of the KR 
method (Fai et al., 1996; Kenward & Roger, 
1997; Kowalchuk, Keselman, Algina, & 
Wolfinger, 2004; Gomez, Schaalje, & 
Fellingham, 2005). However, very little research 
is available on the Type I error rate of the KR 
method when there are missing values. To date, 
Padilla & Algina (2007) is the only work 
investigating the Type I error rate of the KR 
F-test when the missing values are MAR. 

Fai & Cornelius (1996) derived four test 
statistics (F1, F2, F3, F4) for hypothesis testing 
on the means in multivariate data. The F1 and F2 

statistics use ( ) 1
1ˆX V X

--¢  whereas F3 and F4 

use @m̂  to estimate ( )ˆVar β . Additionally, F2 

and F4 have scaling factors λ2 and λ4, 
respectively. The F1 statistic is available in SAS 
PROC MIXED when the Satterthwaite option is 
used for DDFM. The F4 statistic is similar to the 
PROC MIXED KR F-test, but uses a different 
formula for the scaling factor and denominator 



PADILLA, MIN & ZHANG 
 

389 
 

degrees of freedom. (See Fai & Cornelius for 
further details.) 

Fai & Cornelius (1996) applied their 
tests to simulated data from four unbalanced 3 
(between) × 4 (within) split-plot designs with a 
compound symmetric covariance structure. 
Imbalance was created by varying the number of 
subjects of the between-subjects factor without 
generating some combinations of subjects and 
the within-subjects factor. Missing data were 
never actually generated; hence the missing data 
mechanism is MCAR. The four unbalanced 
designs had total sample sizes of

25, 34, 40, 48N = . Estimated Type I error rate 
and power were reported for the 
between-subjects main effects. All tests 
controlled the Type I error rate reasonably well. 
The results of F1 and F3 were similar, and power 
and Type I error were always larger for F4 than 
for F3. 

In their initial work, Kenward & Roger 
(1997d) investigated the Type I error rate of the 
KR F-test in simulated data from four research 
designs: (a) a four-treatment, two-period 
cross-over, (b) a row-column-α design, (c) a 
random coefficients regression model for 
repeated measures data, and (d) a split-plot 
design. Design (c) had MCAR missing values 
and (d) had missing values with an unspecified 
missing data mechanism. Estimated Type I error 
rates were reported for the between-subjects 
main effect. In all situations, the KR F-test Type 
I error rate was well controlled. 

Kowalchuk, Keselman, Algina, & 
Wolfinger (2004) compared the Type I error 
rates of the KR and Welch-James (WJ) F-tests 
under several simulation conditions for a 3 
(between) × 4 (within) split-plot design. 
Investigated conditions were (a) type of 
covariance structure, (b) group size inequality, 
(c) positive and negative parings of covariance 
matrices with group sample sizes, (d) shape of 
data distribution, and (e) type of covariance 
structure fit to data. A heterogeneous covariance 
structure with a 1:3:5 ratio was used for all 
simulation conditions, and missing values were 
not investigated. Estimated Type I error rates 
were reported for the main effects and 
interaction. Under all conditions with small 
sample sizes (total N = 30, 40), the Type I error 

rate of the KR F-test were closer to the target 
value ( .05)a=  than the WJ F-test. 
Additionally, the Type I error rates of the KR 
F-test were always comparable when using an 
unstructured covariance matrix to modeling the 
true covariance matrix. 

Gomez, Schaalje, & Fillingham (2005) 
investigated the Type I error rate of the KR 
F-test when using AIC (Akaike, 1974) and BIC 
(Schwarz, 1978) to select the covariance 
structure. Investigated conditions were (a) type 
of covariance structures with within- and 
between-subjects heterogeneity (1:3:5 ratio for 
between-subjects), (b) equal ( 9, 15)total N =  

and unequal group sample sizes ( 3, 5, 7)n = , 
(c) positive and negative paring for unequal 
group sample sizes, (d) and levels of the 
within-subjects factor ( 3, 5)K = . The 
between-subjects factor was fixed at 3 and no 
missing values were investigated. Estimated 
Type I error rates were reported for the main 
effects only. In general the Type I error rate was 
close to the target value when the correct 
covariance structure was used. However, the 
Type I error rate becomes inflated with complex 
covariance structures and small sample sizes. 
Additionally, the Type I error rate increased 
with heterogeneity within- and between- 
subjects, and even more so with negative 
pairings. In general, the success rate of choosing 
the correct covariance structure was low for both 
the AIC and BIC. At most, the success rate was 
73.91%. Even so, the success rate was higher for 
the larger sample sizes and simpler covariance 
structures. Lastly, the AIC had better success 
with complicated covariance structures and the 
BIC with simpler ones. 

Padilla & Algina (2007) studied the 
Type I error rate of the KR F-test with missing 
values and heterogeneity of covariance matrices 
(1 : 3 : 5 )ratio . Investigated conditions were (a) 
level of between-subject factor (J), (b) level of 
within-subject factor (K), (c) min /( 1)n K - , (d) 
sample size inequality, (e) degree of sphericity, 
(f) covariance and group sample size pairing, (g) 
missing data mechanism (MCAR or MAR), and 
(h) percent of missing data. Estimated Type I 
error rates were reported for the main effects and 
interaction. In general, the Type I error rates of 
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the KR F-test were close to the target value of 
.05a=  for the between- and within-subjects 

main effects and the between- by within-subjects 
interaction. The best Type I error control was 
attained by the between-subjects main effect 
with the between- by within-subjects interaction 
attaining the worst. However, the distribution of 
the data was normal. 

The previous studies demonstrate that 
the Type I error rate of the KR F-test remains 
close to the target value ( .05)a=  under a 
variety of repeated measures designs and 
simulation conditions, which included MCAR 
unbalanced data. However, Padilla & Algina 
(2007) is the only study to investigate the Type I 
error rate of the KR F-test under the MAR 
condition in normal data. This study builds on 
Padilla & Algina and investigates the Type I 
error rate of the KR F-test under several 
simulation conditions. Of particular interest is 
the KR F-test Type I error rate when data are 
non-normal with missing values as it is 
implemented in SAS PROC MIXED. 
 

Methodology 
Design 
 The simplest of the split-plot design 
with one between- and one within-subjects 
factor ( . ., )i e J K´  with heterogeneity between 
the jth covariance matrix and non-normal data 
was investigated. In this type of design subjects 
are randomly assigned to the levels of the 

between-subjects factor ( )1, 2, , ; jj
j n n= å  

and measured under all levels of the 
within-subjects factor ( 1, 2, , )k K=  . The 
heterogeneity between the jth covariance 
matrices was set at 1:3:5; that is 1 21 3=Σ Σ  and 

3 25 3=Σ Σ  (Algina & Keselman, 1997; 
Keselman, Algina, Kowalchuk, & Wolfinger, 
1999; Padilla et al., 2007; Keselman, Carriere, & 
Lix, 1993). The non-normal data were generated 
from a multivariate lognormal distribution under 
the null using the methods outlined in Algina & 
Oshima (1994) with skewness set at 1.75 and 
kurtosis at 5.90 (Keselman, Algina, Wilcox, & 
Kowalchuk, 2000; Kowalchuk, Keselman, 
Algina, & Wolfinger, 2004). 

All simulations and analyses were done 
on SAS 9.1. The PROC MIXED code for 

estimating the Kenward-Roger F-test can be 
found in Padilla and Algina (2007). 
 
Simulation Variables 
 Eight variables were investigated. The 
variables of interest are (a) number of levels of 
the between-subjects factor (J), (b) number of 
levels of the within-subjects factor (K), (c) 
sample size, (d) sample size inequality across 
the jth groups, (e) degree of sphericity, (f) pairing 
of the jth group sizes with covariance matrices, 
(g) type of missing data, and (h) percent of 
missing data. Because this study builds on 
Padilla & Algina (2007), the simulation 
variables here are similar to theirs. 
 
Between- and Within-Subjects Factors 

 The between- and within-subjects 
factors each had two levels with , 3, 6J K = . 
 
Sample Size 

Sample sizes were based on the 

min ( 1)n K -  ratio (Keselman, Carriere, & Lix, 
1993b). The ratios were set as in Padilla & 
Algina (2007) and for the same reasons. The 
actual sample sizes used, in combination with 
sample size inequality, are displayed in Tables 1 
and 2. 

 
Table 1: 
Groups Sizes for Each Level of J at K = 3 

Sample Size Inequality 

J C ≈ .16 C ≈ .33 C ≈ .16 C ≈ .33 
 
 
 

3
 
 
 
 
 

6

nmin/(K – 1) = 4.0 nmin/(K – 1) = 6.0 
8 

10 
12 

8 
14 
20 

12 
15 
18 

12 
20 
28 

nmin/(K – 1) = 5.0 nmin/(K – 1) = 7.7 
10 
13 
16 
10 
13 
16 

10 
17 
24 
10 
17 
24 

15 
19 
23 
15 
19 
23 

15 
25 
35 
15 
25 
35 
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Table 2: 
Groups Sizes for Each Level of J at K = 6 

Sample Size Inequality 

J C ≈ .16 C ≈ .33 C ≈ .16 C ≈ .33 
 
 
 

3 
 
 
 
 
 
6 

nmin/(K – 1) = 4.0 nmin/(K – 1) = 6.0 
20 
25 
30 

20 
34 
48 

30 
37 
44 

30 
50 
70 

nmin/(K – 1) = 5.0 nmin/(K – 1) = 7.7 
25 
31 
37 
25 
31 
37 

25 
42 
59 
25 
42 
59 

38 
47 
56 
38 
47 
56 

38 
64 
90 
38 
64 
90 

 
Sample Size Inequality   

Unequal sample sizes are common in 
split-plot designs and hence were investigated 
here (Keselman et al., 1998). The unequal group 
sample size were investigated through the 
coefficient of variation as defined by Keselman 
et al. (1993): 
 

( ) ( )
1 2

1

J

j
j

C n J n n
-

=

= -å  (8) 

 
where .16, .33C  describes moderate and 
severe group sample size inequality, 
respectively. 
 
Covariance Sphericity 

Sphericity as quantified by Box’s 
epsilon (1954) was investigated with 

.60, .75, .90e= . Here, .60e= represents a 
relatively severe departure from sphericity 
whereas .75e=  a moderate one. Epsilon values 
were chosen based on the argument that .75e=  
represent the lower limit of ε found in 
educational and psychological data (Huynh & 
Feldt, 1976). (See Padilla & Algina (2007) for 
the actual covariance matrices.) 
 
Group Pairing with Covariance 

Pairing of the unequal group samples 
sizes and heterogeneous covariance matrices 

were investigated. The two conditions 
investigated were positive and negative pairings 
because positive pairing tend to produce 
conservative Type I error rates whereas negative 
pairings tend to produce liberal ones (Keselman 
& Keselman, 1990). A positive pairing occurs 
when the largest nj is paired with the covariance 
matrix with the largest elements and a negative 
pairing occurs when the largest nj is paired with 
the covariance matrix with the smallest 
elements. For positive pairings, the ratios of 
group sample size to heterogeneity of covariance 
matrices was set at 5 :3 :1  for 3J =  and 
5 :3 :1: 5 :3 :1 for 6J = .  For negative 
pairings, it was set at 1:3 : 5  for 3J =  and 
1:3 : 5 :1:3 : 5  for 6J = . 

 
Missing Data Mechanism 

Both MCAR and MAR missing data 
mechanisms were investigated. The missing data 
mechanisms were simulated as described by 
Padilla & Algina (2007). NMAR was not 
investigated because it negatively impacts the 
Type I error rate of the KR F-test in a repeated 
measures designs with no between-subjects 
factor and normal data (Padilla & Algina, 2004). 
 
Percent of Missing Data   

Five percent (5%) and 15% probability 
of missing data at each level of the 
within-subjects factor were investigated. The 
exception here is that there was no missing data 
in the first level. Higher missing data 
probabilities were not investigated because the 
sample sizes are considerably small (see Table 
1) and this will impede the convergence of the 
Newton-Raphson algorithm. 
 
Analysis 
 The p-values of KR F-test were 
available from 5,000 replications for each 
combination of the simulation variables. The 
Type I error for each of the p-values was defined 
as  
 

0 value < .05

1

ì -ïï=íïïî

if p
Type I Error

otherwise
. 
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Logistic regression models were used to 
analyze the between-subjects main effect, 
within-subjects main effect, and the between- by 
within-subjects interaction of the KR F-test 
separately. In each logistic model the Type I 
error variable was used as the dependent 
variable with the simulation variables as the 
independent variables. A forward selection 
approach was used to select appropriate models 
beginning with the intercept-only model and 
moving up to main effect only, main effect with 
two-way interaction, etc. A model adequately fit 

the data if the 2χ  goodness of fit test was 

non-significant or if .95CFI ³  (Bentler, 1990). 
With large sample sizes (i.e., number of 

replications), the 2χ  goodness of fit statistic is 
sensitive to small effects, hence a fit index was 

used to supplement the 2χ . In this context, the 
CFI is calculated as follows: 
 

( )1 iCFI λ λ= −  (9) 

 

where ( )2max , 0dfλ χ= −  with χ2 (the test 

statistic) and df (the degrees of freedom) for the 

fitted model and ( )2 2max , , 0i i idf dfλ χ χ= − −  

with 2
iχ  and dfi for the intercept-only model. 

 Bradley’s (1978) liberal criterion was 
used to assess the Type I error rates. The liberal 
criterion is .5 1.5α τ α≤ ≤  where α is the 
nominal Type I error and τ is the empirical Type 
I error. With .05α =  the liberal range is 
.025 .075τ≤ ≤ . Hence if the Type I error is 
within the range, the test is considered to be 
robust. 
 

Results 
 
Between-Subjects Main Effect 
 The logistic model with main effects 

and two-way interactions had 2 (339) 388.40χ =
, .0331p =  and .98CFI = . Inspection of all 
two-way interaction tables indicated that for the 
between-subjects main effects all Type I error 
rates were within Bradley’s liberal criterion. In 
fact the range of the Type I error rates across all 
two-way interaction tables was [.051, .071]. 

Even though the KR F-test for the 
between-subjects main effect does appear to be 
slightly liberal, it is not too strongly affected by 
the simulation variables. 
 
Within-Subjects Main Effect 
 The logistic model with main effects 
and three-way interactions had 

2 (262) 261.76χ = , .4925p =  and 1.00CFI = . 
Therefore, the three-way interaction model was 
selected for further analysis. Wald tests of the 
logistic model indicated that levels of the 
within-subjects factor (K), group pairing with 
covariance, missing data mechanism, and 
percent of missing data had significant main 
effects and also entered into the most significant 
three-way interactions. 
 Mean Type I error rates are displayed in 
Table 3. The range of mean Type I error rates 
under MCAR was [.054, .067]. Although 
slightly liberal, the mean Type I error rates are 
well within Bradley’s liberal criterion. Under 
MAR, the situation changes dramatically. In 
fact, the mean Type I error rates were all liberal 
ranging from [.079, .158]  and above Bradley’s 
liberal criterion. Furthermore, the mean Type I 
error rate increases as both the levels of the 
within-subjects factor (K) and percent of missing 
data increases. On the other hand, under MAR, 
the mean Type I error rate decreases as the 
group pairing with covariance changes from 
positive to negative (consistent with Keselman 
et al., 1990). 
 
Table 3: Within-Subjects Main Effect 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Type I error rate above Bradley’s liberal 
criterion are in bold type. 

Missing 
Data 

Mechanism 
% 

Missing K 

Group Pairing 

Positive Negative

MCAR 
5 

3 .0625 .0670 
6 .0543 .0572 

15 
3 .0634 .0670 
6 .0607 .0631 

MAR 
5 

3 .0794 .0794 
6 .0938 .0880 

15 
3 .1078 .0986 
6 .1580 .1389 
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Between- by Within-Subjects Interaction 
 The logistic model with main effects 
and three-way interactions had 

2 (262) 308.64χ = , .0252p =  and 1.00CFI = . 

Hence, the three-way interaction model was 
selected for additional analysis. Wald tests of the 
logistic model indicated that K, J, sample size, 
group pairing with covariance, covariance 
sphericity, and percent of missing data had 
significant main effects. However, K, J, sample 
size inequality, group pairing with covariance, 
missing data mechanism, and percent of missing 
data entered into the most significant three-way 
interactions. Thus, these latter simulation 
variables were selected for further analysis. 

Mean Type I error rates under MCAR 
are displayed in Table 4. With the exception of 
15% missing data, a negative pairing, and a 
severe group sample size inequality, the majority 
of mean Type I error rates are within Bradley’s 
liberal criterion. However, the mean Type I error 
rates increase as the percent of missing data, K, 
and J increases and as group pairing changes 
from positive to negative. As noted above, the 
situation becomes more aggravated under the 
most severe conditions of the simulation 
variables. 

Mean Type I error rates under MAR are 
presented in Table 5. Here, most of the mean 
Type I error rates are outside of the range of the 
Bradley’s liberal criterion. The only time the 
mean Type I error rate is controlled is under the 
simplest of conditions for group pairing with 
covariance, K, and J. Nevertheless, as was the 
case for the MCAR condition, the mean Type I  
changes  from  positive to  negative. The   one 

 
 
 
 
 
 
 
 
 
 
 
 

 

difference is that mean Type I error rate error 
rates tend to increase as percent of missing data, 
K, and J increases and as group pairing 
increases as the sample size inequality becomes 
more severe. Not surprising the mean Type I 
error rates become more liberal under the more 
severe conditions of the simulation variables. 
 

Conclusion 
 

The results indicate that sampling 
distribution based inferences on the means for 
the between-subjects factor of a split-plot design 
using ML estimates can control the Type I error 
rate under an MCAR and MAR missing data 
mechanism and non-normal data. Furthermore, 
the Type I error control can be achieved with 
relatively small to moderate sample sizes when 
using the KR F-test. The same cannot be said of 
inferences about the within-subjects factor or the 
within- by between-subjects interaction. 

The Type I error rates of the KR F-test 
for the latter two cases are impacted by several 
conditions of the simulation variable with the 
most dramatic being the MAR condition. This is 
most clearly seen in inferences about the 
within-subjects factor, in which case none of the 
Type I error rates were acceptable. Under 
MCAR, increasing the percent of missing data 
and switching from a positive to negative pairing 
of groups with covariance matrices tended to 
increase the Type I error rate, but the Type I 
error rate was still within Bradley’s (1978) 
liberal criterion. Although the same pattern of 
increase in Type I error rate is observed under 
MAR, the increase in Type I error rate was  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: MCAR for Interaction 

% Missing Group Pairing 
Sample Size 
Inequality 

K = 3  K = 6 
J = 3 J = 6  J = 3 J = 6 

5 
 
 
 
 

15 

Positive 
 

Negative 
 
 

Positive 
 

Negative 

Moderate 
Severe 

Moderate 
Severe 

 
Moderate 

Severe 
Moderate 

Severe 

.0495 

.0468 

.0642 

.0787 
 

.0503 

.0517 

.0679 

.0781 

.0575 

.0527 

.0769 

.0864 
 

.0582 

.0564 

.0774 

.0910 

 .0446 
.0456 
.0569 
.0614 

 
.0562 
.0542 
.0637 
.0715 

.0549 

.0513 

.0607 

.0673 
 

.0584 

.0629 

.0709 

.0769 

Note:  Type I error rate above Bradley’s liberal criterion are in bold type.



KR F-TEST WITH MISSING AND NON-NORMAL DATA 

394 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sharper and obvious when switching from 
MCAR to MAR in which case none of the Type 
I error rates were within Bradley’s liberal 
criterion. 

With regard to the within- by 
between-subjects interaction, the KR F-test is 
once again severely impacted by several of the 
simulation conditions, but more dramatically by 
the MAR condition. Under the MCAR condition 
the majority of the Type I error rates are within 
Bradley’s liberal criterion. When the 
within-subjects factor is 3, the same pattern is 
observed for 5% and 15% missing data: a 
negative pairing of groups with covariance 
matrices coupled with severe sample size 
inequality increased the Type I error rate above 
the liberal criterion. When the within-subject 
factor is 6, the Type I error rate was above the 
liberal criterion only under the more severe 
simulation conditions. Under MAR, most of the 
Type I error rates were above the liberal 
criterion. The only time the Type I error rates 
were consistently within the liberal criterion was 
when the within-subjects factor was 6, 5% of the 
data were missing, and there was positive 
pairing of groups with covariance matrices. The 
remaining acceptable Type I error rates tended 
to occur when the between-subjects factor was 3 
and under the least severe of the simulation 
conditions. Even so, the Type I error rate tended 
to increase as the simulation conditions switched 
into the more severe conditions investigated. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By far the MAR condition had the 

largest impact on the Type I error rate of the KR 
F-test for the within-subjects factor and the 
within- by between-subjects interaction. It is 
clear that missing values coupled with 
non-normal data impact the accuracy of the 
F-distribution as an approximation to the 
sampling distribution of the KR F-test. The KR 
F-test uses an adjusted estimator of the 
covariance which is then used to estimate 
Satterthwaite type degrees of freedom. The 
procedure provides a better approximation to the 
F-distribution with small sample sizes (Kenward 
& Roger, 1997). This seemed to be the case for 
the between-subjects factor under all the 
simulation variables of this study. However, for 
the within-subjects factor and the within- by 
between-subjects interaction, it appears that the 
MAR condition coupled with non-normal data 
severely limited the KR F-test’s ability to 
control the Type I error. 

Two potential reasons exist for this 
result. First, SAS PROC MIXED does not 
compute the covariance matrix by inverting the 
Hessian (information matrix) for the fixed 
effects and the covariance parameters. 
According to Verbeke & Molenberghs (2000), 
the observed Hessian should be used and not the 
expected Hessian. Again, the observed Hessian 
provides more precision than the expected 
Hessian (Efron & Hinkley, 1978). Second, 
sample sizes were too small; particularly when 

Table 5: MAR for Interaction 

% Missing Group Pairing 
Sample Size 
Inequality 

K = 3  K = 6 
J = 3 J = 6  J = 3 J = 6 

5 
 
 
 
 

15 

Positive 
 

Negative 
 
 

Positive 
 

Negative 

Moderate 
Severe 

Moderate 
Severe 

 
Moderate 

Severe 
Moderate 

Severe 

.0504 

.0523 

.0672 

.0823 
 

.0561 

.0668 

.0699 

.0916 

.0637 

.0661 

.0843 

.1041 
 

.0789 

.0963 

.0991 

.1338 

 .0665 
.0728 
.0696 
.0820 

 
.0987 
.1247 
.0954 
.1200 

.0859 

.0994 

.0977 

.1181 
 

.1582 

.2009 

.1665 

.2208 

Note: Type I error rate above Bradley’s liberal criterion are in bold type. 
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the within- and between-subjects factors were 
both set at six. Although the samples sizes were 
based on the recommendations set by Keselman 
et al. (1993a) and Algina & Keselman (1997), 
those studies did not have missing values, which 
is not the case here. Here it appears that missing 
values coupled with data non-normality put a 
heavy burden on the analysis. A simple solution 
is to increase the sample sizes. However, doing 
so will increase the computation time of PROC 
MIXED’s KR procedure, but it should provide 
more information for the procedure to use. 
However, increasing the sample sizes is not easy 
in practice. 

The KR F-test for the between-subjects 
factor appears to be robust, in terms of 
controlling the Type I error, to non-normal data 
under the simulation variables investigated. 
Also,   the  KR  F-test  for  the  within-subjects  
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A Randomization Method to Control the Type I Error Rates 
in Best Subset Regression 

           Yasser A. Shehata    Paul White 
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A randomization method for the assessment of statistical significance for best subsets regression is given. 
The procedure takes into account the number of potential predictors and the inter-dependence between 
predictors. The approach corrects a non-trivial problem with Type I errors and can be used to assess 
individual variable significance. 
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Introduction 

 
Subset selection in multiple linear regression is 
long established: computational algorithms for 
forward selection techniques date back at least to 
the 1950’s, (see Kramer, 1957), and Canning 
(1959) gave an example of backward 
elimination. The use of subset selection 
techniques is widespread and continuing. 
George (2000) wrote “The problem of variable 
selection is one of the most pervasive model 
selection problems in statistical application. The 
use of variable selection procedures will only 
increase as the information revolution brings us 
larger data sets with more and more variables. 
The demand for variable selection will be strong 
and it will continue to be a basic strategy for 
data analysis.” 

The use of automated computer 
techniques for model building is rife. Some 
researchers use automated search algorithms as a  
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data mining exercise (Lovell, 1983), examining 
a research question by collecting data on 
virtually every variable that could possibly be 
related to the phenomenon under investigation 
and attempting to obtain a parsimonious model 
based on patterns in sample data. In recognition 
of this type of problem Larzelere and Mulaik 
(1977) suggested basing inferences on the total 
number of potential predictors rather than the 
number of predictors in a given subset. 

It is commonly argued that a purpose of 
automated selection techniques is to obtain a 
simple, high-quality representation of the 
phenomenon under investigation. This is 
accomplished by not including potential 
predictors deemed to be uninformative in a final 
model. Models based on smaller numbers of 
predictor variables are comparatively easier to 
understand and it is hoped that a parsimonious 
model will give greater insight into the 
underlying processes that generated the data. In 
some instances smaller subsets may lead to 
greater economy (Derksen & Keselman, 1992). 

Problems relating to variable selection 
from using backward elimination, forward 
selection, best subset regression and other 
automated model building techniques are well 
documented in the context of multiple linear 
regression. Investigations have generally been 
through simulation work in which the theoretical 
underpinning model assumptions are satisfied 
and any deviation between simulation results 
and anticipated theoretical results is therefore 
attributable to the variable selection technique. 
For instance, the simulation work of Derksen & 
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Keselman (1992) gave broad the conclusions 
that automated selection techniques overly 
capitalize on false associations between potential 
predictors and the criterion variable with too 
many purely random (noise) variables being 
wrongly classified as authentic (true) predictors. 
The inclusion of noise variables in a final model 
necessarily implies a model misspecification or 
misidentification and incorrect inferences are 
drawn. Derksen & Keselman (1992) additionally 
found that the incidence with which noise and 
authentic variables find, or do not find, their way 
into a final model depends upon the degree of 
correlation between predictor variables. As such, 
it would seem that controlling the error rate may 
require a solution which explicitly utilizes 
within sample correlation information. 

Hurvich & Tsai (1990) pointed out that, 
if a model is not fully pre-specified and, if a 
model selection technique is used, then the 
number of regression parameters is a random 
variable. Moreover, once a model has been 
decided upon by some technique, the model 
estimation and the associated hypothesis tests 
usually proceed on the assumption that the data 
driven and technique selected model is the true 
model. In other words, the data is analyzed “as 
though they were a fresh data set generated by 
the selected model” (Hurvich & Tsai, 1990, p. 
214). Under these conditions, as pointed out by 
Miller (1984), the regression estimators may be 
biased and standard hypothesis tests may not be 
valid. 

Automated model building techniques, 
such as stepwise regression, proceed on the basis 
of performing many statistical tests and do so in 
instances whereby the hypothesis test procedure 
may not be valid. Multiplicity of testing 
contributes to model selection problems. In the 
context of stepwise regression Derksen & 
Keselman (1992) wrote “when many tests of 
significance are computed in a given 
experiment, the probability of making at least 
one Type I error in the set of tests, that is, the 
maximum familywise Type I error rate 
(MFWER), is far in excess of the probability 
associated with any one of the tests” (p. 269). In 
subset selection there are a potentially large 
number of statistical tests to be performed to 
drive the algorithms. The number of such tests is 
not known in advance and simple Bonferroni 

corrections may be too liberal in correcting this 
problem, especially when potential predictors 
are not orthogonal. Paradoxically, others have 
suggested that a more liberal approach is 
appropriate. Bendel & Afifi (1977) advocated 
the use of nominal significance levels between 

0.15α =  and 0.25α =  in forward selection so 
as to include all authentic variables at the 
expense of an increased risk of including 
additional noise variables in a final model. 

The all subsets approach searches 
through all possible subsets for each subset size 
of 1,2,....., J  and best subsets chooses the one 
that has the best summary statistics for a given 
subset size. A possible best summary statistic is 

the 2R  statistic (the coefficient of 
determination). An advantage of the best subsets 
and all subsets approach over sequential 
procedures is that this approach, by definition, 
will not miss finding the best fitting subset of 
any given size. Indeed, Mantel (1970) pointed 
out, and gave instances and explanations that a 
multivariate combination of variables might 
produce the best fit, but these multivariate 
combinations might not be identified by 
sequential procedures. Further, Kuk (1984) 
pointed out a relative weakness of sequential 
procedures in that “they lead to a single subset 
of variables and do not suggest alternative good 
subsets” unlike all subsets and further points out 
that sequential procedures have “the possibility 
of premature termination” (Kuk, 1984, p. 587). 
Identification of best subsets need not 
necessarily be computationally burdensome as 
the identification of the best subset does not 
require the calculation of all possible subsets 
(Furnival & Wilson, 1974). 

The above provides a strong rationale 
for considering best subsets regression. The 
standard inferential approach for best subsets 
regression has problems arising from using 
standard hypothesis tests based on a global null 
hypothesis of no effect for a model determined 
by sample data. Motivated by the stance of 
Larzelere & Mulaik (1977) the use of 
randomization to control Type I error rates in 
best subsets regression is considered, and the 
approach takes into account the total number of 
predictors under consideration. Derksen & 
Keselman (1992) concluded that the extent of 
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the problem with automated techniques depends 
upon the degree of correlation between predictor 
variables. The use of randomization permits the 
correlation structure between potential predictor 
variables to be accounted for. The approach 
adopted is to compute p-values for overall model 
significance and for each variable under a global 
null model (as per standard approaches) but 
which will correct the bias associated with the 
procedural aspects of best subsets regression. 
Randomization additionally permits a like-for-
like comparison for individual variables that 
comprise a best subset solution; topics which are 
expanded in this article. 

A brief overview of the traditional least 
squares approach to determine overall model 
significance of a best subset regression solution 
in addition to the individual significance of the 
variables that comprise the model is first given. 
Next, a randomization approach that empirically 
estimates overall and individual significance of 
best subset regression is described. Descriptions 
of two models are given, namely a global null-
model and a non-null model. These two models, 
under certain conditions, are used to compare 
the performance of the randomization algorithm 
with the traditional approach. Results of the 
simulation, effects of number of predictors and 
effects of sample size are provided. The 
discussion addresses issues concerning the 
paradoxical problems associated with judging 
inference in best subsets regression. 

 
Methodology 

 
Best Subsets Regression 

Consider the classic linear regression 
model 

0 1 1 2 2 ...... J JY X X Xβ β β β ε= + + + + + (1) 

where Y is the dependent variable with J 
predictors 1 2, ,......, JX X X  and where ε  denotes 
a normally distributed random variable. Let 

1 2, , ,......, ,  ( 1,2,......, )i i i Jiy x x x i I=  denote I 
independent cases generated from the above 
model. 

In best subsets regression, the best 
subset of size j is the subset of j predictor 
variables that maximizes the within sample 
prediction of the dependent variable, y, in a 

linear least squares regression. This is the 
percentage of variation in y that is accounted for 

by a regression equation is the usual 2R  

statistic. In the following, 2
jR  will be used to 

denote the 2R  statistic for the best subset of size 
j. Overall significance of the best subset of size j 
is judged using the standard F statistic, 

2 2
R EF S S=  where 2

RS  is the mean square due to 

regression, 2
ES  is the mean square error and 

overall model significance is judged by making 
reference to the F distribution with 

1 2( , ) ( , 1)j I jυ υ = − −  degrees of freedom. 
The relative magnitude of the observed 

value of the F statistic is quantified by the p-
value and contemporary practice is to declare a 
statistically significant subset of predictors 

whenever 0.05p < . In addition, let 2
pS  denote 

the change in the error sum of squares for 
deleting a variable pX  from a regression model. 

An assessment of the statistical significance of 

pX  in the model is made by referring 
2 2/p EF S S=  to the F distribution with degrees of 

freedom 1 2( , ) (1, 1)I jυ υ = − − . For a detailed 
explanation of best subsets of regression see 
Draper & Smith (1981, p. 303). 

If the potential predictor variables 
,( 1,2,......, )jX j J= , are noise variables, i.e. 

unrelated to Y in as much as 
0,( 1,2,......, )j j Jβ = = , then the p-values for 

judging overall model significance for any 
subset of size j, should be uniformly distributed 
U(0, 1). Thus, if a researcher works at the α  
significance level and, if none of the potential 
predictor variables are related to Y, then a Type I 
error in assessing significance of the overall best 
subset model should only be made %α of the 
time for any value (0,1)α ∈ . Arguably, the 
same requirement should also apply to 
individual predictor variables. An alternative 
procedure for assessing the overall significance 
of any best subset of size j and for assessing the 
statistical significance of each variable included 
in the best subset model is proposed. This 
alternative procedure, a randomization method, 
does not make explicit use of the properties of 



SHEHATA & WHITE 
 

401 
 

the F distribution. Ordering the variables that 
comprise a best subset solution in terms of their 
individual F values is also considered along with 
deriving an estimate of their p-value by 
considering similarly ordered F values under 
randomization. 

 
Randomization 

Consider sample data 

1 2, , ,......, ,  ( 1,2,......, )i i i Jiy x x x i I= , and let 2
jR  

denote the coefficient of determination for the 
best subset of size ,( 1,2,......, )j j J= . Next 
consider where the order of cases for the 
predictor variables in the data is randomly 
permuted but with the response variable held 
fixed at 1 2 1 2, , ,......, , , ,......,i i i Ji i k k Jky x x x y x x x→ . 
This random permutation of predictor records 
ensures that the sample correlation structure 
between the predictors in the original data set is 
precisely preserved in the newly created 
randomized data set. The random permutation 
also ensures that the predictor variables in the 
randomized data set are stochastically 
independent of the response, Y, but may be 
correlated with Y in any sample through a 
chance arrangement. 

Best subsets regression can be 
performed on the newly created randomized data 

set. Let 2
jS  denote the coefficient of 

determination for the best subset of size 
,( 1,2,......, )j j J=  for the randomized data set. If 

for subset 2 2, j jj S R> , then the randomized 

chance solution may be viewed as having better 
within sample predictability than the observed 
data. 

For any given data set many 
permutations of the original data set may be 
generated by taking another random 
permutation. In what follows the proportion of 

instances that 2 2
j jS R>  is estimated through 

simulation. This estimate is taken to be an 
estimate of the p-value for determining the 

statistical significance of 2
jR  for any subset of 

size j. For a given data set, an increase in the 
number of random permutations will serve to 
increase the accuracy of the estimated value. 

The above procedure may be summarized as 
follows: 
For given data set and for a subset of size j: 
1. Determine the best subset of predictors of 

size j and record the coefficient of 

determination 2
jR  

2. Set KOUNT = 0 
3. DO n = 1 TO N 

a. Randomly permute 1 2, ,......,i i Jix x x  

independently of iy  i.e. 

1 2 1 2, , ,......, , , ,......,i i i Ji i k k Jky x x x y x x x→  
b. For the newly created fake data set 

determine the best subset of size j and 
record the coefficient of determination 

2
jS  

c. If 2 2
j jS R>  then KOUNT = KOUNT+1 

4. ENDDO 
5. Estimated p-value = KOUNT/N 

The counting process effectively 
estimates rank position of the original solution in 
relation to randomization solutions. Under the 
randomization process all permutations are 
equally likely. Likewise if the original predictors 
are generated under a system whereby none of 
them are related to the outcome then the 

observed value of 2
jR  is just a likely to be as 

large as any value of 2
jS  obtained from random 

permutation. 
In a similar way for best subset of size j, 

consider the F-values for each predictor variable 
arranged in order, (1) (2) ( )........ jF F F> > > . The F-

values from a random permutation may be 
ordered in a similar way, i.e. 

* * *
(1) (2) ( )........ jF F F> > > . The proportion of times 

*
( ) ( )p pF F>  provides an estimate of the p-value 

of the p-th ordered variable in the observed best 
subset solution. 
 
Simulation Design 

For a specific application consider the 
model:  

0 1 1 2 2 3 3 4 4Y X X X Xβ β β β β ε= + + + + + . (2) 

To illustrate the properties of the proposed 
technique, four specific parameter settings 
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(referred to in the following as Model A and 
Model B) with two different correlation 
structures have been considered. 

Model A is a genuine null model with 

0 1β =  and 1 2 3 4 0β β β β= = = =  so that all 
proposed predictors are noise variables and are 
unrelated to the outcome Y. For Model B 
consider 0 1β = , 1 0.5β = , 2 3 4 0β β β= = =  
(i.e., one authentic variable and three noise 
variables). 

In the following simulations each model 
is considered with potential predictor variables 
being (i) Case 1, stochastically independent in 
which their correlation matrix is the identity 
matrix, and (ii) Case 2, strongly correlated with 
elements of the correlation matrix being 

1 2( , )X Xρ  = 0.708, 1 3( , )X Xρ  = 0.802, 

1 4( , )X Xρ  = –0.655, 2 3( , )X Xρ  = 0.757, 

2 4( , )X Xρ  = –0.582, 3 4( , )X Xρ  = –0.593, 

where ( , )l mX Xρ  denotes Pearson’s correlation 

coefficient between lX  and mX . 
In all instances the error terms are 

independent, identically distributed realizations 
from the standard normal distribution

2( 0,  1)μ σ= = , so that the underpinning 
assumptions for the OLS linear regression 
models are satisfied. Simulations herein are 
reported based on I = 30 cases per simulation 
instance and increasing sample size and 
increasing the number of potential predictors are 
considered. 
 

Results 
 

Figure 1 is a percentile-percentile plot of 
the p-values obtained from implementing the 
aforementioned algorithm for step j = 1, 2, 3 in 
best subsets regression for Model A with 
potential predictor variables being stochastically 
independent. The vertical axis denotes the 
theoretical percentiles of the uniform 
distribution U(0, 1) and the horizontal axis 
represents the empirically derived percentiles 
based on 500 simulations with each simulation 
based on 1,000 randomization instances. Note 
that the p-values based on the traditional method 
are systematically smaller than required, 
indicating that the true Type I error rate for 
overall model significance is greater than any 

pre-chosen nominal significance level α . By 
contrast the estimated p-values based on the 
randomization algorithm have an empirical 
distribution that is entirely consistent with the 
uniform distribution U(0, 1) for any subset of 
size 1, 2, or 3 out of 4 predictors. 

Under Model A, qualitatively similar 
results are obtained for j = 1, 2, 3 for potential 
predictors being correlated, Case 2. For j = 4 
there is no subset selection under the simulations 
and in these cases both the traditional method 
and the randomization method have p-values 
uniformly distributed U(0, 1). 

Simulations under Model B for step j = 
1, 2 in best subsets regression with independent 
predictors, Case 1, or with correlated predictors, 
Case 2, correctly show that the proposed method 
retains power at any level of α ; the power is 
marginally lower than the power under the 
traditional method (see Figure 2), but this is 
expected due to the liberal nature of the 
traditional method. 

Once overall model significance has 
been assessed, a normal practice is to assess the 
individual significance of each variable alone. 
Figure 3 is a percentile-percentile plot of the p-
values for the variables that comprise the best 
subset of size j = 3 of 4 under Model A, Case 1. 
In this instance the three variables included in 
the model have been ordered according to their 
F-values. The traditionally computed p-value for 
the variable with the largest F-value is typically 
too small when judged against the uniform 
distribution, U(0, 1). Contrary, for the variable 
with the smallest F-value the p-values calculated 
using the standard method are typically too large 
when judged against the uniform distribution, 
U(0, 1). By contrast, the p-value under the 
randomization method, for all ordered effects, is 
entirely consistent with the uniform distribution 
U(0, 1). 

Qualitatively similar results are obtained 
for Model A but for potential predictors being 
correlated, Case 2. 

Simulations under a true null model (i.e. 
with all potential predictors being noise 
variables), for J = 4, 8, 16, 32, 64 keeping the 
number of cases fixed, I = 30, have been 
performed. In all of these cases the simulations 
show that the p-value for overall subset 
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Figure 1: Percentile – Percentile plot for p-values for overall significance for best subset of 
size j = 1, 2, 3 from 4 independent predictors, Model A. 
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Figure 2: Percentile – Percentile plot for p-values for best subset of size j = 1, 2 from 4 
independent predictors, Model B. 
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significance using the proposed randomization 
method is uniformly distributed U(0, 1). 

In every simulation instance the 
estimated p-value in the randomization method 
for overall model significance was not less than 
the p-value under the traditional method. The 
distribution of the differences for j = 1 and J = 4, 
8, 16, 32, 64 is summarized in Figure 4. Note 
that the discrepancy tends to increase with 
increasing values of J and that this discrepancy 
is a substantive non-trivial difference. 

Simulations under a true null model (i.e.,   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
with all potential predictors being noise 
variables), for J = 4, 8, 16, 32, 64, but with 
different sample sizes, I = 30, 60, 90, 120 have 
been performed. In all of these cases the 
simulations show that the distribution of p-value 
for overall subset significance using the 
proposed randomization method is uniform U(0, 
1). In every simulation instance the estimated p-
value using the randomization method is not less 
than the p-value under the traditional method. 
Figure 5 summarizes the extent of the 
differences. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Percentile – Percentile plot for p-values for each variable in a best subset of size j = 
3 from 4 independent predictors when the effect size is order by magnitude, Model A. 
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Figure 4: Discrepancy between randomized and traditional p-values for best subset of 
size j = 1 with I = 30 and different number of predictors.
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Figure 5: Distribution of the difference in p-values for overall model significance under both 
the randomization and the traditional methods for Model A for subset of size j =1. 
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Conclusion 
 

A computer based heuristic that uses 
randomization has been described. The 
algorithm allows control of Type I error rate for 
the overall statistical significance of a best 
subsets regression model and control for the 
variables that comprise the model based on their 
relative order. This randomization algorithm 
permits the Type I error rate to be controlled at 
any pre-determined nominal significance level, 
α . The data sets created under the 
randomization procedure, each precisely 
retained the correlation structure observed in the 
original data and, as such, the approach takes 
into account the data set dependent problems 
that arise due to the correlation structure 
between potential predictor variables (see 
Derksen & Keselman, 1992). For the j-th best 
subset the procedure produces p-values 
indirectly based on the number of potential 
predictor variables (J) rather than the number of 
predictor variables in a given subset (j) and, as 
such, retains some similarity with the stance of 
Larzelere & Mulaik (1977). Their approach, 
however, does not take into account the 
correlation structure between potential predictor 
variables. By contrast, the algorithm outlined in 
this article establishes the p-value for overall 
model significance based on the effective 
number of predictors. For example consider J  
potential predictors, and consider an extreme 
case whereby 1J −  of the predictors are 
mutually orthogonal but the other predictor is 
perfectly correlated with one of the other 
predictors in the orthogonal set. In this extreme 
case the number of predictors is J but the 
number of effective predictors is 1J − . 

The simulation work demonstrates that 
the randomization algorithm corrects a non-
trivial problem. This correction also applies in 
those particularly problematic cases whereby the 
number of predictors exceeds the number of 
cases (subject to subset size j being less than 
sample size I). 

Significance tests in classical least 
squares regression are based on the assumption 
that the underpinning error terms are 
independent, identically distributed normal 
random variables. When these assumptions are 
satisfied the p-value for overall model 

significance for a best subsets regression of size 
j still displays a bias. By contrast, the 
corresponding p-value estimation using the 
randomization algorithm does not suffer from 
this bias. In practice the underpinning normality 
assumptions are likely to be violated to some 
extent, and these violations may lead to 
additional biases in the estimated p-values for 
overall model significance in a best subsets 
regression using the standard approach. The 
randomization approach is based on the sample 
data and the estimation of the p-value does not 
explicitly rely upon distributional assumptions. 
Indeed, the algorithm is not peculiar to ordinary 
least squares regression and could be applied to 
other classes of model, including those models 
that rely upon inferential tests of significance 
based upon large sample asymptotic theory (e.g. 
binary logistic regression). 

The approach for assessing individual 
significance of variables that comprise a final 
best subset is to consider a rank ordering on the 
variables in the model according to the value of 
their corresponding F statistic. This imposition 
of an ordering allows for a fair comparison with 
similarly ordered variables in the randomized 
solutions. It is recognized that this may produce 
a seemingly paradoxical outcome in some 
situations. For instance, and for simplicity of 
exposition, consider a two variable subset 2j =  

with a variable, 1X  with F-value (1)F  and a 

variable, 2X , with F-value (2)F . Without loss of 

generality assume (1) (2)F F> . In evaluating the 

statistical significance of 1X , the value (1)F  will 

be compared against similarly ordered values 
*

(1)F  and the value (2)F  will be compared with 

similarly ordered values *
(2)F . No condition is 

imposed to ensure that the proportion of times 
*

(1) (1)F F>  is less than the proportion of times 

*
(2) (2)F F> . However it should be borne in mind 

that 1X  and 2X  were not specified in advance; 
rather the significance tests alluded to are tests 
of significance for the variable with the largest 
value (1)F  and for the variable with the second 

largest value (2)F . In practice, interest would 
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focus on those final solutions where all variables 
in the model met some pre-defined nominal 
level of significance (e.g. 0.05α = ). 

A motivation behind this research was 
to help develop a sound methodological process 
to assist researchers in constructing valid and 
good initial models in exploratory research. 
However, the use of automated techniques is not 
in itself a substitute for quality of thought in 
determining what may be a good predictor of an  
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This article obtains a general formula to find the correlation coefficient between the sample mean and 
variance. Several particular results for major non-normal distributions are extracted to help students in 
classroom, clients during statistical consulting service. 
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Introduction 
 
Interest about the relationship between the 
sample descriptive measures is growing among 
the statisticians. For example, Zhang (2007) 
using a lengthy combinatorial argument obtained 
an expression for computing the covariance of 
sample mean and sample variance without the 
assumption of normality to help teachers explain 
to students. Such a tedious combinatorial new 
derivation is obsolete as it is a direct 
consequence of the results in Stuart and Ord 
(1994). Their result is helpful to find 
additionally the covariance between the sample 
mean and any even moment about the mean. 
However, no formula appears for computing the 
correlation between the sample mean and 
variance of a non-normal sample. Yet, almost all 
students in statistics courses and the clients 
during statistical consulting service curiously 
seek to know an estimate of such correlation in 
their data. So, there is a need to have a list of 
expressions for non- normal data which the 
statisticians can readily use to answer the 
clients’ query.   
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Let 1
1

1

'
n

i
i

X n X m−

=

= = and 2( )
1

n m
n

=
−

2 1 2

1

( 1) ( )
n

i
i

S n X X−

=

= − − be the sample mean 

and variance of a random sample drawn from a 
given population, where 1m  and 2m are the 

notations in Stuart and Ord (1994, volume 1, 
page 350). A consequence of their results is that  

2 3
1 2[ , ] [ ' , )Cov X S Cov m m

n
μ= = .         (1) 

 
Methodology 

 
In the next two sections, the general formula for 
finding the correlation and results for particular 
specified non-normal samples are obtained. The 
results for Poisson, geometric, and Bernoulli 
samples are illustrated with data from the 
literature for better understanding. 
 

Derivation of formula for 2( , )Corr X S  

Because
2

1[ ] [ ' ]Var X Var m
n

σ= =        (2) 

and 

2
2

2 2 2 2
4

[ ] [( ) ]
1

( ) 2( )

( 1)

nVar S Var m
n

n n n
μ σ σ

=
−

−= +
−

 

due to (10.9) in Stuart and Ord (1994) where 2σ
is the population variance. The kurtosis is 
measure of tail flatness of the frequency trend of 
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the data. Because the kurtosis is defined to be

4
2 2( )uK μ

σ
= , rewrite 

2 2
2 ( ) 2

[ ] [ 1 ]
( 1)uVar S K

n n
σ= − +

−
       (3). 

Similarly, the skewness is a measure of the lack 
of symmetry in the frequency trend of the data. 

The skewness is defined as 
2
3
2 3( )kS μ

σ
= . Using 

(1) through (3), the correlation coefficient 
between the sample mean and sample variance is 
obtained and after algebraic simplifications, it is 

 2[ , ] , 2
2

1
1

k

u

SCorr X S n
K

n

= ≥
− +

−

       (4). 

With only one observation (that is, n = 
1), the correlation between the sample mean and 
variance cannot be determined if the skewness is 
non zero, according to (4) as it requires multiple 
observations. Also, from expression (4), notice 
that the correlation is zero when the skewness is 
zero and it occurs in a random sample from a 
symmetric population. The t, Laplace, error 
distribution, the discrete and continuous uniform 
probability distributions in addition to normal 
distribution are symmetric population with zero 
skewness. Hence, the zero correlation between 
the sample mean and sample variance does not 
necessarily mean only the normal population 
due to (4). Furthermore, notice in (4) that the 
correlation weakens as the sample size increases. 
The skewness and kurtosis moderate the 
correlation coefficient in a way. The details are 
discussed, listed and illustrated below in several 
cases. In the next section, the results for 
particular non-normal cases which are come 
across in graduate courses and statistical 
consulting service. 
 
Special non-normal cases 

The power of mathematical statistics 
enables to group several probability distributions 
under one “umbrella” as they possess a common 
property.  
 
 
 

(Modified) power series family sample 
One such property is power series nature of 

the probability mass function (pmf). The pmf of 
power series distribution is defined (it seems 
earliest by Kosambi, 1949) to be 

Pr[ ]
( )

x
xax θ

η θ
=           (5) 

with a non-negative and differentiable function 
( )η θ  of a natural parameterθ . The variance in 

this family is 
 

2 2 2 ln ( ) ln ( )θθ θσ θ η θ θ η θ= ∂ + ∂      (6) 

 

where k
θθ∂ means the k-th derivative with respect 

to the natural parameter. The skewness is 
 

             2 2 6( ) /kS θθ σ σ= ∂  .       (7) 

 
The kurtosis is 
 

          4 4
3( 3 ) /uK θθ μ σ σ= ∂ +   .      (8) 

 
Substituting (6), (7), and (8) in (4), the 
correlation for the power series family could be 
readily computed.  
 This family is modified in several ways. 
One modification is by Gupta (1974), who 
introduced a modified power series distribution 
(MPSD) with pmf 

    
[ ( )]

Pr[ ]
( )

x
xa ux θ
η θ

=  

The variance, skewness, and kurtosis in (6), (7), 
and (8) change to 

2

ln ( )
[ ]

ln ( )

ln ( )

u
u

θ
θ

θ

θ

η θ
θσ

θ

∂∂
∂=

∂
, 

2
2 6( ) /

ln ( )kS
u

θ

θ

σ σ
θ

∂=
∂

 , 

and 

4 4ln ( )
( [ ] 3 ) /

ln ( )uK
u

θ
θ

θ

η θ σ σ
θ

∂= ∂ +
∂

. 

for MPSD. By substituting in (4), the correlation 
for the modified power series family can be 
computed. 



CORRELATION BETWEEN THE SAMPLE MEAN AND SAMPLE VARIANCE 

410 
 

Binomial sample (with replacement) 
For binomial sample, one need to 

consider ( ) (1 )rη θ θ= + with 1r ≥ denotes the 
number of trials and the natural parameter

/(1 )p pθ = − . By substituting the skewness 

2 12ˆ (1 ) ( [1 ])k
x xS x
r r

−= − −  

and the kurtosis 

16ˆ 3 (1 [1 ])( [1 ])u
x x xK x
r r r

−= + − − − , 

in (4), the correlation of the binomial sample 
mean and variance is noticed. When the number 
of trials is large (that is, r → ∞ ), the correlation 
diminishes but not to zero.  
 
Bernoulli trials 

With r=1 in the above binomial results, 
note that the correlation for Bernoulli sample 
mean and variance is 

2

1

ˆ [ , ]

2
(1 2 )[1 ( 6) (1 )]

1

Corr X S
nx x x

n
−= − + − −

−

 .      (9) 

This is useful in discussions of the logistic 
regression data. Consider the following partial 
data (Dalal, et al., 1989) of n = 5 observations 
with respect to failure (X = 1) and non failure (X 
= 0) of O-rings in space rockets. The shuttle 
challenger exploded after its launch on 28 
January 1986 with a loss of seven lives. A 
commission was charged with determining the 
causes of that tragedy. Their report concluded 
that the failure of O-rings in nozzle joints due to 
thermal stress was the reason. The gas went 
through the cracks in the stressed O-rings caused 
the explosion. 
 
Poisson sample  

The Poisson distribution is a limiting 
case of binomial distribution when the Bernoulli 
chance p is small but the number of trials is 
large enough to make a finite meanθ . If the 
number of O-rings to be investigated is large and 
the chance of any failure is very slim, then the 
expected number of O-ring failures is 0θ >  and 
it is the mean of Poisson frequency trend. For 

such a Poisson sample, note that ( ) eθη θ = with  
 
 
 

Table 1. Date and O-ring failure (X = 1)  
or non-failure (X =0) of n = 5 cases  

Date
21 

April 
81 

12 
Nov 
1981 

8 
Nov 
1984 

30 
Aug 
1984

21 
Jan 

1986

X = 0 1 0 1 1 

Note: the sample mean 0.6x = and 

sample variance 2 0.24s = with n = 
5. Substituting in (9), the correlation 
coefficient between the Bernoulli 
sample mean and sample variance is 
computed and it is 2ˆ [ , ] 0.489Corr X S = . 

 
the natural parameterθ denoting the incidence 
rate in the power series family. Substituting the 
Poisson skewness and kurtosis 

1 3k uS Kθ −= = −  

in (4), the correlation of the Poisson sample 
mean  and  variance  could  be  obtained.  It is 

             

2

1/ 2

1/ 2

ˆ [ , ]

1ˆ[2( ) 1]
1

1
[2( ) 1]

1

Corr X S

n

x
n

θ −

−

= + −
−

= + −
−

.       (10) 

With the larger incidence rate, the Poisson 
correlation diminishes.  
  
Incidence rate restricted Poisson sample 

In spite of rarity in the Poisson data, 
sometimes the data might not be well governed 
by the above described Poisson distribution. A 
modification in the Poisson probability 
distribution is necessary. One such modification 
is due to Shanmugam’s (1991). When the 
regular Poisson distribution does not fit a given 
data, one could consider the incidence rate 
restricted Poisson distribution (IRRPD) because 
it is versatile enough to fit the data. The pmf of 
IRRPD is 

1(1 ) ( )
Pr[ ]

!

x xx ex
x e

γθ

θ
γ θ− −+=  

where the incidence rate
1θ
γ

≤ andγ is the 

restriction parameter. The restriction is removed 
whenγ approaches zero and in which case, it 
reduces to the Poisson distribution in section 
(3.4). The skewness and kurtosis are 
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2 1(1 2 ) [ (1 )]kS γθ θ γθ −= + −  

and  
2 2 13 (1 8 6 )[ (1 )]uK γθ γ θ θ γθ −= + + + −  

The estimates of the IRRPD parameters are 

2
ˆˆ 1

x
s

γθ = −  and
2

ˆ xx
s

θ = . Substituting 

these estimates in (4), the correlation of the 
Poisson sample mean and variance can be 
obtained. When γ approaches zero, the above 
results reduce to those in Section 3.4 for the 
Poisson distribution. 
  To illustrate, consider the following data 
in the literature about the number of tram 
accidents, X in Belgrade during 1965 and 1970 
from Shanmugam and Singh (2001) as re-
displayed in the Table 2 below. The estimate of 
the IRRPD parameters with data on n =134 

drivers are ˆ 3.724θ =  and ˆ 0.101γ = . 
 

Table 2. # Tram Accidents in Belgrade 
 
 
 
 
 

With these estimates, the skewness, 
kurtosis, and hence the correlation between the 
sample mean and variance are obtained and they 

are ˆ 1.321kS = , ˆ 5.089uK =  and 
2ˆ [ , ] 0.567Corr X S = , respectively. 

For another example, consider the 
number of injury accidents that occurred in the 
Interstate-95 during January 1, 1969 through 
October 31, 1970 as reported in Shanmugam and 
Singh (1981). 
 

Table 3. # Injury Accidents in Virginia State 
during January 1, 1969 & October 31, 1970  

X= 0 1 2 3 4 5 + 

f= 286 216 92 30 14 1 

 
With n = 639, the estimates of IRRPD are 
ˆ 0.06θ =  and ˆ 13.5γ = . Hence, the skewness, 

kurtosis, and the correlation between the IRRPD 
sample mean and variance are 

ˆ 287.3kS = , ˆ 1003.403uK =  

and 
2ˆ [ , ] 0.535Corr X S = , 

respectively. 
  
Inverse binomial sample 

With ( ) (1 ) rη θ θ −= − in the power series 

family, 1r ≥ denoting the number of cases to be 
of a particular, and the natural parameter pθ =
be the probability of outcome of a type, the 
number of cases to be investigated is an inverse 
binomial random variable. Substituting its 
skewness 

2 1ˆ ˆ ˆ(2 ) ( [1 ])kS p r p −= − −  

and the kurtosis 
2ˆ ˆ6[1 ]ˆ 3

ˆ[1 ]u
p pK

r p
+ −= +

−
 

with
1

ˆ
1

xp
r x

−=
+ −

. Substituting in (4), the 

correlation of the inverse binomial sample mean 
and variance is obtainable. 
 
Geometric sample  

With 1r = in the above results for the 
inverse binomial sample, the correlation 
between the geometric mean and sample 
variance of a geometric sample is obtained and it 
is  

      2

1 1

1
[ , ]

(7 2[ 1] )

xCorr X S
x x x n− −

+=
+ + −

.     (11) 

For illustration, consider the geometric sample 
data on the number of heart failures experienced 
by a random sample of n = 15 cardiology 
patients in Alabama state as used in Bartolucci 
et al (1999). The sample mean is 1.2 in that 
geometric data. Substituting in (11) the sample 
mean, the correlation between the sample mean 
and variance of the geometric data is obtained 
and it is 2[ , ] 0.657Corr X S = .  
 
Log series sample  

For sample from a logarithmic series 
distribution, note that ( ) ln(1 )η θ θ= − −  with 

the natural parameterθ  in power series family. 
Substituting its skewness 

X= 0 1 2 3 4 5 6 7 8 9 ≥  
10 

f= 1 8 14 17 16 19 16 9 6 6 21 
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2
2

2

2 3

3 2
[(1 ) ]

ln(1 ) (ln(1 ))

[ ] [1 ]
ln(1 ) ln(1 )

kS

θ θθ
θ θ

θ θ
θ θ

+ + +
− −=

+
− −

 

 
and the kurtosis 

2

2 3

2 3

2

4 (1 )
[1 4

ln (1 )

6
3 ]

(ln (1 )) (ln (1 ))

[ ][1 ]
ln (1 ) ln (1 )

uK

θ θθ θ
θ

θ θ
θ θ

θ θ
θ θ

++ + + +
−

+
− −= − +

− −

 

in (4), the correlation between the binomial 
sample mean and variance could be obtained. 
 
Hypergeometric sample (without replacement)  

In many health applications, random 
sampling is done without replacement. For an 
example, once the virus infected individuals are 
identified in the population and are kept 
removed from the community. Suppose that Np
individuals are suspected to be infected where 
0 1p< <  indicates the prevalence level of the 
virus in the community. The number of infected 
individuals in a random sample of n persons 
without replacement is a hypergeometric 
outcome. Its skewness and kurtosis in data of 
this type are respectively 

2

1 2
(1 ) (1 2 )(1 )

[ ]
2

(1 )(1 ) (1 )
k

np
N NS nnp p

N N

− − −
=

− − −
 

and 

2

2

[( 1)[ ( 1 6 )

3 (1 )( 2) 6( / )

3 (1 )( / )(6 )

18 (1 )( / ) ]
3

( )( 2)( 3)u

N N N n
p p n n N
p p n N n

p p n NK
np N n N N

− + −
+ − − +
+ − −
− −= +

− − −
 

 
Substituting in (4), the correlation between the 
hypergeometric sample mean and variance could 
be obtained. 
 
 
 

Katz’s family sample 
The pmf of the Katz’s family is denoted 

by Pr[ 1] ( ) Pr[ ]
1

xx x
x

α β++ =
+

. Its skewness 

and kurtosis are 

22
( 1) /kS σ
β

= −  

and 

2
2

6 6
3 ( 1) /

(1 ) (1 )uK σ
β β

= + − +
− −

 

respectively. Substituting in (4), the correlation 
between the sample mean and variance of Katz’s 
family can be obtained.  
 
Log-normal sample 

Consider a random sample is drawn 
from a log-normal population with the threshold, 

location, and scale parameters 2, ,θ ξ σ
respectively. The skewness and kurtosis are 

2( 2) ( 1)kS ϖ ϖ= + −  

and 
4 3 22 3 3uK ϖ ϖ ϖ= + + −  

with 
2

.eσϖ =  Substituting in (4), the 
correlation between the log-normal sample mean 
and variance could be obtained.  
 
Gamma sample 

The skewness and kurtosis of the 
gamma population with pdf 

2
2

( )( ) 1 2
2 2

( ) ( )( ) / (( ) )
xxf x e
μμ

σ σμ μ μ
σ σ σ

−−
= Γ  

 

are
2

4( )kS
μ
σ

−
= and

2
3 6( )uK

μ
σ

−
= + where μ and

2σ denote the mean and variance. Substituting 
in (4), the correlation between the gamma 
sample mean and variance is obtained. In the 
gamma case, it is 
 

2
2

2 2 1

2
[ , ]

3 [ 1]
Corr X S

n
σ

μ σ −=
+ + −

. 
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Exponential sample  
When μ σ= in the above results, they 

reduce to those for exponential population. The 
exponential population is an interesting special 
case. Then, the correlation between the 
exponential sample mean and variance is 

            
2

2
2 1

2
ˆ [ , ]

4 [ 1]

xCorr X S
x n −=

+ −
       (12) 

For an illustration, consider Zelen’s exponential 
data below about the number of weeks a random 
sample of n = 11 tumor patients survived in a 
health clinic. The data are well fit by an 
exponential distribution as it is verified in 
Shanmugam (1991). 
 

Table 4. Zelen’s data of survival weeks of n = 
11 tumor patients 

3 4 5 8 8 10 12 16 17 30 33

 
The sample mean is equal to 13.6 weeks. 
According to (12), the correlation between the 
exponential sample mean and variance of this 
exponential data is 2[ , ] 0.71Corr X S = .  
 
Inverse gaussian sample 

The inverse Gaussian distribution is 
considered as an alternate model for positive but 
skewed data. Its skewness and kurtosis are 

1 1

1

9 [ ( ) ]
ˆ

1

n

i
i

k

x x x
S

n

− −

=

−
=

−


 

and 

1 1

1

15 [ ( ) ]
ˆ 3

1

n

i
i

u

x x x
K

n

− −

=

−
= +

−


 

respectively. Substituting in (4), the correlation 
between the sample mean and variance of 
inverse Gaussian data can be obtained.  
 
Pareto sample 

The Pareto distribution is considered 
another alternate model for positive but skewed 
data. Its skewness and kurtosis are 
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respectively. Substituting in (4), the correlation 
between the sample mean and variance of Pareto 
data can be obtained.  
 
Beta sample 

The beta distribution is considered 
suitable for percentage data. Its skewness and 
kurtosis are 

2

2
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ˆ ˆˆ ˆ( 1)kS ϖ υ ϖ υ
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respectively. Substituting in (4), the correlation 
between the sample mean and variance of beta 

data can be obtained where 
2

(1 )
ˆ { 1}

x xx
s

υ −= −  

and  

2

(1 )
ˆ (1 ){ 1}

x xx
s

υ −= − − . 

 
(Non) central chi-squared sample 

The non-central chi-squared sample is 
considered and analyzed in the discussion of 
statistical power calculation of hypothesis 
testing or analysis of variance. Its skewness and 
kurtosis are 

2 2

6

64( )ˆ
k

s xS
s

−=  
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respectively. Substituting these in (4), the 
correlation between the sample mean and 
variance of non-central chi-squared observations 

can be obtained. When 2 2s x= , all the above 
results reduce to those of central chi-squared 
sample. 
 
(Non) central F sample 

The non-central F sample is considered 
in the discussion of statistical power calculation 
of hypothesis testing or analysis of variance. The 
results are too messy to mention. However, the 
skewness and kurtosis of the central F sample 
are 

ˆ ˆ ˆ8(2 2)( 4)ˆ
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respectively, where  
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and  
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x s x
x
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Substituting these in (4), the correlation between 
the sample mean and variance of central F 
observations can be obtained.  
 
(Non) central t sample 

The non-central t sample is considered 
in the discussion of testing one sided hypothesis. 
Its skewness and kurtosis are 

2
2

ˆ
ˆ ˆ ˆ(3 1.25 ) /

ˆkS δδ υ
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= +  
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Substituting these in (4), the correlation between 
the sample mean and variance of noncentral t 
observations can be obtained.  

 
Power function sample  

In financial studies, random sample of 
observations is well fit by a power function 
distribution. The skewness and kurtosis in power 
function distribution are estimated using 

2

2

ˆ ˆ4(1 ) (2 )ˆ
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− +=
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and 
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where 2ˆ 1 ( ) 1
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s

= + − .  

 
Substituting the skewness and kurtosis in 
formula (4), the correlation between the sample 
mean and variance of the power function sample 
can be obtained. 
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Constructing Confidence Intervals for Spearman’s Rank Correlation with Ordinal 
Data: A Simulation Study Comparing Analytic and Bootstrap Methods 

 
John Ruscio 

The College of New Jersey 
 

 
Research shows good probability coverage using analytic confidence intervals (CIs) for Spearman’s rho 
with continuous data, but poorer coverage with ordinal data. A simulation study examining the latter case 
replicated prior results and revealed that coverage of bootstrap CIs was usually as good or better than 
coverage of analytic CIs. 
 
Key words: Spearman’s rank correlation, confidence intervals, bootstrap. 
 
 

Introduction 
 
Spearman’s (1904) rank correlation1 (rS) is a 
nonparametric statistic that allows an 
investigator to describe the strength of an 
association between two variables X and Y 
without making the more restrictive assumptions 
of the Pearson product-moment correlation (r). 
To calculate rS, one converts each variable to 
ranks, assigning equal ranks to any tied scores 
(but see Gonzales & Nelson, 1996, for 
alternative approaches to handling ties), and then 
uses the usual formula for r or this 
computational shortcut 
 

)1(

6
1

2

2

−
−= 

NN
d

r i
S ,                   (1) 

 
where the di are the differences in the ranked 
scores on X and Y for each pair of cases and N is 
the sample size. Because this statistic is sensitive 
only to the order of differences between adjacent 
scores, and not their magnitudes, it belongs to 
the family of ordinal statistics (Cliff, 1996). 

Cliff (1996) argues that ordinal statistics 
such as rS are better able to answer ordinal 
research questions than more conventional 
parametric statistics. For example, asking 
whether higher self-esteem is associated with 
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higher academic achievement poses an ordinal 
question. Using r to address it requires 
assumptions that may be unrelated to the 
research question and can be difficult to satisfy. 
Whereas r measures the strength of a linear 
relationship between X and Y, rS assesses how 
well an arbitrary monotonic function describes 
the relationship. Testing for the strictly linear 
relationship between self-esteem and academic 
achievement will underestimate the strength of a 
relationship if it is nonlinear. Also, the 
insensitivity of rS to monotonic transformations 
of the data can be a significant strength when it 
is safer to presume a monotonic relationship 
between one’s measure of a variable and the 
underlying construct than to presume a linear 
relationship (Cliff, 1996). Whereas r assumes 
bivariate normality, rS makes no assumptions 
about the distribution of either variable. Wilcox 
(2003) discusses the sensitivity of parametric 
statistics to extreme scores and, in many 
instances, even small departures from their 
assumptions. Caruso and Cliff (1997) suggest 
that rS should be less sensitive to extreme scores 
and a more inferentially robust measure than r. 

In addition to the fact that rS does not 
require assumptions of linearity or bivariate 
normality, rS can be used with ordinal data. 
According to Stevens (1946), a variable is 
classified as ordinal if scores can be scaled as 
rank-ordered categories but the absolute 
distances between them are unknown. Cliff 
(1996) observed that many variables of interest 
to psychologists are ordinal in nature. When one 
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or both of a pair of variables is ordinal, using rS 
enables researchers to study relationships using 
variables that do not meet the interval scaling 
requirement of r. 

Methods for evaluating the statistical 
significance of rS are based on its sampling 
distribution under the null hypothesis (H0) of ρS 
= 0. A randomization test (Edgington, 1987) 
may be the best way to test H0, and many 
textbooks present tables of critical values for 
relatively small sample sizes (e.g., critical values 
in Zar, 1972, have been reprinted). With 
sufficiently large samples, one can use an 
approximation to the t distribution with df =N–2: 
 

)2/()1( 2 −−
=

Nr

rt
S

S .                 (2) 

 
This is the same approximation that is ordinarily 
used to test the statistical significance of r. 

Although null hypothesis significance 
testing remains popular in the social and 
behavioral sciences, guidelines provided by the 
APA’s Task Force on Statistical Inference 
(Wilkinson et al., 1999) and its Publication 
Manual (American Psychological Association, 
2009) recommended constructing a confidence 
interval (CI) instead. This is usually more 
informative because a CI allows an assessment 
of the null hypothesis (i.e., if the CI includes 0, 
one would retain H0, otherwise one would reject 
H0) and provides additional information, such as 
the precision with which a population parameter 
has been estimated. The more narrow the CI, the 
greater the precision of the estimate. 

Testing the statistical significance of rS 
is possible because the sampling distribution 
under H0 is asymptotically normal and the 
variance of rS can be estimated as 1/(N – 1) 
(Higgins, 2004). To construct a CI, however, 
one cannot assume that ρS = 0, and when ρS ≠ 0 
the variance of rS is more complex. Techniques 
have been developed to estimate the variance of 
Fisher-transformed rS such that, when 
transformed back into rS units, the coverage of 
CIs constructed in this manner will approximate 
the nominal level. Several approaches have been 
developed and studied, and each is an 
adjustment to the technique used with r. After 

Fisher-transforming r, where )(tanh 1 rzr
−= , the 

usual estimate of the variance of zr is 1/(N – 3). 
With this estimate of the sampling error of zr and 
the assumption that these errors are normally 
distributed, one can construct a CI as follows: 
 













−
±= + )(

3

1
tanh)( 2/)1( CLr z

N
zCI ρ ,    (3) 

 
where CL is the desired confidence level (e.g., 
.95) and z(1+CL)/2 is the percentile point of a 
standard normal distribution below which the 
subscripted proportion of scores lies. For 
example, constructing a 95% CI for r = .50 and 
N = 50 would proceed as follows: zr = tanh–

1(.50) = .5493, z(1+CL)/2 = z.025 = 1.96, and CI(ρ) = 
tanh(.5493 ± .1459 × 1.96) = .26 to .68. Note 
that for r ≠ 0, this technique yields a CI 
asymmetric about r. 

To construct a CI for ρS in a parallel 
fashion, one begins with the Fisher 

transformation )(tanh 1
Sr rz

S

−=  and then uses its 

estimated variance in much the same way shown 
in Eq. 3. Whereas the z distribution is used to 
form CIs for ρ, Woods (2007) recommended 
using the t distribution (with df = N – 2) to form 
CIs for ρS. Because Woods found that the 
observed coverage of CIs for ρS often was below 
the nominal level, and sometimes substantially 
so, the t distribution will be used in the present 
study. (Using the z distribution would produce 
narrower CIs than using the t distribution, hence 
coverage even further below the nominal level.) 
Thus, the CI for ρS is constructed as follows: 
 

])(tanh[)( 2/)1( CLrrS tzzCI
SS +×±= σρ ,     (4) 

 

with formulas to estimate )(2
Srzσ , the variance 

of the Fisher-transformed rS, developed by three 
sets of investigators: Fieller, Hartley, and 
Pearson (1957), Caruso and Cliff (1997), and 
Bonnett and Wright (2000). Each represents an 
ad hoc adjustment to the formula used to 
estimate the variance of zr (recall that this is 1 / 
[N – 3]) that performed well under the 
conditions studied by its creators: 
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Caruso and Cliff (1997) studied CIs 

with ρS ranging from .00 to .89 using bivariate 
normal data with N = 10 to 200. Their technique 
(based on Eq. 6) achieved the nominal coverage 
levels. Bonnett and Wright (2000) studied CIs 
constructed using each of the three formulas 
shown above (Eqs. 5-7) with ρS ranging from .10 
to .95 using bivariate normal data with N = 25 to 
200. Their technique (Eq. 7) achieved good 
coverage even at large ρS (.80 to .95), where the 
other methods became liberal (i.e., coverage 
dropped below the nominal level). These results 
suggest that 95% CIs for ρS provide fairly 
accurate coverage for bivariate normal variables, 
with tendencies toward liberal coverage at large 
ρS and small N, and that the Bonnett and Wright 

formula for )(2
Srzσ  may be the most useful of 

the three evaluated in these studies. 
To date, only Woods (2007) 

investigated the coverage of CIs for ρS using 
ordinal data. Woods examined CIs constructed 

using each of the three formulas for )(2
Srzσ  

shown above using populations based on 
empirical data in which variables with either 4 
or 5 categories correlated with one another from 
near-zero to large values of ρS; sample sizes in 
the simulation study ranged from N = 25 to 100. 
In the corrected results2, Woods found that the 
Bonnett and Wright (2000) formula provided 
CIs with slightly better coverage than its rivals, 
but there remained room for improvement. For 
example, the coverage of nominally 95% CIs 
was below 90% for many conditions. Coverage 
dropped further below the nominal level for 
larger values of ρS, which is consistent with the 
findings of research using ratio scale data. 

At least two factors that may constrain 
the performance of the analytic method of 
constructing a CI by using a formula for 

)(2
Srzσ , at least under conditions that diverge 

from bivariate normality. First, each of the three 
formulas was developed as an ad hoc adjustment 
to the formula for estimating the variance of zr. 
Because data may diverge substantially from 
bivariate normality (e.g., ordinal data will not be 
distributed in this way), it may not be possible to 
adjust the formula for the variance of zr in a way 
that works well for a broad variety of data 
conditions. Second, constructing CIs for ρS using 
any of these formulas involves an assumption 
about the shape of the sampling distribution that 
may not be satisfied. Specifically, the t 
distribution is used to construct the CI. 
Whenever the sampling distribution does not 
follow the t distribution, the coverage of these 
CIs may deviate from the nominal level. 

Bootstrap methods for constructing CIs 
avoid both of these potential problems (Efron & 
Tibshirani, 1993). Rather than using a formula to 
estimate the variance of a statistic and making 
an assumption about the shape of its sampling 
distribution, one treats the available data as the 
best estimate of the population, draws random 
samples from it a large number of times (this is 
known as resampling, which provides what are 
called bootstrap samples), and calculates the 
statistic in each of these bootstrap samples. The 
distribution of the statistic across the bootstrap 
samples constitutes an empirical sampling 
distribution.3 The empirical sampling 
distribution is generated without recourse to 
assumptions such as bivariate normality, no 
formula is needed to estimate the variance of the 
statistic in the relevant population, and no 
assumptions are made about the shape of the 
sampling distribution. The strengths - and 
weaknesses - of bootstrap methods involve their 
heavy reliance on the empirical data rather than 
standard parametric assumptions (Kline, 2005). 

Once one has generated an empirical 
sampling distribution, CIs can be obtained in 
several ways. The simplest, although not always 
the best, method for constructing a bootstrap CI 
is to record the values of the statistic in the 
sampling distribution that span the desired 
proportion of results, with the remainder lying 
beyond the CI in equal proportions in both tails. 
For example, suppose a sample of N = 50 cases 
of ordinal data yielded rS = .72. Treating these 
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data as the population of pairwise scores, one 
can draw cases at random (with replacement) to 
obtain a new sample of N = 50, calculate rS in 
this bootstrap sample, and repeat this procedure 
B times, where B is the number of bootstrap 
samples. When this was done B = 2,000 times 
and the results were rank-ordered, values of rS = 
.53 and .86 spanned the middle 95% of the 
empirical sampling distribution. These constitute 
the lower and upper limits of a 95% CI for ρS 
using what is called the percentile bootstrap 
method (Efron & Tibshirani, 1993). 

The percentile bootstrap operates by 
sorting the B values in the empirical sampling 
distribution and identifying the CI limits as the 
values indexed at the positions B × αL (for the 
lower limit) and B × αU (for the upper limit), 
where αL and αU are calculated as follows: 
 

αL = (1 – CL)/2,                       (8) 
 

αU = (1 + CL)/2.                       (9) 
 
If either position is not a whole number, the next 
whole number toward the end of the range is 
used (e.g., if B × αL = 47.6 and B × αU = 1943.1, 
the values at positions 47 and 1944 would be 
used). For many statistics, percentile bootstrap 
CIs provide good coverage. When empirical 
sampling distributions are asymmetric, however, 
the bias-corrected and accelerated (BCA) 
bootstrap method often provides better coverage 
(Chan & Chan, 2004; Efron & Tibshirani, 1993). 
The BCA bootstrap method calculates αL and αU 
as follows: 
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where Φ is the standard normal cumulative 
distribution function and z0 and a index median 
bias and skewness, respectively. Formulas for 
the latter two values appear below. 
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where rS is the correlation in the replication 

sample, *
Sr  is a correlation in a bootstrap 

sample, # is the count function (applied across 
all bootstrap samples), and Φ-1 is the inverse 
standard normal cumulative distribution 
function. The closer rS is to the median of the 
empirical sampling distribution, the closer the 
proportion in parentheses will be to .5 and the 
closer z0 will be to 0. 
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where rS(i) is a jackknife value of rS calculated 
using all but the ith case and rS(·) is the mean of 
all jackknife values. As is evident in the form of 
Eq. 13, a is related to skewness and indexes 
what is referred to in the bootstrap literature as 
acceleration, or the rate of change in the 
standard error of a statistic relative to its true 
parameter value. When a = z0 = 0, Eqs. 10 and 
11 simplify to Eqs. 8 and 9, in which case the 
BCA bootstrap method yields the same CI as the 
percentile bootstrap method. When a ≠ 0 or z0 ≠ 
0, Eqs. 10 and 11 involve adjustments to the 
values of αL and αU. 

By indexing median bias and skewness 
to adjust αL and αU, BCA bootstrap CIs often 
provide better coverage than percentile bootstrap 
CIs. For example, in a study of CIs for ρ under 
conditions of range restriction, Chan and Chan 
(2004) found that the BCA bootstrap method 
yielded CIs with better coverage than did other 
bootstrap methods. Because the sampling 
distribution of Spearman’s rank correlation is 
expected to be asymmetric when ρS ≠ 0, the 
BCA bootstrap was included in the present study 
and the percentile bootstrap was not. 

To illustrate the difference between 
conventional and bootstrap approaches, Figure 1 
displays sampling distributions generated 
analytically, using the Bonnett and Wright 

(2000) estimate of )(2
Srzσ , and empirically, 

using the BCA bootstrap method. Whereas the 
shape  of   the  former   is  assumed   (prior to  



CI FOR SPEARMAN’S RANK CORRELATION 

420 
 

transformation from Fisher-transformed rS back 
to ordinary rS units, it followed the t distribution 
with 48 df), the latter is based on the observed 
results for B = 2,000 bootstrap samples drawn 
from the original data. The Bonnett and Wright 
95% CI ranged from .53 to .85, which is nearly 
the same as the percentile bootstrap CI of .53 to 
.86. The BCA bootstrap method adjusted these 
limits downward, and this CI ranged from .49 to 
.84. Only the BCA bootstrap CI included the 
correct value of ρS = .50, so it appears that the 
adjustments for median bias (z0 = -.085) and 
skewness (a = -.038) were helpful in this 
instance. 

Because the construction of bootstrap 
CIs does not require a formula to estimate the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

standard error of rS (or Fisher-transformed rS) 
and does not assume the shape of the sampling 
distribution, it may provide better coverage than 
the analytic method for constructing CIs. On the 
other hand, bootstrap methodology for 
constructing CIs treats the sample data as the 
best estimate of the population and resamples 
from this bivariate distribution. Any 
irregularities in the sample can be magnified in 
bootstrap applications, and this can be especially 
problematic with small samples (Kline, 2005). 
The present study was designed to compare the 
coverage of analytic and bootstrap CIs for ρS 
across a wide range of ordinal data conditions, 
including small sample sizes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Sampling distributions for rS in analyses of a sample of N = 50 cases 
drawn from a population in which both variables were distributed asymmetrically 

across 5 categories and ρS = .50. Vertical lines represent the limits of 95% 
confidence intervals constructed from each sampling distribution. 
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Methodology 
Design 

Four factors were studied. First, the 
marginal frequencies of variables in the 
populations were either derived from empirical 
data or simulated using asymmetric, symmetric, 
or uniform distributions. Second, the size of the 
contingency table for a bivariate relationship 
was either 5 × 5 or 4 × 5, which limited each 
variable to a small number of ordered categories 
and allowed for equal or unequal numbers of 
categories. Third, ρS varied from zero to a very 
large value (.90). Fourth, sample size varied 
from small (N = 25) to modestly large values (N 
= 200). 
 
Population Data 

Four types of bivariate population 
distributions were included in the study. First, 
the distributions in Woods (2007) were used so 
that results for BCA bootstrap CIs could be 
compared to those for the methods in prior 
research. Because Woods focused primarily on 
measures of ordinal association in the gamma 
family, populations were selected such that Γ 
ranged from near zero (-.01 to .01) through 
small (.35 to .39), medium (.55 to .59), and large 
(.85 to .89) levels. Populations were not selected 
for values of ρS, and consequently these do not 
vary as widely or discretely as the four levels of 
Γ. At each level of Γ, the number of categories 
was selected such that variables had equal or 
unequal numbers of categories. 

Specifically, both 5 × 5 and 4 × 5 
contingency tables were used. Woods studied 
four sample sizes (N = 25, 50, 75, and 100), and 
each sample size had a corresponding population 
distribution from which cases were sampled 
(with replacement). The variables’ marginal 
distributions generally were asymmetric. Figures 
2 and 3 show the population distributions for all 
32 conditions (4 sample sizes × 4 levels of Γ × 2 
table sizes) in Woods’ study.4 In addition to Γ 
for each condition, ρS is shown. All samples 
drawn from the Woods populations had the same 
sizes as in the original study (N = 25, 50, 75, and 
100). 

Because Woods (2007) selected 
populations for study from an empirical data set, 
there is a degree of realism to the data 
conditions. However, the finite number of 

variable pairs available in these data may have 
precluded an orthogonal manipulation of the 
design factors. For example, marginal 
distributions are not independent of sample size 
or ρS. To supplement the distributions analyzed 
by Woods, three additional types of population 
distributions were created in which design 
factors were manipulated orthogonally. First, 
marginal distributions were similar to those used 
by Woods in that they were asymmetric. 

Values for variables with 5 categories 
were sampled with probabilities of .55, .20, .12, 
.08, and .05; values for variables with 4 
categories were sampled with probabilities of 
.60, .22, .11, and .07. These distributions 
approximated the asymmetry observed in many 
of Woods’ populations. Second, marginal 
distributions were symmetric (and unimodal), 
with probabilities calculated using thresholds of 
-1.5, -.5, .5, and 1.5 in a standard normal 
distribution to create 5 categories and thresholds 
of -1, 0, and 1 to create 4 categories; these 
correspond to probability distributions of .07, 
.24, .38, .24, and .07 for 5 categories and .16, 
.34, .34, and .16 for 4 categories. Third, 
marginal distributions were uniform. 

For each type of distribution, both 5 × 5 
and 4 × 5 tables were created at each of six 
levels of ρS (.00, .10, .30, .50, .70, and .90). To 
generate each of these 36 bivariate population 
distributions (3 types of marginal distribution × 
2 table sizes × 6 levels of ρS), the iterative 
technique developed by Ruscio, Ruscio, and 
Meron (2007), and subsequently generalized 
with improved efficiency by Ruscio and 
Kaczetow (2008), was used. This technique 
generates multivariate data sets with user-
specified marginal distributions and correlation 
matrix. Both of the papers cited above 
demonstrate that this technique reproduces the 
desired distributions and correlations with good 
precision, especially at large sample sizes. In the 
present study, data were generated such that 
each of the 36 populations possessed 100,000 
cases, which enabled a very close match 
between ρS as specified in the study design and 
as calculated in the finite population from which 
replication samples were drawn: With one 
exception, these values were within .005 of each 
other.5 From each population, samples were  
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drawn with N = 25, 50, 100, and 200, yielding a 
total of 144 cells in this portion of the study 
design (36 populations × 4 sample sizes). 
 
Replication Sample 

Within each cell of the design, including 
the 32 conditions created by Woods (2007) and 
the 144 new conditions involving asymmetric, 
symmetric, and uniform populations, 1,000 
replication samples were drawn for analysis. 
Whereas previous studies of CIs for ρS have 
used larger number of replication samples, this 
was not feasible in the present study due to the 
inclusion of a bootstrap method that required 
extensive resampling and analysis for each 
replication sample. For each replication sample, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B = 2,000 bootstrap samples were drawn and 
analyzed. Using 1,000 replication samples per 
condition – the same number used in Chan and 
Chan’s (2004) study of bootstrap CIs for ρ in 
situations of range restriction – was both 
feasible, given the inclusion of a 
computationally intensive bootstrap method, and 
adequate for informative comparisons among the 
four types of CI studied. Each replication sample 
was checked to ensure that the variance for each 
variable was greater than zero so that a 
correlation could be calculated. In a small 
number of instances, primarily when drawing 
small samples from asymmetric populations, all 
values for a variable were identical and that 
sample was not included in the study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Population distributions for data conditions with 5 × 5 tables in Woods (2007). The area 
of each plotting symbol is proportional to the frequency in that cell of the contingency table. 

 

N = 25      Γ = -.01      ρs = .01 N = 25      Γ = .38      ρs = .23 N = 25      Γ = .56      ρs = .48 N = 25      Γ = .86      ρs = .80

N = 50      Γ = .00      ρs = .00 N = 50      Γ = .36      ρs = .33 N = 50      Γ = .57      ρs = .44 N = 50      Γ = .86      ρs = .81

N = 75      Γ = -.01      ρs = -.01 N = 75      Γ = .38      ρs = .31 N = 75      Γ = .57      ρs = .42 N = 75      Γ = .90      ρs = .80

N = 100      Γ = .01      ρs = .01 N = 100      Γ = .37      ρs = .30 N = 100      Γ = .57      ρs = .34 N = 100      Γ = .89      ρs = .81
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Data Analysis 
For each replication sample, rS was 

calculated and Eqs. 5-7 were used to estimate 

the variance of )(2
Srzσ  and construct CIs 

according to the methods of Fieller et al. (1957), 
Caruso and Cliff (1997), and Bonnett and 
Wright (2000). Then, B = 2,000 bootstrap 
samples - a quantity recommended by DiCiccio 
and Efron (1996) and also used by Chan and 
Chan (2004) - were drawn from each replication 
sample and rS was calculated for each to 
construct a bootstrap BCA CI. The nominal 
level of all CIs was .95 (95%). Each bootstrap 
sample was checked to ensure that a correlation 
could be calculated (i.e., that both variables’ 
variances were greater than zero); in a small 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

number of instances, a new sample was drawn to 
replace one that was discarded because a 
correlation could not be calculated. 

Within each cell of the design, observed 
coverage was recorded as the proportion of the 
CIs that included ρS (the value observed in the 
finite population from which replication samples 
were drawn). The absolute deviance between 
nominal and observed coverage was also 
recorded for each cell. 
 

Results 
 
Figure 4 displays the mean absolute deviance 

between nominal and observed coverage ( D ) 
for each of the four types of CI. These graphs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Population distributions for data conditions with 4 × 5 tables in Woods (2007). The area 
of each plotting symbol is proportional to the frequency in that cell of the contingency table. 
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N = 50      Γ = -.01      ρs = -.01 N = 50      Γ = .39      ρs = .29 N = 50      Γ = .55      ρs = .43 N = 50      Γ = .86      ρs = .69

N = 75      Γ = .00      ρs = .00 N = 75      Γ = .38      ρs = .31 N = 75      Γ = .55      ρs = .44 N = 75      Γ = .86      ρs = .67

N = 100      Γ = .00      ρs = .00 N = 100      Γ = .37      ρs = .30 N = 100      Γ = .55      ρs = .33 N = 100      Γ = .88      ρs = .65



CI FOR SPEARMAN’S RANK CORRELATION 

424 
 

aggregate the results within types of population 
for all conditions, for each table size, for each 
level of ρS, and for each level of N. For the 
populations studied by Woods (2007), displayed 
in the upper-left panel, the results for the three 
types of analytic CIs are comparable to those in 
the original study; minor discrepancies are 
attributable to sampling variation between 

studies. D  increased across levels of ρS for the 
analytic methods, reaching substantial values 
when ρS was large. 

Because values of ρS did not vary 
discretely across the four levels in the design 
(recall that, strictly speaking, these were levels 
of Γ, not ρS), results were replotted in Figure 5 
as observed coverage levels by ρS. This graph 
shows more clearly the tendency for coverage to 
fall below the nominal level with larger values 
of ρS. Relative to the coverage observed for the 
analytic methods, coverage for the bootstrap 
method was as good or better under most 
conditions, and much better for ρS > .50. 
Coverage for the bootstrap CIs remained within 
the control limits - the expected range of 
coverage results at α = .05 with 1,000 replication 
samples, which is [.9365, .9635] - at even for the 
largest values of ρS. As expected, the bootstrap 

method yielded its largest values of D  with the 
smallest samples (N = 25). Figure 5 shows that 
coverage for bootstrap CIs was outside of the 
control limits for only 4 of the 32 data 
conditions, each of which corresponded to an 
instance when N = 25. Different conditions seem 
to impair the performance of CIs for ρS 
constructed using analytic methods - in which 
case coverage falls below the nominal level as ρS 
increases - and the bootstrap method - in which 
case coverage is more erratic with smaller N. 

Results for asymmetric populations 
(Figure 4) follow the same general pattern 
observed for the Woods (2007) populations. 
Here, the orthogonal manipulation of design 
factors helps to disentangle the effect of 
increasing ρS from the effects of different 
marginal distributions. As ρS increased, coverage 
remained closer to the nominal level for the 
bootstrap method than for the analytic methods; 
the difference was slight to nonexistent at .00 ≤ 
ρS ≤ .30, modest at ρS = .50, substantial at ρS = 
.70, and very large at ρS = .90. Once again, 

larger values of D  were observed when the 
bootstrap method was used with smaller samples 
(N = 25) than with larger sample sizes (50 ≤ N ≤ 
200). 

With symmetric and uniform 
populations (Figure 4), perhaps the most striking 
result is that coverage for all methods 
approximated nominal levels fairly well under 
most conditions. Relative to the results for 
asymmetric populations, each of the methods 

achieved comparable or lower values of D  under 
all conditions studied; note that that scaling of 
the y axes was held constant across panels in 
Figure 4 to facilitate this comparison. 
Nonetheless, the pattern of results across levels 
of ρS was similar to that observed for other 
populations: The bootstrap method maintained 
good coverage levels even at the highest values 
of ρS, whereas the analytic methods did not. 

So far, results have focused primarily on 
absolute differences between observed and 
nominal coverage levels, and these discrepancies 
were averaged across cells in the design. To put 
more flesh on the bones of these results, for each 
CI method within each cell of the design, 
coverage was classified into one of seven 
categories using the control limits for α = .05 
(specified earlier), control limits of [.9322, 
.9678] for α = .01, and control limits of [.9273, 
.9727] for α = .001. 

This classification indicates whether 
coverage was within all control limits, liberal 
(observed coverage less than the nominal level) 
to one of three extents (α = .05, α = .01, or α = 
.001), or conservative (observed coverage 
greater than the nominal level) to one of these 
three extents. Figure 6 displays the results for 
the Woods (2007) populations, with results for 
each CI method in each cell of the design 
symbolized as within control limits (solid 
circle), liberal (downward-pointing triangles), or 
conservative (upward-pointing triangles); the 
size of a triangle corresponds to the most 
extreme α level at which the results fell beyond 
the control limits, with larger triangles indicative 
of greater deviance between observed and 
nominal coverage levels. Table 1 summarizes 
these results by tallying the frequency with 
which results fell into each of the seven  
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Figure 4: Mean absolute deviation between nominal (.95) and observed coverage. 
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categories for each CI method and population 
type. 

Whereas the bootstrap method provided 
CIs whose coverage was within control limits 
for α = .05 88% of the time (28 of 32 
conditions), the analytic methods provided CIs 
whose coverage was within these limits only 
50% to 53% of the time. As noted earlier, the 4 
exceptions for the bootstrap method occurred 
when N = 25 and exceptions for the analytic 
methods occurred more often as ρS increased. 
Figure 7 displays the results for the asymmetric, 
symmetric, and uniform populations, and Table 
1 summarizes these results as tallied frequencies. 
The bootstrap method provided CIs whose 
coverage was within control limits for 92%, 
85%, and 94% of the conditions in these three 
types of populations, respectively. The 
corresponding figures for the analytic methods 
were lower, often substantially lower, coverage 
erred on the liberal side two to three times as 
often as it erred on the conservative side, and 
most deviances exceeded even the α = .001 
level. Across all populations and data conditions 
(i.e., all 176 cells of the study design), the 
bootstrap method provided CIs whose coverage 
was within control limits 90% of the time, 
whereas the figures for analytic methods were 
64% (Fieller, et al., 1957), 67% (Caruso & Cliff, 
1997), and 56% (Bonnett & Wright, 2000). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One potential explanation for the generally 
liberal coverage of the analytic methods is that 
rS is a biased statistic, usually underestimating 
the value of ρS (Cliff, 1996). To the extent that rS 
is a biased estimator of ρS, it should not be 
surprising that CIs constructed around this 
statistic do not contain the population value 
sufficiently often to attain the nominal coverage 
level. In the present study, however, the 
magnitude of bias was rather small. The mean 
level of bias (rS – ρS) was calculated across the 
1,000 replication samples within each of the 176 
cells of the design, and the distribution of these 
values is shown in Figure 8 (M = -.0024, Mdn = 
-.0020). It seems unlikely that such a slight bias 
contributed substantially to the deviance 
between observed and nominal coverage levels 
for the analytically derived CIs. Instead, the two 
factors identified earlier - ad hoc formulas for 

estimating )(2
Srzσ  and the use of the t 

distribution in constructing the CI - remain 
plausible candidates for the source of this 
deviance. 
 

Conclusion 
 
This article reveals some important similarities 
and differences in the coverage of CIs for ρS 
with ordinal data constructed using four methods 

Figure 4 (continued): Mean absolute deviation between nominal (.95) and observed coverage. 
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Table 1: Frequencies of Observed Coverage Levels Within and Beyond Control Limits. 

CI Method Population Type − − − − − − CL + + + + + + 

Bootstrap 

Woods (2007) 2 0 1 28 1 0 0 

Asymmetric 2 0 0 44 1 1 0 

Symmetric 0 0 3 41 2 1 1 

Uniform 0 0 0 45 2 1 0 

All Populations 4 0 4 158 6 3 1 

Fieller, et al. 
(1957) 

Woods (2007) 9 3 0 16 1 1 2 

Asymmetric 18 2 4 21 2 0 1 

Symmetric 4 0 1 32 3 3 5 

Uniform 0 0 0 44 1 2 1 

All Populations 31 5 5 113 7 6 9 

Caruso & Cliff 
(1997) 

Woods (2007) 9 2 0 16 1 2 2 

Asymmetric 19 3 2 23 0 1 0 

Symmetric 4 0 0 35 2 2 5 

Uniform 0 0 0 44 2 2 0 

All Populations 32 5 2 118 5 7 7 

Bonnett & Wright 
(2000) 

Woods (2007) 6 0 4 17 1 2 2 

Asymmetric 14 2 3 27 1 0 1 

Symmetric 4 0 0 25 5 9 5 

Uniform 0 0 0 29 8 8 3 

All Populations 24 2 7 98 15 19 11 

 
Notes: There were 32 data conditions for the Woods (2007) populations and 48 data conditions for each of 
the other three populations (asymmetric, symmetric, and uniform), for a total of 176 data conditions. − − − 
= coverage < .95 at α = .001; − − = coverage < .95 at α = .01; − = coverage < .95 at α = .05; CL = coverage 
within control limits for .95 at α = .05; + = coverage > .95 at α = .05; + + = coverage > .95 at α = .01; + + + 
= coverage > .95 at α = .001. 



CI FOR SPEARMAN’S RANK CORRELATION 

428 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Scatterplot of observed coverage by ρS for the Woods (2007) populations. Dashed lines show 
the control limits for nominal coverage of .95 at α = .05, which are [.9365, .9635]. 
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Figure 6: Chart indicates whether coverage was within the control limits of .95. These limits are [.9365, 
.9635] for α = .05, [.9322, .9678] for α = .01, and [.9273, .9727] for α = .001. B = bootstrap. F = Fieller, 

et al. (1957). CC = Caruso and Cliff (1997). BW = Bonnett and Wright (2000). 
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Figure 7: Chart indicates whether coverage was within the control limits of .95. These limits are 
[.9365, .9635] for α = .05, [.9322, .9678] for α = .01, and [.9273, .9727] for α = .001. B = bootstrap. 

F = Fieller, et al. (1957). CC = Caruso and Cliff (1997). BW = Bonnett and Wright (2000). 
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Under many conditions, both analytic and 
bootstrap methods provided CIs whose coverage 
approximated the nominal level of .95 well. 
These conditions included small values of ρS 
(between .00 and .30), moderate to large sample 
sizes (at least 50 cases), and symmetric 
(unimodal or uniform) marginal distributions. At 
larger values of ρS, the analytic methods tended 
to underestimate sampling error, yielding CIs 
that were too narrow and provided coverage less 
than the nominal level. This occurred for all 
marginal distributions studied, but the deviance 
was much greater for asymmetric than for 
symmetric distributions, and greater for 
unimodal than uniform distributions among 
those that were symmetric. Generally speaking, 
the BCA bootstrap method was robust across all 
values of ρS and each type of marginal 
distribution. To the extent that this method 
showed evidence of an Achilles’ heel, it was the 
sometimes erratic coverage in the smallest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
samples studied (N = 25). Nonetheless, in many 
conditions with N = 25 and in nearly all 
conditions with N ≥ 50, the BCA bootstrap 
method yielded CIs whose coverage was as good 
as or better than that of the analytic methods. At 
large values of ρS, this difference was 
substantial. 

Although the study design spanned a 
broad array of data conditions - including 
several kinds of marginal distributions, sample 
sizes ranging from 25 to 200, and rank 
correlations ranging from .00 to .90 in ordinal 
data sets with relatively small numbers of 
categories - a number of issues remain to be 
clarified by future research. First, contingency 
tables of only two sizes were studied. Using 
Woods’ (2007) investigation as a launching pad, 
the design included variables with either four or 
five categories crossed in 5 × 5 or 4 × 5 tables. 
With the exception of the symmetric, unimodal 
populations, 4 × 5 tables led to poorer coverage 

Figure 8: Histogram showing the bias in rS as an estimator of ρS for all 176 cells of the study. 
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than 5 × 5 tables. Because there are only two 
table sizes, it is impossible to determine whether 
this effect is due to the variables’ unequal 
numbers of categories or due to the inclusion of 
a variable with fewer categories. Teasing apart 
these possibilities would require independently 
manipulating the number of categories for each 
variable and the equality vs. inequality of these 
numbers across variable pairs. 

The use of only two table sizes also 
prohibits the generalization of results to either 
smaller or larger tables. At one extreme, it is 
possible to calculate rS for two dichotomous 
variables. However, there are many other 
measures of association available for the 
analysis of 2 × 2 tables, each of which was 
developed to address a specific type of research 
question (for an overview, see Kraemer, Kazdin, 
Offord, Kessler, Jensen, & Kupfer, 1999). It 
seems unlikely that one would select rS as the 
most appropriate measure for a 2 × 2 table, but 
there remain table sizes between 2 × 2 and 4 × 5 
that merit further study. 

Because the analytic methods studied 
here involve ad hoc adjustments to a technique 
developed for use with bivariate normal data, 
using them with increasingly small table sizes - 
which necessitate deviations from bivariate 
normality - is likely to lead to less satisfactory 
results. Bootstrap methods may be especially 
well-suited to these conditions, and this 
possibility should be studied. At the other 
extreme, ordinal data with increasingly large 
numbers of categories would approximate 
continuous distributions. As table sizes increase, 
it becomes possible for data to approximate 
bivariate normality more closely, and the 
difference in coverage between analytic and 
bootstrap CIs probably will depend on 
distributional forms. The present study suggests 
that the bootstrap holds important advantages 
with asymmetric distributions; whether or not 
this generalizes to larger table sizes should be 
studied. 

Also worthy of investigation is the 
possibility that bootstrap methods might yield 
CIs for ρS with even better coverage if a larger 
number of bootstrap samples is used. In the 
present study, B = 2,000 bootstrap samples per 
replication sample were generated and analyzed 
both because this value is recommended in the 

bootstrap literature (e.g., DiCiccio & Efron, 
1996; Efron & Tibshirani, 1993) and has been 
used in similar simulation studies (e.g., Chan & 
Chan, 2004) and because available computing 
resources made a value this large feasible in the 
context of the study design. Even though the 
BCA bootstrap method performed fairly well in 
an absolute sense, and as good as or better than 
the analytic alternatives under most conditions, 
there remains room for improvement. For 
example, across the 176 data conditions studied 
here, coverage for the bootstrap CIs was within 
the α = .05 control limits of the nominal 
coverage level only 90% of the time, not 95% of 
the time. 

When using nonparametric bootstrap 
techniques such as the percentile or BCA 
methods, which locate the limits of CIs by 
indexing positions within an empirical sampling 
distribution, it is important to attain sufficient 
precision in the tails of this distribution. A larger 
value of B would help to flesh out these tails. 
Moreover, it should improve the estimates of the 
median bias (z0) and acceleration (a) parameters 
that are used to adjust the positions for locating 
the lower and upper limits of the CI. Whereas z0 
may change relatively little with increasing B, a 
is akin to a skewness statistic and its sampling 
error is not trivial; larger values of B should be 
especially useful in obtaining better estimates of 
a. All of this takes on greater importance if one 
wishes to construct CIs with even higher 
confidence levels than the usual .95, which was 
used exclusively in this study. For example, 
using the percentile bootstrap method by 
locating the values that define the middle 99% 
of an empirical sampling distribution requires a 
very large value of B to stabilize its tails, which 
are defined by only .5% of bootstrap samples 
apiece (e.g., 10 samples in each tail for B = 
2,000). 

Even though there are fruitful areas for 
follow-up research and no method of 
constructing CIs for ρS can guarantee that the 
observed coverage will equal the nominal level 
under all data conditions, researchers who would 
like to use rS to measure the association between 
two variables can be advised to calculate and 
report CIs. With at least a moderate sample size 
(e.g., N ≥ 50), the bootstrap BCA method with B 
= 2,000 appears to provide good coverage levels 
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for any ρS from .00 to .90, even with as few as 4 
or 5 ordered categories. If N is at least 25, the 
smallest value studied here, the analytic methods 
usually provided satisfactory coverage levels 
when ρS was not too large. For asymmetric 
distributions, coverage was good until ρS 
reached .50, and for symmetric distributions 
(unimodal or uniform), coverage was good until 
ρS reached .70. The only situations in which one 
would be well-advised to refrain from 
constructing CIs for ordinal data like those 
studied here are for small samples in which 
one’s data are distributed asymmetrically and 
produce large values of rS. Of course, conditions 
such as these would be extremely challenging 
for any correlational analysis - whether it 
involves testing H0 or constructing a CI, using rS 
or another measure of association - and it may 
be preferable to refrain from drawing strong 
conclusions from such data unless and until a 
method can be developed that handles them 
satisfactorily. 
 

Notes 
 

1The coefficient rS is sometimes referred 
to as “Spearman’s rho,” which can be 
ambiguous in that Greek letters often are 
reserved for values calculated in populations 
rather than samples. In the present article, rS will 
be used to denote the sample estimate of ρS, the 
population value of Spearman’s rank correlation. 

2Results for rS published in Woods 
(2007) are superseded by those in a correction 
(Woods, 2008). 

3Lee and Rodgers (1998) distinguished 
univariate and bivariate resampling for bootstrap 
applications with correlation coefficients. 
Whereas univariate resampling was found to be 
more useful for tests of statistical significance, it 
yields samples in which the marginal 
distributions reproduce those in the original data 
but the variables are uncorrelated (save for 
sampling error). As Lee and Rodgers note, 
bivariate resampling is required to construct CIs 
because this preserves not only the marginal 
distributions, but also the correlation in the 
original data. Thus, bivariate resampling was 
used exclusively for analyses presented in this 
paper. 

 

4Categories were recoded to consecutive 
natural numbers. In the original populations used 
by Woods (2007), the coding of some variables 
began at 0 and others at 1, and some variables 
had frequencies of 0 at intermediate category 
numbers (e.g., scores of 0, 1, 2, and 4 occurred, 
with no scores of 3). Because this recoding 
preserved scores’ rank order, it did not affect 
results. 

5For the data condition with ρS = .90 and 
a 4 × 5 contingency table with symmetric 
marginal frequency distributions, ρS in the finite 
population of 100,000 cases was .8713. As in all 
other conditions, CI coverage was evaluated 
against the correlation observed in the finite 
population, not the correlation specified in the 
design, so the failure to generate a finite 
population with a .90 correlation should not bias 
the coverage results. 
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Two Dimension Marginal Distributions of Crossing Time and Renewal Numbers 
Related to Two-Stage Erlang Processes 
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The two dimensional marginal transform, probability density and cumulative probability distribution 
functions for the random variables 

N
Tξ  (time taken by servers during vacations), Nξ (number of vacations 

taken by servers) and Nη  (number of customers or units arriving in the system) are derived by taking 

combinations of these random variables. One random variable is controlled at one time to determine the 
effect of the other two random variables simultaneously. 
 
Key Words: Two dimensional marginal distribution, Erlang processes, Markov processes, renewal 
processes. 
 
 

Introduction 
 
Biggins and Cannings (1987) found that a 
Markov renewal process ( ){ }0:, ≥nTX nn  

might have two constituents, and that 
{ }0: ≥nX n  is a homogenous Markov chain 

where ( )nn TT −+1  is the sojourn time in

( )00 =TX n . Thus, nX  could be the state 

entered at nT  and left at 1+nT , assuming that 

{ }0: ≥nX n  and { }01 ≥−+ nn TT  are 

independent, and the distribution of ( )nn TT −+1  

is dependent on { }0: ≥nX n  through nX  and 

1+nX  only (otherwise not dependent on n). It is 

assumed that sojourn time is always strictly 
positive. When the initial state is i, which is X0 = 
i, the   return to state i is an ordinary   renewal  
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process, and the visit to ij ≠  forms a delayed 
renewal process (the delay being the elapsed 
time until the first visit to j). Thus, Cinlar (1969) 
proved the theory of Markov renewal processes 
which generalizes those of renewal processes 
and the Markov chain and is a blend of the two. 
Biggins and Cannings (1987) applied the 
Markov Chain { }0: ≥nX n  to a finite state 

space assuming it to be the case in what 
followed, so that all introduced matrices are 
finite. In addition, the time Tn is integer-valued 
for transforms used for generating functions 
(with argument z) and Laplace transforms. They 
showed that the Markov renewal process theory 
provided a useful framework for the Markov 
chain model with wider applicability to the 
occurrence of sequences in the Markov chains, 
specifically on type one counters. Results are 
applied to problems regarding the reliability of 
the consecutive k-out-of-n:F system (Koutras & 
Papastavirdis, 1993; Godbole, 1993; Fu & 
Koutras,1994). The geometric distribution of 
order k was one of the simplest waiting time 
distributions. Several waiting time problems 
have been studied in more general situations 
(Ebneshahrshoob & Sobel, 1990; Kreos, 1992; 
Aki, 1992; Aki & Hirano, 1989, 1993, 1999; 
Mohanty, 1994). A class of waiting time 
problems was proposed by Ebneshahrshoob and 
Sobel (1990), who obtained the probability 
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generating functions (PGF) of waiting time 
distributions for a run of 0 of length r and a run 
of 1 of length k. Ling (1990) studied the 
distribution of waiting time for first time 
occurrence among E’s when X’s are 
independently and identically distributed (IID) 
and finite valued random variables, and all k’s 
had the same value. Aki and Hirano (1993) 
obtained the PGF’s of the distributions of the 
sooner or later waiting time for the same event 
as Ebneshahrshoob and Sobel. Talpur and Shi 
(1994) found the two dimension marginal 
distributions of crossing time and renewal 
numbers related with two Poisson processes 
using probability arguments, and constructing an 
absorbing Markov process. In this article, the 
same technique is extended for the case of the 
two stage Erlang process. 
 

Methodology 
 
An extensive literature review has shown that 
renewal processes are widely used in reliability 
theory and in models of queuing theory. Both 
theories are based on counting processes, and 
situations where the differences between two or 
more counting processes examined are common. 
Stochastic processes can be helpful in analyzing 
such situations. Kroese (1992) showed the 
difference process of the two counting processes 
as 
 

D(t) = N1(t) - N2(t), 
 
where N1(t) and N2(t) are two counting processes 
associated with the corresponding renewal  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sequences of {Xi } and {Yj}. The problem 
considered here is extended from the work of 
Kroese (1992) and Talpur & Shi (1994) and is 
based upon the renewal sequence of two 
variables {Xi} and {Yj} as shown in Figure 1. 
Let 

Nξ  = { }Nnn
STn ≥

∞→
/min , 

where Nξ  is a random variable and N is a 

constant. 
 

S0 = 0, SN = X1 + X2 +…+ Xn 
 

T0 = 0, Tn = Y1 + Y2 +…+ Yn 
 


=

=
N

N
j

jYT
ξ

ξ
1

, 

 
X represents the inter arrival, and Y is the 
number of vacations performed by the server. 
Both variables are discrete and have renewal 
processes at each occurrence. The level of 
absorption is achieved at the nth arrival of Xn; 
after the nth arrival, the nth vacation Yn of the 
server occurs. The difference between the times 
at which the nth vacation occurred and the nth 
customer arrived is the crossing time of the 
server. The probability generating function, 
probability density function, and cumulative 
probability distribution function for the two 
dimensional marginal distribution for the three 
random variables 

N
Tξ  (time taken by servers 

during vacations), Nξ (number of vacations 

taken by servers), and Nη  (number of customers 

or units arriving in the system) are thus obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 

X1 X2 

Y1 Y2 

X3

Y3 Yn-1 Yn 

XnXn-1 Xn+1



TALPUR, ZAMIR & ALI 
 

437 
 

                         Assumptions 
 

Let N be a constant and Xi and Yj be two 
sequences of random variables. Assume that Xi 
(i = 1, 2, 3,…) is independently and identically 
distributed (IID) with a finite mean, λ-1, and that 
Yj (j = 1,2,3,…) is IID with a finite mean μ-1. 
Assume also that ( )tN1  is the Erlang process 
associated with Xi, in which the distribution of Xi 
is the 2-stage Erlang distribution, and N2(t) is the 
Erlang process associated with Yj, in which the 
distribution of Yj is the 2-stage Erlang 
distribution. In addition, assume that Xi and Yj 
are mutually independent. 
 
Absorbing Markov process and absorbing time           
distribution 

Consider a Markov process {X(t), t ≥ 0} 
on the state space E = (0,1,2,…). If E0 and E1 are 
two non-null subsets of E and they satisfy the 
cases 

E0 ∪ E1 = E 
and 

E0 ∩ E1 = ∅, 
 
then, E0 and E1 are called a partition of E. If E0 is 
the absorbing state set and E1 is the transient 
state set, and αE is the initial condition, the 
absorbing Markov process (AMP) is constructed 
to analyze the problem. Consider the AMP 
{N1(t), N2 (t), I(t), J(t)}, in which N1(t) and N2(t) 
are the counting processes associated with Xi  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and Yj respectively. I(t) and J(t) represent the 
phases of Xi and Yj at time t respectively, and its 
state space is 
 

( ){ ( )jiljkiE ′′= ,,,,, / ,...;1,0, =ji ;2,1, =lk
,...;1, ′+′′=′ NNi },...;2,1 ′′=′j  

 
where ( )ji ′′,  are absorbing states. The 
transition of states is illustrated in Figure 2. Let 
 

( ) ( ) ( ) ( ) ( )1 2, , { , , , }ijP k l t p N t i N t j I t k J t l= = = = =
 
and 
 

 

 
 
From the transition rate diagram, the systems 
differential equations are as follows 
 

( )ijP t′ =  

( )
0 0ijp t
λ λ μ μ

λ μ
− −

− +
     
      

     
 

( ) ( ) ( )1 , 1

0 0 0
1 0

0i j ijp t p t
λ μ− −+ +

   
   
   

 
where ,...;2,1,0,;1,...1,0 =−= jNi .         (2.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )ijP t =

( ) ( ) ( ) ( )1,1, ,... 1, , ,... ,1, ,... , , .ij ij ij ijp t p n t p m t p m n t  

Figure 2: Transition Rate Diagram 
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and 

( )ijP t′ = ( )
0 0

ijp t
λ λ μ μ

λ μ
− −

− +
     
     

     
 

+ ( )1

0 0

0i jp t
λ−

 
 
 

, 

 
where , 1,...; , 0,1,...i N N j= + =             (2.2) 
 
Using these differential equations, Talpur and 
Iffat (2007) obtained the joint distribution for 
three random variables. The two dimension 
marginal distributions for the same problem 
were also obtained in this study. 
 
Two dimensional marginal probability 
distribution function for NN

T ξξ ,  

The number of arriving customers is 
fixed in order to observe the effect of time taken 
by server vacations and the number of vacations 
taken. The two dimensional marginal probability 
generating function (probability transform 
function), two dimensional marginal probability 
density function, and the two dimensional 
marginal cumulative probability distribution 
function for random variables NN

T ξξ ,  are 

computed under the following theorems. 
 
Theorem 3.1 

The two dimensional marginal 
probability generating function of the two 
random variables NN

T ξξ ,  is given by: 

 

( )usf ,∗ = 

( )01u
N

su
s





























++−

+−++ −

0

00)(
1

λμλμ
μλμλ

 

1
)(

−









++−

+−++
μλλ

μλμλ
s

s








μ
μ

. 

 
Proof 3.1 

The two dimensional marginal 
probability generating function of two random 
variables NN

T ξξ ,  is calculated from the joint 

probability generating function of three random 
variables NN

T ξξ ,  and Nη  (Talpur & Iffat, 

2007): 
 

( ), ,f s u z∗ = 

( )1 0u
1

( ) 0 0

0

N
s

u s z
λ μ λ μ

μ λ μ λ

−+ + − +

− + +

     
    
     

 

1
( )s

z s
λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

 

 
If z is close to 1, then the two dimensional 

marginal probability generating function is: 

 

( ),f s u∗ = 

( )1 0u
1

( ) 0 0

0

N
s

u s
λ μ λ μ

μ λ μ λ

−+ + − +

− + +

     
    
     

 

1
( )s

s
λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

. 

(3.1) 

 
Theorem 3.2 

The two dimensional marginal 
probability density function of two random 
variables NN

T ξξ ,  is given by: 

 

{ },
N Np T t jξ ξ≤ = =

2

1i N

N j
j

∞

=

+ −

−
 
 
 

  

( ) ( )

( ) ( )

2 2 2
1 ( )

2 2 1
( )

2 2 2 !

2 2 1 !

j i
j ii j t

j i
j ii j t

t
e

j i
dt

t
e

j i

λ μ

λ μ

λ μ λ μ

λ μ λ μ

+ −
+ − − +

+ −
+ − +

+
+ −

+ +
+ −

 
 
 
 
 
 

 

 
Proof 3.2 

As used by Talpur and Shi (1994), the 
following equation can be obtained by definition 
of the z and L transform 
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( ),f s u∗ = 

{ }
1 0

exp( ) ,
N

j
N

j

st dp T t j uξ ξ
∞∞

=

− ≤ =   

 
Inserting the value from equation (3.1) results 
in: 
 

( ),f s u∗ = 

( )1 0u
1

( ) 0 0

0

N
s

u s
λ μ λ μ

μ λ μ λ

−+ + − +

− + +

     
    
     

 

 
1

( )s
s

λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

 

 
Let μλ ++= sa  and applying the rule of 
power series as in Pipes and Harwil (1970) 
results in: 
 

( ),f s u∗  =  

1

0

Nk k

k

u u
a a a a

λ λ μ μ+∞

=

+    
    

    
  

{ }
0

1
l l

l a a a
λ μ λ λ μμ

∞

=

+ +
+   

   
   

  

 
Applying the negative binomial distribution and 
simplifying the series (Hogg & Craig, 2006), 
and setting 1+= kj  and lNi += , results in: 
 

( ),f s u∗ = 

1

1

1

1

1

j i

j i N

j i j i
k

N j u
j s s

u
s s

λ
λ μ λ μ

λ μ λ μ
λ μ λ μ

∞ ∞

= =

+ − +

+

+ −

− + + + +

+ +
+

+ + + +

    
    
    

     
    
     


 

 
After comparing the coefficient of ju  and 
taking the inverse of the Laplace transform, the 
two dimensional probability density function for 
the two random variables time taken by vacation 
of servers with respect to number of vacations is 
obtained as follows: 

 
 

{ },
N Np T t jξ ξ≤ = = 

2

1i N

N j
j

∞

=

+ −

−
 
 
 

 i jλ μ

( ) ( )

( ) ( )

2 2 2
1

( )

2 2 1

2 2 2 !

2 2 1 !

j i
j i

t

j i
j i

t
j i

e
t
j i

λ μ

λ μ

λ μ

+ −
+ −

− +

+ −
+

+
+ −

+ +
+ −

 
 
 
 
 
 

 

(3.2) 
 
Theorem 3.3 

The two dimensional marginal 
cumulative probability distribution function of 
two random variables NN

T ξξ ,  is given by: 

 

{ },
N Np T t jξ ξ≤ = =  

2

1

i j

i N

N j
j

λ μ
λ μ λ μ

∞

=

+ −

− + +
    

    
    


 

( )[ ] ( )[ ] ( )
2 2 1 2 2

0 1! !

r ri j i j
t

r r

t t
e

r r
λ μλ μ λ μ+ − +

− +

= =

+ +
+

 
 
  
   

 
Proof 3.3 

The two dimensional marginal 
cumulative probability distribution function 

NN
T ξξ , , is obtained by integrating the 

probability density function (Medhi, 1982). 
 

{ },
N Np T t jξ ξ≤ =  

= { }
0

,
N Ndp T t j dtξ ξ

∞

≤ =  

=
0

∞


2

1i N

N j
j

∞

=

+ −

−
 
 
 

 i jλ μ  

( ) ( )

( ) ( )

2 2 2
1

( )

2 2 1

2 2 2 !

2 2 1 !

j i
j i

t

j i
j i

t
j i

e
t
j i

λ μ

λ μ

λ μ

+ −
+ −

− +

+ −
+

+
+ −

+ +
+ −

 
 
 
 
 
 

dt 
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Integration by parts is applied to obtain the 
cumulative probability distribution function for 
the length of vacations taken by servers with the 
number of vacations taken by servers: 
 

{ },
N Np T t jξ ξ≤ =  = ( , )F t u  

=
2

1

i j

i N

N j

j

λ μ
λ μ λ μ

∞

=

+ −

− + +
    

        
  

( )[ ] ( )[ ] ( )
2 2 1 2 2

0 1! !

r ri j i j
t

r r

t t
e

r r
λ μλ μ λ μ+ − +

− +

= =

+ +
+

 
 
 
   

(3.3) 
 
Two dimensional marginal probability 
distribution functions for NN

T ηξ ,  

The effect of the number of vacations 
taken by servers combined with the numbers of 
customers arriving is studied by controlling the 
number of vacations taken by the servers. The 
two dimensional marginal probability transform 
function (probability generating function), two 
dimensional probability density function, and 
two dimensional marginal cumulative 
probability distribution function are obtained. 
The time taken by number of vacations by 
servers with the number of arriving units are 
represented by random variables NN

T ηξ , . 

 
Theorem 4.1 

The two dimensional marginal 
probability generating function (probability 
transform function) for random variables 

NN
T ηξ ,  is: 

 

( )zsf ,∗  = 

( )1 0

1
( ) 0 0

0

N
s

s z
λ μ λ μ
μ λ μ λ

−+ + − +

− + +

     
    
     

1
( )s

z s
λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

 

 
Proof 4.1 

The two dimension marginal probability 
generating function for the two random 
variables, NN

T ηξ , , is calculated from the joint 

probability generating function (joint probability 
transform function) for the three random 
variables NN

T ξξ ,  and Nη  as given by Talpur 

and Iffat (2007): 
 

( ), ,f s u z∗  =  

( )1 0u
1

( ) 0 0

0

N
s

u s z
λ μ λ μ

μ λ μ λ

−+ + − +

− + +

     
    
     

1
( )s

z s
λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

 

 
Let u be close to 1- for controlling the effect of 
the random variable Nξ . Then we get the two 

dimensional marginal probability generating 
function of the two random variables NN

T ηξ ,  as 

 

( ),f s z∗ = 

( )1 0

1
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N
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s z
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(4.1) 
 
Theorem 4.2 

The two dimensional marginal 
probability density function for random 
variables ,

N NTξ η  is: 
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Proof 4.2 

The following equation as given by 
Talpur and Shi (1994) can be expressed by the 
definition of z and L transform as: 
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Let a= μλ ++s , the following results after 
algebraic manipulation: 
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After substituting the value of a, comparing the 
coefficient of zi, and taking the inverse of the 
Laplace transform, the two dimensional 
marginal probability density function for the 
variables time taken by servers vacations with 
respect to the number of customers arriving, 

NN
T ηξ , , is established by: 
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Theorem 4.3 

The two dimensional marginal 
probability distribution function of random 
variables NN

T ηξ ,  is:  
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Proof 4.3 

The two dimensional cumulative 
probability distribution function for two random 
variables, NN

T ηξ , , is obtained by integrating the 

two dimension marginal probability density 
function for the same random variables. 
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dt 

 
After algebraic manipulation and applying the 
integration by parts the proof is obvious. 
 
Two dimensional marginal distribution functions 
for NN ηξ ,  

The effect of the number of vacations 
taken by servers on the number of customer 
arrivals was studied by controlling the time 
taken with the number of vacations made by 
servers. The two dimensional marginal 
probability transform function (probability 
generating function), two dimensional 
probability density function and two 
dimensional marginal cumulative probability 
distribution function for the number of server 
vacations with number of arriving customers, as 
represented by random variables NN ηξ , , are 

now calculated. 
 
Theorem 5.1 

The two dimensional marginal 
probability generating function (probability 
transform function) for the two random variables 

NN ηξ ,  is: 
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The two dimensional probability density 

function for random variables NN ηξ ,  is: 

 

( , )f u z  =  
2

2
1

j iN j
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+ −
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The two dimensional marginal 

cumulative probability distribution function for 
the random variables NN ηξ ,  is: 
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Proof 5.1 

The two dimensional marginal 
probability generating function (probability 
transform function) for the two random variables 

NN ηξ ,  is obtained from the joint probability 

transform function of the three random variables 
as: 
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Let s be close to 0+ to control the effect of time 
by the number of vacations taken by the number 
of servers. The two dimensional marginal 
probability generating function for random 
variables NN ηξ ,  is obtained using: 

 
 

( , )f u z′ = ( )1 0u  
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(5.1a) 
 
The definition of the z transform is expressed by 
the following equation (Talpur & Shi, 1994): 
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Using the same process as in theorem 2.2 results 
in: 
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j
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and comparing the coefficients u and z, the 
following proof is obtained: 
 

( , )f u z =
2

2
1

j iN j
j

μ λ
λ μ λ μ

+ −

− + +
     

    
    

 

(5.1b) 
 

Two dimensional marginal cumulative 
probability distribution functions for two 
random variables, Nξ  and Nη , was obtained by 

summing their density function and the number 
of vacations made by servers with the number of 
arriving units. 
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Results 
 
As shown in Table 1, the two dimensional 
marginal probability distributions of random 
variables involving the crossing time spent for 
the number of vacations taken by servers (

N
Tξ ) 

followed by the number of vacations by the 
service channels ( Nξ ) shows a two stage Erlang 

distribution for the probability density function 
for achieving the absorption state. The 
cumulative probability distribution function is 
found to be a Gamma distribution. 

The two dimensional marginal 
probability distribution for random variables 
involving the crossing time spent for the number 
of vacations taken by servers (

N
Tξ ) with a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reasonable number of arriving customers ( Nη ) 

for achieving the absorption state is shown in 
Table 2. The two variables show a two stage 
Erlang distribution for the probability density 
function. The Gamma distribution is satisfied for 
the cumulative probability distribution function. 

The probability density function for two 
random variables is expressed as a negative 
binomial distribution. The cumulative 
probability distribution function also satisfied 
the negative binomial distribution. As Medhi 
(1982) expressed, if the parameter λ  (intensity 
function) of a Poisson process is a random 
variable with Gamma distribution, then the 
mixed Poisson distribution is Negative binomial. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Two Dimensional marginal probability distributions 
of random variables NN
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Table 2: Two Dimensional marginal probability distributions 
of random variables NN

T ηξ ,  
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Table 3: Two dimensional marginal probability distribution 
functions of random variables NN ηξ ,  
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Size-Biased Generalized Negative Binomial Distribution 
 

Khurshid Ahmad Mir 
Govt.Degree College Bemina, 

Srinagar (J&K) India. 
 

 
A size biased generalized negative binomial distribution (SBGNBD) is defined and a recurrence 
relationship for the moments of SBGNBD is established. The Bayes’ estimator for a parametric function 
of one parameter when two other parameters of a known size-biased generalized negative binomial 
distribution is derived. Prior information on one parameter is given by a beta distribution and the 
parameters in the prior distribution are assigned by computer using Monte Carlo and R-software. 
 
Key words: Generalized negative binomial distribution, size-biased generalized negative binomial distribution, 
zero-truncated generalized negative binomial distribution; size biased negative binomial distribution, goodness 
of fit, Bayes’ estimation. 
 
 

Introduction 
 
Jain and Consul (1971) first defined generalized 
negative binomial distribution (GNBD), and it 
was subsequently obtained by Consul and 
Shenton (1972, 1975) as a particular family of 
the Lagrangian distribution. The parameter 
space of the distribution was further modified by 
Consul and Gupta (1995). The probability 
function of the GNBD is given by 
 

1( ) (1 ) ;
    x

0,1,2.....

x m x xm xmP X x
m x

x

ββ
α α

β
+ −+ 

= = − +  
=

(1.1) 
where 
 

0 1, 0 and    1.mα αβ< < > <  

 
The probability model (1.1) reduces to the  
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binomial distribution when β = 0, and to the 
negative  binomial  distribution  when   β = 1. It 
also resembles the Poisson distribution at β=½ 
because, for this value of β, the mean and 
variance are approximately equal. Jain and 
Consul (1971) obtained the first four non-central 
moments by using a recurrence relation and 
Shoukri (1980) obtained a recurrence relation 
among the central moments. The model (1.1) has 
many important applications in various fields of 
study and is useful in queuing theory and 
branching processes. Famoye and Consul (1989) 
considered a stochastic model for the GNBD and 
gave some other interesting applications of this 
model. The moments about the origin of the 
model (1.1) are given as: 

)1(

m
1 αβ−

α=μ′  

(1.2) 
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(1.5) 
and variance 
 

32 )1(

)1(m

αβ−
α−α=μ . 

(1.6) 
 

Jain and Consul (1971) discussed the 
method of moments of estimation, and Gupta 
(1972, 1975) and Hassan (1995) obtained 
maximum likelihood estimations. Jani (1977), 
Kumar and Consul (1980), and Consul and 
Famoye (1989) studied the minimum variance 
unbiased estimation of GNBD, while Islam and 
Consul (1986) examined its Bayesian method of 
estimation. Recently, Consul and Famoye (1980) 
and Famoye (1997) discussed these methods in 
brief with respect to the model (1.1). Estimation 
techniques in the case of GNBD are not simple, 
all involve computation and can become tedious 
and time intensive. 

The weighted distributions arise when 
observations generated from a stochastic process 
are not given an equal chance of being recorded, 
but instead are recorded according to some 
weight function. When the weight function 
depends on the lengths of the units of interest, 
the resulting distribution is called length biased. 
More generally, when the sampling mechanism 
selects units with probability proportional to 
some measure of the unit size, the resulting 
distribution is called size-biased. Such 
distributions arise, for example, in life length 
studies (see Blumenthal, 1967; Consul, 1989; 
Gupta 1975, 1976, 1979, 1984; Gupta & 
Tripathi, 1987, 1992; Schaeffer, 1972). 

Size-biased generalized negative 
binomial distribution (SBGNBD) taking the 
weights of the probabilities as the variate values, 
are defined in this study. The moments of size-
biased GNBD are also obtained. As far as 
estimation the parameters of a size-biased 
generalized negative binomial distribution 
(SBGNBD) is concerned, no method seems to 
have evolved to date, thus a Bayes’ estimator of 
size-biased generalized negative binomial 
distribution is presented. A computer program in 
R-software has been developed to ease 
computations while estimating the parameters 
for data. A goodness of fit test is employed to 
test the program’s improvement over the Bayes’ 
estimator of the zero truncated generalized 
negative binomial distribution (ZTGNBD) and 
of the size biased negative binomial distribution 
(SBNBD). 
 
The Truncated Generalized Negative Binomial 
Distribution 

Jain and Consul’s (1997) generalized 
negative binomial distribution (1.1) can be 
truncated at x = 0. The probability function of 
the zero-truncated GNBD is given by: 
 

( )
( )

( )2

1

1 1

m x xx

m

m xm
m x x

P X x

ββ
α α

β
α

+ −+
−

+
= =

− −

 
 
 
  

, 

x =1, 2….. 
(2.1) 

 
where 0 < < 1, > 0  | | ≤ 1. 

Bansal and Ganji (1997) obtained the 
Bayes’ estimator of zero-truncated generalized 
negative binomial distribution (2.1). Famoye and 
Consul (1993) defined a truncated GNBD using 
(1.1); they obtained an estimator of its 
parameters by using different estimation 
methods. 
 

Methodology 
 
A size-biased generalized negative binomial 
distribution (SBGNBD) - a particular case of the 
weighted generalized negative binomial - taking 
weights as the variate value is defined and 
moments of SBGNBD are obtained. 
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Using (1.1) and (1.2), results in the 
following: 
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= αβ−
α==⋅

0x
1 )1(
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)xX(Px  
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∞
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==
1x

3 1)xX(P  

 
represents a probability distribution. This gives 
the size-biased generalized negative binomial 
distribution (SBGNBD) as: 
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(3.1) 

 
Putting 1 and 0 =β=β , results in size-biased 
binomial (SBB) and size-biased negative 
binomial (SBNB) distributions. 
 
Moments of SBGNBD 

The rth moment, )s('
rμ , about origin of 

the size-biased GNBD (3.1) can be defined as: 
 


∞

=

=⋅=μ
1x

3
r'

r )xX(Px)s( ; r = 1, 2, 3,… 

(3.2) 

)s('
0μ =1, and for r ≥ 1, and 

 

)s('
rμ 

∞

=

+ =
α
αβ−=

0x
1

1r )xX(Px
m

1
 

 

)s('
rμ 1rm

1
+μ′

α
αβ−=  

(3.3) 
 
where 1r+μ′  is the (r + 1)th moment about the 
origin of (1.1). The first three moments of (3.1) 

about the origin using relations from (1.2) to 
(1.5) in (3.2) can be obtained by: 
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(3.4) 

 
which is the mean of (3.1). Similarly, for r = 2 in 
(3.2) using relation (1.4): 
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(3.5) 
 
Using relation (1.5) for r = 3 in (3.2) results in: 
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(3.6) 
 
The variance )s(2μ  of (3.1) using (3.3) and 
(3.4) is obtained by: 
 

)s(2μ [ ]1)2(
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)1(
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43
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(3.7) 
 
The higher moments of (3.1) about the origin 
can also be obtained similarly by using (3.2). 
 
Bayes’ Estimation in Size-biased Generalized 
Negative Binomial Distribution 

The likelihood function of SBGNBD 
(3.1) is: 
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( ) ( ) yymnnyn 11K −β+− α−ααβ−=  (4.1) 
 
where 

==
=

K   and  xy
n

1i
i  ∏

=








−

−β+n

1i i

i

1x   

1xm
. 

Because 10 <α< , it is assumed that prior 
information about α came from the beta 
distribution. Thus,  
 

( ) ( )
( ) 10 ;

b,aB

1
f

1b1a

<α<α−α=α
−−

, a>0, b>0. 

(4.2) 
 
Using Bayes’ Theorem, the posterior 
distribution of  from (4.1) and (4.2) can be 
written as: 
 

( ) =yp |α  

( ) ( )
( ) ( ) αα−ααβ−

α−ααβ−
−+−β+−−+

−+−β+−−+

1

0

1byymn1nayn

1byymn1nayn

d11

11
. 

(4.3) 
 
Under square error loss function the 

Bayes’estimator of parametric function zα  is 
the posterior mean given as 
 

ααα=α  dy)|p( ˆ
1

0

zz  

( ) ( )

( ) ( )
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d11

1 1
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(4.4) 
 
where 
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1

0
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(4.5) 

and 
 

( ) ( )
1

11

0

1 1
n mn y y by a n dβαβ α α α+ − + −+ − −− −  = 

( ) ( )

( )
2

1

 

F , , ,

y a n y mn b y
n y a n y mn a b n

y mn a b n

β
β β

β
  

Γ + − Γ + + −

− + − + + + −
Γ + + + −

 

 
(4.6) 

 
Using relations (4.5) and (4.6) in (3.4), the 

Bayes’ estimator of zα  becomes: 
 

( ) ( )
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Similarly, the Bayes’ estimator of the parametric 

function ( )z1 α−  can also be obtained as: 
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(4.9) 
 

Using the values from (4.9) and (4.6) in (4.8), 
the Bayes’ estimator of the parametric function 

( )z1 α−  can be obtained as 
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(4.10) 

 
The Bayes’ estimator for some parametric 
functions ( )αφ  and for particular models of 
SBGNBD are shown in Tables 4.1 and 4.2. 
 

Conclusion 
 
A computer program in R-Software was 
developed to ease computations while estimating 
the parameters for data. The expected 
frequencies and Chi-square obtained are shown 
in tables 5.1, 5.2 and 5.3. Assuming that the 
parameter α is unknown and that it has a beta 
distribution with parameters a and b, the Bayes’ 
relative frequencies are estimated by using the 
estimator of (2.1) and (3.1). Since no other 
information is provided about the values of a 
and b, except that they are both positive and real, 
a range of values from 1 to 50 were considered 
for a and b, and the values of (2.1) and (3.1) 
were computed. Three sets of simulated values 
were obtained with the help of R-software: one 
each for the parameter combination (α=0.5, 
β=0.3, a=b=1), (α=0.6, β=0.5, a=b=2) and 
(α=0.6, β=0.7, a=b=3). We noted that the 
estimated Bayes’ frequencies were quite close to 
the simulated sample frequencies when a and b 
were equal and that the variation in the Bayes’ 
frequencies was very little as the equal values of 
a and b increased. The graph also reveals that 

the simulated frequencies and the estimated 
Bayes’ frequencies are very close to each other 
for almost all values of X. 
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Table 4.1: Bayes’ Estimators of SBGNBD
Parametric 
Function 

( )αφ  
Bayes’ Estimator of SBGNBD 

α  
( ) [ ]

( ) [ ]

2

1

2

1

F , 1, 1,

F , , ,

y a n n y a n b mn y n a

y mn a b n n y a n b mn y n a

β β

β β β

+ − − + − + + + − + +

+ + + − − + − + + − +

( )α−1  
( ) [ ]

( ) [ ]

2

1

2

1

  y mn b-y F , , 1,

 F , , ,

n y a n y mn a b n

y mn a b n n y a n y mn a b n

β β β

β β β

+ + − + − + + + − +

+ + + − − + − + + + −
 

Table 4.2: Bayes’ α̂  Estimators 

β  Distribution Bayes’ Estimator α̂  

1 SBNBD 
bamny

nay

+++
−+

 

0 SBBD 
nbamn

nay

−++
−+
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Table 5.1: Number of mothers (fx) in Sri Lanka having at least one neonatal death according to 
number of neonatal deaths (x) Meegama (1980) (a=b=2, m=5, β=0.3) 

x fx 

Expected Frequency 

BSBNBD BZTGNBD BSBGNBD 

1 
2 
3 
4 
5 

567 
135 
28 
11 
5 

545.25 
154.67 
27.31 
16.61 
2.16 

549.22 
153.03 
29.65 
12.69 
1.41 

547.45 
150.47 
29.41 
15.65 
3.02 

Total 746 746 746 746 

Estimates α̂   0.48 0.49 0.51 
2χ   3.7953 3.0477 2.738 

Table 5.2: Number of workers (fx) having at least one accident according to number of accidents 
(x) (a=b=2, m=7, β=0.5) 

x fx 

Expected Frequency 

BSBNBD ZTGNBD BSBGNBD 

1 
2 
3 
4 
5 

2039 
312 
35 
3 
1 

2033.32 
325.33 
29.28 
1.95 
0.12 

2031.45 
322.78 
32.98 
2.56 
0.23 

2033.45 
320.15 
33.26 
2.89 
0.25 

Total 2,390 2,390 2,390 2,390 

Estimates α̂   0.465 0.493 0.503 
2χ   2.428 0.68 0.4077 

Table 5.3: Number of households (fx) having at least one migrant according to number of migrants 
(x) Singh and Yadav (1980) (a=b=2, m=9, β=0.7) 

x fx 
Expected Frequency 

BSBNBD BZTGNBD BSBGNBD 
1 
2 
3 
4 
5 
6 
7 
8 

375 
143 
49 
17 
2 
2 
1 
1 

370.87 
156.29 
48.42 
11.44 
2.40 
0.47 
0.09 
0.02 

368.37 
155.79 
49.12 
13.24 
3.01 
0.33 
0.11 
0.03 

371.81 
151.49 
50.21 
12.51 
2.89 
0.73 
0.30 
0.06 

Total 590 590 590 590 

Estimates α̂   0.475 0.489 0.493 
2χ   6.9458 4.06227 3.16908 



MIR 
 

453 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graph 3: Sample Relative Frequency and Bayes’ Relative 
Frequency for a=b=2, m=9, β=0.7 
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Graph 1: Sample Relative Frequency and Bayes’ Relative 
Frequency for a=b=2, m=5, β=0.3
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Graph 2: Sample Relative Frequency and Bayes’ Relative 
Frequency for a=b=2, m=7, β=0.5
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Non-Parametric Quantile Selection for  Extreme Distributions 
 

   Wan Zawiah Wan Zin             Abdul Aziz Jemain 
     Universiti Kebangsaan Malaysia                   Universiti Kebangsaan Malaysia 
 
 
The objective is to select the best non-parametric quantile estimation method for extreme distributions. 
This serves as a starting point for further research in quantile application such as in parameter estimation 
using LQ-moments method. Thirteen methods of non-parametric quantile estimation were applied on six 
types of extreme distributions and their efficiencies compared. Monte Carlo methods were used to 
generate the results, which showed that the method of Weighted Kernel estimator of Type 1 was more 
efficient than the other methods in many cases. 
 
Keywords: Order statistics, sample quantiles, kernel quantile estimators, weighted kernel quantile 
estimators, HD quantile, weighted HD quantile, LQ-moments, IMSE. 
 
 

 
Introduction 

 
In model fitting, one of the key steps is finding 
the accurate estimates of parameters based on 
the data in-hand. Several well-known methods 
include the maximum-likelihood method (ML), 
method of moments (MOM) and Probability 
Weighted Moments (PWM). An extension of 
PWM, termed L-moments, was introduced by 
Sillitto (1951) for increased accuracy and ease of 
use of PWM-based analysis. 
 Mudholkar & Hutson (1998) introduced 
LQ-moments, an extension of L-moments that 
was found to be more robust. LQ-moments are 
constructed using a series of robust linear 
location measures in place of expectations of 
order statistics in the L-moments. The r-th LQ-
moment, rξ of X is defined as: 
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where 0 ≤ α  ≤ 1/2, 0 ≤ p  ≤ 1/2, and 
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is the linear combination of symmetric quantiles 

of the order statistics rkrX :− with ( ) ( )⋅=⋅ −1
XX FQ  

as the quantile function of the random variable 
X , and ( )α1

:
−
− rkrB  denotes the corresponding α

-th quantile of a beta random variable with 
parameters kr − and 1+k . From (2) it can be 
concluded that proper selection of quantile 
estimators is crucial to obtain the most accurate 
parameter estimation based on LQ-moments. As 
there are many non-parametric quantile 
estimation methods available, selection is based 
on statistical ground to propose the most 
efficient method in many cases. 
 
 
 

( ) ,...,2,1,
1

)1( :,
1 =







 −
−= −

− rX
k

r
r rkrp

k
r ατξ



ZAWIAH & JEMAIN 

455 
 

Methodology 
 
The quantile function estimators 
Let nXXX ,.....,, 21 be independent and 

identically distributed random variables with 
common continuous distribution function (cdf) 

( ) ℜ∈xxF , . Let nnnn XXX ::2:1 ... ≤≤≤  

denote the corresponding order statistics. The 
population quantile function, ( )uQ of a 
distribution is defined as: 

 
{ } 10,)(:inf)( <<≥= uuxFxuQ .  (3) 

 
A traditional estimator of Q(u) is the u-th sample 
quantile given by 

[ ]( ) nnuu XSQ :1+=                     (4) 

where [ ]nu  denotes the integral part of nu 
(David, 2003). However, this estimator suffers a 
drawback in efficiency, caused by the variability 
of individual order statistics (Huang, 2001). In 
their article on LQ-moments, Mudholkar & 
Hutson (1998) employed the linear 
interpolation-based quantile (LIQ) estimator, 
defined as, 

[ ] ,)1()(ˆ
:1]'[:' nunnunX XXuQ ++−= εε   (5) 

where [ ]unun '' −=ε  and 1' += nn . This is 
the simplest estimator, and is available in most 
statistical software packages. It was used as the 
base for efficiency study in this research. 

To overcome the drawback in efficiency 
of (4), many authors use L statistics to reduce 
the variability. A popular class of kernel quantile 
estimators has been applied for improving the 
efficiency of sample quantiles, using an 
appropriate weight function to average over the 
order statistics (Sheather & Marron, 1990). 
Parzen (1979) provided the formula 
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where IA is the indicator function of set A, the 
following are various approximation forms of 
KQu which are often used for practical reasons: 
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Huang & Brill (1995, 1996) introduced 
a level crossing empirical distribution function  
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where the data point weights are 
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From (12) and (13), they obtained the following 
level crossing u-th sample quantile to estimate 
Q(u), namely, 

[ ]( ),2)( += blcu XSQ   (14) 

where  
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Huang & Brill (1999) then introduced 

the level crossing u-th sample kernel quantile 
given by, 

 
= 













−=

−

n

i
ni

q

q
hlcu XdtutKWKQ

ni

ni1
:)( ,)(

,

,1

  (16) 

where 
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,,  and wi,n is given in (13). 

 
The approximation forms of WKQu(lc) 
corresponding to (8)-(11) are as below: 
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In the study, Huang & Brill investigated 
the relative efficiency of the u-th sample level 
crossing quantile, SQu(lc) in (14) relative to the u-
th sample quantile SQu in (4) and the relative 
efficiency of the level crossing quantile 
estimator KQu(lc) in (16) relative to the ordinary 

kernel quantile estimator KQu in (6). From both 
theoretical and computational points of view, 
they showed that the proposed level crossing 
estimations were more efficient in many cases, 
especially for the tails of the distribution and for 
small sample sizes. Their simulation used the 
exponential and three types of generalized 
lambda distribution with small sample sizes 
(n=10 and n=20).  

The selection of kernel or bandwidth of 
the kernel estimators has always been a sensitive 
problem. To overcome this, Harrell & Davis 
(1982) proposed an L-quantile estimator of Q(u), 
defined by, 
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where a = (n+1)u , b=(n+1)v , v=1-u and β(a,b) 
is the beta function with parameters a and b. 

Huang (2001) proposed a level-crossing 
HD quantile estimator based on (12) and (21) as 
follows: 
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where 
=

=
i

j
njni wq

1
,, , 0:0 =nq  and wi,n is given 

in (13). 
Similar to previous research, Huang 

investigated the relative efficiency of the level 
crossing quantile estimator HDu(lc) in (22) 
relative to the ordinary quantile estimator HDu in 
(21). From both theoretical and computational 
points of view, the result proved that the 
proposed level crossing estimations are more 
efficient in many cases, especially for the tails of 
the distribution and for small sample sizes. In 
their simulation, the exponential and three types 
of generalized lambda distribution with small 
sample sizes (n=10 and 20) were used.  

Thirteen quantile estimation methods 
are used: (4), (5), (8) - (11), (14), (17) - (20), 
(21) and (22). An efficiency study is conducted 
based on integrated mean square error (IMSE) to 
determine the most efficient quantile estimation 
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methods for several extreme values 
distributions. LIQ is used as the base because it 
is the simplest, is easily available in most 
statistical packages and is most often used 
quantile estimation method. The relative 
efficiency results are compared; the method with 
the lowest IMSE relative efficiency was 
considered the best and was recommended. 
 
Extreme values distributions 
In this research, six common extreme-values 
distributions     were   investigated,   namely, the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generalized Extreme Value (GEV), Generalized 
Pareto Distribution (GPD), Generalized Logistic 
Distribution (GLD), the three-parameter 
Lognormal (LN3) and Pearson (PE3) 
distributions and the five-parameter extreme 
events such as extreme rainfall and flood. 

Table 1 provides the list of the extreme 
value distributions, their corresponding quantile 
functions and the associated parameters to be 
tested. The parameters are ε, the position 
parameter, α, the scale parameter and κ is the 
Wakeby distribution (WAK5). These six 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Extreme Value Distributions 

Distribution Quantile Function, Q(u) 
Parameters 

ε  α  κ  

1. Generalized Extreme 
Value (GEV) 

( )[ ]κ

κ
αε uln1 −−+  0 1 -0.3, -0.2, -0.1, 0.1, 0.2, 0.3 

2. Generalized Pareto 
Distribution (GPD) 

( )[ ]κ

κ
αε u−−+ 11  0 1 -0.3, -0.2, -0.1, 0.1, 0.2, 0.3 

3. Generalized Logistic 
Distribution (GLD) 


























 −−+

κ

κ
αε

u
u1

1  0 1 -0.1, -0.2, -0.3, -0.4, -0.5, -0.6 

4. The three-parameter 
Lognormal distribution 
(LN3) 

[ ]Ze κ

κ
αε −−+ 1  0 1 0.2(0.2)1.2 

5. The three-parameter 
Pearson distribution 
(PE3) 

γ
γγ

γ
2
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1

2
32
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(by Wilson-Hilferty 
transformation and Zu is the 

u-th quantile of the 
standard normal 

distribution) 
 

0 1 1, 2, 3, 4, 6, 8 

6. The five-parameter 
Wakeby distribution 
(WAK5) 

[ ]
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 0 1 

β γ δ 
16 4 0.2 

7.5 5 0.12 

1 5 0.12 

16 10 0.04 

1 10 0.04 

2.5 10 0.02 
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distributions are commonly applied in regional 
frequency analysis to model many situations of 
shape parameter unless stated otherwise. The 
distributions are studied at various shape 
parameters, κ  while fixing the position, ε and 
scale parameters, α at 0 and 1 respectively, 
except for Wakeby distribution. The parameters 
selected were based on previous studies (e.g. for 
Wakeby) the parameters were proposed by 
Landwher, et al. (1980). Ani & Aziz (2007) 
studied and compared the efficiency of (5), (17) 
and (22) quantile estimators based on this 
distribution. They performed simulation on GEV 
based on LQ-moments and the results showed 
that )(1. lcuWKQ  (17) was the most efficient 

quantile estimator. 
 
Simulation Study 

Several Monte Carlo simulation 
experiments were conducted to determine the 
best quantile estimators corresponding to 
different extreme values distributions. The data 
with small sample sizes, n=10(5)30 were 
generated from respective distribution quantile 
functions at various values of u = 0.01, 0.25, 
0.33, 0.50, 0.66, 0.75, 0.90 and replicated (m) 
5,000 times each.   

For the kernel and weighted kernel 
quantile estimators, the Gaussian Kernel was 

used ( ) ( ) 





−= − 2

2

1

2

1
exp2 uuK π  with an 

optimal bandwidth 
2

1







=

n
uvhopt  where v=1-u, 

as proposed by Sheather & Marron (1990). 
The expected values obtained from the 

quantile estimators, )(ˆ uQi  were compared with 

the distribution actual (population) u-th quantile 
value, )(uQ , that is bias  

Bias = ( )
=

−
m

i
i uQuQ

m 1

)()(ˆ1
. 

From this value the mean square value 
was calculated 

MSE =  ( )
2

1

)()(ˆ1 
=

−
m

i
i uQuQ

m
  (4.2) 

along with the integrated mean square errors 
(IMSE), which is defined as the sum of Mean 

Square Error across all defined u values. The 
IMSE from all other methods was divided by the 
IMSE from LIQ to gain the relative efficiency. 
The estimator which gave the lowest relative 
IMSE was selected as the best estimator.  

The computational results comparing 
various quantile estimation methods for various 
distributions are shown in Tables 2-7 for the six 
extreme distributions respectively. Note that 
bold font indicates the smallest IMSE value; the 
most efficient at each respective group. 

 
Results 

 
Table 2 shows the relative efficiency values for 
six types of Generalized Extreme Value (GEV) 
distribution. The selection of best quantile 
estimation method changes when the shape 
parameter changes from negative to positive. 

Table 2 also shows that when the shape 
parameter is negative, as in GEV types 1,2 and 
3, the method suggested was the Weighted 
Kernel Quantile estimator of Type 1, )(1. lcuWKQ , 

as in (17). However, when the shape parameter 
is positive, as in GEV types 4, 5 and 6, the most 
efficient method was the Kernel Quantile 
estimator Type 4 as in (11) for GEV types 5 and 
6. The result is similar in the case of n=10 for 
GEV type 4, but for this type, the more efficient 
estimator was the Weighted Kernel Quantile 
estimator Type 4, )(4. lcuWKQ , as in (20) 

followed by the Kernel Quantile estimator Type 
4. Hence, we suggest that – in the case of GEV 
distribution – when analyzing data which is 
lower-bounded (κ<0), as in most hydrological 
data, the best estimator would be Weighted 
Kernel Quantile estimator Type 1, )(1. lcuWKQ , 

and for data that is upper-bounded (κ>0), the 
Kernel Quantile estimator Type 4, 4.uKQ , 

would be the best choice. 
The IMSE relative efficiency for six 

types of Generalized Pareto distribution (GPD) 
is shown in Table 3. Similar to the GEV case, 
the selection of best quantile estimation method 
changes when the shape parameter changes from 
negative to positive. From Table 3, in almost all 
cases, the best estimator was the Weighted 
Kernel Quantile estimator Type 1, )(1. lcuWKQ ,  
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Table 2: Generalized Extreme Value (GEV) Distribution 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = -0.3 (GEV1) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.430 0.764 0.378 0.487 0.546 0.635 0.373 0.481 0.534 0.466 0.838 0.703 
15 1.183 1.176 0.338 0.453 0.529 0.588 0.333 0.446 0.528 0.431 0.894 0.695 
20 1.102 0.158 0.171 0.245 0.294 0.316 0.168 0.236 0.305 0.229 0.530 0.389 
25 0.200 0.200 0.186 0.273 0.354 0.346 0.182 0.257 0.367 0.252 0.602 0.418 
30 0.422 0.361 0.279 0.395 0.526 0.485 0.270 0.366 0.547 0.363 0.770 0.529 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = -0.2 (GEV2) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.286 0.810 0.475 0.559 0.667 0.658 0.457 0.538 0.635 0.524 0.811 0.705 
15 1.133 1.121 0.455 0.542 0.653 0.636 0.437 0.524 0.628 0.508 0.885 0.714 
20 1.100 0.289 0.262 0.320 0.379 0.384 0.255 0.312 0.377 0.303 0.564 0.439 
25 0.377 0.377 0.308 0.375 0.455 0.444 0.299 0.362 0.460 0.355 0.647 0.489 
30 0.586 0.514 0.366 0.448 0.550 0.527 0.355 0.426 0.564 0.421 0.743 0.558 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = -0.1 (GEV3) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.055 0.700 0.522 0.570 0.741 0.588 0.486 0.528 0.688 0.516 0.686 0.616 
15 1.143 1.128 0.595 0.650 0.799 0.692 0.562 0.621 0.737 0.599 0.874 0.746 
20 1.101 0.465 0.394 0.432 0.515 0.469 0.377 0.418 0.486 0.404 0.608 0.504 
25 0.536 0.536 0.434 0.478 0.562 0.525 0.418 0.463 0.545 0.451 0.678 0.553 
30 0.720 0.643 0.493 0.541 0.633 0.595 0.478 0.524 0.625 0.514 0.753 0.613 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 0.1 (GEV4) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 0.797 0.691 0.659 0.645 0.889 0.560 0.590 0.587 0.793 0.560 0.584 0.567 
15 1.067 1.051 0.879 0.865 1.112 0.767 0.804 0.820 0.958 0.758 0.820 0.778 
20 1.074 0.806 0.692 0.686 0.833 0.631 0.645 0.664 0.723 0.615 0.688 0.640 
25 0.836 0.836 0.724 0.716 0.825 0.681 0.690 0.707 0.736 0.663 0.740 0.688 
30 0.915 0.876 0.724 0.718 0.805 0.705 0.699 0.715 0.742 0.679 0.770 0.711 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =0. 2 (GEV5) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 0.734 0.690 0.710 0.666 0.921 0.555 0.628 0.615 0.812 0.575 0.562 0.558 
15 1.033 1.022 0.957 0.915 1.182 0.779 0.867 0.886 1.005 0.798 0.800 0.781 
20 1.041 0.931 0.815 0.785 0.954 0.694 0.757 0.780 0.814 0.703 0.721 0.696 
25 0.924 0.924 0.916 0.794 0.862 0.734 0.790 0.810 0.812 0.741 0.764 0.736 
30 0.975 0.949 0.821 0.795 0.888 0.749 0.790 0.804 0.796 0.750 0.782 0.751 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 0.3 (GEV6) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 0.702 0.704 0.757 0.682 0.938 0.564 0.664 0.649 0.821 0.595 0.565 0.566 
15 1.004 1.006 1.005 0.930 1.198 0.779 0.905 0.930 1.013 0.815 0.788 0.780 
20 0.979 0.969 0.868 0.817 0.993 0.712 0.802 0.834 0.840 0.737 0.729 0.714 
25 0.951 0.951 0.880 0.839 0.967 0.754 0.832 0.860 0.836 0.777 0.774 0.756 
30 0.979 0.973 0.863 0.828 0.923 0.766 0.828 0.848 0.817 0.783 0.788 0.768 
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Table 3: Generalized Pareto Distribution (GPD) 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = -0.3 (GPD1) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.437 0.719 0.331 0.457 0.521 0.603 0.325 0.438 0.508 0.429 0.819 0.677 
15 1.215 1.209 0.305 0.434 0.506 0.576 0.301 0.421 0.505 0.409 0.903 0.695 
20 1.103 0.145 0.165 0.250 0.316 0.325 0.162 0.236 0.323 0.232 0.556 0.397 
25 0.169 0.169 0.166 0.257 0.339 0.328 0.163 0.239 0.351 0.236 0.594 0.406 
30 0.390 0.331 0.257 0.378 0.513 0.470 0.249 0.347 0.534 0.346 0.771 0.519 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = -0.2 (GPD2) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.250 0.721 0.404 0.510 0.636 0.604 0.386 0.468 0.603 0.469 0.764 0.653 
15 1.241 1.230 0.399 0.510 0.612 0.622 0.385 0.480 0.587 0.475 0.893 0.717 
20 1.103 0.273 0.248 0.315 0.386 0.383 0.239 0.298 0.381 0.296 0.573 0.437 
25 0.337 0.337 0.265 0.341 0.422 0.416 0.257 0.322 0.429 0.321 0.632 0.467 
30 0.547 0.462 0.339 0.433 0.549 0.519 0.327 0.403 0.563 0.404 0.755 0.551 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = -0.1 (GPD3) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.049 0.675 0.458 0.551 0.749 0.570 0.425 0.470 0.689 0.484 0.677 0.598 
15 1.154 1.136 0.522 0.619 0.786 0.674 0.492 0.553 0.718 0.559 0.884 0.735 
20 1.102 0.391 0.333 0.390 0.476 0.435 0.317 0.358 0.448 0.360 0.593 0.477 
25 0.465 0.465 0.370 0.427 0.517 0.482 0.356 0.397 0.500 0.400 0.658 0.517 
30 0.660 0.566 0.420 0.490 0.593 0.557 0.405 0.455 0.588 0.459 0.742 0.580 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 0.1 (GPD4) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 0.760 0.603 0.498 0.593 0.897 0.499 0.445 0.442 0.788 0.475 0.538 0.507 
15 1.055 1.032 0.734 0.835 1.161 0.727 0.666 0.651 0.964 0.683 0.812 0.744 
20 1.106 0.708 0.580 0.634 0.814 0.577 0.539 0.523 0.678 0.540 0.655 0.591 
25 0.754 0.754 0.623 0.669 0.818 0.637 0.588 0.576 0.702 0.590 0.721 0.645 
30 0.891 0.812 0.645 0.681 0.801 0.672 0.618 0.607 0.715 0.618 0.757 0.676 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 0.2 (GPD5) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 0.656 0.571 0.497 0.601 0.948 0.462 0.436 0.417 0.815 0.458 0.478 0.464 
15 0.984 0.958 0.800 0.918 1.326 0.727 0.715 0.669 1.062 0.714 0.762 0.728 
20 1.109 0.864 0.716 0.787 1.047 0.663 0.659 0.618 0.829 0.644 0.704 0.665 
25 0.882 0.882 0.770 0.818 1.014 0.714 0.724 0.675 0.821 0.695 0.755 0.715 
30 0.975 0.907 0.762 0.795 0.943 0.726 0.728 0.685 0.794 0.700 0.772 0.727 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 0.3 (GPD6) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 0.584 0.553 0.503 0.615 0.992 0.441 0.437 0.405 0.841 0.454 0.441 0.441 
15 0.936 0.912 0.842 0.986 1.472 0.722 0.746 0.677 1.140 0.733 0.724 0.717 
20 1.114 1.036 0.865 0.962 1.315 0.738 0.788 0.710 0.998 0.749 0.743 0.734 
25 0.993 0.993 0.897 0.962 1.223 0.780 0.838 0.759 0.942 0.786 0.787 0.777 
30 1.045 1.005 0.868 0.908 1.093 0.778 0.827 0.758 0.876 0.777 0.789 0.777 
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as in (2.15) and in all cases for positive shape 
parameter, the most efficient estimator was 
Weighted Kernel Quantile estimator Type 2

)(2. lcuWKQ , as in (18). Hence, it is suggested 

that in the case of GPD, when analyzing data 
which is lower-bounded (κ<0), as in most 
hydrological data, the best estimator would be 
the Weighted Kernel Quantile estimator Type 1,

)(1. lcuWKQ , and for data that is upper-bounded 

(κ>0), the Weighted Kernel Quantile estimator 
Type 2 )(2. lcuWKQ , would be the best choice. 

For Generalized Logistic Distribution 
(GLD), the IMSE relative efficiency values 
point to several selections, as show in Table 4. 
Compared to the other two previous 
distributions, no one obvious estimator can be 
considered the most efficient for all types of 
GLD included in this study. The frequently 
quoted choices are Weighted Kernel Quantile 
estimator Type 1, ( )(1. lcuWKQ ), SQP1 and 2, and 

Kernel Quantile estimator Type 4, ( 4.uKQ ). 

However, using Weighted Kernel Quantile 
estimator Type 1, ( )(1. lcuWKQ ), is recommended 

since this estimator is frequently quoted as the 
most efficient compared to the others, and for 
ease of further analysis in its future application. 

The IMSE relative efficiency values for 
Lognormal Type 3 (LN3) distributions are 
displayed in Table 5. This table shows that, for 
LN3 Types 1 and 2, the suggested estimator is 
the Weighted Kernel Quantile estimator Type 4, 

)(4. lcuWKQ , for LN3 types 3, 4 and 5 it was the 

Weighted Kernel Quantile estimator Type 1,

)(1. lcuWKQ , and there was no obvious choice for 

LN3 Type 6. Hence, )(1. lcuWKQ  is 

recommended for this distribution because it is 
the best estimator for 3 types of LN3 (LN3 
Types 3, 4 and 5) in this study, however, further 
analysis of the IMSE relative efficiency values 
for LN3 Types 2 and 6 showed that this method 
gave the second smallest IMSE. 

Table 6 shows the IMSE relative 
efficiency values for the Pearson Type 3 (PE3) 
distribution. In general, for PE3 Types 1 and 2, 
the recommended estimator was )(4. lcuWKQ  for 

PE3 Types 3 and 4, was )(1. lcuWKQ  for PE3 

Type 5, and for Type 6 was )(2. lcuWKQ . 

Because only one type of estimator from the 
thirteen choices available needs to be chosen, 
although the simulation results showed three 
different methods, )(1. lcuWKQ  is recommended 

to use in other distributions. Another possible 
alternative would be to use )(4. lcuWKQ and 

)(2. lcuWKQ as quantile estimators. 

Finally, Table 7 shows the IMSE 
relative efficiency values for the Wakeby Type 5 
(WAK5) distribution. Although the most 
efficient quantile estimator for WAK5 Types 1 
and 2 was )(1. lcuWKQ , the )(2. lcuWKQ is often 

recommended for WAK5 Types 3, 4, 5, and 6. 
Hence, for WAK5, )(2. lcuWKQ

 
is recommended 

as the quantile estimation method, with 

)(1. lcuWKQ  as another alternative. 

 
Conclusion 

 
Table 8 summarizes the two most efficient 
quantile estimation methods (in sequence) with 
respect to the six extreme distributions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The IMSE relative efficiency of level 

crossing estimators was compared to the 
ordinary quantile estimator and the number of 
times the result showed that the level crossing 
estimators are better than the ordinary quantile  

 

Table 8: The Top Two Most Efficient 
Quantile Estimation Methods 

Distribution 
Most 

Efficient 
2nd Most 
Efficient 

GEV )(1. lcuWKQ  )(4. lcuWKQ  

GPD )(1. lcuWKQ  )(2. lcuWKQ  

GLD )(1. lcuWKQ  )(4. lcuWKQ  

LN3 )(1. lcuWKQ  )(1. lcuKQ  

PE3 )(1. lcuWKQ  )(4. lcuWKQ

WAK5 )(2. lcuWKQ  )(1. lcuWKQ  
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Table 4: Generalized Logistic Distribution (GLD) 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.1 (GLD1) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 0.852 0.772 0.882 0.784 0.939 0.667 0.808 0.815 0.869 0.692 0.676 0.674 
15 1.064 1.073 1.113 1.011 1.128 0.856 1.047 1.078 1.039 0.899 0.877 0.870 
20 1.155 1.084 0.977 0.897 0.945 0.762 0.943 0.970 0.879 0.815 0.768 0.775 
25 1.088 1.088 1.072 0.991 0.995 0.853 1.058 1.076 0.940 0.921 0.846 0.870 
30 1.117 1.210 1.138 1.051 1.016 0.912 1.143 1.150 0.974 0.997 0.896 0.937 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.2 (GLD2) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.027 0.797 0.753 0.720 0.839 0.668 0.702 0.722 0.790 0.647 0.728 0.692 
15 1.109 1.114 0.893 0.856 0.953 0.778 0.849 0.869 0.892 0.773 0.876 0.819 
20 1.125 0.800 0.718 0.684 0.731 0.616 0.697 0.703 0.689 0.628 0.691 0.646 
25 0.843 0.843 0.823 0.778 0.805 0.701 0.812 0.805 0.766 0.728 0.772 0.732 
30 0.944 1.020 0.937 0.876 0.873 0.795 0.941 0.918 0.844 0.838 0.853 0.828 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.3 (GLD3) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.150 0.672 0.570 0.594 0.681 0.599 0.541 0.577 0.653 0.541 0.716 0.644 
15 1.132 1.135 0.644 0.676 0.754 0.683 0.621 0.663 0.723 0.620 0.884 0.760 
20 1.105 0.506 0.461 0.476 0.523 0.472 0.450 0.470 0.506 0.441 0.616 0.521 
25 0.554 0.554 0.536 0.543 0.594 0.529 0.530 0.538 0.577 0.508 0.688 0.577 
30 0.688 0.738 0.651 0.652 0.704 0.636 0.651 0.652 0.691 0.620 0.813 0.685 

Parameters: Position, ε = 0; Scale, αa = 1; Shape, κ =-0.4(GLD4) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.468 0.893 0.479 0.579 0.609 0.694 0.464 0.559 0.595 0.533 0.894 0.769 
15 1.130 1.131 0.378 0.485 0.559 0.565 0.369 0.459 0.550 0.439 0.887 0.687 
20 1.104 0.200 0.213 0.271 0.320 0.309 0.210 0.256 0.318 0.246 0.517 0.388 
25 0.196 0.196 0.224 0.294 0.372 0.329 0.221 0.273 0.370 0.265 0.591 0.415 
30 0.329 0.341 0.343 0.428 0.547 0.465 0.342 0.401 0.547 0.391 0.804 0.547 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.5 (GLD5) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.616 0.891 0.374 0.513 0.510 0.683 0.370 0.499 0.507 0.477 0.931 0.777 
15 1.297 1.297 0.248 0.390 0.436 0.514 0.246 0.364 0.436 0.348 0.872 0.666 
20 1.105 0.060 0.121 0.217 0.293 0.274 0.120 0.194 0.295 0.188 0.538 0.362 
25 0.163 0.163 0.196 0.288 0.387 0.337 0.194 0.262 0.391 0.257 0.612 0.411 
30 0.299 0.306 0.338 0.532 0.831 0.590 0.335 0.468 0.834 0.465 0.907 0.551 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.6 (GLD6) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ
10 1.513 0.510 0.198 0.334 0.340 0.474 0.197 0.316 0.340 0.302 0.740 0.583 
15 1.257 1.257 0.208 0.362 0.415 0.491 0.207 0.333 0.417 0.319 0.864 0.647 
20 1.106 0.065 0.116 0.205 0.272 0.262 0.115 0.184 0.275 0.179 0.514 0.351 
25 0.074 0.074 0.119 0.218 0.312 0.271 0.118 0.192 0.316 0.188 0.570 0.366 
30 0.126 0.124 0.187 0.344 0.536 0.408 0.185 0.297 0.540 0.294 0.831 0.488 
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Table 5: Log-Normal Type 3 Distribution (LN3) 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.2 (LN3_1) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 0.846 0.730 0.761 0.658 0.876 0.591 0.674 0.692 0.783 0.588 0.619 0.599 
15 1.067 1.055 0.934 0.842 1.054 0.764 0.845 0.907 0.929 0.752 0.826 0.779 
20 1.077 0.801 0.723 0.669 0.795 0.627 0.670 0.724 0.710 0.611 0.686 0.637 
25 0.796 0.796 0.719 0.683 0.781 0.663 0.681 0.735 0.718 0.639 0.733 0.674 
30 0.896 0.844 0.716 0.693 0.774 0.690 0.689 0.738 0.730 0.659 0.764 0.697 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.4 (LN3_2) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 0.980 0.729 0.641 0.614 0.794 0.598 0.585 0.618 0.729 0.555 0.664 0.617 
15 1.106 1.092 0.762 0.745 0.916 0.732 0.705 0.758 0.832 0.676 0.851 0.763 
20 1.100 0.602 0.527 0.525 0.620 0.531 0.498 0.538 0.573 0.485 0.638 0.556 
25 0.641 0.641 0.544 0.553 0.638 0.577 0.521 0.568 0.608 0.521 0.697 0.598 
30 0.786 0.713 0.570 0.590 0.676 0.625 0.552 0.598 0.658 0.560 0.752 0.640 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.6 (LN3_3) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.163 0.764 0.545 0.577 0.709 0.631 0.515 0.573 0.670 0.537 0.748 0.665 
15 1.141 1.128 0.568 0.613 0.732 0.682 0.542 0.615 0.695 0.576 0.883 0.741 
20 1.103 0.446 0.384 0.418 0.493 0.465 0.368 0.416 0.477 0.394 0.611 0.500 
25 0.509 0.509 0.414 0.457 0.540 0.509 0.400 0.449 0.531 0.432 0.671 0.540 
30 0.693 0.609 0.461 0.513 0.604 0.577 0.448 0.502 0.608 0.487 0.748 0.598 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-0.8 (LN3_4) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.313 0.763 0.457 0.532 0.625 0.640 0.444 0.527 0.604 0.506 0.804 0.688 
15 1.193 1.182 0.439 0.523 0.607 0.635 0.427 0.520 0.596 0.498 0.891 0.719 
20 1.105 0.284 0.303 0.316 0.414 0.377 0.274 0.301 0.394 0.294 0.559 0.431 
25 0.372 0.372 0.291 0.359 0.436 0.433 0.283 0.348 0.447 0.340 0.639 0.479 
30 0.590 0.505 0.364 0.447 0.552 0.528 0.352 0.425 0.569 0.419 0.745 0.557 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-1.0 (LN3_5) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.502 0.859 0.404 0.521 0.561 0.692 0.402 0.522 0.555 0.502 0.906 0.761 
15 1.208 1.200 0.338 0.451 0.514 0.592 0.335 0.449 0.519 0.432 0.897 0.699 
20 1.102 0.206 0.203 0.274 0.326 0.350 0.200 0.268 0.337 0.260 0.552 0.413 
25 0.287 0.287 0.231 0.313 0.395 0.389 0.225 0.297 0.409 0.292 0.623 0.446 
30 0.444 0.376 0.275 0.387 0.510 0.474 0.266 0.357 0.531 0.354 0.755 0.521 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ =-1.2 (LN3_6) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.600 0.878 0.363 0.504 0.524 0.706 0.367 0.508 0.526 0.488 0.948 0.783 
15 1.237 1.232 0.265 0.401 0.451 0.552 0.266 0.393 0.462 0.378 0.893 0.682 
20 1.104 0.123 0.145 0.225 0.278 0.300 0.143 0.215 0.289 0.209 0.522 0.376 
25 0.196 0.196 0.175 0.271 0.356 0.350 0.171 0.254 0.373 0.249 0.610 0.419 
30 0.347 0.294 0.233 0.364 0.503 0.454 0.226 0.331 0.525 0.328 0.772 0.510 
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Table 6: Pearson Type 3 Distribution (PE3) 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 1 (PE3_1) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 0.916 0.741 0.747 0.647 0.844 0.599 0.668 0.697 0.763 0.579 0.642 0.611 
15 1.086 1.072 0.873 0.788 0.973 0.745 0.797 0.862 0.874 0.710 0.833 0.768 
20 1.103 0.727 0.659 0.611 0.720 0.592 0.615 0.667 0.658 0.561 0.669 0.607 
25 0.735 0.735 0.662 0.632 0.723 0.630 0.629 0.682 0.678 0.591 0.718 0.644 
30 0.863 0.808 0.683 0.665 0.748 0.672 0.658 0.705 0.716 0.628 0.763 0.681 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 2 (PE3_2) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.119 0.788 0.634 0.617 0.747 0.654 0.599 0.646 0.707 0.580 0.748 0.678 
15 1.120 1.099 0.673 0.672 0.794 0.715 0.639 0.697 0.752 0.630 0.873 0.755 
20 1.106 0.535 0.464 0.469 0.543 0.503 0.445 0.482 0.522 0.443 0.625 0.529 
25 0.582 0.582 0.474 0.493 0.565 0.542 0.460 0.503 0.560 0.470 0.681 0.566 
30 0.754 0.667 0.510 0.541 0.628 0.593 0.495 0.539 0.626 0.511 0.738 0.608 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 3 (PE3_3) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.286 0.804 0.539 0.576 0.648 0.685 0.534 0.601 0.637 0.568 0.826 0.721 
15 1.160 1.141 0.530 0.582 0.660 0.684 0.520 0.592 0.653 0.565 0.896 0.743 
20 1.099 0.383 0.321 0.362 0.414 0.431 0.315 0.364 0.419 0.351 0.589 0.470 
25 0.473 0.473 0.367 0.418 0.491 0.487 0.359 0.409 0.500 0.400 0.661 0.518 
30 0.666 0.571 0.406 0.471 0.563 0.546 0.396 0.452 0.577 0.445 0.733 0.570 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 4 (PE3_4) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.398 0.819 0.463 0.541 0.575 0.698 0.469 0.556 0.577 0.545 0.883 0.750 
15 1.181 1.167 0.420 0.502 0.555 0.644 0.421 0.508 0.567 0.499 0.904 0.721 
20 1.062 0.285 0.251 0.304 0.351 0.382 0.248 0.299 0.363 0.297 0.564 0.433 
25 0.396 0.396 0.298 0.364 0.436 0.445 0.293 0.348 0.452 0.348 0.645 0.485 
30 0.596 0.509 0.358 0.439 0.542 0.524 0.349 0.409 0.559 0.412 0.741 0.552 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 6 (PE3_5) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 1.129 0.751 0.415 0.463 0.477 0.650 0.417 0.400 0.479 0.529 0.888 0.728 
15 1.193 1.191 0.387 0.428 0.476 0.585 0.383 0.366 0.478 0.452 0.898 0.693 
20 0.631 0.192 0.247 0.264 0.316 0.346 0.237 0.218 0.314 0.266 0.556 0.409 
25 0.275 0.275 0.293 0.304 0.387 0.388 0.273 0.247 0.378 0.296 0.626 0.444 
30 0.433 0.391 0.383 0.383 0.512 0.474 0.349 0.302 0.490 0.363 0.748 0.517 

Parameters: Position, ε = 0; Scale, α = 1; Shape, κ = 8 (PE3_6) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ

10 0.870 0.802 0.568 0.515 0.566 0.674 0.532 0.442 0.540 0.614 0.875 0.735 
15 1.184 1.184 0.530 0.481 0.548 0.617 0.501 0.413 0.523 0.533 0.894 0.708 
20 0.357 0.257 0.335 0.296 0.352 0.372 0.312 0.253 0.331 0.315 0.562 0.425 
25 0.337 0.337 0.386 0.333 0.412 0.414 0.355 0.273 0.382 0.347 0.632 0.462 
30 0.461 0.455 0.509 0.426 0.545 0.513 0.458 0.351 0.495 0.436 0.751 0.543 

 



ZAWIAH & JEMAIN 

465 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Wakeby 5-parameter Distribution (WAK5) 

Parameters: Position, ε = 0; Scale, α = 1 and γ = 4; Shape, β = 16 and δ = 0.20 (WAK5_1) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 
10 1.097 0.631 0.375 0.490 0.692 0.532 0.342 0.407 0.622 0.422 0.671 0.577 
15 1.157 1.150 0.416 0.543 0.709 0.626 0.392 0.476 0.640 0.491 0.895 0.716 
20 1.107 0.312 0.266 0.337 0.424 0.395 0.254 0.303 0.395 0.315 0.576 0.447 
25 0.369 0.369 0.291 0.366 0.455 0.433 0.281 0.333 0.441 0.349 0.639 0.482 
30 0.555 0.500 0.354 0.444 0.549 0.526 0.345 0.406 0.549 0.426 0.755 0.562 

Parameters: Position, ε = 0; Scale, α = 1 and γ = 5; Shape, β = 7.5 and δ = 0.12 (WAK5_2) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 
10 0.868 0.587 0.394 0.540 0.816 0.503 0.353 0.372 0.711 0.452 0.577 0.526 
15 1.111 1.108 0.563 0.738 1.003 0.721 0.521 0.538 0.840 0.653 0.878 0.770 
20 1.159 0.555 0.398 0.500 0.618 0.516 0.383 0.394 0.531 0.472 0.640 0.550 
25 0.622 0.622 0.443 0.540 0.623 0.569 0.435 0.446 0.560 0.525 0.700 0.601 
30 0.768 0.734 0.509 0.610 0.677 0.655 0.509 0.525 0.639 0.607 0.791 0.679 

Parameters: Position, ε = 0; Scale, α = 1 and g = 5; Shape, β = 1 and δ = 0.12 (WAK5_3) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 
10 0.782 0.636 0.532 0.667 0.940 0.540 0.463 0.457 0.832 0.528 0.573 0.552 
15 1.082 1.082 0.757 0.892 1.135 0.751 0.685 0.658 0.965 0.731 0.846 0.789 
20 1.128 0.803 0.670 0.748 0.888 0.624 0.622 0.578 0.749 0.627 0.694 0.653 
25 0.840 0.840 0.771 0.828 0.927 0.709 0.736 0.679 0.798 0.720 0.777 0.736 
30 0.926 0.980 0.862 0.898 0.963 0.785 0.839 0.771 0.850 0.804 0.852 0.814 

Parameters: Position, ε = 0; Scale, α = 1 and γ = 10; Shape, β = 16 and δ = 0.04 WAK5_4) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 
10 0.583 0.450 0.384 0.504 0.939 0.385 0.311 0.313 0.750 0.360 0.427 0.396 
15 1.011 1.004 0.654 0.842 1.370 0.705 0.557 0.534 1.005 0.664 0.810 0.731 
20 1.146 0.668 0.485 0.602 0.855 0.564 0.440 0.418 0.629 0.534 0.655 0.584 
25 0.766 0.766 0.531 0.642 0.820 0.638 0.503 0.475 0.632 0.613 0.726 0.652 
30 0.910 0.868 0.580 0.697 0.821 0.715 0.566 0.533 0.672 0.695 0.790 0.723 

Parameters: Position, ε = 0; Scale, α = 1 and γ = 10; Shape, β = 1 and δ = 0.04 (WAK5_5) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 
10 0.606 0.594 0.557 0.732 1.061 0.515 0.468 0.436 0.916 0.543 0.501 0.515 
15 0.905 0.909 0.967 1.172 1.531 0.828 0.848 0.755 1.244 0.888 0.787 0.824 
20 1.161 1.339 1.139 1.302 1.560 0.954 1.040 0.918 1.252 1.032 0.900 0.955 
25 1.258 1.258 1.230 1.342 1.496 1.017 1.157 1.021 1.216 1.108 0.957 1.027 
30 1.192 1.313 1.244 1.311 1.378 1.034 1.203 1.068 1.151 1.130 0.976 1.055 

Parameters: Position, ε = 0; Scale, α = 1 and γ = 10; Shape, β = 2.5 and δ = 0.02 (WAK5_6) 
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 
10 0.565 0.568 0.432 0.692 1.064 0.484 0.374 0.333 0.881 0.520 0.453 0.482 
15 0.860 0.878 0.800 1.171 1.603 0.831 0.717 0.637 1.229 0.904 0.763 0.826 
20 1.386 1.513 1.041 1.408 1.732 1.042 0.971 0.876 1.312 1.135 0.955 1.047 
25 1.365 1.365 1.111 1.415 1.594 1.092 1.071 0.980 1.237 1.187 1.003 1.108 
30 1.293 1.387 1.114 1.355 1.427 1.083 1.102 1.020 1.149 1.174 1.004 1.111 
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estimators was calculated; these findings are 
summarized in the Table 9.  
 
 
 
 
 
 
 
 
 
 
 

Hence, it can be concluded that the level 
crossing estimators are better than the ordinary 
quantile estimators as shown in our analysis 
most of the time. 

Analysis on the most efficient method 
among the ordinary quantile estimators family 
showed that the 1.uKQ  quantile estimation 

method is the most efficient. 
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Using piecewise constant functions as models for the spectral density of the differenced log real U.S. 
GDP it was found that these models have the capacity to compete with the spectral densities implied by 
ARMA models. According to AIC and BIC the piecewise constant spectral densities are superior to 
ARMA. 
 
Key words: Spectral analysis, piecewise constant spectra, ARMA spectra, aggregate output. 
 
 

Introduction 
 
Univariate ARMA models are used in empirical 
economics as simple, purely statistical models 
for properly transformed macroeconomic time 
series (such as the first differences of the logs of 
the real GDP), and for the description of the 
serial correlation in the errors of more complex 
models such as linear or nonlinear multivariate 
regression models. A typical example of the first 
type is the study by Campbell & Mankiw (1987) 
who used ARMA(p,q) models with p ≤ 3 and q 
≤ 3 to investigate the long-run behavior of 
aggregate output. The persistence of output 
shocks can be measured by the cumulative 
impulse response or, equivalently, by the value 
of the spectral density at frequency zero, 
however, two drawbacks exist. The first is that 
the model parameters must be estimated by 
numerical optimization routines, which depend 
heavily on the starting values and can easily get 
stuck at local optima (e.g., Hauser, et al., 1999). 
The second is the extreme sensitivity of 
inference to the order of the ARMA 
representation (e.g., Christiano & Eichenbaum, 
1990). 
 Recently, interest has shifted from 
univariate to multivariate modeling (e.g., 
Blanchard & Quah,  
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1989; Pesaran, et al., 1993; Pesaran & Shin, . 
However, a multivariate approach based on 
economic theory and the information contained 
in a much larger data set is not necessarily better 
than a simple univariate time series model, 
because both the estimation and the 
identification of multivariate models is many 
orders of magnitude more difficult. But even in 
situations where multivariate models outperform 
univariate models, the latter are often used as 
benchmarks for the former (see, e.g., 
Schumacher & Dreger, 2004). Thus, univariate 
ARMA models still have an important role to 
play. This article proposes competitive 
alternatives to ARMA models for the purpose of 
estimating the spectral densities of 
macroeconomic time series. 
 

Methodology 
 
The following piecewise constant functions are 
proposed: 
 
gr(ω) = a(b1 ),[ 10

1 αα + b2 ),[ 21
1 αα +… 

+ br-1 ),[ 1r2r
1

−− αα + ],[ r1r
1 αα − ), ω∈[0,π], 

(1) 
 
where r ≥ 2 and 0=α0<α1<…<αr=π, for the 
approximation of the spectral densities of 
macroeconomic time series. There are 2(r-1)+1 
parameters that must be estimated, a, b1, …, br-1, 
α1, …, αr-1. An obvious choice for the first 
parameter is: 
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where sj is the largest integer such that: 
 

n

s2 jπ
<αj.                         (3) 

 
The parameters b1, …, br-1, …, s1, …, sr-1 can be 
found by maximizing the Whittle likelihood 
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where  
 

ωk= n
k2π

, k=1,…,m.                (6) 

 
The parameters α1, …, αr-1 can be obtained from 
s1, …, sr-1 via 
 

αj= n

s2 jπ
+

n
π .                        (7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To demonstrate the usefulness of this approach, 
the seasonally adjusted quarterly real U.S. GDP 
from  1947.1 to 2007.1 was downloaded from 
FRED® (Federal Reserve Economic Data) and 
the spectral density of the first differences of the 
log GDP was approximated by the piecewise 
constant functions gj, j=2,3,4.  

 
Results 

 
Figure 1 compares the three piecewise 

constant spectral densities with the best three 
ARMA spectral densities selected by BIC. One 
of these three ARMA models, namely the 
ARMA(3,2) model, is the best ARMA model 
according to AIC. Apart from the ARMA 
models of order (2,3) and (3,3), whose spectral 
densities are very similar to that of the 
ARMA(3,2) model, all other ARMA models 
(p≤8 & q=0, p=0 & q≤8, 1≤p, q≤3) have much 
higher AIC values than the ARMA(3,2) model. 
To facilitate the comparison between the 
piecewise constant spectral densities g2, g3, and 
g4, and the ARMA spectral densities slightly 
modified AIC and BIC values (AIC* and BIC*) 
obtained from the Whittle likelihood were used. 
Among the top models both according to AIC* 
and BIC* (see Tables 1 and 2) are g2, g3, and g4. 
Overall, g2 has the smallest BIC* value and g4 
has the smallest AIC* value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: AIC values (obtained from the Whittle likelihood) for piecewise constant spectral densities g(r) & 
ARMA(p,q) spectral densities, respectively, fitted to the differenced log real U.S. GDP 

 1 2 3 4 5 6 7 8 

g(r)  -2456.8 -2457.5 -2461.6     

AR(p) -2447.3 -2446.9 -2447.7 -2448.6 -2448.1 -2446.2 -2444.2 -2442.4 

MA(q) -2440.5 -2448.2 -2447.8 -2445.9 -2447.7 -2445.7 -2443.8 -2445.2 

ARMA(1,q) -2446.2 -2447.2 -2445.8      

ARMA(2,q) -2445.8 -2450.7 -2457.6      

ARMA(3,q) -2449.1 -2459.2 -2457.1      
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Conclusion 
 
The results obtained show that piecewise 
constant spectral densities are extremely useful 
tools for the spectral analysis of macroeconomic 
time series and can outperform the more 
sophisticated ARMA spectral densities. This 
finding is striking given that twenty-five ARMA 
spectral densities were tried but only three 
piecewise constant spectral densities. It may also 
serve as a severe warning not to over-interpret 
certain characteristics of estimated ARMA 
spectral densities such as a decline or incline 
near frequency zero. 
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Table 2: BIC values (obtained from the Whittle likelihood) for piecewise constant spectral densities g(r) & 
ARMA(p,q) spectral densities, respectively, fitted to the differenced log real U.S. GDP 

 1 2 3 4 5 6 7 8 

g(r)  -2446.3 -2440.1 -2437.3     

AR(p) -2440.3  -2436.5 -2433.7 -2431.2 -2427.3 -2421.9 -2416.4 -2411.1 

MA(q) -2433.5 -2437.8 -2433.9 -2428.5 -2426.8 -2421.3 -2416.0 -2413.9 

ARMA(1,q) -2435.8 -2433.3 -2428.4      

ARMA(2,q) -2431.9 -2433.3 -2436.8      

ARMA(3,q) -2431.7 -2438.3 -2432.8      
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Figure 1: Periodogram of differenced log GDP together with piecewise constant spectral densities 
(with two, three, and four pieces) & ARMA spectral densities AR(1), MA(2), ARMA(3,2) 

 

AIC*=-2456.8, BIC*=-2446.3

AIC*=-2457.5, BIC*=-2440.1

AIC*=-2461.6 , BIC*=-2437.3
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Multi-Group Confirmatory Factor Analysis for Testing Measurement Invariance 
in Mixed Item Format Data  

 
    Kim H. Koh              Bruno D. Zumbo 
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This simulation study investigated the empirical Type I error rates of using the maximum likelihood 
estimation method and Pearson covariance matrix for multi-group confirmatory factor analysis (MGCFA) 
of full and strong measurement invariance hypotheses with mixed item format data that are ordinal in 
nature. The results indicate that mixed item formats and sample size combinations do not result in inflated 
empirical Type I error rates for rejecting the true measurement invariance hypotheses. Therefore, 
although the common methods are in a sense sub-optimal, they don’t lead to researchers claiming that 
measures are functioning differently across groups – i.e., a lack of measurement invariance. 
 
Key words: Multi-Group Confirmatory Factor Analysis, Measurement Invariance, Binary and Ordinal 
Items. 
 
 

Introduction 
 
Multi-group confirmatory maximum likelihood 
factor analysis has become the most commonly 
used scale-level technique to evaluate 
measurement invariance/ equivalence of a test 
across different groups (e.g., gender, language), 
over different mediums of administration (e.g., 
web-based versus paper-and-pencil testing), or 
across accommodated and non-accommodated 
conditions. Measurement invariance is tenable 
when the relations between observed variables 
and latent construct(s) are identical across 
relevant groups. In particular, individuals with 
the same standing on a latent variable but 
sampled from different subpopulations should 
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have the same expected observed score on a test 
of that variable (Horn and McArdle, 1992). The 
common understanding in the research literature 
is that without measurement invariance, 
observed means (or latent means) are not 
directly comparable (Drasgow & Kanfer, 1985). 

Mixed item format data are often found 
in educational measurement wherein many 
classroom and large-scale assessments in use 
today are blended instruments that include a 
mixture of multiple-choice and constructed-
response items. Typically, multiple-choice items 
are dichotomously scored and constructed-
response items are polytomously (partial-credit) 
scored. These two types of scores are on an 
ordinal scale. Two commonly encountered, and 
interrelated, problems associated with ordinal 
scale are measurement scale coarseness and 
multivariate nonnormality. Measurement scale 
coarseness is caused by a crude classification of 
the latent variables to ordinal scales with small 
numbers of response categories. Because of the 
discrete nature of ordinal scales, the distributions 
of the response data obtained from dichotomous 
and polytomous items are not conducive to 
multivariate normality.  

Ideally, data derived from an ordinal 
scale should be analyzed using estimation 
methods that are designed for use with such 
data. Weighted Least Squares (WLS, Jöreskog 
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& Sörbom, 1996), Asymptotic Distribution Free 
(ADF, Browne, 1984), or Robust Maximum 
Likelihood estimation of model parameters 
using the polychoric correlation and asymptotic 
covariance matrix is theoretically sound for 
MGCFA with ordinal and mixed item format 
data. Practitioners, however, seldom use these 
methods.  The implicit reasoning appears to be 
two-fold:  (a) there is lack of awareness of these 
relatively new methods, and (b) these new 
methods are understood to require large sample 
sizes; larger than ones found in many research 
settings, and are, generally, not computationally 
viable with tests or measures involving more 
than 25 items1.   

Consequently, the ordinal-scaled data 
are often treated as if they were continuous and 
analyzed with the normal theory Maximum 
Likelihood (ML) estimation method and Pearson 
covariance matrix.  The purpose, therefore, of 
this study was to investigate the statistical 
properties of the maximum likelihood factor 
analysis of a Pearson covariance matrix for 
                                                           
1 The WLS/ADF estimation method requires 
relatively large sample sizes (i.e., at least 2,000-5,000 
observations per group, Browne, 1984) to alleviate 
problems due to convergence or improper solutions 
and is not a viable method for models with a large 
number of items.  Also, diagonally weighted least 
squares with the corresponding asymptotic 
covariance matrix and the polychoric (or tetrachoric) 
covariance matrix is limited due to the fact that no 
more than 25 items can be used due to the excessive 
computer memory demands with the so-called weight 
matrix, i.e., asymptotic covariance matrix of the 
vectorized elements of the observed covariance 
matrix.  With p variables there are L elements in the 
same covariance matrix, and the weight matrix is of 
order LxL, where L=(p(p+1))/2. Therefore, as an 
example, for a model that has 20 items, the weight 
matrix would contain 22,155 distinct elements and 
for 25 items the weight matrix would contain 52,975 
distinct elements. Likewise, the Satorra-Bentler 
corrected chi-square in LISREL and Muthen’s 
estimation method for ordered categorical data in the 
software Mplus are also limited by the large number 
of items that are found in large-scale educational 
measurement. Therefore, most applied research in 
MGCFA has ordinal or mixed item format data with 
small sample sizes and large numbers of items, 
therefore these computational and statistical 
restrictions prevent many applied researchers from 
using the WLS/ADF estimation method. 

testing measurement invariance hypotheses in 
MGCFA with mixed item format data. 
Specifically, the study examined the effects of 
mixed item formats and sample size 
combinations on the Type I error rates of ML-
based chi-square difference tests for two 
commonly investigated measurement invariance 
hypotheses, namely strong and full invariance.    

To be clear, we are not advocating using 
a Pearson covariance matrix for testing 
measurement invariance with mixed item 
formats, but rather we are interested in 
investigating: (a) what happens to the Type I 
error rates for those researchers who continue to 
choose to use these sub-optimal methods, and 
(b) the empirical Type I error rate of the extant 
research literature that used these sub-optimal 
methods (before the more optimal ones were 
widely available) for measurement invariance.  
We are also not advocating for the exclusive use 
of hypothesis testing in this context. Our aim is 
to reflect common research and applied 
measurement practice (both in terms of the 
methods used and the type of data) and hence to 
document the Type I error rates that one would 
find in these applied settings.  This matter of 
keeping an eye on everyday research practice 
will come up again in the Methods Section when 
we describe the various hypothesis tests we are 
investigating.  

  
Theoretical Framework 

The fundamental idea underlying the 
measurement models in MGCFA is the use of a 
set of observable variables (i.e., items) to 
represent the latent variable(s). When the 
ordinal-scaled items are used as proxies for the 
latent continuous variable(s), the assumptions of 
interval measurement scale and multivariate 
normality are violated.  Measurement errors 
induced by a crude categorization of the latent 
continuous variables can lead to the violations of 
the covariance structure. Because the Pearson 
covariance is attenuated in the ordinal variables, 
the covariance structure model may not hold for 
the observed variables. Therefore, ML 
estimation based on the distorted sample 
covariance matrix is likely to be biased. 

When ordinal data are used with the ML 
estimation method and Pearson covariance 
matrix in single-group confirmatory factor 
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analysis, the chi-square goodness of fit statistic 
is inflated due to departures from multivariate 
normality in the observed variables, albeit 
negligible bias is found in the model parameter 
estimates (e.g., Hutchinson & Olmos, 1998; 
Muthén & Kaplan, 1992; Potthast 1993; Rigdon 
& Ferguson, 1991). Hence, using the ML chi-
square statistic as a formal test statistic of 
model-data fit under the conditions of 
multivariate nonnormality leads to an inflated 
Type I error rate for rejecting a true model.  
 

Methods 
 
Simulation data focused on the situation wherein 
one has a test with a mixture of dichotomously 
and polytomously scored items.  The design 
variables were three conditions of mixed item 
formats and six sample size combinations, 
resulting in a 3 × 6 factorial design with 18 cells 
in our simulation experimental design. Within 
each cell, 100 replications were generated. 
A 30 item test was simulated with mixed item 
formats that were varied according to the 
proportions of dichotomous and polytomous 
items as follows: 
  

A. 67% (20) dichotomous items and 
33% (10) polytomous items (3 scale points),  

 
B. 50% (15) dichotomous items and 

50% (15) polytomous items (3 scale points), and    
 
C. 33% (10) dichotomous items and 

67% (20) polytomous items (3 scale points).  
 
These item format proportions reflect the real 
achievement assessment data found in 
educational testing contexts such as the Trends 
in International Mathematics and Science Study 
(TIMSS) and the National Assessment of 
Educational Progress (NAEP). Given that most 
of the achievement data, when partial scores are 
allotted, use 3-category polytomous items, the 
polytomous items in the simulation were limited 
to item responses with 3 scale points.  

The sample size combinations consisted 
of equal and unequal sample sizes for the two 
groups: 200 vs. 200; 500 vs. 500; 800 vs. 800; 
200 vs. 500; 200 vs. 800; and 500 vs. 800. These 
were the typical sample sizes across two groups 

used with the ML estimation method and 
Pearson covariance matrix in MGCFA applied 
research. 

 
Simulation Procedure 

For unidimensional dichotomous items, 
the item responses were generated from the 
three-parameter logistic (3PL) item response 
theory model (Birnbaum, 1968),  
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where ai, bi  and ci are the item i discrimination, 
difficulty, and guessing parameters, respectively. 
The ( )iP θ  denotes the probability of answering 

correctly to item i by a randomly selected 
examinee with ability θ. The 3PL item 
parameters a, b, and c of each of the 20 
dichotomous items were real item parameter 
estimates taken from the 1999 TIMSS 
Mathematics Achievement Test.  
 Using a random number generator to 
produce numbers uniformly distributed on the 
interval [0,1], the probabilities were converted to 
either 0s or 1s to reflect examinee item scores. 
When the random number selected was less than 
or equal to Pi(θ), a 1 was assigned to an 
examinee for item i, and a 0 otherwise 
(Hambleton & Rovinelli, 1986).  
 For the polytomously scored items, the 
generalized partial credit model 
(GPCM)(Muraki, 1992) was used to generate 
unidimensional polytomous item responses, 
which were categorized into ri+1 ordered score 
categories (0, 1, …, ri) for i-th item. The model 
states that the probability of getting item score 
Uj=q for a randomly sampled examinee with 
ability θ to the i-th item is given by 
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where ai is the slope parameter of item i; bi is the 
location parameter of item i; and div are a set of 
threshold parameters of item i with associated 
constrains di0= 0 and  
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Σ v
ri

=1 div = 0 (Muraki, 1992).  A total of 20 
polytomous item parameters (as, bs, ds) were 
obtained from the TIMSS data.  
 The approach described by González-
Romá, Hernández & Gómez-Benito (2002) was 
used to generate ordered polytomous items. For 
each examinee, a latent trait estimate θ was 
generated from a standard normal distribution, 
N(0,1). The GPCM probabilities were summed 
across categories to create a cumulative 
probability for each score level, and then the 
probability of responding above category k  
[ ∗( )] was computed. For each simulated item 
and examinee a single random number (u) was 
randomly sampled from a uniform distribution 
over the interval [0,1], and the item scores were 
assigned as follows: 
 

k = 3 if )(*
2 θP ≥  u 

k = 2 if )()( *
1

*
2 θθ PuP ≤<  

k = 1 if uP <)(*
1 θ . 

 
Two population data were simulated 

with equivalent parameters to represent 
measurement invariance. The population data 
consisted of 20 dichotomous and 20 polytomous 
items. Data sets with different proportions of 
dichotomous and polytomous items were then 
created by a random selection of the items from 
the first two population data. As can be seen in 
Table 1, the item response distributions across 
groups for each of the mixed item format 
conditions were only slightly negatively skewed. 
 
Testing for Measurement Invariance Hypotheses 
 Three MGCFA nested models were used 
for the testing of the strong and full 
measurement invariance hypotheses. Model 1 
served as a baseline model where no parameters 
were constrained between groups. The baseline 
model was properly specified and hence model 
misspecification    was   not  a  condition in the 
study. The first chi-square value was obtained 
from the baseline model for comparison with 
more constrained models. In Model 2 (i.e., 
strong measurement invariance model), the 
number of factors and factor loadings were 
 

Table 1: Mean Skewness of the Mixed Item 
Format Population Data 

Mixtures of  
Item Formats 

Mean  
Skewness 

67% Dichotomous  and  
33% Polytomous Items 

-0.39 

50% Dichotomous and  
50% Polytomous Items 

-0.44 

33% Dichotomous and  
67% Polytomous Items 

-0.40 

 
 
constrained to be equal across groups. The 
number of factors, factor loadings, and error 
variances were constrained to equality across 
groups in Model 3 (i.e., full measurement 
invariance model). The tenability of an 
invariance hypothesis is determined by the 
statistical significance of the chi-square 
difference test between two nested models. A 
non-significant chi-square difference test 
statistic (e.g., baseline model versus full 
measurement invariance model) indicates that 
the full measurement invariance hypothesis is 
tenable. 
 It should be noted that, with an eye 
toward reflecting what goes on in research 
practice, we did not test for the equality of 
intercepts -- and hence we did not use a mean 
and covariance structure (MACS) model (Wu, 
Li, & Zumbo, 2007).  That is, even though there 
has been periodic advocacy for testing for 
equality of intercepts it has been largely 
neglected in applied measurement practice. A 
thorough review of empirical tests of 
measurement invariance in applied psychology 
by Vandenberg and Lance (2000) revealed that 
although 99% of the studies that they had 
reviewed investigated loading invariance, only 
12% investigated intercept equality and 49% 
investigated residual variance equality.   
Therefore by not using the MACS model and 
not testing intercepts we are not advocating that 
one ignore intercept equality but rather we are 
aiming to reflect common research practice. In 
short, we want our empirical Type I error rates 
from our simulation study to reflect those error 
rates in the research literature and in practice.  
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Estimation Method 
 The MGCFA was conducted by using 
the Pearson product moment covariance 
matrices along with the normal theory ML 
estimation method in the LISREL 8.53.  
 
Dependent Variables 

For each combination of the conditions, 
MGCFA was conducted for testing the two 
hypotheses of measurement invariance. Effects 
of mixed item formats and sample size 
combinations on the tests of hypotheses of 
measurement invariance were analyzed through 
the mean rejection rates of the true models 
(Type I error rates).  
 

Results 
 

A quality check on the simulated data was 
conducted by testing the full and strong 
measurement invariance hypotheses at the 
population level for each mixed item format 
combination. As can be seen in Table 2, the 
differences in chi-squares between models, that 
is, baseline vs. full invariance, and baseline vs. 
strong invariance are not statistically significant 
at the alpha level of .05.  The results indicate 
that the factor structure of the artificial 
achievement test is invariant across groups. 
Thus, any sample data drawn from the 
population data are expected to yield equivalent 
factor structures for the two groups in the 
MGCFA framework. 
 The results in Table 3 show that the 
empirical rejection rates of the ML chi-square 
difference test have the nominal alpha (.05) that 
fall within their two-tailed confidence interval 
(at a Bonferroni corrected confidence interval of 
99%) for the full and strong measurement 
invariance hypotheses across mixed item 
formats and sample size combinations. This 
indicates that mixed item formats and sample 
size combinations do not affect the empirical 
Type I error rates of the ML chi-square 
difference tests in the hypotheses testing of full 
and strong measurement invariance. Keep in 
mind that the item response distributions across 
groups are not very skewed. 

 
 
 

Conclusion 
 
The findings of the current study suggest that the 
practice of using multi-group confirmatory 
maximum likelihood factor analysis of a Pearson 
covariance matrix to test measurement 
invariance hypotheses with mixed item format 
data does not lead to inflated chi-square 
difference test statistics.  These findings are 
certainly welcome news for someone reading 
and reviewing the extant research literature and 
research reports.  However, although these are 
positive findings, we encourage researchers to 
use methods that treat the data as ordinal (e.g., 
polychoric matrices or perhaps full-information 
methods) and to test for the equality of 
intercepts.  Our results lead us to conclude that 
although common practice is, in a sense, sub-
optimal it at least is not leading to a tendency to 
over-claim differences in measurement scales 
across groups – i.e., an inflated Type I error rate. 
 
[The reference list can be found after the 
subsequent tables.] 
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Table 2: Maximum Likelihood Chi-square Goodness-of-Fit Statistics between Models 

Mixed Item Format Model Chi-square Difference 
Statistic P 

 
67% Dichotomous Items 
33% Polytomous Items 
(20:10) 

 
Baseline vs. 
Full Invariance 
 
Baseline vs. Strong Invariance

 
Δχ² = 32, Δdf = 60 
 
 
Δχ² = 21, Δdf = 30 

 
1.00 
 
 
 .89 

 
50% Dichotomous Items 
50% Polytomous Items 
(15:15) 

 
Baseline vs. 
Full Invariance 
 
Baseline vs. Strong Invariance

 
Δχ² = 38, Δdf = 60 
 
 
Δχ² = 23, Δdf = 30 

  
 .99  
 
 
 .82 

 
33% Dichotomous Items 
67% Polytomous Items 
(10:20) 

 
Baseline vs. 
Full Invariance 
 
Baseline vs. Strong Invariance

 
Δχ² = 39, Δdf = 60 
 
 
Δχ² = 23, Δdf = 30 

 
.98 
 
 
.82 

Note: Numbers of dichomotous and polytomous items are in parentheses. 

Table 3: Empirical Type I Error Rates of ML Chi-square Difference Test for the Full and Strong 
Measurement Invariance Hypotheses Across Mixed Item Formats and Sample Size Combinations 

Sample 
Sizes 

(n1: n2) 
Hypothesis 

Mixed Item Formats 

67% Dichotomous 
33% Polytomous 

50% Dichotomous 
50% Polytomous 

33% Dichotomous 
67% Polytomous 

200 : 200 FI .01 .02 .01 

 SI .00 .00 .00 

500 : 500 FI .00 .01 .00 

 SI .02 .01 .02 

800 : 800 FI .00 .01 .00 

 SI .01 .01 .00 

200 : 500 FI .00 .03 .00 

 SI .02 .00 .01 

200 : 800 FI .00 .03 .00 

 SI .00 .02 .00 

500 : 800 FI .00 .02 .02 

 SI .01 .01 .01 

Note: Those empirical Type I error rates that have the nominal alpha (.05) outside of their two-
tailed confidence interval (at a Bonferroni corrected confidence interval of 99%) would be in bold 
font. FI and SI denote Full and Strong Measurement Invariance Hypotheses, respectively. 
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An Optimum Allocation with a Family of Estimators Using 
Auxiliary Information in Sample Survey 

 
Gajendra K. Vishwakarma      Housila P. Singh 

Vikram University, India 
 
 
The problem of obtaining optimum allocation using auxiliary information in stratified random sampling. 
An optimum allocation with a family of estimators is obtained and its efficiency is compared with that of 
Neyman allocation based on Srivastava (1971) class of estimators and the optimum allocation suggested 
by Zaidi et al., (1989). It is shown that the proposed allocation is better in the sense having smaller 
variance compared to other optimum allocation. 
 
Key words: Auxiliary variate, study variate, variance, optimum allocation, stratified random sampling. 
 
 
 

Introduction 
 
When a population contains heterogeneity 
among units in terms of value, survey users are 
advised to form several homogeneous groups, 
and the sampling design is known as stratified 
sampling. All designs, other than these, are 
generated as a further modification of simple 
random sampling and stratified sampling. 
Stratification is one of the most widely used 
techniques in sample survey design due to its 
dual purposes of providing samples that are 
representative of major sub-groups of the 
population and increasing the precision of 
estimators. It is also well established that the 
auxiliary information may lead to more efficient 
estimators: ratio, product and regression 
methods of estimation are examples in this 
context. This article suggests a class of 
estimators using auxiliary information in 
stratified random sampling and discusses its 
properties. 
Let y be the study variate and x be the auxiliary  
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Using this background and following Srivastava 
(1971) a family of estimators of population 

mean Y  may be defined as 
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The crux of this article is to suggest an optimum 
allocation with a family of estimators considered 
by Srivastava and Jhajj (1983) and compares its 
efficiency with that of Neyman allocation and 
others. It is seen that the proposed allocation is 
better in the sense of having lesser variance than 
other. 
 
The Suggested Family of Estimators 

Whatever the sample chosen, let 
( )hhh cba ,,  assume values in a bounded closed 

convex subset, R of the three dimensional real 
space containing the point )1,1,1( . Let 

( )hhhh cbag ,,  be the function of ha , hb  and 

hc , such that 1)1,1,1( =hg , and satisfies the 

following conditions: 
1. In R, the function ( )hhhh cbag ,,  is 

continuous and bounded. 
2. The first and second partial derivatives of 

( )hhhh cbag ,,  exist and are continuous 

and bounded. 
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noting that the second partial derivatives of g are 
bounded. We have 
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where )1,1,1(1hg , )1,1,1(2hg  and 

)1,1,1(3hg  denote the first order partial 

derivates of ( )hhhh cbag ,,  at the point 

)1,1,1( . Differentiating (2.2) partially with 
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equating them to zero the following equations 
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Solving (2.3), the optimum values of (.)1hg , 
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Thus, the minimum variance of ( )gŶ  is given by 
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In (2.4), the first term on the right hand side 
gives the minimum asymptotic variance of the 
family when only hX  is used, and the first two 

terms give the minimum asymptotic variance 
when both hX  and 2

hxS  are used. The third term 

gives the reduction in asymptotic variance when 

hρ  is also used along with hX  and 2
hxS . 

 
Efficiency Comparisons 

It is known that the variance of usual 
unbiased estimators in stratified sampling under 
SRSWOR is 
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which gives the inequality 
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Thus from (3.3), (3.5) and (3.7) we have 
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It follows from (3.8) that the proposed estimator 

gŶ  is better than sty , qŶ  and tŶ  at its optimum 

conditions. 
 
Optimum Allocation 

The variance of sty  under the Neyman 

allocation 
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(4.7) 
In particular, if CCh =  for the given cost 

function CnCC += 0
* , the optimum allocation 

(4.5), (4.6) and (4.7) respectively reduce to 
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(4.10) 
 
Substituting the values of hn from (4.8), (4.9) 

and (4.10) respectively in (1.4), (1.8) and (2.4) 

the resulting variances of qŶ , tŶ  and gŶ  are 
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From (4.2), (4.11), (4.12) and (4.13) it can be 
easily proved that 

( ) ( ) ( ) ( )ˆ ˆ ˆmin. min. min. ,g t q st NO O O
V Y V Y V Y V y≤ ≤ ≤  

(4.14) 

which clearly indicates that the proposed 
optimum allocation is better than Neyman 
allocation ( )sty  and the optimum allocation 
based on Srivastava (1971) family of estimators 
and the optimum allocation envisaged by Zaidi 
et al., (1989) in the sense of having smaller 
variance. 
 
Empirical Study 

The performance of various families of 

estimators of the population mean Y  through 
six natural population data sets has been 
illustrated. 

To examine the performance of the 

estimators qŶ , tŶ  and gŶ with respect to sty  

under optimum allocation we have computed the 
percent relative efficiencies of t with respect to 

sty  using the formula, 

 

( ) ( )
( ) 100

min
, ×=

O

Nst
st tV

yV
ytPRE , 

where t = qŶ , tŶ , gŶ ; results are presented in 

Table 5.1. 
 

Conclusion 
 
Table 5.1 clearly indicates that the proposed 

family of estimator gŶ  is more efficient than the 

usual unbiased estimator sty , qŶ  and the Zaidi, 

et al. (1989) estimator, tŶ . Thus the proposed 

family of estimator gŶ  would be preferred over 

sty , qŶ  and tŶ .  
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Table 5.1: Percent Relative Efficiencies of qŶ , tŶ , and gŶ with respect to sty  

Population ( )stq yYPRE ,ˆ  ( )stt yYPRE ,ˆ  ( )stg yYPRE ,ˆ  

I 872.12 879.51 2308.29 

II 351.30 367.04 690.30 

III 420.66 496.89 571.88 

IV 856.61 984.67 1746.53 

V 615.88 727.70 1003.45 

VI 147.64 242.84 362.15 

Population I: Singh and Chaudhary (1986, p. 162) 
y: total number of trees,  x: area under orchards in ha. 

25=N , 3=L , 61 =N , 82 =N , 113 =N  

Stratum        Values of parameters for thh stratum 
 

    No.          yhS              hρ               h12λ            h21λ             h03λ            h30λ  

 

      1           273.45103      0.9215191     -0.2276668    -0.071714      -0.2400887     0.138323 
 

       2           509.03212      0.9737715      1.6980145     1.6304126      1.7646005     1.576411 
 

       3           256.6819        0.8826909      1.0289035     0.8472329      1.2344161     0.5897102 
 
 

Stratum        Values of parameters for thh stratum (continued) 
 

    No.            h22λ            h04λ             h40λ           h13λ            h31λ  
 

      1           1.2773905     1.3483853     1.5310737     1.239425       1.3741684 
 

       2           4.4920977     4.7537207    4.2700966     4.6186087      4.3727487 
 

       3           3.264646       4.3492128     2.684855      3.7646968      2.8334168 
 

For illustration take 10=n , 31 =n , 32 =n , 43 =n  
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Population II: Singh and Mangat (1996, p. 194) 
y: pocket money, x: annual income 

27=N , 3=L , 41 =N , 102 =N , 133 =N  

Stratum        Values of parameters for thh stratum 
 

    No.           yhS              hρ               h12λ            h21λ             h03λ            h30λ   

 

      1            225.46249       0.9527907      0.9817665     0.9616631     0.9637509     0.906753  
  

       2           108.14085        0.8074107     0.1045162     0.0851702     0.0745106    -0.0097243 
 

       3            98.871841       0.7621946    -0.1720774    -0.0129786    -0.0879664   -0.1103153 
 
 

Stratum        Values of parameters for thh stratum (continued) 
 

    No.          h22λ            h04λ             h40λ           h13λ            h31λ  
 

      1            2.1256188    2.1872063    2.1224402     2.1470526     2.1142848 
  

       2           1.4455092    1.7719919    2.1393301     1.484715       1.5986642  
 

       3           1.6145628    1.9933334    1.5608654     1.6582907     1.3338932 
 

For illustration take 10=n , 21 =n , 42 =n , 53 =n

Population III: Singh and Mangat (1996, p. 207) 
y: no. refrigerators sold in current year, x: no. refrigerators sold last summer 

42=N , 4=L , 141 =N , 92 =N , 123 =N , 74 =N  

Stratum        Values of parameters for thh stratum 
 

    No.                yhS               hρ                h12λ               h21λ               h03λ               h30λ  

 

      1            12.911576      0.7929927     -0.019159       0.3665704    -0.3717353     0.8009986 
 

       2            13.201431      0.8697081      0.4460543     0.402637       0.4681387     0.3062423 
 

       3            15.05344        0.9191256    -0.1618712    -0.2565663    -0.128619      -0.4344209 
 

       4            13.062123      0.9055795      0.2273419    -0.0915551     0.5905558    -0.3916206 
 

 

Stratum        Values of parameters for thh stratum (continued) 
 

    No.               h22λ            h04λ               h40λ            h13λ               h31λ  
 

      1            1.8121436     2.2006301    3.3060221    1.7701281     2.263858 
 

       2            1.5135141     2.2975185    1.6129147    1.7937746    1.4355898 
 

       3            1.928372       1.9632339    2.7733335    1.815768       2.2420385 
 

       4            1.7822884    2.4742281    1.9126016    2.0034381     1.7549122 
 

For illustration take 16=n , 51 =n , 32 =n , 53 =n , 34 =n  
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Population IV: Singh and Mangat (1996, p. 212) 
y: leaf area for newly developed strain of wheat, x: weight of leaves 

39=N ,  3=L , 121 =N , 132 =N , 143 =N  

Stratum        Values of parameters for thh stratum 
 

    No.              yhS                 hρ                  h12λ               h21λ              h03λ             h30λ  

 

      1             6.3362112      0.9202367      0.429305      0.5097853     0.23599        0.5031633 
  

       2             5.5075918      0.9154022     0.9960984     0.815551       1.0341649    0.5847596 
 

       3             6.7413528      0.9668189     0.2057622     0.2971175     0.083846      0.3360654 
 

 

Stratum        Values of parameters for thh stratum  (continued) 
 

    No.                 h22λ               h04λ             h40λ            h13λ             h31λ  
 

      1             1.9123464      2.2748233    1.9394547    2.0257975      1.879711 
  

       2             2.970998        3.436904      2.9819269    3.0966741     2.9303901 
 

       3             2.5134376     2.8955496     2.3448986    2.6759523     2.3988602 
 

For illustration take 14=n , 41 =n , 52 =n , 53 =n  

Population V: Singh and Mangat (1996, p. 218) 
y: juice quantity, x: weight of cane 

25=N ,   3=L , 61 =N , 122 =N , 73 =N  

Stratum        Values of parameters for thh stratum 
 

    No.              yhS                 hρ                  h12λ               h21λ              h03λ             h30λ  

       

       1            8.9442719      0.9455626      0.576173       0.6492226     0.4598407     0.688919 
      

       2           15.05042         0.948196        0.9857208     0.9738854     0.9465183     0.9187277 
 

       3           10.965313       0.7532234      1.0354011     0.8915649     0.8581802     0.727283 
 

 

Stratum        Values of parameters for thh stratum (continued) 
 

    No.              h22λ               h04λ             h40λ            h13λ             h31λ  
 

       1            2.2641624     2.2865633    2.3437501    2.2586791    2.2886912 
      

       2            3.379509       3.2689734    3.792407      3.2777466    3.5484598      
 

       3            2.3117711     3.1306353    2.3294286    2.487514      2.2170337       
 

For illustration take 10=n , 31 =n , 42 =n , 33 =n  
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Population VI: Singh and Mangat (1996, p. 219) 
y: total number of milch cows 1993, x: total number of milch cows 1990 

24=N ,  3=L , 71 =N , 122 =N , 53 =N  

Stratum        Values of parameters for thh stratum 
 

    No.             yhS                 hρ                 h12λ                h21λ                h03λ              h30λ  

 

      1             4.197505       0.7654592     -0.4418403     -0.4494459     0.0382842    -0.324885  
    
       2             4.0778411     0.4066542     -0.2762718     -0.2448949     0.1507925    -0.6181979 
  

       3             3.6469165     0.4945774     -0.8119799     -0.2847418    -0.569229     -0.0912794 
 

 

Stratum        Values of parameters for thh stratum (continued) 
 

    No.                 h22λ             h04λ              h40λ            h13λ             h31λ  
 

      1             1.1348072    1.8497596     1.6555367    1.0929828    1.3169373 
    
       2             0.5695984    2.312027       2.7509735    0.8349021    0.6748404 
  

       3             1.3461457    1.8333916     1.5925434    1.1123488    1.0704605 
 

For illustration take 10=n , 31 =n , 52 =n , 23 =n  
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Analyzing Incomplete Categorical Data:  
Revisiting Maximum Likelihood Estimation (Mle) Procedure 
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Incomplete data poses formidable difficulties in the application of statistical techniques and requires 
special procedures to handle. The most common ways to solve this problem are by ignoring, truncating, 
censoring or collapsing those data, but these may lead to inappropriate conclusions because those data 
might contain important information. Most of the research for estimating cell probabilities involving 
incomplete categorical data is based on the EM algorithm. A likelihood approach is employed for 
estimating cell probabilities for missing values and makes comparisons between maximum likelihood 
estimation (MLE) and the EM algorithm. The MLE can provide almost the same estimates as that of the 
EM algorithm without any loss of properties. Results are compared for different distributional 
assumptions. Using clinical trial results from a group of 59 epileptics, results from the application of 
MLE and EM algorithm are compared and the advantages of MLE are highlighted. 
 
Key words: Incomplete categorical data, maximum likelihood estimation (MLA), EM algorithm, 
multinomial distribution, binomial distribution, Poisson distribution, Newton-Raphson method. 
 
 

 
Introduction 

 
Incomplete data is referred to as data in which 
entries are missing, were a prior zero or are 
undetermined (Fienberg, 1980). Incomplete data 
is one of the main obstacles to researchers; this 
is especially true in the case of incomplete 
categorical data. The most common ways to 
solve this problem are by ignoring, truncating, 
censoring or collapsing those data; however, 
such procedures may lead to confusion and/or 
inappropriate conclusions because those data 
might contain important information. 

Little & Rubin (1987) defined the 
missing data mechanisms as ignorable missing 
data mechanism and non-ignorable missing data 
mechanism. The ignorable missing data 
mechanism involves process missing completely 
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at random (MCAR) and missing at random 
(MAR). When the missingness is independent of 
both unobserved and observed data, the non-
response process is named as MCAR. However, 
if the missingness is independent of the 
unobserved measurement conditionally on the 
observed data, the non-response process is called 
MAR. Non-ignorable missing data mechanisms 
involve informative process. When the process is 
neither MCAR nor MAR, then the process is 
termed informative. This article considers the 
missing data mechanism as a non-ignorable 
missing data mechanism. 

The problem of estimation for 
incomplete contingency tables under the quasi-
independence model was examined by Fienberg 
(1970), who used the maximum likelihood 
estimation (MLE) procedure. Similarly, MLE 
for the Poisson and Multinomial sampling 
distributions for the incomplete contingency 
tables in the presence of missing row and 
missing column data were considered by Chen 
& Fienberg (1974). Chen & Fienberg (1976) 
extended their works which focused on cross-
classifications containing some totally mixed up 
cell frequencies with multinomial sampling. In 
the following year, Dempster, Laird & Rubin 
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presented MLE of incomplete data and named 
the algorithm EM since each iteration of the 
algorithm involved expectation (E) and 
maximization (M) steps. This method has been 
used extensively by other researchers especially 
for incomplete categorical data. Among others, 
Fuchs (1982), Nordheim (1984), Fay (1986), 
Baker & Laird (1988), and Philips (1993) have 
used the EM algorithm for analyzing incomplete 
categorical data. The EM algorithm was used to 
improve the convergence of the EM by 
incorporating the Newton-Rapson approach by 
Baker (1994) and Galecki & Molenberghs 
(2001). The EM algorithm is well developed 
(Lauritzen, 1995) to exploit the computational 
scheme of Lauritzen & Spiegelhalter (1988) to 
perform the E-step of EM algorithm to find 
MLE in hierarchical log-linear models and 
recursive models for contingency tables with 
missing data. Molenberghs & Goetchebeur 
(1997) presented a simple expression of the 
observed data log-likelihood for the EM 
algorithm. Tang, et. al. (2007) also found that 
the EM algorithm is the most widely used 
approach for finding the maximum likelihood 
estimate for incomplete data situations, but it 
lacks the direct provision of a measure of 
precision for the estimators and has a slow rate 
of convergence. 

Because the EM algorithm was 
introduced, the MLE procedure was largely 
ignored by researchers until 1985. Stasny (1985) 
used MLE to process the model based on data 
from a Current Population Survey, and also used 
a Labor Force Survey to estimate gross flow 
data. Most recently, Lyles & Allen (2003) 
proposed MLE with multinomial likelihood, 
properly accounting for missing data and 
assuming that the probability of missing 
exposure depends on true exposure. 

In this article, not only is the missing 
row or missing column data redistributed, but 
also both row and column missing data for 
multinomial sampling by extending the works of 
Chen & Fienberg (1974). Both row and column 
missing data are also investigated for the EM 
algorithm which has not been studied before. 
The MLE method for Poisson and Binomial 
sampling distributions was also examined as an 
extension of the works of Chen & Fienberg 
(1974). The binomial distribution can be 

considered a special case of the Multinomial 
distribution. The same sampling patterns for the 
EM algorithm are considered here. The Newton-
Raphson method was adopted in the MLE 
procedure to make convergence faster. Results 
of the MLE and EM algorithm are compared 
and the advantages of MLE are highlighted. 

This article is organized as follows: data 
taken from Diggle, Liang & Zeger (1994) is 
described, followed by the formulation of the 
MLE and EM algorithms. Finally, results are 
discussed, testing independence is presented and 
conclusions are put forth. 
 

Methodology 
 
The data considered herein was referred from 
Diggle, Liang & Zeger (1994) based on a 
clinical trial of 59 epileptics. For each patient, 
the number of epileptic seizures was recorded 
during an eight week baseline period. Patients 
were then randomized to either a treatment 
group with anti-epileptic drug progabide (0) or 
to a placebo group (1) and the number of 
seizures was recorded in four consecutive two-
week intervals. Table 1 shows the 2x2 artificial 
incomplete contingency table; rows refer to the 
treatment and columns refer to the results of the 
last treatment for the patient. The result of 
treatment is recorded as Y. 
 
Maximum likelihood estimation (MLE), Poisson 
and multinomial distribution 

Chen & Fienberg (1974) considered the 
MLE for incomplete contingency tables when 
missing row and column data existed. Their 
works are extended by considering incomplete 
contingency tables where either row or column, 
or both row and column are missing. 

Let the fully cross-classified count for 
the (i, j)th cell of an r x c contingency table be xij, 
Ri (i = 1, 2, …, r) is the count of the partially 
classified individuals corresponding to the ith 
row, Cj (j = 1, 2, …, c) is the count of the 
partially classified individuals corresponding to 
the jth column, and D is the count of missing in 
both row and column. (See Figure 1.) Therefore 
the total sample size is: 
 
N= ij i j

ij i j
x R C D+ + +   =x+++R++C++D.    (1) 
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Table1: Incomplete data
 

a) No missing on treatment and Y 

  Y 
Total

  ≤ 5 > 5

Treatment
0 13 7 20 
1 12 7 19 

Total 25 14 39 
 

b) Missing Y, treatment, Y and treatment 
  Missing Y   Y Total 

Treatment 
0 3  Missing Yes No  
1 7  Treatment 2 2 4 

Total 10      
 

 
Missing 

Y
Total

Missing 
Treatment 

6  

Total  6 

Figure 1: Illustration for complete observed and incomplete data 
 

a) Complete observed data 

   Row  Total 

Column 

x11 x12 … x1c x1+ 

x21 x22 … x2c 2+ 

          
xr1 xr2 … xrc xc+ 

Total x+1 x+2  X+c x 
 

b) Incomplete units 

  Missing column    Column Total 

Row R1+  Missing row C+1 C+2 … C+c C 

  R2+        

          

 Rr+        

Total R        
 

  Missing column Total

Missing row D  

Total  D 
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When the original sampling scheme is 
Poisson with an expected value mij for the (i, j)th 
cell, parameters associated with the cells 
(illustrated in Table 2) where ( )1 iλ , ( )2 jλ  and λ  

are referred to the probabilities of losing its row, 
column, and both row and column identity, 
respectively. The cell probability of multinomial 
sampling for a completely classified (i, j)th cell is 

ijπ  and ij
i j

π = 1. By replacing ijπ  with mij, 

the likelihood function for Poisson is 
 

( ) ( )( )

( )( ) ( )( ) ( )

1 2

1 2

exp 1
ij

i i

x

ij iji j
i j i j

R C D
i ji j

i j

m m

m m m

λ λ λ

λ λ λ+ + ++

   − − − −    
 ∏∏

∏ ∏
(2) 

 
where 

mi+= ij
i

m , m+j= ij
j

m , and m++= ij
i j

m  

for all i and j. 
Equation (2) is a product of functions f1 

and f2 defined as follows 

f1 = 
( ) ( )( )

( ) ( )1 2

1 21
ij

ji

i j

x

i j
i j

CR D

i j

λ λ λ

λ λ λ

 
− − − 

 
           

∏∏

∏ ∏
            (3) 

and 

f2= 

exp ij

ji

x
ij ij

i j i j

CR D
i j

i j

m m

m m m+ + ++

  
−   
   

           

 ∏∏

∏ ∏
.            (4) 

when considering the unrestricted log linear 
model where 

log mij = i j ijμ α β γ+ + + .              (5) 

 
Therefore, 

log f2 = 

log

log log log

ij ij ij
i j i j

i i j j
i j

m x m

R m C m D m+ + ++

− + +

+ +

 

 
 

=
( ) ( )

i j ij
ij

i j i j

i j ij i i i
i

e x

R

μ α β γ

μ α β γ μ α β γ

+ + +

+ +

− +

+ + + + + + +

 


 

( )
( )

j j i
j

C

D

μ α β γ

μ α β γ

+ +

+ + ++

+ + + +

+ + + +


               (6) 

 
Differentiating (6) with μ , iα , jβ  and ijγ ,t, 

results in: 

2log f
μ

∂
∂

 = 

i j ij

i j

ij i j
i j i j

e

x R C D

μ α β γ+ + +−

+ + + +



  
 

 = ij ij i j
i j i j i j

m x R C D− + + + +     

 = - m++ + x++ + R+ + C+ + D 
 

2log

i

f
α

∂
∂

= - mi++xi++Ri +
ij i

j
j j

m mC D
m m

+

+ ++

   
+       

  

2log

j

f
β

∂
∂

 = - m+j+x+j+
ij

i
i i

m
R

m +

 
 
 

 +Cj+
jm

D
m

+

++

 
 
 

 

2log

ij

f
γ

∂
∂

=mij+xij+
ij ij ij

i j
i j

m m m
R C D

m m m+ + ++

    
+ +          

 

(7) 
 
When (7) is equal to 0, 

ˆ ˆ ˆ
ˆ ij ij ij

ij ij i j
i j

m m m
m x R C D

m m m+ + ++

    
= + + +         

. (8) 

 
As from Chen & Fienberg (1974), (8) is not able 
to be solved in closed from; initial estimates of 
the { ˆ ijm } will be considered as 

( )0 ij
ij

x
m N

x++

 
=  
 

.                       (9) 

 
On the first iteration, from (8) 

( )
( )

( )

( )

( )

( )

( )

0 0 0

1

0 0 0

ˆ ˆ ˆ
ˆ ij ij ij

ij

i j

ij i j

m m m
m x R C D

m m m
+ + ++

     
     = + + +
     
     

, (10) 

 
therefore on (k+1)th iteration,  

( )
( )

( )

( )

( )

( )

( )
1 ˆ ˆ ˆ

ˆ
k k k

k ij ij ij
ij ij i jk k k

i j

m m m
m x R C D

m m m
+

+ + ++

     
     = + + +
     
     

 
(11) 

When k → ∞ , ( ) ( )1ˆ ˆk k
ij ijm m ε+ − ≤ . 
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Since 
ij

ij

x
x

π
++

=  for complete classified 

multinomial sampling, from (9) results, 

( )
( )0

0 ˆ
ˆ ij

ij

m
N

π = , 

and on the (k+1)th iteration, ( )
( )1

1 ˆ
ˆ

k
k ij

ij

m
N

π
+

+ = . 

 
Poisson and binomial distributions 

Now consider the complete contingency 
tables where there exist missing column. The 
fully cross-classified count for the (i, j) cell of an 
r x 2 contingency table is xij, and Ri (i = 1, 2, …, 
r) is the count of the partially classified 
individuals corresponding to the ith row. 
Therefore the total sample size is 

 

N = ij i
ij i

x R+   

= x++ + R+ (12) 
 
When the original sampling scheme is Poisson 
with expected value mij for the (i, j) cell, then the 
parameters associated with the cells (illustrated 
in Table 3) where ( )1 iλ , is referred to the 

probabilities of losing its row. 
The cell probability of Binomial 

sampling for complete classified of (i, j) cell is  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ijπ  and ij
i j

π = 1. By replacing ijπ  with mij, 

the likelihood function for Poisson is 

( )( ) ( )( )1 1

exp

1
ij i

ij
i j

x R

ij ii i
i j i

m

m mλ λ +

 
− 
 

 − 



∏∏ ∏
, 

(13) 

where mi+ = ij
i

m  for all i and j. 

Equation (13) is a product of a function 

f1 = ( )( ) ( )111
ij

i

i

x R
i

i j i
λ λ

   −   
  

∏∏ ∏  

(14) 
and 

f2= exp ij ix R
ij ij i

i j i j i
m m m +

    −     
    

 ∏∏ ∏ . 

(15) 
 
When considering the unrestricted log linear 
model where 

log mij = i j ijμ α β γ+ + + , 

(16) 
then, 

Table 2: Underlying probabilities for a 2x2 table 

 Fully Classified Table 
Row 

Supplemental 
Margin 

    

 ( ) ( )( ) 111 1 2 11 λ λ λ π− − −  ( ) ( )( ) 121 1 2 21 λ λ λ π− − −  ( ) 11 1λ π +  

 ( ) ( )( ) 211 2 2 11 λ λ λ π− − −  ( ) ( )( ) 221 2 2 21 λ λ λ π− − −  ( ) 21 2λ π +  

    

   
Missing 

row and column 
    

Column 
Supplemental 

Margin 
( ) 12 1λ π+  ( ) 22 2λ π+  λπ++  
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log f2 = 

log

log

ij ij ij
i j i j

i i
i

m x m

R m +

− +

+

 


 

= ( )
( )

i j ij
ij

i j i j

i j ij

i i i
i

e x

R

μ α β γ

μ α β γ

μ α β γ

+ + +

+ +

− +

+ + +

+ + + +

 


. 

(17) 
 
Differentiating (17) with μ , iα , jβ  and ijγ , 

results in 
 

2log i j ij
ij i

i j i j i

f e x Rμ α β γ

μ
+ + +∂ = − + +

∂   
 

= ij ij i
i j i j i

m x R− + +    

= −m++ + x++ + R+ 
 

2log

i

f
α

∂
∂

= −mi+ + xi+ + Ri 

2log

j

f
β

∂
∂

= −m+j + x+j + ij
i

i j

m
R

m+

 
  
 

  

2log

ij

f
γ

∂
∂

= −mij + xij + ij
i

i

m
R

m +

 
 
 

 

(18) 
and, when (18) is equal to 0 

ˆ
ˆ ij

ij ij i
i

m
m x R

m +

 
= +  

 
.              (19) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Initial estimates of the { ˆ ijm } were considered as 

( )0 ij
ij i

i

x
m m

x +
+

 
=  
 

.                 (20) 

where i i im x R+ += + . 

 
On the first iteration, from (19), 

( )
( )0

1 ˆ
ˆ ij

ij ij i
i

m
m x R

m +

 
 = +
 
 

.             (21) 

So, on the (k+1)th iteration, 

( )
( )

1 ˆ
ˆ

k
k ij

ij ij i
i

m
m x R

m
+

+

 
 = +
 
 

,            (22) 

when k → ∞ , ( ) ( )1ˆ ˆk k
ij ijm m ε+ − ≤ . 

 
If an underlying Binomial sampling scheme is 
assumed, then 

ij
ij

i

x
p

x +

= . 

Therefore, from (20),  
( ) ( )0 0ˆ ˆ

ijij ip m m +=  

and 
( ) ( )0 0ˆ ˆ ij

i j
p m N= . 

 
On the (k+1)th iteration, 

( ) ( )1 1ˆ ˆk k
ij ij ip m m+ +

+=  

and 
( ) ( )1 1ˆ ˆk k

ij
i j

p m N+ += . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Underlying probabilities for a 2x2 table 

Fully Classified Table 
Row 

Supplemental 
Margin 

( )( ) 111 11 λ π−  ( )( ) 121 11 λ π−  ( ) 11 1λ π +  

( )( ) 211 21 λ π−  ( )( ) 221 21 λ π−  ( ) 21 2λ π +  
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Formulation of Newton-Raphson 
From Le (1992), the iterative solution 

for a parameter estimation on (k+1)th iteration 
will be considered as 

( ) ( )1ˆ ˆ ˆk kθ θ θ+ = + Δ ,                   (23) 
 
where θ  is the parameter and 

2

2

ln lnˆ d L d L
d d

θ
θ θ

  Δ = −   
   

. 

Differentiating (7) with ijγ  and equal to 0, then 

results in  
2

2 2

ij ij
ij i

i i

ij ij ij ij
j

j j

m m
m R

m m

m m m m
C D

m m m m

+
+ +

+
+ + ++ ++

  
 = −  
   
         + − + −            

(24) 
 
To avoid the confusion of ijm  for (7) and (24), 

let m1ij and m2ij for (7) and (24), respectively. 
For application of the Newton-Raphson 

method in the two-way incomplete contingency 
table, consider 

( )
( )

( )

( )

( )

( )

( )

0 0 0
1

0 0 0

ˆ ˆ ˆ
ˆ1 ij ij ij

ij ij i j
i j

m m m
m x R C D

m m m+ +
+ + ++

     
     = + + +
     
     

(25) 

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

20 0
1

0 0

20 0

0 0

20 0

0 0

1 1
2

1 1

1 1

1 1

1 1

1 1

ij ij
ij i

i i

ij ij
j

j j

ij ij

m m
m R

m m

m m
C

m m

m m
D

m m

+
+ +

+
+ +

++ ++

  
 = −      
  
 + −      

  
 + −      

. 

(26) 

where ( )0ˆ ijm  is the same with (9) and 

( ) ( )
( )

( )

0
1 0

0

1
ˆ 1

2
ij

ij ij
ij

m
m m

m
= − .           (27) 

On the (k+1)th iteration, 

( )
( )

( )

( )

( )

( )

( )

1

1

1 1

1 1

ˆ
ˆ1

ˆ ˆ

k
k ij

ij ij i k
i

k k
ij ij

j k k
j

m
m x R

m

m m
C D

m m

−

+ −
+

− −

+ − −
+ ++

 
 = +
 
 

   
   + +
   
   

. 

(28) 

( )
( )

( )

( )

( )

( )

( )

( )

( )

2
1 1

1 1

2
1 1

1 1

1 1
2

1 1

1 1

1 1

k k
k ij ij

ij i k k
i i

k k
ij ij

j k k
j j

m m
m R

m m

m m
C

m m

− −

+ − −
+ +

− −

+ − −
+ +

  
 = −      
  
 + −      

 

( )

( )

( )

( )

21 1

1 1

1 1

1 1

k k
ij ij
k k

m m
D

m m

− −

− −
++ ++

  
 + −      

 

(29) 

( ) ( )
( )

( )
1 1

ˆ 1
2

k
k k ij

ij ij k
ij

m
m m

m
+ = − .                (30) 

For an accelerated convergence, these 
equations were employed to obtain the 
maximum likelihood estimators. 
 
The EM algorithm: Formulation of the EM 
algorithm for contingency table 

The EM approach for incomplete 
categorical data on the basis of Multinomial, 
Binomial and Poisson assumptions is now 
investigated. 
 
Multinomial Distributions 

For Multinomial distributions, the 
complete data log likelihood is 

log Lc(πi) =
1

1

n

i

−

=
  (xi+zi) log πi + (xn+zn) 

log(
11 21 ... nπ π π

−
− − − − ),         (31) 

where unobservable or missing data are referred 
to as zi = (z1, z2, …, zn)

T and zi = ri+ci+di with ri 
being missing column data, ci missing row data, 
and di both row and column missing data on cell 
ith. Differentiating (31) with respect to πi, results 
in 

ˆ i i
i n

n n

x z
x z

π π+=
+

.                      (32) 
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Since 
1

n

i
i

π
=
 = 1, therefore from (32), 

ˆ i i
i

x z
N

π +=                            (33) 

where ( )
1

n

i i
i

x z
=

+ = N. 

The E- and M-values on the first 
iteration for cell (i, j) were considered as 
follows. 
 
E-step: 

( )1
ijm = xij+ Ri+

ij

i

π
π +

 
 
 

+ C+j
ij

j

π
π +

 
  
 

+ Dπij 

where ( )1
ijm  is the expected of cell (i, j) on the 

first iteration. 
 
M-step: 

( ) ( )1 1ˆij ijm Nπ = , 

where ( )1
ijπ  is the probability for cell (i, j). 

 
On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
 
E-step: 

( )1k
ijm + = xij+ Ri+

( )

( )

ˆ

ˆ
ij

i

k

k

π

π
+

 
 
 
 

+ C+j

( )

( )

ˆ

ˆ
ij

i

k

k

π

π
+

 
 
 
 

+ Dπij 

 
M-step: 

( ) ( )1 1ˆ k k
ij ijm Nπ + += . 

 
The E- and M-steps were alternated and repeated 
until 

( ) ( )1

ˆ ˆ
k k

ij ijπ π
+

− =
( ) ( )1k k

ij ijm m
N N

+

−  

=

( ) ( )1k k

ij ijm m
N

+

−
 ≤ ε. 

 

Therefore, when k → ∞ , 
( ) ( )1

ˆ ˆlim
k k

ij ijk
π π

+

→∞
− = 0, 

and 
( )1

ˆ
k

ijπ
+

= ( )ˆ k
ijπ = π *. 

 
Binomial distribution 

For the binomial distribution, the 
complete-data log likelihood is 

 
log Lc( 1ip )=(xi1+zi1)log 1ip +(xi2+zi2)log(1- 1ip ), 

for i = 1, …, n, and zi is referred to as 
unobservable or missing data on the ith row 
where zi1 + zi2 =  zi. Differentiating with respect 
to 1ip  results in 

1 1
1

1 2

ˆ i i
i

i i i

x z
p

x x z
+

=
+ +

.                   (34) 

From (34), if all rows are summed, the following 
is obtained 

1 1
1

1
1

1 2
1

ˆ

I

i iI
i

i I
i

i i i
i

r z
p

r r z

=

=

=

+
=

+ +





. 

Since 1 2
1

I

i i i
i

r r z N
=

+ + = , total sample, 

( )1

1ˆ

n

ij
i

j

x
p

N
=

+ =


. 

The E- and M-values on the first iteration for 
cell (i, j) were considered as follows: 
 
E-step: 

( )1
ijm = xij+ Ri+pij 

where ( )1
ijm  is the expected value of cell (i, j) on 

the first iteration and pij  = xij/xi+. 
 
M-step: 

( ) ( ) ( ) ( )( )1 1 1 1
1 2ˆ ij ij i ip m m m= + , 

and 

( )

( )1

1 1ˆ

n

ij
i

j

m
p

N
=

+ =


 

 
On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
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E-step: 
( )1k
ijm +

= xij+ Ri+
( )k
ijp .

 

M-step: 
( ) ( ) ( ) ( )( )1 1 1 1

1 2ˆ k k k k
ij ij i ip m m m+ + + += + , 

and 

( )

( )1

1 1ˆ

n
k

ij
k i
j

m
p

N

+

+ =
+ =


. 

The E- and M-steps were alternated and repeated 
until 

( ) ( )
( )

( ) ( )

( )

( ) ( )

1

1

1 1

1 2 1 2

ˆ ˆ
k k

ij ijk k
ij ij k k k k

i i i i

m m
p p

m m m m

+
+

+ +− = −
+ +

ε≤ , 

and 

( ) ( )1

ˆ ˆ
k k

j jp p
+

+ +− =

( ) ( )1

1 1

n n
k k

ij ij
i i

m m

N N

+

= =−
 

 

=

( ) ( )1

1 1

n n
k k

ij ij
i i

m m

N

+

= =

− 
 ε≤ . 

Therefore, when k → ∞ , lim
k→∞

( ) ( )1ˆ ˆk k
ij ijp p+ −  = 0 

and ( ) ( )1ˆ ˆlim k k
j jk

p p+
+ +→∞

− = 0. 

 
Poisson distribution 

For the Poisson distribution, the 
complete-data log likelihood is 
 
Log Lc(y; θi) =  

( ) ( ) ( )
1

log log !
n

i i i i i i
i

x z x zθ θ
=

+ − − +    

(35) 
 
where z1 + z2 +…+zn is referred to as 
unobservable or missing data. By differentiating 
(35) with respect to θi, 

î i ix zθ = + .                     (36) 

Referring to Figure 1, the E- and M-
values on the first iteration for the cell (i, j) was 
considered as: 
 

E-step: 
( )1
ijz = ( ) ( ) ( )1 1 1

ij ij ijR C D+ + , 

where 

( )1
ijR = Ri+

ij

i

x
x +

 
 
 

, ( )1
ijC = C+j

ij

j

x
x+

 
  
 

, and 

( )1
ijD = D ijx

x
 
 
 

. 

 
M-step: 

( ) ( )11
îj ij ijx zθ = + . 

 
On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
 
E-step: 

( )1k
ijz +

= ( ) ( ) ( )1 1 1k k k
ij ij ijR C D+ + ++ + , 

where 

( )1k
ijR +

= Ri+

k
ij
k
i

θ
θ +

 
  
 

, ( )1k
ijC +

= C+j

k
ij
k

j

θ
θ+

 
  
 

, and 

( )1k
ijD +

= D
k
ij

N
θ 
  
 

, 

and N is total sample. 
 
M-step: 

( ) ( )11
îj ij ijx zθ = + . 

The E- and M-steps were alternated and repeated 
until 

( ) ( )1ˆ ˆk k

ij ijθ θ
+

− = ( )( ) ( )( )1k k
ij ij ij ijx z x z++ − +  

=
( ) ( )1k k

ij ijz z
+

−  ≤ ε 

Therefore, when k → ∞  
( ) ( )1ˆ ˆlim
k k

ij ijk
θ θ

+

→∞
− = 0, 

and it may be said that ( )1ˆ k
ijθ +  = ( )ˆ k

ijθ  = *θ . 

 
Results 

 
The results of MLE, adopting Newton-Raphson 
in MLE and the M-step of the EM algorithm for 
the Poisson distribution are presented in Tables 
4, 5 and 6 respectively. 
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The results of MLE, adopting Newton-
Raphson in MLE and the M-step of the EM 
algorithm for the Multinomial distribution are 
presented in Tables 7, 8 and 9 respectively. The 
results of MLE and the M-step for the Binomial 
distribution are presented in Tables 10, 11 and 
12 respectively. 

Based upon results, both the MLE and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the EM algorithms converge on the 7th iteration 
(see Tables 4 and 6), and both methods give the 
same results. However, by adopting the Newton-
Raphson in the MLE, the results on the 5th 
iteration were obtained (see Table 5). Although 
it seems that the EM algorithm was converging 
the same as the MLE, the EM algorithm 
involves two calculation steps on each iteration. 

Table 4 MLE for Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.99 10.13 19.23 11.66 

2 17.72 10.05 19.35 11.89 

3 17.67 10.03 19.35 11.96 

4 17.66 10.02 19.34 11.98 

5 17.67 10.02 19.33 11.99 

6 17.67 10.01 19.33 11.99 

7 17.67 10.01 19.33 11.99 

Table 5: Adopting Newton-Raphson in MLE for Poisson 
distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.92 9.7 19.62 11.76 

2 17.68 9.38 19.87 12.06 

3 17.66 9.34 19.78 12.22 

4 17.65 9.34 19.77 12.24 

5 17.65 9.34 19.77 12.24 
 

Table 6: M-step for Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.99 10.13 19.22 11.66 

2 17.72 10.04 19.35 11.9 

3 17.67 10.02 19.35 11.96 

4 17.67 10.02 19.34 11.98 

5 17.67 10.01 19.33 11.98 

6 17.67 10.01 19.33 11.99 

7 17.67 10.01 19.33 11.99 
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In other words, the EM takes longer to compute 
the results compared with the MLE. After 
adopting the Newton-Raphson in the MLE, it 
was able to give faster convergence without as 
much deviance in the results as the EM 
algorithm. Tables 7 and 8 were obtained by 
considering the last iteration of Tables 4 and 5 
respectively. The results were also the same for 
the Multinomial distribution for the MLE and 
the EM algorithm. By comparing the results of 
Table 8 with the last iteration of Table 9, it is 
observed that the results are not much different. 
However Table 11 was obtained by considering 
the last iteration of Table 10. Results shown in 
Tables 11 and 12 were the same as those 
obtained for the Binomial distribution. 
 
Testing independence 

For two-way contingency tables, the 
null hypothesis of statistical independence is H0 
: πij = πi+ π+j for all i and j. The likelihood-ratio 
statistic, G2 is asymptotically equivalent to 2χ  
when n → ∞ with d.f. = (r – 1)(c – 1) where r is 
the number of rows and c is the number of 
columns in the contingency table. 

According to Schafer (1997), G2=
( ) ( )ˆ2 | |obs obsY Yπ π−    , where ( )ˆ | obsYπ  is the 

unrestricted ML estimate ( π̂ ) and ( )| obsYπ  is 

the restricted ML estimate (π ). Thus,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )| obsYπ  is considered as: 

( )| obsYπ = ( )|A obsYπ + ( )|B obsYπ  

+ ( )|C obsYπ + ( )|D obsYπ . 

For the Multinomial and Poisson distributions 
with the MLE and EM algorithm, 

G2 = ( ) ( )ˆ2 | |obs obsY Yπ π−    . 

For the Binomial distribution, H0: p = pi1, 
therefore 

G2 = 2[ ( ) ( )ˆ | |obs obsp Y p Y−   ], 

where ( )ˆ | obsp Y  is the unrestricted ML estimate 

of p̂  and ( )| obsp Y  is the restricted ML estimate 

of p . For both the MLE and the EM algorithms 

( )| obsp Y  is considered as: 

( ) ( ) ( )| | |obs A obs B obsp Y p Y p Y= +   . 

Therefore, adopting the Newton-
Raphson in the MLE and EM algorithms for 
Multinomial and Poisson distributions, G2=0.02. 
However, for the Binomial distribution, 
G2=0.01. From these results, it may be 
concluded that treatment type is independent of 
the results of treatment for the Multinomial and 
Poisson distributions, and the number of seizure 
pain which is less than five is the same for 
treatment 0 and 1 for the Binomial distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: MLE for the Multinomial distribution 

Cells 

(1,1) (1,2) (2,1) (2,2) 

0.2992 0.1697 0.3276 0.2032 
 

Table 8: Adopting Newton-Raphson in MLE for 
the Multinomial distribution 

Cells 

(1,1) (1,2) (2,1) (2,2) 

0.2992 0.1583 0.3351 0.2075 
 

Table 9: M-step for Multinomial distribution 

Iteration

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 0.3049 0.1716 0.3259 0.1976 

2 0.3003 0.1702 0.3278 0.2017 

3 0.2995 0.1698 0.3278 0.2027 

4 0.2993 0.1698 0.3278 0.2031 

5 0.2992 0.1697 0.3276 0.2031 

6 0.2992 0.1697 0.3276 0.2032 

7 0.2992 0.1697 0.3276 0.2032 
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Conclusion 
 
The EM algorithm is more complicated than the 
MLE, because the EM algorithm involves the E-
(expectation) and M-(maximization) steps. This 
makes the calculations more complicated and 
also increases the amount of time required to 
calculate results as compared with the MLE, 
which is more straightforward for estimating cell 
probabilities in cases of incomplete categorical 
data. For example when consider a contingency 
table with a Poisson sampling scheme, for MLE, 
the expected value is obtained as in (11) by 
considering the previous iteration of the 
expected value. However, for the EM algorithm, 
before calculating the expected value in the M-
step, the E-step - which involves the estimation 
of initial cell probability first – must first be 
considered. For the Binomial sampling scheme, 
the convergence for estimation of pi1 and p can 
be obtained when first considering Poisson 
sampling employing the MLE procedure. Again, 
if the EM algorithm is considered, the E-step is 
required first in order to obtain an initial 
estimate for pij. Similar explanations may be 
given for Multinomial sampling cases where, if 
MLE is considered, the Poisson sampling must 
be addressed before using the last iteration to 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
obtain ˆijπ . The EM algorithm, however, requires 

step by step convergence starting from the initial 
value for ˆijπ  before convergence is achieved. 

The MLE can better perform by 
adopting the Newton-Raphson method, because 
this method helps to accelerate the convergence. 
When the MLE is adopted with that of Newton-
Raphson, as a convergence method, it is clear 
that the MLE and the EM algorithm are two 
different kinds of algorithms. The MLE 
algorithm provides a direct way to maximize the 
final expected value, while the EM algorithm 
involves expectation before the maximization; 
however, the EM algorithm demonstrates the 
distribution of missing values at each step until 
convergence on the basis of the marginal 
probabilities. 

The MLE is much simpler than the EM 
algorithm when one is interested simply in final 
results. If interest lies in understanding the 
distribution of missing values in more detail, the 
EM algorithm is the better choice. 
 
 
 
 

Table 10: MLE for the Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 14.95 8.05 16.42 9.58 

2 14.95 8.05 16.42 9.58 
 

Table 11: MLE for the Binomial distribution 
Cells 

(1,1) (2,1) (+, 1) (1, 2) (2,2) (+, 2) 

0.65 0.6315 0.6402 0.35 0.3685 0.3598 
 

Table 12: M-step for the Binomial distribution 

Iteration

Cells 

(1,1) (2,1) (+, 1) (1, 2) (2,2) (+, 2) 

1 0.65 0.6315 0.6402 0.35 0.3685 0.3598 

2 0.65 0.6315 0.6402 0.35 0.3685 0.3598 
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Adaptive Estimation of Heteroscedastic Linear Regression Model 
Using Probability Weighted Moments 
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An adaptive estimator is presented by using probability weighted moments as weights rather than 
conventional estimates of variances for unknown heteroscedastic errors while estimating a heteroscedastic 
linear regression model. Empirical studies of the data generated by simulations for normal, uniform, and 
logistically distributed error terms support our proposed estimator to be quite efficient, especially for 
small samples. 
 
Key words: Adaptive estimator, estimated weighted least squares, heteroscedasticity, probability 
weighted moments. 
 
 

Introduction 
 
The basic version of linear regression model 
assumes homoscedasticity of error terms. If this 
assumption is not met then the regression 
disturbances whose variances are not constant 
across observations are heteroscedastic. In the 
presence of heteroscedasticity, the method of 
ordinary least squares (OLS) does not result in 
biased and inconsistent parameter estimates. 
However, OLS estimates are no longer best 
linear unbiased estimators (BLUE). That is, 
among all the unbiased estimators, OLS does not 
provide the estimate with the smallest variance. 
In addition, the standard errors of the estimates 
become biased and inconsistent when 
heteroscedasticity is present. This, in turn, leads 
to bias in test statistics and confidence intervals. 
Depending on the nature of the 
heteroscedasticity, significance tests can be too   
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high or too low. These effects are not ignorable 
as earlier noted by Geary (1966), White (1980) 
and Pasha (1982), among many others. 
 When the form of heteroscedasticity is 
known, using weights to correct for 
heteroscedasticity is very simple by weighted 
least squares (WLS). If the form of 
heteroscedasticity is not known, the standard 
method of replication is used as given by Fuller 
and Rao (1978). In this approach, the unknown 
variance of each residual can be estimated first 
and these estimates can be used as weights in a 
second step and the resultant estimates are 
referred to as estimated weighted least squares 
(EWLS) estimates. 
 Pasha (1984) gave a comparison among 
EWLS and minimum norm quadratic unbiased 
estimator (MINQUE) and reported EWLS to be 
better than MINQU-based estimators for 
estimation of heteroscedastic linear regression 
model. Pasha and Ord (1994) presented two 
adaptive estimators, one based on overall test of 
heteroscedasticity and other on paired 
comparison procedures following the idea of 
Bancroft (1964) and Bancroft & Hans (1977). 
These estimators were also based on EWLS and 
the attractive performances of these adaptive 
estimators were reported for efficiency gain. 
 An adaptive estimator is presented in 
this article by using probability weighted 
moments (PWM) as weights for transforming 
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matrix rather than conventional estimates of 
unknown error variances as usually used in 
EWLS. Downton (1966) suggested a linear 
estimate of the standard deviation of the normal 
distribution as 
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Here Xi indicates ordered observations in a 
sample of size n. The estimate of the standard 
deviation using PWM is also a function of 
ordered observations as 
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The estimate of the mean is 
n

X
n

i
i

=1 . The Xi’s are 

the ordered observations and (i – 0.5)/n is the 
empirical distribution function Fn(X). Such 
estimator is also used by Muhammad et al. 
(1993). Greenwood (1979) explained the 
robustness of the PWM over the conventional 
moments to outliers by drawing more efficient 
inferences using PWM.  

A heteroscedastic linear regression 
model and a usual EWLS estimator are given 
below. In addition, a new estimator based on 
probability weighted moments, denoted as 
PEWLS estimator, is presented. Finally, 
empirical results, an application for this 
approach and conclusions are put forth. 
 

Methodology 
 
Linear Regression Model with Heteroscedastic 
Errors and EWLS 

Consider the following heteroscedastic 
linear regression model: 
yij = 

x i′  β + uij, i=1, 2, …, k, j=1, 2, …, ni, 
k

i
in =n 

(2.1) 
 
where yij is the jth response at the ith design 
point xi, xi are known p-vectors, β is a p-vector 
of unknown parameters and uij are the mutually 

independent with E (uij ) = 0 and E (uij
2 ) = σ 2

i ,  j 
= 1, 2, …, ni. The variancesσ 2

i ’s are unknown 
and heteroscedastic. A matrix form of model 
(2.1) is 
 

y = Xβ + u,                      (2.2) 
 
where 
 

y = (y11 .  .  .  y1n
1

  .  .  .  yk1  .  .  .   yknk 
)

/

n x 1 , 
 

u = (u11 .  .  .  u1n
1

  .  .  .  uk1  .  .  .  uknk 
)

/

n x 1 , 
 
and 
 

X = (x11 .  .  .  x1n
1

  .  .  .  xk1  .  .  .  xknk 
)

/

n x p , 
xij = xi,    j = 1, 2, …, ni, 

 
with heteroscedastic error terms of covariance 
matrix Ω having typical ith diagonal elements 

σ 2
i . 

 
The usual OLS estimator for  β  in (2.2) is 
 

yXXXOLS ′′= −1)(β̂  

 
Fuller and Rao (1978) presented EWLS 
estimator of  β as 
 

)ˆ()ˆ(ˆ 111 yXXXEWLS Ω′Ω′= −−−β ,       (2.3) 

 
where 

 

Ω̂  = diag{σ̂ 2
1 , σ̂ 2

2 , …, σ̂ 2
n }, 

 

σ̂ 2
i  = 2

1

1 )ˆ( ′−
=

−
ni

j
OLSiiji xyn β . 

 
PWM-based Adaptive Estimator (PEWLS) 
 Probability weighted moments are used 

as weights in transforming matrix Ω̂  in (2.3) 
and propose a new estimator as 
 

)ˆ()ˆ(ˆ 111 yXXXPEWLS Φ′Φ′= −−−β , 
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The estimate of the mean is 
n

Y
n

i
i

=1 . The Yi’s are 

the ordered observations and (i – 0.5)/n is the 
empirical distribution function Fn(Y). 
 

Results 
 
A Monte Carlo study was performed on the 
model used by Jacquez, et al. (1968) among 
others in their numerical work. 
 
yij = 
1 + xi + uij ;    i = 1, 2, 3,…, k;    j = 1, 2, 3,…, ni  

 
(4.1) 

 
The uij are independently distributed with zero 
mean and varianceσ 2

i . Different versions for the 
model (4.1) were used according to the 
following formations: ni were set to be equal to 
m; m = 5, 10. k was chosen as k = 6, 8, 10. xi 
were selected as ; for k = 6, xi were (1, 2, 4, 7, 9, 
10), for k = 8, xi were (1, 2, 4, 5, 6, 7, 9, 10), and 
for k = 10, xi were (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). 
For each pair (m, k), two σ-pattern (data 
generating process: DGP) were chosen; DGP-I: 
σi = (xi +8)/9, and DGP-II: σi = (0.5 xi +1)/3. 
 Different data sets are generated for 
each pair of (m, k) and σ-pattern for normal, 
uniform, and logistically distributed error terms. 
For each pair of (m, k) and σ-pattern, 2,000 
simulations are run. On the basis of the 
generated data, in Table 4.1 and Table 4.2, the 
efficiency of the EWLS estimator relative to the 
PEWLS estimator for β, is compared as  R.E =

)ˆ(/)ˆ( ββ EWLSPEWLS
MSEMSE . 

 The mean values of standard error of 
estimates of the regressions are compared by 
computing the ratios SE (PEWLS)/SE (EWLS). 
These ratios are shown in Table 4.3 and 4.4. 

 Table 4.1 shows the relative efficiencies 
under DGP-I. For normally distributed errors, 
PEWLS performs better than EWLS for all the 
pairs (m, k) in terms of efficiency. But for small 
samples (m = 5, k = 6), PEWLS is more efficient 
and the gain in efficiency reaches to 20% while 
comparing with that of EWLS. For m = 10, both 
estimators tend to become equal efficient as k 
increases from 6 to 10. For uniform and logistic 
errors, no substantial efficiency is observed 
while using PEWLS. 
 Table 4.2 (DGP-II) shows the same 
trend of efficiency as shown by Table 4.1 for all 
the tried error patterns. It is noted again that 
when m = 5 is fixed, the new proposed estimator 
shows more efficient behavior for small values 
of k, namely, for k = 6. 

Table 4.3 and 4.4 show that the results 
of the adaptive estimator PEWLS are brightly 
encouraging with respect to the standard error of 
estimate for the fitted model even for all the 
selected pairs of (m, k) and the error patterns. 
For normal errors and small samples (m = 5), the 
results are quite impressive by using PWELS as 
compared to its competitor for all chosen k. The 
standard errors of estimates of the fitted model 
are about double for EWLS as compared to that 
of our proposed PEWLS (e.g., for k = 6, 8). 
Almost similar are the findings for the other 
tried error distributions so far. Same fashion of 
less standard error of estimates is observed for 
DGP-II in Table 4.4. These findings show that 
by using the proposed adaptive estimator, one 
can find better regression estimates as compared 
to that by using EWLS. 
 
Application 
 To illustrate the computations of the 
proposed PEWLS estimators and to compare its 
performance with the EWLS, already available 
in the literature, take the example of 
compensation per employee ($) in Nondurable 
Manufacturing Industries of US Department of 
Commerce as quoted by Gujarati (2003, p. 392). 
This example is used to compare these findings 
in practical data with findings already available 
in the literature. 
 Table 5.1 reports the performance of 
OLS, EWLS and the proposed PEWLS 
estimators. First, OLS estimates are found and 
the presence of heteroscedasticity is noted by 
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using White’s test (1980) with p-value 0.07. It is 
noted that the proposed estimator bear lower 
standard errors among all the remaining 
estimators presenting an adequate reliability for 
its adaptation. It is further noted that the 
proposed estimator give better R2 and much 
improved standard errors of regression that 
confirms the adequacy of the fitted model. 
Similarly, the proposed adaptive estimator gives 
lowest Akaike Information Criteria (AIC) values 
that indicate the right specification of the 
weighting mechanism. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 

It was found that use of probability 
weighted moments as estimates of unknown 
heteroscedastic weights rather than conventional 
estimates of variances for unknown 
heteroscedastic errors while estimating a 
heteroscedastic linear regression model, makes 
more efficient estimations. This new 
formulation, considerably, contributes in 
reducing standard errors of estimates for fitted 
models. The gain in efficiency and the reduction  
 
 

Table 4.1: Relative Efficiency of PEWLS and EWLS Estimators of β (DGP-I) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.8088 0.9779 0.9887 0.9344 0.9885 1.0000 

8 0.8526 0.9839 0.9921 0.9617 0.9891 1.0051 

10 0.9400 0.9899 0.9989 0.9625 0.9911 0.9656 
 

Table 4.2: Relative Efficiency of PEWLS and EWLS Estimators of β (DGP-II) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.8918 0.9915 1.0000 0.9268 0.9831 0.9943 

8 0.9112 0.9652 0.9471 0.9915 0.9962 0.9952 

10 1.0031 0.9705 1.0252 0.9966 0.9986 1.0000 
 

Table 4.3: Ratios of Standard Error of Estimates of PEWLS and EWLS (DGP-I) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.5721 0.9244 0.6592 0.9068 0.8470 0.9650 

8 0.5944 0.9287 0.6720 0.9325 0.8169 0.9661 

10 0.6515 0.9365 0.6263 0.9317 0.7474 0.9317 
 

Table 4.3: Ratios of Standard Error of Estimates of PEWLS and EWLS (DGP-II) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.6770 0.9477 0.7011 0.9616 0.6329 0.9899 

8 0.6839 0.9234 0.6531 0.9577 0.7378 0.9965 

10 0.6833 0.9307 0.7139 0.9603 0.6859 1.0011 
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in standard errors of estimates of regression 
model are appealing, especially, for small 
samples and thus make our new adaptation more 
attractive for many of practical situations of 
small samples. 
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Table 5.1: Comparative Statistics 

 
Estimators 

Estimation of  β 0  Estimation of β 1  
 

R2 

 
S.E. of 

Regression 

 
AIC β̂ 0

 SE 
t-

statistic β̂ 1
 SE 

t-
statistic

OLS 3417.70 81.04 42.17 148.81 14.40 10.33 0.9385 111.56 12.46

EWLS 3406.20 80.86 42.13 154.24 16.93 9.11 0.9645 126.54 12.71

PEWLS 3437.40 79.39 43.29 142.99 17.69 10.44 0.9842 103.87 12.31
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The effect of variance estimation of regression coefficients when disturbances are serially correlated in 
time series regression models is studied. Variance estimation enters into confidence interval estimation, 
hypotheses testing, spectrum estimation, and expressions for the estimated standard error of prediction. 
Using computer simulations, the robustness of various estimators, including Estimated Generalized Least 
Squares (EGLS) was considered. The estimates of variance of the coefficient estimators produced by 
computer packages were considered. Models were generated with a second order auto-correlated error 
structure, considering the robustness of estimators based upon misspecified order. Ordinary Least Squares 
(OLS) (order zero) estimates outperformed first order EGLS. A full comparison of order zero and four 
estimators indicate that over specification is preferable to under specification. 
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Introduction 

 
In the standard linear regression model, 

y X u= β + ,                       (1) 

where y is the ( )1T ×  response variable; X is an 

( )kT ×  model matrix; β  is a ( )1k ×  vector of 
unknown regression parameters; and u is a 
( )1T ×  random vector of disturbances, it is well 
known that Ordinary Least Squares (OLS) yield 
unbiased, but inefficient estimates for the 
regression parameters with serially correlated 
disturbance structures. OLS regression estimates 
have larger sampling variances than the 
Generalized Least Squares (GLS) estimator 
which accounts for auto-correlated nature of 
disturbances. 

An important consideration is the 
estimation of the standard errors of the 
estimators, because estimates of the variance 
enter into usual inference procedures such as 
prediction and confidence intervals, hypotheses 
testing, spectrum estimation, expressions for 
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the estimated standard error of prediction, and 
other inferential procedures. 

In practice, if using a statistical package 
to compute the OLS estimators the variance 
estimate produced would be based on 

( ) 12
u X X

−′σ , which may be biased for the true 

variance ( ) ( )1 12
u X X X X X X

− −′ ′ ′σ  . For 

GLS estimation ( Σ known), on the other hand, 
the variance estimate is unbiased for the true 
variance of the GLS estimator. It is unclear, 
however, how the variance estimators for EGLS 
estimation behave. In order to investigate how 
well the variance estimators function in the 
different cases, the ratio of the variance of the 
OLS estimated variance to that for the estimated 
GLS estimators from the simulation results was 
computed. 

The most commonly assumed process in 
both theoretical and empirical studies is the first-
order autoregressive process, or AR(1), which 
can be represented in the autoregressive form as 

( )2
t t 1 t tu u , ~ i.i.d. N 0,− ε= ρ + ε ε σ     (2) 

where ρ  is the first order autoregressive 
disturbance parameter. The second-order 
autoregressive process, or AR(2) error process, 
may be written 
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t 1 t 1 2 t 2 tu u u− −= φ + φ + ε            (3) 

where 1φ  and 2φ  are the second-order 

autoregressive disturbance parameters. 
Numerous articles describe the 

efficiency of the OLS coefficient estimator 
relative to the GLS estimator which takes this 
correlation into account. Safi & White (2006) 
have shown that, if the error structure is 
autoregressive and the dependent variable is 
non-stochastic and linear or quadratic, the OLS 
estimator performs nearly as well as its 
competitors. When faced with an unknown error 
structure, however, AR(4) may offer the best 
choice. Koreisha & Fang (2004) investigated the 
impact that the EIGLS correction may have on 
forecast performance. They found that, for 
predictive purposes, not much is gained in trying 
to identify the actual order and form of the auto-
correlated disturbances or in using more 
complicated estimation methods such as GLS or 
MLE procedures which often require inversion 
of large matrices. Krämer & Marmol (2002) 
showed that OLS and GLS are asymptotically 
equivalent in the linear regression model with 
AR(p) disturbance and a wide range of trending 
independent variables, and that OLS based 
statistical inference is still meaningful after 
proper adjustment of the test statistics. 
Grenander & Rosenblatt (1957) gave necessary 
and sufficient conditions for X such that the 
OLS and GLS estimators have the same 
asymptotic covariance matrix. This class of X 
matrices includes polynomial and trigonometric 
polynomial functions of time. 

In addition, it is known from Anderson's 
(1948) results that if the columns of observations 
on k independent variables are linearly 
dependent on a set of k eigen vectors of the 
variance matrix of the errors, then the efficiency 
of the OLS estimator will be identical with the 
GLS estimator for most values of the 

autocorrelation coefficient 1ρ < . By contrast, 

if this matrix is allowed to vary arbitrarily, the 
efficiency of the OLS relative to the GLS 
estimator with a known autocorrelation 
coefficient can approach zero. Good references 
of techniques for analysis in time series models 
are Anderson (1971) and Fuller (1996). 

The GLS estimator based on an under 
parameterized AR(1) disturbance model 
structure with an estimated AR(1) coefficient 
denoted, EIGLS-AR(1) will have the highest 
variance estimation among the other estimators. 
For example, for some cases the variance 
estimation of EIGLS-AR(1) is at least more than 
six times higher than the OLS estimator. This 
indicates that EIGLS-AR(1) can be much less 
efficient than OLS. 
 This article is organized as follows: 
Simulation setup, definitions of the mean 
squared error of the variance for each of the 
regression coefficients, the bias and the variance 
of the estimated variance, and the ratio of the 
variance of the OLS estimated variance to that 
of four GLS estimators are introduced. Complete 
simulation results based on the variance of OLS 
and GLS estimated variance of each of the 
regression coefficients are shown and the ratio 
of variance estimation of OLS to that of GLS 
estimators for each of the regression coefficients 
is discussed. This simulation study was designed 
to compare the performance of different 
estimators and to characterize the effect of the 
design on the efficiency of OLS. Lastly, 
conclusions based on the comparison of the 
variance estimation of OLS and GLS on the 
regression coefficients is provided. 
 

Methodology 
 

The robustness of various estimators, including 
estimated generalized least squares (EGLS) was 
considered. These simulations examined the 
sensitivity of estimators to model 
misspecification.  

The the ratios of the variances of the 
OLS estimator relative to four GLS estimated 
variances were compared: the GLS based on the 
correct disturbance model structure and known 
AR(2) coefficients denoted as GLS-AR(2); the 
GLS based on the correct disturbance model 
structure but with estimated AR(2) coefficients 
denoted as EGLS-AR(2); the GLS based on an 
under parameterized AR(1) disturbance model 
structure with an estimated AR(1) coefficient 
denoted as EIGLS-AR(1), and the GLS based on 
over parameterized AR(4) disturbance model 
structure with estimated AR(4) coefficients 
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denoted as EIGLS-AR(4). AR(p) GLS 
corrections disturbances. 

Three finite sample sizes (50, 100, and 
200) and three non-stochastic design vectors of 
the independent variable were used; linear, 
quadratic, and exponential. A standard normal 
stochastic design vector of length 1,000 was 
generated, assuming the variance of the error 

term in AR(2) process was ( )2 1εσ = . In 

addition, 1,000 observations were generated for 
each of the AR(2) error disturbances with four 
pairs of autoregressive coefficients: (.2,-.9), (.8,-
.9), (.2,-.7), and (.2,-.1).   

The regression coefficients 0β , and 1β  

for an intercept and the slope were each chosen 
to equal one. Breusch (1980) has shown that for 

a fixed design, the distribution of 
2
u

EGLS
ˆ

σ
β−β

 

does not depend on the choice for β  and 2
uσ , 

and the result holds even if the covariance 
matrix Σ  is misspecified.  
 
Definition 1 
The simulation mean squared error (

j
ˆ βη ) of an 

estimated variance W, of the true variance ( τ ), 

is the function defined by ( )2
E Wτ − τ . That is 

( )
j

k 21
ij

i 1

ˆ k W−
β

=

η = − τ                (4) 

where j = 0,1, k is the number of simulations, 
 ( ) ( )ij ij T jW Var , Var= β τ = β . 

 
An estimate with the smallest value in (4) 
indicates that it was the most efficient among 
other estimates. 
 
Definition 2 
The bias of an estimated variance (W), of the 
true variance ( τ ), is the difference between the 
expected value of W and τ . That is, 

                          
j

ˆ E Wβ τδ = − τ                       (5) 

where 

 ( )
k

1
ij

i 1

E W k Var−
τ

=

= β . 

An estimator whose bias is identically 
(in τ ) equal to zero is called unbiased and 
satisfies E Wτ = τ  for all τ . 

Note that ( )T jVarτ = β is different for 

each case of the estimation procedure; since no 
known explicit formula exists for EGLS cases,  
this quantity is estimated from the simulation 
results in all cases. 
 
Definition 3 
The variance of the estimated variance (W), of 
the true variance ( τ ), is the difference between 

the estimated mean squared error (
j

ˆ βη ), and the 

bias of an estimated variance W, 
j

ˆ
βδ . That is, 

( )j j j

2ˆˆVar Var β β β= η − δ              (6) 

 
Definition 4 
The ratio of the variance of the OLS estimated 
variance to that of GLS is 

j

j

ji

V
R

Vβ =                         (7) 

where  
( )
( )

j.OLS

j.GLS

j

ji

V Var Var ,

V Var Var ,

j 0,1, i 1, 2,3,4

β

β

=

=

= =

 

 
for four GLS estimates such that:  

( )
( )
( )
( )

j.GLS AR (2)

j.EGLS AR (2)

j.EIGLS AR (1)

j.EIGLS AR (4)

j1

j2

j3

j4

V Var Var ,

V Var Var ,

V Var Var ,

V Var Var .

β −

β −

β −

β −

=

=

=

=

 

 
A ratio (

j
Rβ ), less than one indicates 

that the OLS estimate is more efficient than 
GLS, if 

j
Rβ  is close to one then the OLS 

estimate is nearly as efficient as GLS, otherwise, 
OLS performs poorly. 
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S-plus code was written to compute the 
ratio of the variance of the OLS estimated 
variance to that of GLS in (7) using the OLS and 
four GLS estimators. 

 
Results 

 
The simulation results based on the variances of 
OLS and GLS estimated variance of each of the 
regression coefficients using four GLS and OLS 
estimates are now discussed. 
 Tables (1) and (2) show the simulation 
results of the variances of OLS and four GLS 

estimated variance, ( )0Var Varβ and

( )1Var Varβ  in (6), when the serially correlated 

disturbance is AR(2) process, under 
parameterized AR(1), and over parameterized 
AR(4) for linear design with all selected AR(2) 
coefficients and all sample sizes. 

First, regardless of sample size, the 
selected autoregressive coefficients for all non- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-stochastic designs, OLS was more efficient than 
EIGLS-AR(1) in estimating both 0β  and 1β . 

This is shown in Table (1), when Φ = (.8,-.9) for 

a linear design with T=100, [ ]0 03V ,V = 

[7.9340E-04, 5.8309E-03] and [ ]1 13V ,V  = 

[8.0950E-04, 5.5626E-03]. For all cases EIGLS-
AR(1) was the least efficient estimator. For 
example, when Φ = (.2,-.9) with T=200, 03V  = 

1.0822E-04 and 13V  = 1.0868E-04.  

Second, regardless of sample size and 
selected non-stochastic design, OLS was more 

efficient than GLS in estimating ( )0 1,β β with Φ 

= (.2,-.1). For example, as shown in Table (2), 

with T=50, [ ]0 01V ,V  = [1.9062E-05, 2.5782E-

05] and [ ]1 11V ,V = [1.9848E-05, 2.6844E-05]. 

Otherwise, the OLS estimator performed less 
efficiently than the GLS estimator. Furthermore, 
if Φ = (.2,-.1), OLS was more efficient than GLS 
estimates; EGLS- AR(2), and EIGLS-AR(4), for 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Panel (A) - Variances of OLS and GLS Estimators for Linear Design 

  
Size 

  
Estimator 

(Φ1 , Φ 2) = (.2, -.9) (Φ1 , Φ 2) = (.8, -.9) 

V0 V1 V0 V1 

50 VOLS 3.8994E-03 4.0602E-03 6.0748E-03 6.3253E-03 

 VGLS AR(2) 1.9922E-06 2.4186E-06 1.3186E-05 1.5923E-05 

 VEGLS AR(2) 2.9702E-06 3.5411E-06 2.0197E-05 2.3851E-05 

 VEIGLS AR(1) 7.5176E-03 7.5862E-03 5.3587E-02 4.8020E-02 

 VEIGLS AR(4) 2.1458E-05 1.9951E-05 1.2105E-04 1.1500E-04 

100 VOLS 5.0757E-04 5.1788E-04 7.9340E-04 8.0950E-04 

 VGLS AR(2) 2.3634E-07 2.6019E-07 1.5304E-06 1.6804E-06 

 VEGLS AR(2) 3.0145E-07 3.2972E-07 2.2467E-06 2.4441E-06 

 VEIGLS AR(1) 8.6461E-04 8.7130E-04 5.8309E-03 5.5626E-03 

 VEIGLS AR(4) 1.6742E-06 1.7054E-06 9.0592E-06 9.2609E-06 

200 VOLS 6.5781E-05 6.6444E-05 9.7015E-05 9.7993E-05 

 VGLS AR(2) 3.2956E-08 3.4571E-08 1.5183E-07 1.5907E-07 

 VEGLS AR(2) 4.0323E-08 4.2192E-08 2.3086E-07 2.4091E-07 

 VEIGLS AR(1) 1.0822E-04 1.0868E-04 6.6333E-04 6.4879E-04 

 VEIGLS AR(4) 1.7871E-07 1.8186E-07 1.0469E-06 1.0632E-06 
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all sample sizes for all design vectors. This is 
shown in Table (2). For a linear design with 
sample size T=100; the variances of the 

estimated variance of ( )0 1,β β  using OLS, 

EGLS-AR(2) and EIGLS-AR(4) were 

[ ]0 02 04V ,V ,V  = [2.4432E-06, 1.9476E-05, 

4.2741E-05] and [ ]1 12 14V ,V ,V  = [2.4928E-06, 

1.8614E-05, 3.6817E-05], respectively. 
Otherwise, GLS estimates were more efficient 
than OLS. The results for the other non-
stochastic designs mimic the same behavior of 
the linear designs. 

Table (3) shows the simulation results of 
the variances of OLS and GLS estimated 
variance for standardized normal stochastic 
design. OLS was more efficient than GLS 
estimators in estimating 0β  for all sample sizes 

with Φ = (.2,-.1). For example, when T=50, 

[ ]0 01 02 04V ,V ,V ,V = [2.0509E-05, 2.6708E-05, 

2.2857E-04, 1.1503E-03]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For estimating the slope, 1β , OLS was 

nearly as efficient as GLS-AR(2), EGLS-AR(2), 
and EIGLS-AR(4) estimators for all sample 
sizes with AR(2) parametrization Φ  = (.2,-.1). 

For example, when T=50, [ ]1 11 12 14V ,V ,V ,V = 

[4.5526E-05, 3.9870E-05, 3.8240E-05, 3.6470E-
05]. Otherwise, OLS performed poorly. Second, 
the efficiency of OLS in estimating 0β  was 

more efficient than EIGLS-AR(1). For example, 
with AR(2) parametrization Φ = (.2,-.1) for 

T=50, [ ]0 03V ,V = [2.0509E-05,1.6262E-04]. 

However, the efficiency of OLS in estimating 

1β  was nearly as efficient as EIGLS-AR(1), for 

example, with Φ = (.2,-.1) for T=50, [ ]1 13V ,V = 

[4.5526E-05, 4.0393E-05].  
The simulation results based on the ratio 

of the variance of the estimated variance of OLS 
to that of GLS of each of the regression 
coefficients, Rβ in (7) are now discussed. Tables 

(4) and (5) are presented for the linear design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Panel (B) - Variances of OLS and GLS Estimators for Linear Design 

 
Size 

 
Estimator 

(Φ1 , Φ 2) = (.2, -.7) (Φ1 , Φ 2) = (.2,-.1) 

V0 V1 V0 V1 

50 VOLS 1.7765E-04 1.8498E-04 1.9062E-05 1.9848E-05 

 VGLS AR(2) 3.5205E-06 4.1751E-06 2.5782E-05 2.6844E-05 

 VEGLS AR(2) 7.5677E-06 8.6003E-06 2.0664E-04 1.7487E-04 

 VEIGLS AR(1) 4.2082E-04 4.1699E-04 1.5224E-04 1.3856E-04 

 VEIGLS AR(4) 6.0168E-05 4.8976E-05 8.1543E-04 3.8291E-04 

100 VOLS 2.4082E-05 2.4571E-05 2.4432E-06 2.4928E-06 

 VGLS AR(2) 4.2622E-07 4.6385E-07 3.2092E-06 3.2743E-06 

 VEGLS AR(2) 8.0958E-07 8.6773E-07 1.9476E-05 1.8614E-05 

 VEIGLS AR(1) 5.1302E-05 5.1260E-05 1.9368E-05 1.8558E-05 

 VEIGLS AR(4) 3.1549E-06 3.1480E-06 4.2741E-05 3.6817E-05 

200 VOLS 2.8555E-06 2.8843E-06 3.0692E-07 3.1001E-07 

 VGLS AR(2) 5.3668E-08 5.5979E-08 3.9671E-07 4.0070E-07 

 VEGLS AR(2) 1.0279E-07 1.0652E-07 2.1704E-06 2.1293E-06 

 VEIGLS AR(1) 5.7967E-06 5.7999E-06 2.2070E-06 2.1659E-06 

 VEIGLS AR(4) 3.5784E-07 3.6114E-07 3.9794E-06 3.7836E-06 
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First, when the disturbance term is under 
parameterization, regardless of the sample size, 
the selected autoregressive coefficients, and for 
all the non-stochastic designs, OLS is more 
efficient than EIGLS-AR(1) in estimating both 

0β  and 1β . For example, as shown in Table (4), 

when Φ = (.8,-.9) for the linear design with 
T=100, the ratio between 0V  and 03V  for 

estimating the intercept, 
0

Rβ is about 0.1361, 

and the ratio between 1V  and 13V for estimating 

the slope, 
1

Rβ is about 0.1455. This result 

indicates that the variance of the OLS estimated 
variance would be around 0.1361 and 0.1455 
times that of EIGLS-AR(1) for estimating the 
intercept and slope, respectively. This result 
shows that the variance estimation of EIGLS-
AR(1) is at least more than six times higher than 
the OLS estimator. Moreover, for all cases 
EIGLS-AR(1) was the least efficient estimator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Regardless of the example, shown in 
Table (5) with T=50, the ratio between 0V  and 

01V , 
0

Rβ = 0.7393 and the ratio between 1V  and 

11V , 
1

Rβ = 0.7394. Otherwise, the OLS 

estimator performed less efficiently than the 
GLS estimator. 

When Φ = (.2,-.1), OLS was more 
efficient than GLS estimates; EGLS-AR(2), and 
EIGLS-AR(4), for all sample sizes for all design 
vectors. For example, as shown in Table (5), for 
the linear design with sample size T=100, the 
ratios between the estimated variance of 

( )0 1,β β  using OLS, EGLS-AR(2) and EIGLS-

AR(4) were (0.1254,0.0572) and 
(0.1339,0.0677), respectively. Otherwise, OLS 
was less efficient than GLS estimates. The 
results for the other non-stochastic designs 
mimic the same behavior of the linear design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Panel (A) - Ratios of OLS and GLS Estimators for Linear Design 

Size Estimator 

(Φ1 , Φ 2) = (.2, -.9) (Φ1 , Φ 2) = (.8,-.9) 

V0 V1 V0 V1 

50 VOLS/VGLS2 1957.3616 1678.7466 460.7095 397.2509 

 VOLS/VEGLS2 1312.8309 1146.5926 300.7824 265.2020 

 VOLS/VEIGLS1 0.5187 0.5352 0.1134 0.1317 

 VOLS/VEIGLS4 181.7205 203.5053 50.1835 55.0002 

100 VOLS/VGLS2 2147.5934 1990.3878 518.4137 481.7247 

 VOLS/VEGLS2 1683.7773 1570.6721 353.1306 331.2065 

 VOLS/VEIGLS1 0.5871 0.5944 0.1361 0.1455 

 VOLS/VEIGLS4 303.1820 303.6701 87.5786 87.4111 

200 VOLS/VGLS2 1996.0370 1921.9448 638.9684 616.0478 

 VOLS/VEGLS2 1631.3452 1574.7931 420.2377 406.7638 

 VOLS/VEIGLS1 0.6079 0.6114 0.1463 0.1510 

 VOLS/VEIGLS4 368.0923 365.3556 92.6731 92.1673 
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Table (6) shows the ratio between the 
variance of OLS estimated variance and the 
variance of GLS estimates for all sample sizes 
for the standardized normal design.  

First, with Φ = (.2,-.1) and all sample 
sizes, the ratio between the variance of OLS 
estimated variance and the variance of GLS 
estimates; GLS-AR(2), EGLS-AR(2), and 
EIGLS-AR(4) were significantly smaller than 
one for estimating an intercept. For example, 
when T=50, 

0
Rβ = (0.7679, 0.0897, 0.0178). 

(See Table 6.) However, that ratio was slightly 
larger than the one for estimating the slope. For 
example, when T=50, 

1
Rβ = (1.1419, 1.1905, 

1.2483). 
Second, regardless of sample size and 

AR(2) parametrization, the ratio between the 
variance of OLS estimated variance and the 
variance of EIGLS-AR(1) was significantly 
smaller than one for estimating an intercept. For 
example, with Φ = (.2,-.1) and T=50, 

0
Rβ = 

0.1261. However, the efficiency of OLS in 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
estimating 1β  was nearly as efficient as EIGLS-

AR(1). For example, with Φ = (.2,-.1) and T = 
50, 

1
Rβ =1.1271. 

 
Conclusion 

 
This study investigated the impact that variance 
estimators may have on inference based on the 
OLS estimator. The variance estimation is 
important because estimates of the variance 
enter into the usual inferential procedures such 
as confidence intervals, hypotheses testing, and 
spectrum estimation, as well as in expressions 
for the estimated standard error of prediction. 
The major finding is that, OLS (order zero) 
estimates outperform first order estimated 
generalized least squares, EIGLS-AR(1). In 
particular, the ratio of the variance estimation of 
the regression coefficients when the disturbance 
term is under parametrized, i.e. EIGLS-AR(1) 
has the highest ratio estimation among the other 
estimators. This indicates that EIGLS-AR(1) can 
be much less efficient than OLS. 
 
 
 
 
 

Table 5: Panel (B) - Ratios of OLS and GLS Estimators for Linear Design 

Size Estimator 

(Φ1 , Φ 2) = (.2, -.7) (Φ1 , Φ 2) = (.2,-.1) 

V0 V1 V0 V1 

50 VOLS/VGLS2 50.4616 44.3050 0.7393 0.7394 

 VOLS/VEGLS2 23.4750 21.5081 0.0922 0.1135 

 VOLS/VEIGLS1 0.4222 0.4436 0.1252 0.1432 

 VOLS/VEIGLS4 2.9526 3.7769 0.0234 0.0518 

100 VOLS/VGLS2 56.5013 52.9710 0.7613 0.7613 

 VOLS/VEGLS2 29.7460 28.3162 0.1254 0.1339 

 VOLS/VEIGLS1 0.4694 0.4793 0.1261 0.1343 

 VOLS/VEIGLS4 7.6332 7.8053 0.0572 0.0677 

200 VOLS/VGLS2 53.2076 51.5253 0.7737 0.7737 

 VOLS/VEGLS2 27.7797 27.0774 0.1414 0.1456 

 VOLS/VEIGLS1 0.4926 0.4973 0.1391 0.1431 

 VOLS/VEIGLS4 7.9800 7.9868 0.0771 0.0819 
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 VOLS/VEGLS2 27.7268 11.5177 0.0897 1.1905 
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Bootstrap Confidence Intervals and Coverage Probabilities of Regression 
Parameter Estimates Using Trimmed Elemental Estimation 

 
   Matthew Hall      Matthew S. Mayo 
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Mayo and Gray introduced the leverage residual-weighted elemental (LRWE) classification of regression 
estimators and a new method of estimation called trimmed elemental estimation (TEE), showing the 
efficiency and robustness of TEE point estimates. Using bootstrap methods, properties of various trimmed 
elemental estimator interval estimates to allow for inference are examined and estimates with ordinary 
least squares (OLS) and least sum of absolute values (LAV) are compared. Confidence intervals and 
coverage probabilities for the estimators using a variety of error distributions, sample sizes, and number 
of parameters are examined. To reduce computational intensity, randomly selecting elemental subsets to 
calculate the parameter estimates were investigated. For the distributions considered, randomly selecting 
50% of the elemental regressions led to highly accurate estimates. 
 
Key words: Elemental subsets, elemental regression, robust regression, coverage probabilities. 
 
 

Introduction 
 
A popular method of finding a solution to the 
multiple linear regression model 
 

Y = Xβ + ε         (1.1) 
 
is to make use of the ordinary least squares 
(OLS) solution: 
 

=OLSβ̂ (XtX)-1 Xt Y. 
 

In this nomenclature, Y is a 1×n vector 
of random observations, X is a n × p matrix of 
known constants, β is a p × 1 vector of unknown 
parameters, and ε is a n × 1 vector of random 
errors with E(ε) = 0 and Var(ε) = σ2I. The OLS 
solution purposefully minimizes the sum of 
squared residuals 
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=)ˆ(βSSE (Y - X β̂ )t (Y - X β̂ ). 
 
There are many reasons why this solution is 
desirable, such as ease of calculation and the 
well developed theory that supports it. However, 
the OLS solution is also known to be sensitive to 
outliers and/or violations of model assumptions. 

Several attempts to develop solutions 
that are less sensitive to outliers have been 
developed. These include least absolute values 
(LAV) regression, which minimizes the sum of 
the absolute residuals, and pL -norm regression, 

which minimizes the sum of the pth powers of 
the absolute residuals. This article furthers the 
work of another method called the trimmed 
elemental estimator (TEE), first proposed by 
Mayo and Gray (1), that makes use of elemental 
subsets. 
 
Elemental Subsets 
 In most cases when using model (1.1), n 
(the sample size) is much greater then p (the 
number of unknown parameters), and the system 
of equations becomes over-determined. 
However, in order to estimate 
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pββββ ,,,, 210  , only k = p+1 observations 

are mathematically required. Thus, when solving 
the over-determined system, a choice must be 
made from infinitely many possible solutions in 
order to settle on a single regression line. One 
way to deal with this issue is to ignore the fact 
that only k observations are needed and to pool 
all n observations into a single system of k 
equations to solve: this is what OLS does. 
Alternatively, subsets of the data could be 
formed with exactly k observations, their 
corresponding fits found, and the best one taken: 
this is what LAV does. An even better method 
might be to take several of the fits in this scheme 
and use their combined information to settle on 
estimates. Mayo and Gray (1997) developed 
TEE for this purpose. Using either of these last 
two approaches makes use of elemental subsets 
and elemental regression. 
 An elemental subset of a data set is 
simply a subvector of the data. In the setting of 
model (1.1), a subvector h = {i1, i2,…, ip} may 
be considered as a set of distinct indices from a 
set of n indices. Xh may be defined as the p × p 
submatrix of X containing the rows of X 
indexed by the subset h. Furthermore, Yh can be 
defined as the corresponding p × 1 subvector of 
Y. The solution to the elemental regression 
equation is given by: 
 

hβ̂  = ( ) hhh
t
hh

t
h YXYXXX 11 −−

= . 

 
With the advent of high speed 

computers, elemental regression has been 
revived from its forgotten past nearly 250 years 
ago. It was, in fact, a predecessor to least 
squares, introduced in 1755 by Boscovich. 
However, due to its computational intensity and 
the introduction of least squares, it fell out of 
favor with data analysts. The need for 
computational power is evident when 
considering even a small data set. For example, 
assume a sample size of 50 and the need to 
estimate three parameters. There are 50C3 = 
19,600 elemental subsets of the data that must be 
fit. This is clearly beyond human capability. 

Renewed interest in elementals has 
occurred on many fronts. Going back to the 
early days of modern computers, Theil (1950) 
and Sen (1968) used elementals to develop 

simple linear regression estimators. On the 
diagnostics front, Rubin (1980), Hawkins 
(1993), and Welsch (1986) used elementals to 
detect outliers and perform other regression 
diagnostics. Rousseeuw and Bassett (1991) and 
Hawkins (1993) considered searching through 
the set of elemental regressions and selecting the 
optimal parameter estimates based on specified 
criteria. Hawkins further defined, for a specified 
fitting criterion, the best elemental estimator 
(BEE) as the optimal estimate over all elemental 
fits. Recently, Hawkins and Olive (2002) 
introduced the X-cluster algorithm as a form of 
elemental regression for large multiple 
regression datasets. 
 Mayo and Gray’s (1997) contribution 
introduced regression estimators based on OLS 
in terms of elemental regression. Sheynin (1973) 
reported that Jacobi was the first to show that 
OLS can be viewed as a weighted average of 
elemental regressions: 
 

=OLSβ̂ 


=

h
ht

h
t
h

h
h

t
h

h
h

h
t
h

β

β
ˆ

XX

XX

XX

ˆXX

   (1.2) 

 
where h is the set of all possible elemental 
subsets and the single bars indicate determinates. 
Furthermore, the weights are defined as: 
 

XX

XX

t

h
t
h

hw = . 

 
Because these weights are between zero and one 
and must sum to one, OLS is a weighted average 

of the elemental regressions hβ̂ . 

Mayo and Gray (1997) took this version 
of OLS and generalized it to a class of 
estimators which they called leverage-residual 
weighted elemental (LRWE) estimators of the 
form: 

ˆ[ ( ), ( )]
ˆ( , )

[ ( ), ( )]

h
h

h

w h h

w h h

λ ρ β
β λ ρ

λ ρ
=



   (1.3) 

In this formulation, λ(h) is a factor based on the 
leverage information for Xh , and ρ(h) is a factor 
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based on the degree of fit for the elemental 
regression h. The OLS version is observed (1.2) 
in this form where 
 

λ(h) = h
t
h XX , ρ(h) = 1 for all h,   (1.4) 

 
and 

w[λ(h), ρ(h)] = λ(h)ρ(h). 
 
OLS does not make use of the weight factor 
based on the degree of fit, ρ(h). For this reason, 
in OLS, elemental regressions with extreme data 
points are weighted the same as those that 
behave normally. Thus, OLS can be easily 
influenced by the presence of outliers. 
 
Trimmed Elemental Estimators 
 Instead of ignoring the goodness of fit of 
a regression to a set of elementals, ρ(h) could be 
altered in the OLS formulation of (1.4). Mayo 
and Gray (1997) created what they called the 
trimmed elemental estimator (TEE) to trim out 
the elemental regressions that poorly fit the data 
or have extreme leverage. The benefit of such a 
strategy is to remove from consideration 
elemental regressions that are computed from 
outlying data, thus achieving a more robust 
regression. Using the same λ(h) and w[λ(h), 
ρ(h)] as in (1.4), they altered ρ(h) to be the 
indicator function: 
 
ρ(h) = 
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Here, α p is a trimming constant between zero 

and one and 
=

n
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hie
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is the sum of absolute 

residuals (SAE) resulting from the elemental 

estimate hβ̂ . Depending on the proportion of 
regressions one would like to remove from 
consideration as determined by their goodness of 
fit, α p can be adjusted accordingly. Thus, many 
trimmed elemental regression estimators can be 
found and denoted by TEE(α p). 

Mayo and Gray (2001) used simulation 
results to show the robustness and efficiency 
properties of TEE(α p) point estimates to normal 

and symmetric non-normal error distributions, a 
feature which OLS does not enjoy. Results 
showed that the TEE(α p) offers high efficiency 
under normality and is very robust to non-
normality. This article furthers their work by 
examining some bootstrap confidence intervals 
of the trimmed elemental estimator and their 
properties and reducing computational intensity 
through random selection of elemental 
regressions. 
 

Methodology 
 
Simulation Design 
 Simulations were aimed at gaining a 
better understanding of the TEE(α p) for 
inference by creating confidence intervals for 
the parameters and coverage probabilities under 
various scenarios. The objective was to compare 
these using the following methods: least 
absolute values (LAV), TEE(0.25), TEE(0.50), 
TEE(0.75), and OLS. Furthermore, a variety of 
error term distributions were assumed including: 
Normal, Laplace, Cauchy, 10% Contaminated 
Normal, and Student’s t. These distributions 
were selected to provide a variety of weight in 
the tails of the distribution. In the simulations, 
Normal, Laplace, and t distribution parameter 
values had an error variance (σ2 ) of 3.0. For the 
Normal distribution, standard normal variates 
were generated and multiplied by σ. 

For Laplace, random variates from an 
exponential distribution were generated (mean = 
1.0), randomly assigned a sign, and multiplied 
by σ/2. The Cauchy was the standard Cauchy 
distribution. For the 10% Contaminated Normal 
errors, standard normal variates were generated 
and-based on the value of a uniform random 

variate-were multiplied by either σ5  (with 
probability 0.1) or σ (with probability 0.9). 
Finally, for the Student’s t error distribution, 
three degrees of freedom were used in order for 
σ2 = 3. The independent variable X was 
generated from a N(3,3) distribution. 

In order to achieve the research goals, 
various quantities of 95% bias-corrected and 
accelerated (BCa) bootstrap confidence intervals 
for OLS, LAV were calculated, and various 
trimmed elemental estimators and determined 
the number of times the true value of the 
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parameter was in the intervals. Figure 1 shows 
the flowchart for the simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The bootstrap is a well-developed 
approach to calculating approximate confidence 
intervals for parameter estimates when exact 
confidence intervals do not exist by repeatedly 
resampling the data with replacement. The BCa 
method was introduced by Efron (1987) as an 
improvement to the bias-corrected (BC) method 
of Efron (1982) in order to provide confidence 
intervals for a wider class of problems. It 
constitutes a method for setting approximate 
confidence intervals for a parameter based on 
the percentiles of the bootstrap histogram, a bias 
correction, and an acceleration constant which 
measures how rapidly the standard error is 
changing on the normalized scale. For a 
complete review of various bootstrap confidence 
intervals including BCa, see DiCiccio and Efron 
(1996). As a way of summarizing the BCa 
confidence intervals, an overall 95% interval 
was calculated for each parameter. For this 
interval, the lower limit represents the value for 

which 2.5% of the lower boundaries of the BCa 
confidence intervals are less than this value. 
Similarly, the upper limit represents the value 
for which 2.5% of the upper boundaries of the 
BCa confidence intervals are greater than this 
value. All simulations were performed on a Dell 
1.6GHz Pentium 4 computer with 1.0 GB of 
RAM using Digital FORTRAN 90. 

In order to verify that the program was 
performing properly, the performance was tested 
using the two extreme methods under 
consideration: LAV, which takes only a single 
elemental regression, and OLS, which uses all of 
the elemental regressions. Comparing the 
parameter estimates (p = 2, n = 25) provided by 
the program for the three error distributions to 
the estimates provided by SAS© version 8e, 
agreement to five significant digits was 
obtained. 
 

Results 
 
In order to understand how the TEE(α p) 
estimators would act under different situations, 
the following simulation scenarios were chosen: 
 

a) a small sample size of 10 with two 
parameters;  

b) a moderate sample size of 25 with three 
parameters; 

c) a moderate sample size of 25 with two 
parameters; and 

d) a large sample size of 100 with five 
parameters. 

 
Sample sizes and number of parameters were 
chosen to limit computing time while allowing 
properties of the confidence intervals across a 
variety of scenarios to be ascertained. The 
results of simulations (c) and (d) are not 
presented here, they were performed to verify 
that the results did not change dramatically when 
the sample size and number of parameters was 
altered. The results of these simulations were 
very similar to the results discussed in greater 
detail below. Any exceptions are noted. 
 For these simulations, there were 10C2 = 
45, 25C3 = 2,300, 25C2 = 300, and, 100C5 = 
75,287,520 elemental subsets that had to be fit 
for each bootstrap sample, respectfully. For 
simulation (a), Table 1 shows the summary 95% 

Figure 1: Simulations flowchart. 
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intervals for the BCa confidence intervals for β1 
using the method previously described. The 
smallest confidence interval in each scenario is 
highlighted. Figure 2 shows the coverage 
probabilities for the 1,000 BCa confidence 
interval created by the bootstrap (100, 500, or 
1,000 samples) for β1 from simulation (a). 
Similarly, Figure 3 shows the coverage 
probabilities for β1 and β2 from simulation (b). 
 From Table 1, it is evident that the 
summary intervals tend to tighten around the 
true values of the parameters as the number of 
bootstrap samples increase. As long as the error 
term is Normal or 10% Contaminated Normal, 
OLS does quite well. Furthermore, regarding the 
1,000 bootstraps, it is apparent that OLS is 
difficult to distinguish from TEE(0.25) when the 
error is Normal, 10% Contaminated Normal, or 
Student’s t. However, as expected, when the 
error term is either Cauchy or Laplace, OLS is 
clearly not the best choice. With a Cauchy error 
term, it appears that TEE(0.75) performs best for 
the slope regardless of sample size or the 
number of parameters (simulations (b) , (c), and 
(d) also showed TEE(0.75) to be superior). 
When the error follows the Laplace distribution, 
TEE(0.50) or TEE(0.25) seem to be the best 
(simulations (b), (c), and (d) showed TEE(0.50) 
to be slightly better than TEE(0.25)). In sum, it 
appears that TEE(0.50) performs very well for 
all of the error distributions considered. 
Although not shown, the results were very 
similar for the intercept in all four simulations 
with only slightly wider intervals. The parameter 
β2 in simulation (b) had very similar results to 
those discussed above for β1. 
 Figures 2 and 3 show how the different 
methods performed at covering the true values 
of the parameters with their 95% BCa 
confidence intervals for simulations (a) and (b), 
respectively. Although not shown in either 
figure, the confidence intervals for the intercept 
fail to include the true parameter more 
frequently than the slope confidence intervals. 
Nonetheless, the coverage probabilities for the 
intercept ranged from 0.90 to 0.97 for all 
simulations. Considering the 1,000 bootstrap 
samples (dashed lines) in the figures, the 
coverage probabilities for the error distributions 
studied ranges from 0.90 to 0.98. Thus, all of the 
methods captured the true values of the 

parameters quite well. However, regardless of 
the error distribution considered, TEE(0.50) 
appears to perform very consistently. 
 Furthermore, it is observed that either 
LAV or TEE(0.75) has the highest coverage 
probabilities, while OLS has the lowest for the 
error distributions under consideration. In fact, 
since the coverage probabilities were expected 
to be at 0.95, it is generally the case that LAV 
and TEE(0.75) performed above this level, 
TEE(0.50) and TEE(0.25) performed at this 
level, and OLS performed below this level. 
Hence, the coverage probability decreases as the 
trimming constant (α p) decreases. The data from 
the other simulations were very similar and are 
not presented here. Once again, the coverage 
probabilities for β2 in simulation (b) were similar 
to the probabilities for β1 described above. 
 An objective in this article was to reduce 
the amount of necessary computations to 
achieve an acceptable estimate for the 
parameters using TEE(α p). How this might be 
accomplished through random selection of 
elemental subsets as suggested by Hawkins 
(1993) for the BEE was investigated.  

For simulation purposes, all of the 
elementals were first used to construct all of the 

elemental regressions hβ̂ . Specified proportions 

(30%, 50%, 70% or 90%) of these were then 
randomly selected in order to calculate 
parameter estimates through equation (1.3). This 
was performed with 10,000 data sets, and the 
median estimate was calculated for each error 
distribution at each percentage. The median was 
selected since it is a more robust measure of 
central tendency when compared to the mean. 
For β1 when n=10 and p=2, the medians are 
displayed in Figure 4. 

Using 50%, 70%, or 90% of the 
elemental regressions seems to provide accurate 
estimates for β1 as long as the error distribution 
is one of those under consideration here. By 
selecting only 30% of the elemental regressions, 
the median estimates diverged further from the 
true value when compared to the other 
proportions, especially for the Normal, 10% 
Contaminated Normal, and the Student’s. 
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Table 1: Summary intervals of 1,000 BCa confidence intervals for β1 

when N=10, p=2. The true value is one. 

100 Bootstraps 500 Bootstraps 1000 Bootstraps 

Normal 
LAV (-2.645, 3.880) (-2.023, 3.900) (-1.930, 4.029) 
TEE (0.75) (-2.385, 3.537) (-1.948, 3.706) (-1.913, 3.952) 
TEE (0.50) (-2.032, 3.232) (-1.620, 3.338) (-1.525, 3.433) 
TEE (0.25) (-1.692, 2.950) (-1.254, 3.065) (-1.192, 3.111) 
OLS (-1.530, 2.838) (-1.200, 2.994) (-1.117, 3.106) 

Cauchy 
LAV (-29.597, 18.777) (-31.469, 26.944) (-25.958, 18.943) 
TEE (0.75) (-29.036, 16.883) (-30.733, 26.192) (-24.885, 18.313) 
TEE (0.50) (-31.722, 16.812) (-28.499, 31.962) (-29.893, 19.275) 
TEE (0.25) (-40.439, 27.037) (-30.955, 31.913) (-40.622, 24.040) 
OLS (-39.576, 31.148) (-38.294, 38.800) (-42.077, 22.391) 

Laplace 
LAV (-8.493, 7.962) (-7.793, 8.521) (-5.495, 7.960) 
TEE (0.75) (-8.335, 7.699) (-7.340, 8.414) (-5.157, 7.954) 
TEE (0.50) (-6.852, 6.901) (-6.003, 7.533) (-4.579, 6.931) 
TEE (0.25) (-6.895, 6.515) (-5.709, 6.907) (-4.794, 7.096) 
OLS (-7.371, 6.715) (-5.719, 6.921) (-4.974, 7.488) 

Contam 
LAV (-3.005, 4.390) (-2.730, 4.278) (-2.558, 4.666) 
TEE (0.75) (-2.876, 4.170) (-2.685, 4.190) (-2.528, 4.507) 
TEE (0.50) (-2.680, 3.965) (-2.302, 6.644) (-2.093, 4.187) 
TEE (0.25) (-2.517, 3.591) (-1.948, 3.525) (-1.635, 3.935) 
OLS (-2.470, 3.531) (-1.807, 3.473) (-1.672, 3.800) 

T-distribution 
LAV (-2.477, 3.895) (-2.249, 3.555) (-1.794, 4.330) 
TEE (0.75) (-2.554, 3.870) (-2.161, 3.490) (-1.842, 4.219) 
TEE (0.50) (-2.180, 3.537) (-1.738, 3.164) (-1.518, 3.894) 
TEE (0.25) (-1.808, 3.281) (-1.482, 3.077) (-1.288, 3.733) 
OLS (-1.746, 3.297) (-1.447, 3.016) (-1.280, 3.751) 
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Figure 2: Coverage probabilities of the 1,000 BCa confidence intervals for β1 
when N=10 and p=2. 
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Figure 3: Coverage probabilities of the 1,000 BCa confidence intervals for β1 (column 1) and β2 
(column 2) when N=25 and p=3. 
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Figure 4: Median estimates for β1 of 10,000 simulated data sets (N=10, p=2) using 
random selection of elemental regressions. The true value is one. 
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Thus, it appears that randomly selecting 
at least 50% of the elemental regressions is 
sufficient for producing accurate estimates. 
These results are similar for the intercept (data 
not shown) with the exception of using 50% of 
the elemental regressions with Laplace errors. In 
this situation, TEE(0.25) and OLS overestimated 
the intercept considerably. However, at 70%, the 
estimates behaved much more like those seen in 
Figure 4. 

Figure 5 shows the coverage 
probabilities for the 95% BCa confidence 
intervals using various quantities of bootstrap 
samples when n = 10, p = 2, and 50% of the 
elemental regressions are randomly selected. 
When similar simulations (n = 10, p = 2) are 
compared between Figure 5 (coverage 
probabilities when 50% of the elemental 
regressions are randomly selected) and Figure 2 
(coverage probabilities without random 
selection), it is observed that results are quite 
similar. That is, while the coverage probabilities 
in Figure 5 are slightly higher than those in 
Figure 2, the trends seem similar. As was the 
case in Figure 2, generally speaking, LAV and 
TEE(0.75) over perform at the 95% level, 
TEE(0.50) and TEE(0.25) performed 
consistently at the 95% level, and OLS 
performed below the 95% level. Coverage 
probabilities from randomly selecting 70% and 
90% of the elemental regressions produced 
similar results with the lines generally moving 
closer (as the percentage increased) to those 
observed in Figure 2. 
 

Conclusion 
 
The construction of BCa confidence intervals for 
the trimmed elemental estimators have been 
demonstrated and their coverage probabilities 
have been. These are necessary extensions to 
Mayo and Grays original work and are additions 
to the development of TEE for inference 
purposes. In agreement with Mayo and Gray, 
this article showed that the trimmed elemental 
estimators are desirable in many situations. In 
fact, among those considered, they seem to be 
the clear choice when the error distribution is 
Cauchy or Laplace. Furthermore, for the 
Normal, 10% Contaminated Normal, or 
Student’s t error distributions, trimmed 

elemental estimators were found to be almost 
indistinguishable from OLS. In addition, 
TEE(0.50) performed consistently well in terms 
of estimation and coverage probabilities for all 
of the error distributions under consideration. It 
appears that a researcher could be fairly 
comfortable in choosing TEE(0.50), however 
knowledge of the process should guide this and 
utilization of traditional graphical procedures, 
such as residual and fitted value plots, might aid 
in determining the trimming constant. The TEE 
requires a large number of calculations as 
compared with OLS, therefore, it is desirable to 
use OLS when it is known that the assumptions 
for OLS are not violated and that there are no 
outliers present. 

When data sets become larger and the 
number of parameters increases, increasing 
computational difficulties for LRWE estimators 
are present. Since there are nCp elemental subsets 
that must be fit, ways must be found to decrease 
the number of computations. Hawkins (1993) 
suggested that using a random subsample of the 
elemental subsets would produce a good 
estimate for the best elemental estimator. This 
article examined such random subsamples to 
determine if this method is appropriate for 
reducing the number of calculations required for 
the trimmed elemental estimator. It was found 
that utilizing at least 50% of the elemental 
regressions generally provides good results as 
long as the error distribution is Normal, Cauchy, 
Laplace, 10% Contaminated Normal, or 
Student’s t. It was also observed that estimates 
tend to drift from the true value when random 
sampling falls to 30%. 
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Figure 5: Coverage probabilities of the 1,000 BCa confidence intervals for β1 (N=10 and p=2) 
when randomly selecting 50% of the elemental regressions. 
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In prediction, the percentage error is often felt to be more meaningful than the absolute error. We 
therefore extend the method of least squares to deal with percentage errors, for both simple and multiple 
regression. Exact expressions are derived for the coefficients, and we show how such models can be 
estimated using standard software. When the relative error is normally distributed, least squares 
percentage regression is shown to provide maximum likelihood estimates. The multiplicative error model 
is linked to least squares percentage regression in the same way that the standard additive error model is 
linked to ordinary least squares regression. 
 
Key words: Regression, error measures, relative error, percentage regression, weighted least squares, 
multiplicative error, heteroscedasticity. 
 
 

Introduction 
 
When a regression model is used for prediction 
the size of the error is of interest. The magnitude 
of an error is not meaningful in isolation – it 
needs to be viewed in relation to the size of the 
observed or actual value. Percentage errors are 
often used for this purpose. Our definition of 
percentage error is 100 × (observed value − 
predicted value)/(observed value), as used in the 
fields of forecasting and time series analysis. In 
traditional least squares regression, an error of 
one unit is treated equally whether the dependent 
variable has a value of ten or a hundred, even 
though in percentage terms an error of one in ten 
would usually be considered more serious than 
an error of one in a hundred. In this article the 
method of least squares regression will be 
adapted to deal with percentage errors. There is 
a separate body of literature dealing with 
minimizing the mean absolute percentage error 
(MAPE), e.g. Narula & Wellington, 1977. This 
suffers from at least two deficiencies: (1) there is 
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no formula for the coefficients (one must solve a 
linear programming problem to find them), and 
(2) the resulting parameter estimates may not be 
unique. The method presented in this article 
does not have these drawbacks. 

It is important to highlight a difference 
between the above definition of relative error vs. 
(observed value − predicted value)/(predicted 
value). The latter was used by Book and Lao 
(1999) and Goldberg and Touw (2003). The 
question is: Should we compare the error with 
the actual observed value or with the value 
predicted from the model? The following may 
be one way of choosing. When dealing with a 
controlled scientific situation where the 
functional form of the underlying theoretical 
model is known, then any departures from the 
predictions may be due to measurement error; in 
this case, it may make sense to consider the error 
relative to the predicted value. If however, the 
‘true’ underlying model or all its constituent 
variables are unknown then the ‘true’ value is 
also unknown and we recommend the approach 
taken here. 

This is the usual situation in finance, 
economics, psychology and the other social 
sciences. For example, when forecasting the 
value of investments traded on the stock market 
it makes sense to relate prediction errors to the 
observed values. The same argument usually 
applies in the area of cost estimation. The people 
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paying the costs will find it more meaningful to 
assess the predictive ability of a cost-estimating 
relation (CER) using the error relative to what 
they actually paid, not relative to what the model 
predicted. Similarly, a prediction that a salary 
bonus would be $10k, but which actually turned 
out to be $5k corresponds to an error of 100% 
by the definition used in this article, whereas the 
other definition would rate this as only a 50% 
error in prediction. 

The definition of relative error used here 
also has computational advantages over the 
other form. The minimization of the sum of 
squares of the other form cannot be solved 
exactly because the normal equations are a 
nonlinear system. Book and Lao (1999) noted 
numerical optimization techniques are usually 
necessary to find the coefficients; they pointed 
out that due to multiple local minima 
unreasonable solutions must be excluded, and 
that the is most plausible solution physically 
selected. Moreover, the resulting estimators are 
inconsistent. Goldberg and Touw (2003) 
explained the reason for this: “simply inflating 
the predictions in the denominator [of the 
relative error] will tend to deflate the percentage 
errors, at the expense of worsening the fit” (p. 
62). This problem does not arise if the standard 
definition of relative error is used. 

Before deriving the necessary equations 
for the coefficients, alternative approaches will 
be considered. Consider the simple case where a 
scatter plot of the data indicates that fitting a 
straight line (y = a + bx) is appropriate. One 
suggestion might be to use logarithms in the 
following way: regress ln(y) against x. The 
trouble with this is that the resulting model 
would not be a linear relationship between y and 
x, instead it would have ln(y) linearly related to 
x, and so y would be exponentially related to x. 
Although this does correspond to a straight line 
when the exponent is zero, the slope of the line 
is forced to be zero. 

It is in fact a common misconception 
that regressing ln(y) is equivalent to minimizing 
the squared relative errors; it is approximately 
true only if all the errors are small, as then 
ln(ŷ/y) ≈ (ŷ/y) −1. The difference in these 
regression models will be illustrated with a 
numerical example below. 

Regressing ln(y) on ln(x), the fitted 
model is: 
 

ln(y) = A + B ln(x), 
hence, 
 

y = exp[A + B ln (x)] = exp(A) xB, 
 

which is a power law. For the case B = 1 this 
does correspond to a line, but it is forced to have 
a zero intercept and so passes through the origin. 

Thus, both of these approaches 
involving log transformations are inadequate 
because they depart from a linear model in the 
original variables, which is our assumed starting 
point. Another suggestion might be to regress ln 
(y) on ln (a + bx). This is a non-linear problem 
requiring iterative computational procedures. By 
contrast, in the proposed approach exact 
expressions for the coefficients are available. 

 
Derivation of Formulae for the Coefficients 

An exact expression is now derived for 
the coefficients for percentage least squares 
regression. Let X be a matrix in which each 
column contains the data for one of the 
explanatory variables, and the first column 
contains the value 1 in each position. The aim is 
to obtain a coefficient bi for each column 
variable, and the coefficient associated with the 
first column will be the constant.  

The values of the dependent variable are 
contained in a column vector y, which is 
assumed strictly positive. The data in the ith row 
of the matrix is associated with the ith element of 
the y vector. 

Traditionally, the sum of squared errors 
would be minimized, eTe , where e denotes the 
vector of errors, y − Xb. (Superscript T denotes 
the transpose.) However, the primary interest is 
in the relative errors r (percentage error = 100 
times relative error), so each error ei needs to be 
divided by yi , so ri = ei /yi. Carrying out this 
division on the form y −Xb requires that the ith 
row of X be divided by yi. This is achieved 
using the form r = Dy − DXb, where D is an n 
by n diagonal division matrix containing the 
value 1/yi in the ith diagonal position and zeros 
elsewhere. D can be viewed as a matrix of 
weights. 
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 Minimizing the sum of squares of 
relative errors ri

2
, which, in vector notation, 

becomes 
 
         rTr = (Dy − DXb)T (Dy − DXb) 
               = (Dy)T Dy  − (Dy)T DXb  

       − (DXb)T Dy + bT XT D2Xb 

 
To find the minimum, differentiate this with 
respect to b and equate to zero: 
 

−(Dy)T Dx + XT D2Xb = 0 
 
This is the matrix equivalent of the normal 
equations of ordinary least squares regression. 
Notice that these equations have the great 
convenience of being linear in b and so can be 
easily solved.  

Rearranging the previous equation:   
XT D2Xb = (DX)T Dy, 

and thus 
                   b = (XT D2X)−1 (DX)T Dy  
                      = (XT D2X)−1 XT D2 y        (1) 
  
It seems that this formula for the coefficients has 
not previously appeared as a solution for relative 
least squares. 

If a spreadsheet is used for the 
calculations, the vector b can be computed 
directly using the matrix functions MINVERSE, 
MMULT (to multiply) and TRANSPOSE.  

To satisfy the second order condition for 
a minimum, the second derivative of rTr with 
respect to b must be positive definite. This 
derivative equals XT D2X or (DX)T DX. This 
square matrix will be positive definite if the 
columns of DX are linearly independent. Thus, 
the required unique minimum is obtained 
provided that no column of DX is expressible as 
a linear combination of the remaining columns.  

If (1) is compared with the expression 
for ordinary least squares coefficients: 
(XTX)−1XTy, observe that X has been replaced 
by DX, and y has been replaced by the vector 
Dy. Thus, D acts as a matrix of weights, as 
discussed further below. 

In Ferreira et al. (2000)’s important 
article on relative least squares regression, 
expressions are derived for the coefficients, and 
also for their variance. They pointed out the 

connection between weighted least squares and 
relative least squares. Their formulae for the 
coefficients are in terms of ratios of 
determinants. These are less compact and less 
computationally convenient than the above 
formula (1), because a separate matrix has to be 
set up for each coefficient. A more practical 
computational method will be shown that can be 
applied using any standard software regression 
routine. 

The consistency properties of relative 
least squares coefficients have been studied by 
Khoshgoftaar, et al. (1992). Using mild non-
distributional assumptions such as independent 
error terms, a finite value for the expected 
measure of goodness of fit, and compact 
coefficient space, they prove that the coefficients 
are strongly consistent. That is, apart from a set 
of probability-measure zero, the coefficients will 
converge to the true values as the sample size 
increases. 

Park and Stefanski (1998) also studied 
the best mean squared relative error prediction 
of y given x. Rather than provide formulae for 
coefficients, they assumed that some underlying 
distribution for y is given, and derive an 
expression for the predictor in terms of 
conditional inverse moments: 
 

ŷ = E[y−1⏐x] / E[y−2⏐x]. 
 
They applied this using the lognormal and 
gamma distributions. They also showed that the 
mean squared relative prediction error is 
 

var (y−1⏐x) / E[y −2⏐x]. 
 

Observe that in their experience 
“engineers often think in terms of relative error” 
(p. 227), and that they were motivated to explore 
relative least squares by a consulting problem 
with environmental engineers, who “citing 
engineering and political reasons, were steadfast 
in their dissatisfaction with the usual prediction 
methods, that too frequently resulted in 
unacceptably large relative errors. They wanted 
a “simple, easily implemented, and generally 
applicable approach to predicting” (p. 228). Park 
and Shin (2005) applied this to stationary 
ARMA time series. 
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Returning to (1) for b and focusing on 
the simple straight-line case, it follows from the 
above that the slope for percentage regression is 
given by 
 

                b = 
2
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(Note: all summations are from 1 to n, where n 
is the number of data points.) The intercept is 
given by 
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The normal equation arising from differentiating 
rTr with respect to the intercept can be written in 
the form 
 

                           02 =Σ
y
e

     .                        (4) 

 
This expression informs that the mean weighted 
error is zero if the weights are 1/y2. In vector 
terms this corresponds to E[D2 e] = 0. From (3) 
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it follows that there is a point through which the 
line will always pass (this would be the centroid 
of the data when using the ordinary least squares 
line). This is the point with coordinates given by 
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Easy Computation by Transforming the Model 
Equation 

Consider the model equation yi = a + 
bxi + ei and divide through by yi , this yields 

                    1 = .i i

i i i

x ea b
y y y

+ +                      (5) 

 
If ordinary least squares is used to regress the 
constant left hand side on the first two terms on 
the right, (notice there is now no constant term), 
then once again we are minimizing the sum of 
squared relative errors Σ(ei/yi)

2.  Therefore, the 
same coefficients are derived, and the residuals 
will be the relative errors. This is a more 
convenient method of estimation, as even the 
Excel spreadsheet regression tool (part of the 
Analysis Toolpack) has the option to hold the 
constant to zero. Naturally, the above estimation 
approach carries over to the case of multiple 
explanatory variables. 

The regression represented by (5) can be 
viewed as a novel form of weighted least 
squares with weights 1/y. Weighted least squares 
is a standard way of dealing with unequal 
variances (heteroscedasticity). In econometrics, 
for example, the heteroscedasticity problem has 
been dealt with by using weights which are a 
function of one of the explanatory variables and 
so some element of trial and error has been 
required to select this variable. (See, for example 
Greene, 2003, section 11.5). However, in this 
treatment it is not necessary to be concerned 
with choosing from the explanatory variables for 
the transformation, because the single dependent 
variable is used instead.  

Saez and Rittmann (1992) carried out 
Monte Carlo investigations of relative least 
squares regression where the y-data does not 
have constant variance but does have constant 
relative variance. By using generated data they 
could compare estimated parameters with the 
known values from the generating model. They 
found that the 90% confidence regions for the 
coefficients were approximately centered on the 
true values, whereas this was not the case for 
ordinary least squares. The OLS confidence 
regions did not even always include the true 
values. The relative least squares confidence 
regions were also much smaller than those for 
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OLS. They concluded that relative least squares 
is superior to OLS for such heteroscedastic data.  
  
Analysis of Relative Variance and Goodness of 
Fit 

In ordinary least squares the disturbance 
term is orthogonal to each of the explanatory 
variables. From (5) the equivalent orthogonal 
relations for our weighted regression are:  

2
i

i

y
eΣ = 0   and   

2
i

ii

y
xeΣ = 0 

The disturbance term is also orthogonal to the 
predicted dependent variable, which in this case 
corresponds to ŷi/yi .  Therefore  
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Define the relative variance as: 
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The final term in the previous expression is zero 
as a consequence of the normal equations above. 
 
Total relative variation =  
Explained relative variation + Unexplained 
relative variation,  
 
which is a decomposition of the relative 
variance.  

A statistic can now be defined to 
measure the goodness of fit of our model, akin 
to r2. The coefficient of relative determination is 
the ratio 

 

 variationrelativeTotal

 variationrelative Explained

 
 
This ratio gives the proportion of the relative 
variation that is explained by the model. It will 
have a value in the range zero to one. 
 
A Note on Measurement Scale 

If all values of the dependent variable 
are re-scaled by multiplying by a positive 
constant, then the percentage errors remain 
unchanged. Consequently the resulting 
percentage least squares model will be 
equivalent to the original model, and it will 
provide equivalent predictions. For example if 
the y-variable is multiplied by 10 (e.g. due to 
conversion from centimeters to millimeters), 
then all coefficients in the fitted model equation 
will also be multiplied by 10.  

If however, a constant is added to each 
value of the dependent variable then the 
percentage errors will not be the same as before. 
In this case the model fitted using percentage 
least squares will not be equivalent to the 
previously estimated model. The situation is 
exemplified when speaking of percentage 
changes in Fahrenheit temperature and 
percentage changes measured on the Celsius 
scale. The two are not the same because these 
scales do not share a common zero point. The 
dependent variable needs to be measured on a 
ratio scale when using percentage regression. 
This is because a percentage is not meaningful if 
one is permitted to shift the zero of the scale.  
 
Maximum Likelihood 

Is there a distribution for which the 
above estimators are maximum likelihood 
estimators? Consider the following 
multiplicative representation 
 
                           y = Xβu   (7) 
 
where u is multiplicative error factor, as opposed 
to an additive error term. Obviously, the 
expected value of u is desired to be unity, and 
thus the choice of the symbol u. E[y] = Xβ is 
desirable, so assume that the error factor is 
independent of the explanatory variables so that  
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E[y] = E[Xβ] E[u] = E[Xβ] = y 
 
so that the estimate of the mean response will be 
unbiased. 
 
Define vi   = 1/ ui. Once there is an estimator b 
then the conditional estimate of the mean of y is 
ŷ = Xb ,  then 
 

vi = E[yi]/yi                   (8) 
 
An error is indicated by this accuracy ratio 
differing from unity. Notice that 1− vi = ri  , 
which is the relative error. Assume that the 
relative error is normally distributed with mean 
zero and constant variance (σ2). This implies that 
v is normally distributed with mean value unity 
and constant variance (σ2). [See the Appendix 
for the implications regarding the conditional 
distribution of y.] From (8), for any given xi 
there is a one to one relationship between y and 
v. For a given data sample the likelihood 
function in terms of v is given by 
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and in terms of y, the negative of the log 
likelihood becomes 
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The summand is the square of the 

relative error, so it is now apparent that if the 
coefficient values are chosen to maximize the 
log likelihood, the same estimates for the 
coefficients as in (1) are obtained. The result is 
that when the relative error is normally 
distributed N(1,σ2) then the least squares 
percentage regression estimators are maximum 
likelihood estimators. 

It is also possible to estimate σ2 in the 
same way by differentiating the log likelihood 

with respect to σ2 and setting the derivative to 
zero: 
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If the estimators are substituted for β, the 
following is obtained as the estimator for σ2 
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From (9) the log likelihood contains the 

sum of squared relative errors. If these are 
independent and identically distributed then for 
large n, the central limit theorem can be applied. 
This can be used to deduce a confidence interval 
for the coefficients. 
 
Unbiasedness. 

The estimator for β can be shown to be 
unbiased as follows. From (1) 
 

E[b] = E[(XT D2X)−1 XT D2 y] 
                = E[(XT D2X)−1 XT D2 X βu] 
                     = E[βu] . 
 
Assuming that the error factor is independent of 
β, we have: E[b] = E[β] E[u] = E[β] = β. Hence 
b is an unbiased estimator of β. 
 
Example. The following table gives the sales 
figures from 18 different US industries, as well 
as the expenditure on research and development 
(millions of dollars). The sales variable has a 
wide range, and so it is likely that observations 
near the upper end will dominate over those at 
the lower end in positioning the regression line; 
this is because residuals for high sales are likely 
to be much larger. The correlation between the 
variables is 0.69 and a scatter plot shows 
evidence of heteroscedasticity.  
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Table 1. Sales and research & development 
expenditure in millions of dollars for 18 US 
industries. 
 

Sales R & D Expenses 
6375 62.5 

11626 92.9 
14655 178.3 
21869 258.4 
26408 494.7 
32406 1083 
35108 1620.6 
40295 421.7 
70762 509.2 
80553 6620.1 
95294 3918.6 
101314 1595.3 

116141 6107.5 
122316 4454.1 
141650 3163.8 
175026 13210.7 
230614 1703.8 
293543 9528.2 

 
Source: Gujarati, 2003, page 424. Originally 
published in Business Week 1989. 
 
 

If ordinary least squares is applied with 
sales as the dependent variable, the following 
model is obtained:  

 
Sales = 43942 + 15.00 R&D, 

 
with p-values of 0.03 and 0.0015 for the 
intercept and slope respectively. 
 Consider the absolute percentage error 
(APE), defined as the residual expressed as a 
percentage of the observed value. The above 
model has a mean absolute percentage error 
(MAPE) of 105%, which is very poor. In fact 
three of the 18 industries have APEs exceeding 
200%. The largest APEs occur for those 
industries which have low sales.  

Some analysts advise taking logs of the 
dependent variable if one is interested in 
reducing percentage errors. If ordinary least 
squares is conducted, the following model is 
obtained:  

Ln(Sales) = 10.341 + 0.000198 R&D 
 
with p-values of 0.002 for the slope and 
essentially zero for the intercept. If the 
exponential is taken, it is possible to predict 
sales and calculate percentage errors.  The 
MAPE is then 76%, which is an improvement. 
However, there are four industries with an APE 
exceeding 100%, three of these are at the lower 
end of the sales range.  

Finally, consider our approach of 
minimizing the squared percentage residuals. 
The resulting model is found to be: 
 

Sales = 8817 + 17.88 R&D 
 

with p-values of 0.002 and 5×10-5  for the slope 
and intercept respectively. 

The MAPE is now 38.5%. This is a 
large improvement as it is actually half of the 
percentage error from the log model. No 
residuals exceeded 100%, in fact the largest 
residual was 83%. The differences with the log 
model are worth emphasizing because it is a 
common misconception among statisticians that 
taking logs is equivalent to minimizing 
percentage errors. As mentioned in the 
introduction, this is true only in the limit as the 
residuals tend to zero.  
 

Conclusion 
 
Percentage error (relative to the observed value) 
is often felt to be more meaningful than the 
absolute error in isolation. The mean absolute 
percentage error (MAPE) is widely used in 
forecasting as a basis of model comparison, and 
regression models can be fitted which minimize 
this criterion. Unfortunately, no formula exists 
for the MAPE coefficients, and models for a 
given data set may not be unique. I have instead 
explored least squares regression based on the 
percentage error. I was able to derive exact 
expressions for the regression coefficients when 
the model is linear in these coefficients. Another 
advantage over MAPE is that this solution is 
unique.  

The percentage errors are defined 
relative to the observed values. This is the 
standard definition of percentage error used in 
forecasting. When making predictions it usually 
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makes more sense to relate the size of the error 
to the actual observation to measure its relative 
size. This is a departure from some of the 
existing literature on relative error least squares 
regression (e. g., Book & Lao (1999), & 
Goldberg & Touw, 2003), where the error 
relative to the predicted value has been used. 
The latter approach suffers on two counts. First, 
because the predicted values appear in the 
denominator of the fitting criterion, the latter 
value can be improved by inflating the predicted 
values, despite the fact that this worsens the fit 
(i.e., it gives biased estimates). Second, even for 
a linear model, estimation requires iteratively re-
weighted least squares, which is computationally 
more demanding. 

It has been shown that the proposed 
method is equivalent to a form of weighted least 
squares where, unusually, the weights depend on 
the dependent variable. This connection allowed 
us to develop a form which has great ease of 
computation. Indeed the models are attractive to 
the practitioner because they can easily be fitted 
using standard spreadsheet software. In 
comparing ordinary least squares with 
percentage least squares, the key difference is 
that the former ignores how large the residual is 
relative to the quantity being predicted, whereas 
the latter takes this into account. I believe that 
this method will be of use when the dependent 
variable has a wide range, as then the residuals 
at the upper end would dominate if ordinary 
least squares were used, unless the error 
variance is constant, which is often not the case 
in such situations. 
 It has also been shown that for a 
normally distributed multiplicative error model 
the least squares percentage estimators are 
maximum likelihood estimators. In short, the 
multiplicative error model is linked to least 
squares percentage regression in the same way 
that the standard additive error model is linked 
to ordinary least squares regression. 
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Appendix: The distribution of y when the relative error is normally distributed 
 
In deducing the maximum likelihood estimates, assume for a given x-value that the relative error (ri =1 − μy/yi ) 
is normally distributed, N(0, σ2). Consider the implication for the conditional distribution of y; from (8) ri =1−vi 
= 1 − μy/yi and vi ~N(1, σ2). The conditional value of y should therefore follow the reciprocal normal 
distribution (not to be confused with the inverse normal). Specifically, use the change of variable rule to deduce 
the distribution of yi for a given xi (Greene, 2003, Appendix B6). This gives the following distributional form: 
 




























−

−
2

2

2 2

1

exp
2 σ

μ

πσ
μ y

y

y

y
 , 

 
where σ is the standard deviation of the relative error, here assumed to have mean value unity. Figure 1 charts 
this density function for two values of σ. 
 
 

 
Figure 1. Probability density of y when the relative error is normally distributed with mean unity and σ = 20% 
(taller curve) and σ = 40% (shorter curve) . 

 
Acknowledgements: I am grateful to Emeritus Professor MJR Healy, Dr. Paul Taylor, and Dr. Neil Spencer for 
sharing their statistical knowledge. Their comments on this work were most helpful. All errors remain my own 
responsibility. 
 



Journal of Modern Applied Statistical Methods   Copyright © 2008 JMASM, Inc. 
November 2008, Vol. 7, No. 2, 535-545                                                                                                                   1538 – 9472/08/$95.00 

535 
 

Robust Predictive Inference for Multivariate Linear Models with Elliptically 
Contoured Distribution Using Bayesian, Classical and Structural Approaches 

 
B. M. Golam Kibria 

Florida International University 
 

 
Predictive distributions of future response and future regression matrices under multivariate elliptically  
contoured distributions are discussed. Under the elliptically contoured response assumptions, these are 
identical to those obtained under matric normal or matric- t  errors using structural, Bayesian with 
improper prior, or classical approaches. This gives inference robustness with respect to departure from the 
reference case of independent sampling from the matric normal or matric t  to multivariate elliptically 
contoured distributions. The importance of the predictive distribution for skewed elliptical models is 
indicated; the elliptically contoured distribution, as well as matric t  distribution, have significant 
applications in statistical practices. 
 
Key words: Bayesian; Classical; Elliptically Contoured Distribution; Matric Normal; Matric- t ; 
Multivariate Linear Model; Predictive Distribution; Robustness; Structural. 
 
 

Introduction 
 
The predictive inference for multivariate 
regression models has been researched 
extensively. For example, Guttman & Hougarrd 
(1985) considered the classical approach, 
Geisser (1965) and Zellner & Chetty (1965), 
Kowalski, et al. (1999), Thabane (2000), 
Thabane and Haq (2003), and Kibria, et al. 
(2002) considered the Bayesian method, Fraser 
and Haq (1969) considered the structural 
approach and Haq (1982) considered the 
structural relation of the model approach. The 
predictive distributions have been derived under 
assumptions of multivariate normal errors, but 
the assumption of normality and independency 
for error  variables may  not be appropriate in  
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many practical situations, especially when the 
underlying distributions have heavier tails. For 
such cases, multivariate t -errors with liner 
models have been considered by several 
researchers, for example: Zellner (1976), 
Gnanadesikan (1977), Sutradhar and Ali (1989) 
and Kibria and Haq (1998, 1999a). In the case of 
the multivariate linear model, matric- t  error has 
been considered by Kibria and Haq (2002) and 
Kibria (2006). 

Using the structural relation of the 
model, Haq (1982) derived the predictive 
distribution for future responses under the matric 
normal distribution. He obtained the predictive 
distributions as matric- t  with appropriate 
degrees of freedom. Kibria and Haq (2000) 
considered the predictive inference for future 
responses under the matric- t  errors and obtained 
the predictive distribution as a matric- t  with 
appropriate degrees of freedoms. Therefore, the 
distribution of a future response matrix is not 
affected by a change in the error distribution 
from matric normal to matric- t . The invariance 
of the predictive distribution for the future 
response matrix suggests that the predictive 
distribution would be invariant to a wide class of 
error distributions. A broader assumption is 
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considered here: that error terms have a 
multivariate elliptically contoured distribution. 
The elliptically contoured distribution includes 
various distributions: the multivariate normal, 
matric- t , multivariate Student’s t, and 
multivariate Cauchy (see Ng 2000). The class of 
of normal distribution mixtures is a subclass of 
the elliptical distributions as well as the class of 
spherically symmetric distributions (Fang, et al., 
1990). 

Elliptically contoured distributions have 
been discussed extensively for traditional 
multivariate regression models by Anderson and 
Fang (1990), Fang and Li (1999), Kubokawa 
and Srivastava (2001), and Arellano-Valle, et al. 
(2006). This distribution has also been 
considered by Chib, et al. (1988), Kibria and 
Haq (1999b),  Kibria (2003), and Kibria and 
Nadarajah (2006) in the context of predictive 
inference for linear regression models. Ng 
(2000) considered the model under the 
multivariate elliptically error contoured 
distribution using both Bayesian and classical 
approaches: he obtained the same predictive 
distribution with both approaches.  

This article reviews predictive 
distributions for future response and future 
regression matrices under multivariate 
elliptically contoured error distributions. When 
the errors of model 1 are assumed to have an 
elliptically contoured distribution, the prediction 
distribution of future response and regression 
matrices are also obtained as matric- t  
distributions under structural relation, Bayesian, 
and classical approaches. The assumptions of 
normality and matric- t  are robust to deviations 
in the direction of elliptical distributions as far 
as inferences about the future regression matrix 
and prediction is concerned. The distribution is 
said to be robust if it remains the same under 
violations of the normality assumption.  
 

Methodology 
 
Consider a set of n  responses from the 
following multivariate linear model: 
 

,= EXY Γ+β                     (1) 
 

where Y  is an nm×  matrix of observed 
responses, β  is an pm×  matrix of regression 

parameters, X is a np×  )( pn ≥  known design 

matrix, Γ  is an mm×  matrix of scale 
parameter with ΣΓ′Γ = , where 0|>| Γ  and E  

is an nm×  random error matrix. If it is assumed 
that E  has a spherically contoured distribution 
with the probability density function: 
 

)},({)( EEtrgEf ′∝               (2) 
 
(Anderson & Fang, 1990), where {.}g  is a non-

negative function over mm×  positive definite 
matrices such that )(Ef  is a density function, 
then the response variable Y has an elliptically 
contoured distribution. Here E′  denotes the 
transpose of the matrix E , and )(Mtr  denotes 

the trace of the matrix M . To derive the 
prediction distribution,  
 

1= ( )EB EX XX −′                  (3) 

and 
= ( )( )E E ES E B X E B X ′− −  

 
are defined as the regression matrix of E  on X  
and the sum of squares and product (SSP) matrix 

respectively. Consider EC  to be a non-singular 

matrix such that the error SSP matrix, ES  can be 

expressed as ,=' EEE SCC and the standardized 
residual matrix is: 
 

).(= 1 XBECW EEE −−                 (4) 
 
It follows from (4) that 
 

= ,E E EE B X C W+                   (5) 

 
and, because mEE IWW =' : 

 

.'= EEEE CCBXXBEE ′+′′            (6) 
 
Considering a set of fn  future responses from 

the multivariate linear model defined in (1) as 
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,= fff EXY Γ+β                    (7) 

 
where fY  and fE  are the fnm×  matrices of 

future responses and errors respectively, and 

fX  is an fnp× pn f ≥( ) future design matrix.  

Assuming that fE  has the same distribution as 

E , then the joint distribution of E  and fE  can 

be written as 
 

)}.'({),( fff EEEEtrgEEf +′∝      (8) 

 
Defining the quantities in (3) to (6) in terms of 
future errors as follows: 
 

1= ( ' )E f f f ff
B E X X X −            (9) 

 
and 
 

= ( )( )E f E f f E ff f f
S E B X E B X ′− −  

 
as the regression matrix of fE  on fX  and the 

sum of squares and product (SSP) matrix 
respectively. The standardized residual matrix 
and the future error matrix are respectively 
 

),(1= ffEffEfE XBECW −−         (10) 

 
and 
 

.'=
fEfEffEf WCXBE +         (11) 

 
If mfEfE IWW =' , then 

 
,''=

fEfEfEfffEff CCBXXBEE +′′
  (12)

 

 
where '=

fEfE CS  are the SSP matrix for 

future error variables. 
 
Derivation of Predictive Distributions:  
The Structural Relation Approach 

Following Fraser and Ng (1980), the 

joint density function of error statistics EB , ES , 

and fE  for given data ( D ) is obtained as 

 

( ){ }
1

2

( , , | )

| | ' ' .

E E f

n m p

E E E E f f

p B S E D

S g tr B XX B S E E
− − −

∝

′ + +
 

(13)

 

 
To obtain the desired predictive distribution, the 
following transformation is made: 
 

.=

=

}(= 2

1

VV
BU

XBESR

E

fEfE −
−

        (14) 

 
If the Jacobian of the transformation 

]},,[],,{[ VURSBEJ EEf →  is equal to 

2||

fn

V , then the joint density of R , U , and V  
is 
 

( ){ }

1 1 1

2 2 2

*

( , , | )

1

2| | 2 '

1

2| | ( ) ( ) ,

n n f

f

n n f

m

p R U V D
m p

V g tr UAU V RX U V V RR V

m p

V g tr tr A tr I RHR V

+

+

− − −
   ′ ′ ′∝ + + +  
   

− − −

′∝ + +

 

 
(15)  

where 
1 1

* 1 12 2= ( ' ) ( ' ) ,f fA U V RX A A U V RX A− − ′+ +  
1= ( ' ),f f fH I X A X−− and ff XXXXA '= +′  

is a symmetric matrix.  
Following Ng (2000) in assuming that 
RRHIm ′+  is positive definite and Q is a non-

singular matrix such that RRHIQQ m ′+′ = . 

The following transformation may be made: 
 

,'=

=

12

1
−+

′

ARXVUZ

QQVY

f

     (16) 
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the Jacobian of transformation is 1)(|| +− mQ , then 

the joint density function of R , Y  and Z  is as 
follows: 
 

{ }

( , , | )

1

2 2| | | | ( ) (

n n n nf f

m

p R Y Z D
m m p

I RHR Y g tr Y tr ZAZ

+ +
−

∝
− − − −

′ ′+ +

 

(17) 
 
Integrating (17) with respect to Y and Z yields 
the density function of R  as: 
 

.2||                 

)|,,()|(

p

RHRI

dYdZDZYRpDRp

fnn

m

−

+∝

∝
+

−


(18) 

 
It may then be shown that: 
 

1

2

1

2

= ( }

= ( },

E f E f

Y Y Y f

R S E B X

S E B X

−

−

−

−
             (19) 

 

where YB  is the regression matrix of Y  on X  

and ))((= ′−− YYY BYBYS  is the Wishart 

matrix. Thus, the prediction distribution of fY  

can be obtained from (18) and (19) as follows: 
 

1 1

( | )

2| ( )( ' )( ) | ,

f

n n f

m Y f Y f n f f f Y ff

p Y D
m

I S Y B X I X A X Y B X

+

− −

∝
−

′+ − − −

 
(20) 

 
which is a Matric- t  density. The predictive 
distribution of the future responses for given 
data is an fnm×  dimensional matric- t  

distribution with 1)( +−− mpn  degrees of 
freedom. The location parameter in the 
predictive density of fY  is fY XB  and the scale 

parameter matrix is fffn XAXI 1' −− . This 

result coincides with that of Haq (1982), where 
he considered matric normal, and that of Kibria 

and Haq (2000) who considered the matric T  
error distribution. Thus, the predictive 
distribution of future responses are unaffected 
by departures from normality or dependent but 
uncorrelated assumptions to an elliptically 
contoured distribution. The shape parameter of 
the predictive distribution does not depend on 
the unknown parameter, instead, it depends on 
the sample observation and the dimension of the 
regression matrix. 
 
Derivation of Predictive Distributions: 
 
The Bayesian Approach 

The density of Σ|Y  is given as 

)},))((({||)|( 12 ′−−ΣΣ∝Σ −−
BXYBXYtrgYf

n

 (21) 
 
Following Ng (2000), the Bayesian predictive 
distribution for future responses is obtained as 
follows. Suppose fY  is an unobserved fnm×  

of future observations, then the density function 
of ),( fYY  is given by: 

 

1

( , | , )

2| | { ( [( )( ) )
( )( ) )]}.

f
n n f

f f f f

f Y Y B

g tr Y BX Y BX
Y BX Y BX

+
−

−

Σ ∝

Σ Σ − − ′
+ − − ′

   (22) 

 
The Bayesian predictive density of fY  for given 

Y  is defined as: 
 

,),(),|,()|( 11 −− ΣΣΣ∝  dBdBpBYYfYYf ff

 (23) 
 

where ),( 1−ΣBp  is the non-informative prior 

density function of ),( 1−ΣB  and is, 
 

.||),( 2

1
11

+−−− Σ∝Σ
m

Bp             (24) 
 
The predictive density is obtained as 
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1

1

1

2( | ) | |

{ ( [( )( ) )

( )( ) )]} .

n n f

f

f f f f

m

f Y Y

g tr Y BX Y BX

Y BX Y BX dBd

+
−

−

−

− −

∝ Σ

′× Σ − −

′+ − − Σ


 (25) 

And the matrix expression in (25) can be 
rewritten as: 
 

* *

( )( ) )( )( ) =

ˆ ˆ( ) ( )

( ) ( )

f f f f

Y f f f f

Y BX Y BX Y BX Y BX

S Y BX H Y BX

B B A B B

′ ′− − − −

′+ − −

′+ − −

(26) 

 

where 1* )(= −+′ AXYXYB ff . The matrices A  

and H  are defined under equation (15). From 
the following transformation, 
 

KKG
BBD

′Σ
−Σ

−

−

1

*2

1

=

)(=              (27) 

 

where )ˆ)(ˆ(= ′−−+′ ffffY XBYXBYSKK  

and the Jacobian of the transformation 

),(),[( 1 GDBJ →Σ−  is equal to 

2

1

2 ||||
+−−−

′
pmp

KKG , then (25) becomes 
 

.2|))(')((|

})()({2

1

||

2|)ˆ()ˆ(|)|(

11

m

XBYXAXIXBYSI

dDdGDDAtrGtrg

pm

G

k

XBYHXBYSYYf

fnn

fYffffnfYfYm

fnn

fnn

ffffYf

−

′−−−+∝

+′+

−−−

−

′−−+∝

+

−−

+
−

+
−



(28) 
 
Hence fY  has a matric- t  distribution with 

1+−− pmnf  degrees of freedom. Thus, the 

predictive distribution under the structural 
relation and the Bayesian approaches are the 
same. 
 
Derivation of Predictive Distributions: 
The Classical Approach 

To obtain the predictive density of fY , 

it follows from Ng (2000) that 

)ˆ(= 2

1

ffY XBYSR −
−

 is the studentized 

variable, and 2

1−

YS  is the symmetric square root 

of 1−
YS . Since R  is invariant under the 

transformations CYBXY +→ , 

fff CYBXY +→ , for any non-singular square 

matrix C , it can be assumed, without loss of 
generality, that 0=B  and mI=Σ  to derive the 

predictive distribution of fY . With this 

assumption, the joint density function of ),( fYY  

becomes 
 

)}'({),( fff YYYYtrgYYf +′∝   (29) 

 

Because 'ˆˆ= BXXBSYY Y ′+′  and, using the 
invariant differential in Fraser and Ng (1980), 

the joint density function of YB̂ , YS  and fY  is 

obtained from (29) as:  
 

)}''ˆˆ({||),,ˆ( 2

1

ffYYY

kpn

YfYY YYBXXBStrgSYSBf +′+∝
−−−

−

(30) 
 
Making the transformation 

)ˆ(= 2

1

fYfY XBYSR −
−

, followed by the 

Jacobian of the transformation is 2||

fn

YS , the 

joint density of YB̂ , YS , R  is: 
 

1 1
2 2

ˆ( , , )

2 ˆ ˆ| | { ( '

ˆ ˆ( )( ) )}

Y Y

n n f

yY Y Y

Y Y Y Yf f

f B S R
p k

S g tr S B XX B

S R B X S R B X

+
−

∝
− −

+ ′

+ + + ′

    (31) 

 
The matrix expression in (31) can be rewritten 
as: 

1 1

2 2

1 1
1 12 2

ˆ ˆ

ˆ ˆ( )( ) =

( )

ˆ ˆ( ' ) ( ' ) .

Y Y Y

Y Y f Y Y f

m Y

Y Y f Y Y f

S B XX B

S R B X S R B X
I RHR S

tr B S RX A A B S RX A− −

′+

′+ + +
′+

′+ + +

(32) 
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Making the following transformation 
 

,'=

=

12

1
−+

′

AWXVUZ

QQVY

f

       (33) 

 
and following procedures similar to the 
Bayesian Approach, the the joint density 
function of R , Y  and Z  is obtained as follows: 
 

{ }

( , , | )

1

2 2| | | | ( ) (

n n n nf f

m

p R Y Z D
m m p

I RHR Y g tr Y tr ZAZ

+ +

∝
− − − −

′ ′+ +

 

(34) 
 
Integrating (34) with respect to Y and Z yields 
the density function of fY  as: 

 

1 1

( | )

2| ( )( )( ) | ,

f

n n f

m Y f Y f n f f f Y ff

p Y D
m

I S Y B X I X A X Y B X

+

− −
′

∝
−

′+ − − −

 

(35) 
 
which is a Matric- t  density. The predictive 
distribution of the future responses for given 
data is an fnm×  dimensional matric- t  

distribution with 1)( +−− mpn  degrees of 
freedom. Thus, the predictive distribution under 
the structural relation, Bayesian and classical 
approaches are the same. 
 
Predictive Distribution of Future Regression 
Matrix 

Based on the results in Kibria (2006), 

the joint density function of error statistics EB , 

ES , 
fEB  and 

fES  are obtained as: 

 

( ){ }

1

2

( , , , | , , )

1

2| | | |

' ' .

E E E E ff f

n f
n m p

E E f

E E E E f f E Ef f f

p B S B S E X X

m p

S S

g tr B XX B S B X X B S

− − −

′

∝

− − −

′× + + +

 

(36) 
 

The structural relation of model (1) yields 
 

1
12= ( ) = ,E Y E YB B and S Sβ

− −Σ − Σ   (37) 

 
and the Jacobian of the transformation 

]},[],{[ Σ→ βEE SBJ  is equal to 







 ++−+

Σ
1

22

1

||||
mpm

YS . Thus, the joint density of 

β , Σ , 
fEB , and 

fES  is obtained as: 

 

({

)}

1
12

( , , , | , , )

1

2| | | | ( ) ( )

' ,

E E ff f

n f
n m

E f

E f f E Ef f f

p B S E X X

m p

S g tr B XX B

S B X X B S

β

β β
+ +− −

′

Σ ∝

− − −

′ ′Σ Σ − −

+ + +

(38) 
 

where BBY =  and SSY =  for notational 
convenience. Similarly, the structural relation of 
the model (7) yields 
 

1

2= ( )E Yf f
B B β

−
Σ −  

and 
1= ,E Yf f

S S−Σ  

(39) 
where 

fYB  is the regression matrix for the 

future model, and 
fYS  is the Wishart matrix for 

the future responses. If the Jacobian of the 
transformation ]},[],{[ fffEfE SBSBJ →  is 

equal to 2

1

||
++−

Σ
mp

, then the joint density 

function of β , Σ , fB , and fS  is obtained as 

 

[({
)}

1

( , , , | , , )

1 1

2 2| | | |

( ) ( )

( ) ( ) ,

f f f

n n nf f

f

f f f f f

p B S Y X X
m p m

S

g tr B XX B

S B X X B S

β

β β

β β

+
−

−

′

Σ ∝
− − − + +

Σ

′ ′Σ − −

′ + + − − + 
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(40) 
where ffY BB =  and ffY SS = . 

 
The marginal density function of β , fB  and 

fS  is obtained from (40) as 

 

[({
)}

1

( , , | , , )

1 1

2 2| | | |

( ) ( )

( ) ' ( ) .

f f f

n n nf f

f

f f f f f

p B S Y X X
m p m

S

g tr B XX B

S B X X B S d

β

β β

β β

+
−

Σ

−

∝
− − − + +

Σ

′ ′Σ − −

′ + + − − + Σ

  

(41) 
 

To evaluate the integral in (41), let ΛΣ− =1 , 
then 
 

( 1)=| | ,md d− +Σ Λ Λ  
 
therefore, 
 

[({
)}

( , , | , , )

1 1

2 2| | | |

( ) ( )

( ) ' ( ) ,

f f f

n n nf f

f

f f f f f

p B S Y X X
m p m

S

g tr B XX B

S B X X B S d

β

β β

β β

+

Λ

∝
− − − − −

Λ

′ ′Λ − −

′ + + − − + Λ

  

(42) 
 
Following Ng (2002), consider G to be a 
nonsingular matrix of order m  such that 
 

( ) ( )
= .

( ) ( )

T

f f f f f

G G
B XX B S

B X X B S
β β

β β′

′ ′− − + 
 ′+ − − + 

 

 
The transformation, TGGW Λ=  has the 

Jacobian of the transformation as 2

1

||
+− m

TGG , 

and integrating the above with respect to W  

yields the marginal density of fB,β  and fS  as, 

 
1

2( , , | , , ) | |

( ) ( )
2( ) ( )

1

2{ ( )} | |

1

2| |

( ) ( ) 2 .
( ) ' ( )

n f

f f f f

n n f

f
f f f f

n n f

n f

f

n n f

f f f f f

m p

p B S Y X X S

B XX B S
S

B X X B
m

g tr W W dW

m p

S

B XX B S
B X X B S

β

β β
β β

β β
β β

+
−

′

+

Σ

+
−

− − −

∝

′ ′− − +
+ ′+ − −

− −

− − −

∝

′ ′− − + 
×  ′+ − − + 

  

(43) 
 
The density function in (43) can further be 
expressed as 
 

1 1

1

( , , | , , )

1

2| |

( ) ( )

( ) ( ) ,2

f f f

n f

f

n n f

f f f

p B S Y X X
m p

S

FA A FA S

B B H B B S

β

β β− −

+
−−

∝
− − −

′ − − +

′ + − − + 

(44) 

 
where fff XXBXBXF '= +′ , 

ff XXXXA '= +′  and 
11 ]'[][= −− +′ ff XXXXH . 

The marginal density function of fB  

and fS  are obtained by integrating β  using 

matric- t  argument (Press, 1982) from (44) as 
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1

1

11

p
SBBHBBS

pm

S

dSBBHBBS

FAAFA

pm

S

dDSBpXXYSBp

fnn

fff

fn

f

fnn

fff

fn

f

fffff

−
+′−−+

−−−

∝

+′−−++

′−−

−−−

∝

∝

+
−−

+
−−

−−



β

ββ

ββ

β

β

 

(45) 
Finally, the predictive distribution of the future 
regression matrix fB  is obtained as 
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(46) 
 
which is a Matric- t  density. Thus the predictive 
distribution of the future regression matrix for 
given data is an pm×  dimensional matric- t  

distribution with 1)( +−− mpn  degrees of 
freedom. That is 
 

1).,,,( +−−× mpnSHBtB Yfnmf   

 
The predictive distribution of fB  is identical to 

that obtained under the assumption of matric 
normal error (Haq 1982). Thus, the predictive 
distribution of the future regression matrix is 
unaffected by departures from normality, or are 
dependent but uncorrelated assumptions to the 
elliptically contoured distribution. It may be 
concluded that the predictive distributions of a 
future regression matrix under structural, 
Bayesian and classical approaches are the same. 
 

Conclusions 
 
The predictive distribution of future responses 
for observed information under assumptions of 
multivariate elliptically contoured error 
distributions were considered, and the structural, 
Bayesian and classical approaches all resulted in 
the same predictive distributions. The predictive 

distributions under the elliptical errors 
assumption are identical to those obtained under 
independent normal errors or matric- t  errors, 
thus showing robustness with respect to 
departure from the reference case of independent 
sampling from the matric normal or dependent, 
but uncorrelated sampling from matric- t  
distributions to elliptically contoured 
distributions. In the Classical approach, mild 
restictions were adopted, whereas the structural 
relation did not need those restrictions. The 
predictive distribution of the future regression 
matrix was also obtained as matric t . When 

1=fn , the predictive distribution of a single 

future response from a multivariate elliptically 
contoured distribution is obtained as a 
multivariate t  distribution with 1+−− mpn  
degrees of freedom. Findings in this article are 
more general, and include a linear model as a 
special case, as well as a variety of symmetric 
distributions. It is also noted that using the 
predictive distribution one can construct the β  
expectation tolerance regions for future 
response(s). In both application and theoretical 
aspects, these findings have potential 
applications in many areas of statistics. 

There is great interest in the statistical 
literature toward robust statistical methods to 
represent strongly asymmetric data as 
adequately as possible and, at the same time, 
reduce the unrealistic ordinary normal or 
Student t assumptions. In scientific fields, such 
as gold concentration in soil samples (Galea-
Rojas, et al., 2003), arsenate in water samples 
(Ripley & Thomson, 1987), cholesterol in blood 
samples (Lachos & Bolfarine, 2007) and many 
other situations, the data follow asymmetric 
distributions. 

In such cases, normal or t  distributions 
do not work well. Instead, certain types of 
skewed distributions are proposed in the 
literature to study the skewed data. These 
distributions allow for skewness and contain the 
normal or t  distribution as a proper member or 
as a limiting case. Various kinds of skew 
distributions exist in the literature: skew-
symmetric distributions (Gomez, et al., 2007), 
skew normal distribution (Azzalini, 1985, 1986), 
multivariate skew normal (Azzalini & Dalla 
Valle, 1996; Azzalini & Capitanio, 1999; Gupta, 
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et al., 2004), skew t  distribution (Jones & 
Faddy, 2003), generalized skew- t  distribution 
(Theodossion, 1998), skew multivariate t  
(Azzalini & Capitanio, 2003; Gupta 2003), skew 
elliptical distribution (Branco & Dey, 2001; Dey 
& Liu, 2005; Fang 2003, 2005a, 2005b; Sahu & 
Chai, 2005), generalized skew elliptical 
distribution (Genton & Loperfido, 2005). The 
location and scale parameters of skewed 
elliptical distributions control the skewness and 
maintains the symmetry of the elliptical 
distributions. 

They also provide an opportunity to 
study the robustness of normal theory 
procedures when both skewness and kurtosis are 
different from the normal. The skewed elliptical 
distributions are more useful to fit real data 
(Arnold & Beaver, 2000). Genton and Genton 
(2004) give an excellent review about skew-
elliptical distributions and provide many new 
developments, including theoretical results and 
applications of skewed-elliptical distributions 
with real life data. Regression analysis with 
skewed elliptical distributions have been 
considered by Sahu, et al., (2003), for example. 
Unfortunately, predictive inferences with 
skewed elliptical models are limited or not 
available in the literature. It is necessary and to 
derive the predictive distribution when the error 
of the model follows the skewed elliptical 
distribution. 
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Delete and Revise Procedures for Two-Stage Short-Run Control Charts 
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This article investigates the effect different delete and revise procedures have on the performance of two-
stage short-run control charting methodology in the second stage of its two stage procedure. Five 
variables control chart combinations, six delete and revise procedures, and various out-of-control 
situations in both stages are considered. 
 
Key words: Delete and revise, two-stage, short-run, control chart, probability of detection, run length, 
false alarm, computer program, FORTRAN. 
 
 

Introduction 
 
Control charting in short-run situations has 
received much attention in the literature. In a 
short-run situation, little or no historical 
information is available about a process in order 
to estimate process parameters to begin control 
charting. The application of two-stage control 
charting, which is used to determine the initial 
state of the process and the control limits for 
testing the future performance of the process, to 
short-run situations has resulted in a Shewhart-
based control chart methodology with control 
chart factors for finite numbers of subgroups 
(Hillier, 1969; Yang & Hillier, 1970). 

The recent extension of this 

methodology to s) ,X(  (Elam & Case, 2005a) 
and (X, MR) (Elam & Case, 2008) control 
charts, as well as the computerization of the 
control chart factor calculations for two-stage 

short run R) ,X(  (Elam & Case, 2001),  v),X(  

and )v ,X(  (Elam & Case, 2003), s) ,X(  
(Elam & Case, 2005b), and (X, MR) (Elam & 
Case, 2006) has allowed for its further 
examination. Of particular interest is the effect 
that different delete and revise (D&R) 
procedures have on the performance of the  
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methodology in the second stage of the two-
stage procedure. A D&R procedure removes 
out-of-control subgroups in stage one, allowing 
the data used to construct stage two control 
limits to be considered in-control. The removal 
of data in stage one becomes a more serious 
issue in a short-run situation because the less 
data available to construct stage two control 
limits, the less reliable they will be. 

This article considers six different D&R 
procedures for establishing control of a process 
in the first stage of the two-stage procedure. The 
first D&R procedure (D&R 1) is from Hillier 
(1969), Ryan (1989), & Montgomery (1997). It 
executes as follows: 
i. Deletes out-of-control (OOC) initial 

subgroups on either the control chart for 
centering or spread entirely (i.e., if a 
subgroup shows OOC on either control 
chart, it is deleted from both charts). 

ii. Recalculates control limits for both charts 
using the subgroups remaining after step i. 

iii. Determines OOC subgroups. 
iv. Repeats steps i-iii until no initial subgroups 

show OOC on either chart. 
The second D&R procedure (D&R 2) is 

from Pyzdek (1993). It executes as follows: 
i. Deletes OOC initial subgroups on the 

control chart for spread. 
ii. Recalculates control limits for the control 

chart for spread using the subgroups 
remaining after step i. 

iii. Determines OOC subgroups. 
iv. Repeats steps i-iii until no initial subgroups 

show OOC on the control chart for spread. 
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v. Determines control limits for the chart for 
centering using the parameter estimate for 
spread obtained after completing steps i-iv 
and the overall average obtained from all of 
the initial subgroups. 

vi. Repeats steps i-ii for the control chart for 
centering until no initial subgroups show 
OOC. 

The third D&R procedure (D&R 3) is 
from Case (1998). It deletes OOC initial 
subgroups on the control chart for spread just 
once. No D&R is performed on the control chart 
for centering. 

The fourth D&R procedure (D&R 4) is 
from Doty (1997). It does not perform D&R. 
This means that all initial subgroups are used to 
determine second stage control limits for both 
the control charts for centering and spread. 

The fifth D&R procedure (D&R 5) is a 
hybrid of D&R 1 in that it iterates only once. It 
deletes OOC initial subgroups on either the 
control chart for centering or spread entirely 
(i.e., if a subgroup shows OOC on either control 
chart, it is deleted from both charts). D&R is 
performed just once. 

The sixth D&R procedure (D&R 6) is a 
hybrid of D&R 2 in that it iterates only once. It 
executes as follows: 
i. Deletes OOC initial subgroups on the 

control chart for spread once. 
ii. Determines the control limits for the chart 

for centering by using the parameter 
estimate for spread obtained after 
completing step i and the overall average 
obtained from all initial subgroups. 

iii. Performs step i for the control chart for 
centering. 

Any of the six D&R procedures may be 

used on two-stage short-run R) ,X( ,  v),X( , 

)v ,X( , and s) ,X(  control charts. However, 
only D&Rs 2, 3, 4, and 6 may be used on two-
stage short-run (X, MR) control charts because 
the MR values are calculated from two 
consecutive X values, thus no single MR value 
can be associated with a single X value. 
Consequently, D&Rs 1 and 5, which delete 
OOC initial subgroups on either the control chart 
for centering or spread entirely (i.e., if a 
subgroup shows OOC on either control chart, it 

is deleted from both charts), cannot be used on 
two-stage short-run (X, MR) control charts. 
 

Methodology 
 
The methodology for investigating the effect 
these six D&R procedures have on the 
performance of two-stage short-run control 
charting in its second stage consists of three 
elements. The main element is the computer 
program that simulates two-stage short-run 
variables control charting. The second element, 
which is included in the operation of the 
program, is the measurements used to determine 
which D&R procedure establishes the most 
reliable second stage control limits. The third 
element, which is explained using sample runs 
from the program, is the interpretation of the 
results from the program. 
 
Measurements 

The computer program presented here 
uses two sets of measurements to provide 
information that may be used to determine the 
reliability of second stage control limits. The 
first set of measurements is: the probability of 
detection (POD), the average run length (ARL), 
and the standard deviation of the run length 
(SDRL). The second set of measurements is: the 
probability of a false alarm (P(false alarm)), the 
average probability of a false alarm (APFL), and 
the standard deviation of the probability of a 
false alarm (SDPFL). 

The POD is the probability that a control 
chart will signal, within a given number of 
subgroups following a shift, that a process is 
out-of-control (OOC). Additionally, if a process 
is in-control (IC), the POD may be interpreted as 
the probability of a Type I error (i.e., the 
probability of a false alarm) within a given 
number of subgroups starting with the first 
subgroup drawn from the process. 

Using the POD allows for the 
characterization of the run length (RL) 
distribution. This is particularly useful in a 
short-run situation because it is desirable to 
know, for small numbers of subgroups, the 
probability of detecting a special cause signal or 
a false alarm. Using the ARL, which is the 
average number of subgroups that must be 
plotted on a control chart before an OOC 
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condition is indicated, in a short-run situation is 
not appropriate because a short-run may not last 
long enough to achieve the ARL. Additionally, 
as will be shown, the ARL can be misleading in 
choosing the appropriate D&R procedure. 

The POD may be expressed 
mathematically as: 

POD = P(RL ≤ t)                    (1) 
where RL is the run length (in number of 
subgroups), t is the subgroup number, and P(RL 
≤ t) is the probability that the RL is less than or 
equal to subgroup number t. As calculated by the 
computer program herein, for an OOC situation 
in the second stage of the two-stage procedure, 
the subgroup count starts at one at the first OOC 
subgroup. For an IC situation, the subgroup 
count starts at one with the first subgroup drawn 
from the process in the second stage. 

Each time the program simulates two-
stage short-run variables control charting an RL 
value is determined. As the simulation is 

repeated, RL and 2RL  values are summed, and 
counts for the number of RLs less than or equal 
to each integer value in the interval [1, 50000] 
are kept. Once the repeating of the simulation is 
complete, the two sums are used to calculate the 
ARL and the SDRL, which is the standard 
deviation of the number of subgroups that must 
be plotted on a control chart before an OOC 
condition is indicated. The counts are used to 
determine the POD values. 

For an OOC situation in the second 
stage of the two-stage procedure, it is desirable 
to have the highest possible POD values and the 
lowest possible ARL. For an IC situation in the 
second stage, it is desirable to have the lowest 
possible POD values and the highest possible 
ARL. 

The probability of a false alarm (P(false 
alarm)) is the probability of a control chart 
indicating an OOC condition when none exists. 
Hillier's (1969) methodology, upon which the 
two-stage short-run variables control charts are 
based, allowed for the specification of the 
desired P(false alarm), that is, the desired Type I 
error probability. 

The computer program presented here 
calculates the P(false alarm) when an OOC 
situation occurs beyond the first subgroup drawn 
from the process in the second stage of the two-

stage procedure. Each time the program 
simulates two-stage short-run variables control 
charting under these conditions, a value for 
P(false alarm) is determined. As the simulation 
is repeated, P(false alarm) and P(false alarm)2 
values are summed. Once the repeating of the 
simulation is complete, these two sums are used 
to calculate the APFL and the SDPFL. It is 
desirable for the P(false alarm) values, and 
consequently the APFL, to be as low as possible. 
 
The Computer Program 

The computer program that simulates 
two-stage short-run variables control charting is 
available starting at http://program.20m.com. It 
is coded in FORTRAN (1999). The program is 
intended to simulate two-stage short-run 
variables control charting of a process before 
initiating it so that a decision can be made 
regarding which D&R procedure to use when 
performing two-stage short-run variables control 
charting during the early run of the process. The 
D&R procedures provided by the program were 
described earlier; each segment of the program 
and its operation is now detailed. 

The main program cc (control charting) 
includes the data entry, file setup, subroutine 
calls, summations of various values determined 
by the subroutines, final ARL, SDRL, P(false 
alarm), APFL, and SDPFL calculations, and the 
output of information to a file. It is the only 
segment of the program requiring user 
interaction. 

The following inputs (in order of 
appearance in the program) are requested from 
the user in the main program cc: 
• The process mean and standard deviation. 
• The number of times to replicate the two-

stage short-run control charting procedure. 

• The control chart combination: R) ,X( , 

 v),X( , )v ,X( , s) ,X( , or (X, MR). 

• The subgroup size (not applicable to (X, 
MR) control charts). 

• The number of subgroups for Stage 1. 
• The choice of simulating the process in 

Stage 1 as IC or OOC. If OOC is chosen, the 
user is requested to enter the choice of a 
sustained shift in the mean, the standard 
deviation, or both. Once a shift type is 
selected, the program prompts for the shift 
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size (in the same units as the parameter that 
has shifted) and the number of the first 
subgroup after the shift in Stage 1. 

• The choice of simulating the process in 
Stage 2 as IC or OOC. If OOC is chosen, the 
user is requested to enter the choice of a 
sustained shift in the mean, the standard 
deviation, or both. Once the user chooses a 
shift type, the program prompts for the shift 
size (in the same units as the parameter that 
has shifted) and the number of the first 
subgroup after the shift in Stage 2. 

• The choice of using a different starting value 
for seed for the Marse-Roberts Uniform (0, 
1) random variate generator (Marse & 
Roberts, 1983) coded as subroutine random 
in module random_mod. 

• The D&R procedure (entered as 1, 2, 3, 4, 5, 
or 6). The program describes the execution 
of each D&R procedure in detail for the 
user. 

• The name (including the location) of the text 
file (extension .txt) containing the two-stage 
short-run control chart factors for the control 
chart combination entered earlier. 

• The name (including the location) of the text 
file that will store the results from the 
program. 

The second to last bullet point above 
requires further explanation. Appendix A shows 
the five input files that were used to generate the 
results in this study. The first input file contains 
the first and second stage short-run control chart 

factors for R) ,X(  charts from Table A4 in Elam 
& Case (2001) for n=3 and m: 1-5. The second 
input file contains the first and second stage 

short-run control chart factors for  v),X(  charts 
from Table A.4 in Elam & Case (2003) for n=3 
and m: 1-5. The third input file contains the first 
and second stage short-run control chart factors 

for )v ,X(  charts, also from Table A.4 in Elam 
& Case (2003) for n=3 and m: 1-5. The fourth 
input file contains the first and second stage 

short-run control chart factors for s) ,X(  charts 
from Table A.4 in Elam & Case (2005b) for n=3 
and m: 1-5. The fifth input file contains the first 
and second stage short-run control chart factors 
for (X, MR) charts from Table 3 in Elam & Case 
(2006) for m: 2-15. 

The only difference between the 
appearance of the input files and their 
corresponding tables in their respective 
references is that the first stage short-run control 
chart factors in the first row of each input file 
are set to zero. This is required in order for the 
program to correctly read the second stage short-
run control chart factors from these input files 

when m=1 (in the case of R) ,X( ,  v),X( , 

)v ,X( , and s) ,X(  control charts) or m=2 (in 
the case of (X, MR) control charts). 
  When data entry is complete, the first 
replication of the two-stage short-run control 
charting procedure begins as program execution 
proceeds from main program cc to module 
Stage_1 and the subroutine for the control chart 
combination entered by the user. Each of the 
five subroutines for Stage 1 control charting 
performs the following tasks: 
• Reads first stage short-run control chart 

factors from the input file. 
• Generates first stage subgroups. 
• Constructs first stage control limits. 
• Determines OOC subgroups. 
The tasks in the last two points use Hillier's 
(1969) approach. When Stage 1 control charting 
is complete, program execution returns to main 
program cc. 

Once program execution returns to main 
program cc, it immediately proceeds to module 
D_and_R and the subroutine for the D&R 
procedure selected by the user. When the D&R 
procedure is complete, program execution 
returns to main program cc. At this point, the 
program assumes that control of the process has 
been established. 

Once program execution returns to main 
program cc, required summations are calculated 
and required variable assignments are made. 
Program execution then proceeds to module 
Stage_2 and the subroutine for the control chart 
combination entered by the user. Each of the 
five subroutines for Stage 2 control charting 
performs the following tasks: 
• Reads second stage short-run control chart 

factors from the input file. 
• Constructs second stage control limits. 
• Generates second stage subgroups. 
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• Determines the run length (RL) and, if 
applicable, if a false alarm occurs. 

The calculations in the point above are based on 
the signaling capabilities of combined control 
charts for centering and spread; i.e., a signal 
occurs if a subgroup plots OOC on either the 
control chart for centering or the control chart 
for spread. The number of the first subgroup that 
signals is the RL value. The second stage control 
limits are not updated as subgroups are 
accumulated. When an RL value is determined, 
Stage 2 control charting is complete and 
program execution returns to main program cc. 

In main program cc after Stage 2 control 
charting, required summations are calculated. 
When this is complete, execution returns to the 
location in main program cc immediately before 
the five subroutine calls for Stage 1 control 
charting to begin the second replication. The 
entire procedure for two-stage short-run control 
charting repeats for the number of times entered 
by the user. 

After the last replication, program 
execution in main program cc proceeds to 
writing the following information to the output 
file: 
• The process mean and standard deviation. 
• The number of replications of the two-stage 

short-run control charting procedure that 
was carried out. 

• The control chart combination ( R) ,X( , 

 v),X( , )v ,X( , s) ,X( , or (X, MR)). 

• The subgroup size (not applicable to (X, 
MR) control charts). 

• The number of subgroups for Stage 1. 
• The D&R procedure. 
• The state of the process in Stage 1: IC or 

OOC. If it is OOC, then the type of 
sustained shift, the shift size (in the same 
units as the parameter that has shifted), and 
the number of the first subgroup after the 
shift in Stage 1 are given. 

• The state of the process in Stage 2: IC or 
OOC. If it is OOC, then the type of 
sustained shift, the shift size (in the same 
units as the parameter that has shifted), and 
the number of the first subgroup after the 
shift in Stage 2 are given. 

• The ARL and SDRL. 

• The APFL and SDPFL (if applicable). 
• A table of POD values. 
The information in the first eight bullet points 
was entered by the user. The values in the last 
three bullet points are calculated by the program. 

In addition to these calculated values, 
the computer program determines counts of the 
number of occurrences of certain events (when 
applicable). These events are as follows: 
• The number of times out of the total number 

of replications that D&R 1 iterated more 
than once. 

• The number of times out of the total number 
of replications that D&R 2 iterated more 
than once for the control chart for spread as 
well as for the control chart for centering. 

• The number of times out of the total number 
of replications the program skipped a 
replication because the number of subgroups 
dropped to zero (for two-stage short-run 

R) ,X( ,  v),X( , )v ,X( , s) ,X( , and (X, 
MR) control charts) or one (for two-stage 
short-run (X, MR) control charts) after OOC 
subgroups were deleted in a D&R 
procedure. 

• The number of times out of the total number 
of replications a D&R procedure was 
stopped because the number of subgroups 
dropped to one (for two-stage short-run 

R) ,X( ,  v),X( , )v ,X( , and s) ,X(  control 
charts) or two (for two-stage short-run (X, 
MR) control charts) after OOC subgroups 
were deleted. 

 
These counts, if applicable, are also written to 
the output file. 

Once the above information, applicable 
calculations, and applicable counts have been 
written to the output file, execution of the 
computer program is complete. 
 

Results 
 
Fourteen pairs of tables (Tables 1a-14b) were 
constructed from output files generated from 
sample runs of the computer program. Tables 1a 
and 1b are shown here. Tables 2a-14b are 
available starting at http://program.20m.com. 
For example, Tables 12a and 12b were 
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constructed using Sample Output File #1 (see 
Appendix B) and Sample Output Files #s 2-6 
(available starting at http://program.20m.com). 
In addition to the notation already introduced in 
this article, Tables 1a-14b use the following 
notation: 
• MN: a sustained shift in the mean 
• SD: a sustained shift in the standard 

deviation 
• MS: a sustained shift in both the mean and 

the standard deviation 
• Replications (skipped): the number of 

replications carried out and, in parentheses, 
the number of replications skipped because 
the number of subgroups dropped to zero 

(for two-stage short-run R) ,X( ,  v),X( , 

)v ,X( , s) ,X( , and (X, MR) control 
charts) or one (for two-stage short-run (X, 
MR) control charts) after OOC subgroups 
were deleted in a D&R procedure. 

• Stops: the number of times out of the total 
number of replications carried out that a 
D&R procedure was stopped because the 
number of subgroups dropped to one (for 

two-stage short-run R) ,X( ,  v),X( , 

)v ,X( , and s) ,X(  control charts) or two 
(for two-stage short-run (X, MR) control 
charts) after OOC subgroups were deleted. 

 
The sample runs of the program that 

generated the information in Tables 1a-14b 
assumed the following: 
• The process mean and standard deviation are 

always 0.0 and 1.0, respectively. 
• The planned number of replications is 

always 5,000. 
• The subgroup size n is always 3 (not 

applicable to (X, MR) control charts). 
• The number of Stage 1 subgroups (denoted 

by m) is always 5 for two-stage short-run 

R) ,X( ,  v),X( , )v ,X( , and s) ,X(  control 
charts and it is always 15 for two-stage 
short-run (X, MR) control charts. This is 
why the first four sample input files (see 
Appendix A have two-stage short-run 

control chart factors for R) ,X( ,  v),X( , 

)v ,X( , and s) ,X(  charts for m up to and 

including m=5 and the fifth sample input file 
(see Appendix A) has two-stage short-run 
control chart factors for (X, MR) charts for 
m up to and including m=15. 

• A shift in the mean is always of size 1.5 
(same units as the mean). 

• A shift in the standard deviation is always of 
size 1.0 (same units as the standard 
deviation). 

• A shift in Stage 1 always occurs between 
subgroups 2 and 3. 

• A shift in Stage 2 always occurs between 
subgroups 10 and 11. 

• The process is IC immediately before Stage 
2 control charting begins. 

 
Sample Runs for an IC Process in Stages 1 and 2 

The first 28 sample runs of the program 
are for the IC process during both Stage 1 and 
Stage 2 control charting. Two-stage short-run 

control charting for R) ,X( ,  v),X( , )v ,X( , 

s) ,X( , and (X, MR) charts was simulated using 
all six D&R procedures for each control chart 
combination. The results of these simulations 
appear in Tables 1a-5b. 

Because the process is being simulated 
as IC in Stage 2, it is desirable for the ARL 
values in Tables 1a-5a to be as high as possible. 
Also, it is desirable for the P(RL≤t) values in 
Tables 1b-5b to be as low as possible (because 
they correspond to probabilities of false alarms 
within t or less subgroups after starting Stage 2 
control charting), especially for small numbers 
of subgroups (because a short-run situation is in 
effect). 

Based on both of these criteria, the 
information in Tables 1a-5b indicates that D&R 
4 is, for the most part, the D&R procedure of 
choice. The only exception is in Table 3a, where 
D&R 1 is the D&R procedure of choice based 
on the ARL. This implies that, under the 
assumptions of this simulation, it is preferable to 
use subgroups that signal false alarms in the 
construction of second stage control limits. The 
cost, in terms of the loss in reliability of second 
stage control limits, is higher by throwing out 
subgroups that signal false alarms than it is by 
including them in the construction of second 
stage control limits. 



PROCEDURES FOR TWO-STAGE SHORT-RUN CONTROL CHARTS 
 

552 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1a: ARL, SDRL, Replications, and Stops for Two-Stage 

Short-Run R) ,X(  Control Charts with Stage 1: IC and Stage 2: IC 

D&R 
Procedure 

ARL SDRL 
Replications 

(Skipped) 
Stops 

1 552.89 701.12 5000 (0) 0 
2 550.10 702.51 4999 (1) 1 
3 552.87 701.72 5000 (0) 0 
4 560.49 702.22 5000 (-----) ----- 
5 552.08 700.49 5000 (0) 0 
6 552.03 700.61 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 22 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 8 

# of Times D&R 2 Iterated More Than Once for the X  Control Chart: 70 

Table 1b: P(RL≤t) for Two-Stage Short-Run 

R) ,X(  Control Charts with Stage 1: IC and Stage 2: IC 

t 
Delete and Revise (D&R) Procedure 

1 2 3 4 5 6 
1 0.00940 0.01000 0.00900 0.00740 0.00820 0.00860 
2 0.01640 0.01760 0.01600 0.01260 0.01520 0.01560 
3 0.02540 0.02741 0.02520 0.02040 0.02440 0.02500 
4 0.03360 0.03561 0.03300 0.02700 0.03260 0.03300 
5 0.03820 0.04061 0.03760 0.03140 0.03700 0.03760 
6 0.04400 0.04721 0.04400 0.03580 0.04320 0.04420 
8 0.05380 0.05761 0.05460 0.04520 0.05320 0.05480 

10 0.06400 0.06721 0.06480 0.05420 0.06380 0.06500 
15 0.08880 0.09182 0.08880 0.07820 0.08840 0.08920 
20 0.11040 0.11462 0.11100 0.09960 0.11000 0.11180 
30 0.14040 0.14423 0.14100 0.12980 0.13960 0.14180 
40 0.16480 0.16863 0.16520 0.15360 0.16420 0.16620 
50 0.19180 0.19584 0.19160 0.17980 0.19120 0.19320 

100 0.27440 0.27806 0.27460 0.26480 0.27440 0.27520 
200 0.40740 0.41148 0.40800 0.40060 0.40820 0.40820 
300 0.50200 0.50630 0.50340 0.49600 0.50360 0.50380 
400 0.57760 0.58192 0.57900 0.57320 0.57900 0.57940 
500 0.63500 0.63773 0.63640 0.63120 0.63600 0.63680 
750 0.74900 0.75075 0.74840 0.74560 0.74920 0.74860 

1000 0.82100 0.82156 0.82060 0.81840 0.82120 0.82080 
2000 0.95460 0.95479 0.95460 0.95280 0.95460 0.95480 
3000 0.98480 0.98480 0.98480 0.98440 0.98500 0.98500 
5000 0.99840 0.99840 0.99840 0.99860 0.99840 0.99840 
7500 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Comparing results in Tables 1a-5a 

reveals that two-stage short-run s) ,X(  control 
charts have the highest ARL for D&R 4. 
Comparing results in Tables 1b-5b reveals that 

two-stage short-run )v ,X(  control charts 
have, for most of the shown values of t, the 
lowest P(RL≤t) values for D&R 4. These results 
imply that, under the assumptions of this 
simulation, different control chart combinations 
are preferable depending on the measurement 
used. 

The information in Tables 1b-4b also 
indicates that the P(RL≤t) values when t=1 are 
reasonably close to the theoretical probability of 
a false alarm. Assuming independence between 
the control charts for centering and spread, the 
theoretical P(false alarm) may be calculated by: 

 

(  alarm) (

) ( )

Cen SpreadUCL

SpreadLCL Cen SpreadUCL SpreadLCL

P false α α
α α α α

= + +

− × +  

(2) 
 
where Cenα  is the P(false alarm) on the control 

chart for centering, SpreadUCLα  is the P(false 

alarm) on the control chart for spread above the 
upper control limit (UCL), and SpreadLCLα  is the 

P(false alarm) on the control chart for spread 
below the lower control limit (LCL). For the 
sample runs of the program, 0027.0Cen =α , 

005.0SpreadUCL =α , and 001.0SpreadLCL =α . This 

means that P(false alarm), as calculated by 
equation (2), is equal to 0.0086838. 

For example, the P(RL≤t) value from 
Table 1b for D&R 1 and t=1 is 0.00940. The fact 
that this value is reasonably close to the 
theoretical probability of a false alarm is not 
surprising. As mentioned previously, Hillier's 
(1969) methodology, upon which the two-stage 
short-run variables control charts are based, 
allowed for the specification of the desired 
probability of a false alarm. 

In Table 5b, each of the P(RL≤ t) values 
for t=1 are much lower than 0.0086838. The 
closest one is 60.847% smaller than 0.0086838. 
However, these lower P(RL≤t) values for t=1 
come at the price of having the lowest ARL for 

D&R 4 among Tables 1a-5a. This is an example 
of the tradeoff mentioned by Del Castillo (1995) 
between having a low probability of a false 
alarm and a high probability of detecting a 
special cause signal inherent with two-stage 
short-run control charts. 

The information in Tables 1a-5a also 
indicates that D&R 1 and D&R 2 are iterating 
more than once. These multiple iterations seem 
to create conditions causing replications to be 
skipped and the chosen D&R procedure to be 
stopped. Also, if confidence intervals were 
constructed using the ARL and SDRL values in 
Tables 1a-5a, then, depending on the confidence 
level chosen, the ARL results in Tables 1a-5a 
may not be statistically significantly different. 
 
Sample Runs for an OOC Process in Stage 1 and 
an IC Process in Stage 2 

The next 18 sample runs of the program 
were for the process being OOC during Stage 1 
control charting and IC during Stage 2 control 
charting. Two-stage short-run control charting 

for R) ,X(  charts was simulated using all six 
D&R procedures for each OOC condition (MN, 
SD, MS). The results of these simulations are 
shown in Tables 6a-8b. 

Because the process is being simulated 
as IC in Stage 2, it is desirable for the ARL 
values in Tables 6a-8a to be as high as possible. 
Also, it is desirable for the P(RL≤t) values in 
Tables 6b-8b to be as low as possible (because 
they correspond to probabilities of false alarms 
within t or less subgroups after starting Stage 2 
control charting), especially for small numbers 
of subgroups (since a short-run situation is in 
effect). 

Based on the ARL, Tables 6a-8a 
indicate that D&R 1 was the procedure of 
choice, regardless of the OOC condition in Stage 
1. However, the SDRL values for D&R 1 are 
higher than those for the other D&R procedures. 
The ARL for D&R 1 in Table 7a is higher than 
the ARL values for D&R 1 in Tables 6a and 8a. 
The ARL for D&R 1 in Table 6a is the lowest of 
the three. These results imply that, under the 
assumptions of this simulation, the type of OOC 
condition in Stage 1 has an effect on the IC ARL 
in Stage 2. Additionally, the ARL values for 
each of the six D&R procedures in Table 1a are 
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higher than the respective ARL values in Tables 
6a-8a. This result implies that, under the 
assumptions of this simulation, an OOC 
condition in Stage 1 caused a reduction in the IC 
ARL in Stage 2, regardless of the D&R 
procedure used. 

The choice of the appropriate D&R 
procedure based on the P(RL≤t) values in Tables 
6b-8b varies depending on the OOC condition as 
well as the subgroup number t. In Table 6b, 
D&R 4 results in the lowest P(RL≤t) values for 
shown values of t ≤ 10. For shown values of t > 
10, D&R 1 is the D&R procedure of choice. In 
Table 7b, D&R 4 again results in the lowest 
P(RL≤t) values, but for shown values of t ≤ 300. 
For most of the shown values of t ≥ 300, D&R 1 
is the D&R procedure of choice. In Table 8b, 
D&R 1 results in the lowest P(R ≤t) values for 
each of the shown values of t except t: 30, 40, 
50. Because D&R 1 is not the procedure of 
choice in Tables 6b and 7b for shown values of t 
≤ 10 and t ≤ 200, respectively, this is an example 
of how the ARL can be misleading in choosing 
the appropriate D&R procedure to use in a short-
run situation. 

The results from Tables 6b and 7b imply 
that, under the assumptions of this simulation, it 
is preferable to use subgroups that signal shifts 
in either the mean or the standard deviation in 
the construction of second stage control limits. 
The cost, in terms of the loss in reliability of 
second stage control limits, is higher by 
throwing out subgroups that signal shifts in 
either the mean or the standard deviation than it 
is by including them in the construction of 
second stage control limits. 

The P(RL≤t) values for shown values of 
t ≤ 300 for D&R 4 and for shown values of t ≥ 
300 for D&R 1 in Table 7b are lower than the 
lowest P(RL≤t) values in Tables 6b and 8b. The 
lowest P(RL≤t) values in Table 6b are higher 
than those in Tables 7b and 8b. These results 
imply that, under the assumptions of this 
simulation, the type of OOC condition in Stage 
1 has an effect on the P(RL≤t) values in Stage 2. 
Additionally, the lowest P(RL≤t) values in Table 
1b are higher than those in Table 7b for shown 
values of t ≤ 200 and in Table 8b for shown 
values of t ≤ 100. These results imply that, under 
the assumptions of this simulation, having Stage 

1 IC does not necessarily result in Stage 2 
control limits with the lowest P(RL≤t) values. 

An issue of concern is the P(RL≤t) 
values when t=1. In Table 6b, each of these 
values is much larger than 0.0086838, the 
theoretical probability of a false alarm. The 
closest one is 396.140% larger than 0.0086838. 
In Table 7b, each of these values is much 
smaller than 0.0086838. The closest one is 
241.217% smaller than 0.0086838. In Table 8b, 
some of these values are reasonably close to 
0.0086838, although others are not. These 
results are in contrast to the P(RL≤t) values 
when t=1 in Table 1b. Clearly, under the 
assumptions of this simulation, an OOC 
condition as well as the type of OOC condition 
in Stage 1 has a significant effect on the P(RL≤t) 
values when t=1 in Stage 2. 

Again, the information in Tables 6a-8a 
indicates that D&R 1 and D&R 2 are iterating 
more than once. These multiple iterations seem 
to create conditions causing replications to be 
skipped and the chosen D&R procedure to be 
stopped. Also, if confidence intervals were 
constructed using the ARL and SDRL values in 
Tables 6a-8a, then, depending on the confidence 
level chosen, the ARL results in Tables 6a-8a 
may not be statistically significantly different. 
 
Sample Runs for an IC Process in Stage 1 and an 
OOC Process in Stage 2 

The next 18 sample runs of the program 
were for the process being IC during Stage 1 
control charting and OOC during Stage 2 control 
charting. Two-stage short-run control charting 

for R) ,X(  charts was simulated using all six 
D&R procedures for each OOC condition (MN, 
SD, MS). The results of these simulations are 
shown in Tables 9a-11b. 

Because the process is being simulated 
as OOC in Stage 2, it is desirable for the ARL 
and the APFL values in Tables 9a-11a to be as 
low as possible. Also, it is desirable for the 
P(RL≤t) values in Tables 9b-11b to be as high as 
possible (because they correspond to 
probabilities of detecting special causes within t 
or less subgroups after the shift in Stage 2), 
especially for small numbers of subgroups 
(because a short-run situation is in effect). 
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Based on the ARL, D&R 2 (in Tables 9a 
and 11a) and D&R 4 (in Table 10a) are the D&R 
procedures of choice. The ARL for D&R 2 in 
Table 11a is lower than the ARL values for 
D&Rs 2 and 4 in Tables 9a and 10a, 
respectively. The ARL for D&R 2 in Table 9a is 
the highest of the three (it is 1423.680% larger 
than the ARL for D&R 2 in Table 11a). These 
results imply that, under the assumptions of this 
simulation, the type of OOC condition in Stage 
2 has an effect on the OOC ARL in Stage 2. As 
expected, the ARL values for each of the six 
D&R procedures in Tables 9a-11a are much 
lower than the respective ARL values in Table 
1a. 

Based on the APFL, Tables 9a-11a 
indicate that D&R 4 is the D&R procedure of 
choice regardless of the OOC condition in Stage 
2. This reaffirms the statement that, in terms of 
the APFL, it is preferable to use subgroups that 
signal false alarms in the construction of second 
stage control limits. Also, the APFL values for 
D&R 4 are reasonably close to 0.0086838, the 
theoretical probability of a false alarm. 
However, the APFL values for the other D&R 
procedures are slightly inflated. 

The choice of the appropriate D&R 
procedure based on the P(RL≤t) values varies 
depending on the OOC condition as well as the 
subgroup number t. In Table 9b, D&R 2 results 
in the highest P(RL≤t) values for shown values 
of t ≤ 200 (except t=4). In Table 10b, D&Rs 5 
(for shown values of t ≤ 10 (except t=1)), 2 (for 
shown values of t ≥ 15 and t ≤ 100), and 4 (for 
shown values of t ≥ 200) result in the highest 
P(RL≤t) values. In Table 11b, D&Rs 2 (for 
shown values of t ≤ 200, except t=1) and 4 (for 
shown values of t ≥ 100) result in the highest 
P(RL≤t) values. Because the ARL value in 
Table 10a is not the lowest for D&R 2 or D&R 
5, this is another example of how the ARL can 
be misleading in choosing the appropriate D&R 
procedure in a short-run situation. 

The largest P(RL≤t) values in Table 11b 
are larger than the largest P(RL≤t) values in 
Tables 9b and 10b. The largest P(RL≤t) values 
in Table 9b are lower than those in Tables 10b 
and 11b. These results imply that, under the 
assumptions of this simulation, the type of OOC 
condition in Stage 2 has an effect on the P(RL≤t) 

values in Stage 2. As expected, the P(RL≤t) 
values for each of the six D&R procedures in 
Tables 9b-11b are much higher than the 
respective P(RL≤t) values in Table 1a. 

The information in Tables 9a-11b 
presents another example of the tradeoff 
mentioned by Del Castillo (1995) between 
having a low probability of a false alarm and a 
high probability of detecting a special cause 
signal inherent with two-stage short-run control 
charts. Although D&R 4 results in the lowest 
APFL values regardless of the OOC condition in 
Stage 2, it also results in the lowest P(RL≤t) 
values for many of the shown values of t in 
Tables 9b and 10b. 

Again, the information in Tables 9a-11a 
indicates that D&R 1 and D&R 2 are iterating 
more than once. These multiple iterations seem 
to create conditions causing replications to be 
skipped and the chosen D&R procedure to be 
stopped. Also, if confidence intervals were 
constructed using the ARL and SDRL values in 
Tables 9a-11a, then, depending on the 
confidence level chosen, the ARL results in 
Tables 9a-11a may not be statistically 
significantly different. 
 
Sample Runs for an OOC Process in Stages 1 
and 2 

The final 18 sample runs of the program 
were for the process being OOC during both 
Stage 1 and Stage 2 control charting. Two-stage 

short-run control charting for R) ,X(  charts was 
simulated using all six D&R procedures for each 
OOC condition (MN, SD, MS) in Stage 1 and 
one OOC condition (MN) in Stage 2. The results 
of these simulations are shown in Tables 12a-
14b. 

Because the process was simulated as 
OOC in Stage 2, it is desirable for the ARL and 
the APFL values in Tables 12a-14a to be as low 
as possible. Also, it is desirable for the P(RL≤t) 
values in Tables 12b-14b to be as high as 
possible (because they correspond to 
probabilities of detecting special causes within t 
or less subgroups after the shift in Stage 2), 
especially for small numbers of subgroups 
(because a short-run situation is in effect). 

Based on the ARL, D&R 2 (in Tables 
12a and 14a) and D&R 3 (in Table 13a) are the 
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D&R procedures of choice. The ARL for D&R 3 
in Table 13a is lower than the ARL values for 
D&R 2 in Tables 12a and 14a. The ARL for 
D&R 2 in Table 14a is the highest of the three. 
These results imply that, under the assumptions 
of this simulation, the type of OOC condition in 
Stage 1 has an effect on the OOC (MN) ARL in 
Stage 2. Additionally, the ARL values for each 
of the six D&R procedures in Table 9a are much 
lower than the respective ARL values in Tables 
12a-14a. This implies that, under the 
assumptions of this simulation, an OOC 
condition in Stage 1 causes an increase in the 
OOC (MN) ARL in Stage 2, regardless of the 
D&R procedure used. 

Based on the APFL, Tables 12a-14a 
indicate that D&R 4 is the procedure of choice 
regardless of the OOC condition in Stage 1. This 
implies that, under the assumptions of this 
simulation, it is preferable to use subgroups that 
signal shifts in the mean, the standard deviation, 
or both in the construction of second stage 
control limits. The cost, in terms of the loss in 
reliability of second stage control limits, is 
higher by throwing out subgroups that signal 
shifts in the mean, the standard deviation, or 
both than it is by including them in the 
construction of second stage control limits. 
Additionally, comparing the APFL results in 
Table 9a with those in Tables 12a-14a reveals 
that, under the assumptions of this simulation, 
an MN in Stage 1 has the effect of increasing the 
APFL (see Table 12a) and an SD in Stage 1 has 
the effect of decreasing the APFL (see Table 
13a). 

An issue of concern is the differences in 
the APFL values from 0.0086838, the theoretical 
probability of a false alarm. The APFL value for 
D&R 4 in Table 12a is 369.424% larger than 
0.0086838. The APFL values for D&R 4 in 
Tables 13a and 14a are 65.683% and 33.209%, 
respectively, smaller than 0.0086838. These 
results are somewhat consistent with those 
regarding the P(RL≤t) values when t=1 in Tables 
6b-8b. Clearly, under the assumptions of this 
simulation, the type of OOC condition in Stage 
1 has a significant effect on the APFL values 
before the shift in Stage 2. 

Based on the P(RL≤t) values, D&R 2 is 
the appropriate procedure for most of the shown 
values of t regardless of the OOC condition in 

Stage 1. Because Table 13a indicates that D&R 
3 is the D&R procedure of choice, this is another 
example of how the ARL can be misleading in 
choosing the appropriate D&R procedure in a 
short-run situation. The fact that the largest 
P(RL≤t) values in Table 14b are lower than 
those in Tables 12b and 13b for most of the 
shown values of t implies that, under the 
assumptions of this simulation, the type of OOC 
condition in Stage 1 has an effect on the P(RL≤t) 
values in Stage 2. 

Additionally, the largest P(RL≤t) values 
in Table 9b are larger than those in Tables 12b-
14b. This result implies that, under the 
assumptions of this simulation, an OOC 
condition in Stage 1 decreases the P(RL≤t) 
values in Stage 2; this is not desirable due to the 
MN in Stage 2. However, it is desirable for 
Stage 2 IC as was the case in comparing results 
in Table 1b to those in Tables 6b-8b. Clearly, 
under the assumptions of this simulation, when 
one is interested in detecting MN in Stage 2, it is 
highly desirable to have the process IC when 
drawing first stage subgroups. 

The information in Tables 12a-14b 
presents another example of the tradeoff 
mentioned by Del Castillo (1995) between 
having a low probability of a false alarm and a 
high probability of detecting a special cause 
signal inherent with two-stage short-run control 
charts. Although D&R 4 results in the lowest 
APFL values regardless of the OOC condition in 
Stage 1, it also results in the lowest P(RL≤t) 
values for many of the shown values of t in 
Tables 13b and 14b. 

Again, as in the three previous sub-
sections, the information in Tables 12a-14a 
indicates that D&R 1 and D&R 2 are iterating 
more than once. These multiple iterations seem 
to create conditions causing replications to be 
skipped and the chosen D&R procedure to be 
stopped. Also, if confidence intervals were 
constructed using the ARL and SDRL values in 
Tables 12a-14a, then, depending on the 
confidence level chosen, the ARL results in 
Tables 12a-14a may not be statistically 
significantly different. 
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Conclusion 
 
The interpretation of the sample runs of the 
computer program establish the fact that no hard 
and fast rules can be developed regarding which 
D&R procedure is appropriate when performing 
two-stage short-run variables control charting. 
Under the assumptions of the simulations 
performed, the choice of the appropriate D&R 
procedure varies both among and within 
measurements, among control chart 
combinations, among IC and various OOC 
conditions in both stages, and among numbers of 
subgroups plotted in Stage 2. It may be possible 
that the choice of the appropriate D&R 
procedure varies among shift sizes and the 
timing of shifts, though this was not 
investigated. 

If decisions cannot be made regarding 
values for these variables, then extensive sample 
runs similar to the ones in the previous section 
need to be performed. However, if certain values 
for these variables are desired, then the process 
of making sample runs and interpreting their 
results is much simpler. 
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Appendix A 
 
Sample Input File Containing First and Second Stage Short Run Control Chart Factors 

for R) ,X(  Charts for n=3 and m: 1-5 
0.00000     0.00000     0.00000     8.35221     14.34466     0.03152 
1.56033     1.86966     0.06112     2.70257     5.65885      0.03337 
1.35226     2.21659 0.04924     1.91239 4.27295      0.03407 
1.25601     2.35005 0.04491     1.62151 3.74247      0.03443 
1.20246     2.41685 0.04267     1.47271 3.46631      0.03465 

 
Sample Input File Containing First and Second Stage Short Run Control Chart Factors for 

 v),X(  Charts for n=3 and m: 1-5 
0.00000    0.00000    0.00000       17.69484    199.00000    0.00100100 
2.87519    1.99000    0.00200000    4.97997     26.28427     0.00100075 
2.40967    2.78787    0.00150038    3.40779     14.54411     0.00100067 
2.20599    3.31601    0.00133378    2.84792     11.04241     0.00100063 
2.09497    3.67043    0.00125047    2.56580     9.42700      0.00100060 

 
Sample Input File Containing First and Second Stage Short Run Control Chart Factors for 

)v ,X(  Charts for n=3 and m: 1-5 
0.00000     0.00000     0.00000     17.69484     15.91775     0.03570 
2.87519     1.59177     0.05046     4.97997      5.45415      0.03365 
2.40967     1.77629     0.04121     3.40779      3.97519      0.03297 
2.20599     1.89811     0.03807     2.84792      3.42822      0.03263 
2.09497     1.97649     0.03648     2.56580      3.14794      0.03243 

 
Sample Input File Containing First and Second Stage Short Run Control Chart Factors for 

s) ,X(  Charts for n=3 and m: 1-5 
0.00000     0.00000     0.00000     15.68165     14.10674     0.03164 
2.95828     1.86761     0.06134     5.12390      5.60680      0.03348 
2.57119     2.21123     0.04940     3.63621      4.24135      0.03417 
2.39128     2.34285     0.04505     3.08713      3.71725      0.03453 
2.29099     2.40840     0.04280     2.80588      3.44396      0.03476 

 
Sample Input File Containing First and Second Stage Short Run Control Chart Factors 
for (X, MR) Charts for m: 2-15 
0.00000     0.00000     0.00000     204.19466     127.32134     0.00157 
22.24670    2.95360     0.00235     31.46159      26.11886      0.00157 
10.72641    3.58790     0.00209     13.84773      13.20218      0.00157 
7.34996     3.83736     0.00196     9.00182       9.27880       0.00157 
5.87022     3.89898 0.00188     6.94574       7.52080       0.00157 
5.06862     3.89368 0.00183     5.85274   6.55349     0.00157 
4.57470     3.86822 0.00179     5.18723       5.95038     0.00157 
4.24308     3.83885 0.00177     4.74391       5.54166     0.00157 
4.00644     3.81088 0.00175     4.42928       5.24776     0.00157 
3.82972     3.78583 0.00173     4.19525   5.02691     0.00157 
3.69307     3.76385 0.00171     4.01479   4.85521     0.00157 
3.58441     3.74470 0.00170     3.87161   4.71806     0.00157 
3.49606     3.72800 0.00169     3.75537   4.60610     0.00157 
3.42287     3.71338 0.00168     3.65920   4.51303     0.00157 
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Appendix B: Sample Output File #1 
 

---------------------------------------- 
mean: ....................   0.00000 
standard deviation: ......   1.00000 
# of replications of 
  two stage procedure: ... 4996 
Control chart combination: (Xbar, R) 
n: .......................    3 
m (Stage 1): .............    5 
D&R procedure: ...........    1 
---------------------------------------- 
Stage 1: shift size of     1.50000 (same 
         units as the mean) in the mean 
         between subgroups   2 and   3. 
 
Stage 2: shift size of     1.50000 (same 
         units as the mean) in the mean 
         between subgroups  10 and  11. 
--------------------------------------------- 
 
--------------------------------------------------- 
Out-of-Control (OOC) Average Run Length (ARL) and 
Standard Deviation of the Run Length (SDRL) results 
--------------------------------------------------- 
ARL (in number of subgroups):     464.85809 
SDRL (in number of subgroups):    693.88171 
--------------------------------------------------- 
 
------------------------------------------------ 
The Average Probability of a False Alarm (APFL) 
and the Standard Deviation of the Probability of 
a False Alarm (SDPFL) in the first  10 subgroups 
before the shift in Stage 2: 
------------------------------------------------ 
APFL:  0.03813 
SDPFL: 0.11174 
------------------------------------------------ 
    Starting at subgroup  11 in Stage 2: 
------------------------------------------- 
  t       Number of RLs <= t     P(RL <= t) 
-----     ------------------     ---------- 
    1              90              0.01801 
    2             162              0.03243 
    3             236              0.04724 
    4             290              0.05805 
    5             340              0.06805 
    6             384              0.07686 
    7             422              0.08447 
    8             463              0.09267 
    9             508              0.10168 
   10             548              0.10969 
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Appendix B: Sample Output File #1 (continued) 
 

   15             674              0.13491 
   20             793              0.15873 
   30            1002              0.20056 
   40            1162              0.23259 
   50            1277              0.25560 
   75            1550              0.31025 
  100            1781              0.35649 
  200            2432              0.48679 
  300            2893              0.57906 
  400            3259              0.65232 
  500            3504              0.70136 
  750            3997              0.80004 
 1000            4296              0.85989 
 2000            4814              0.96357 
 3000            4934              0.98759 
 4000            4973              0.99540 
 5000            4984              0.99760 
 7500            4994              0.99960 
10000            4995              0.99980 
20000            4996              1.00000 
30000            4996              1.00000 
40000            4996              1.00000 
50000            4996              1.00000 
------------------------------------------- 
 
The first D&R procedure iterated more than 
  once a total of 111 time(s). 
 
Replications skipped   4 time(s) 
  because the number of subgroups dropped 
  to zero after out-of-control (OOC) 
  subgroups were deleted. 
 
D&R procedure 1 stopped  12 time(s) 
  because the number of subgroups dropped 
  to one after out-of-control (OOC) 
  subgroups were deleted. 
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Data Mining CEO Compensation 

Susan M. Adams   Atul Gupta   Dominique M. Haughton   John D.Leeth 
Bentley University 

 
 
The need to pre-specify expected interactions between variables is an issue in multiple regression. 
Theoretical and practical considerations make it impossible to pre-specify all possible interactions. The 
functional form of the dependent variable on the predictors is unknown in many cases. Two ways are 
described in which the data mining technique Multivariate Adaptive Regression Splines (MARS) can be 
utilized: first, to obtain possible improvements in model specification, and second, to test for the 
robustness of findings from a regression analysis. An empirical illustration is provided to show how 
MARS can be used for both purposes. 
 
Key words: data mining, interactions, modeling, multivariate adaptive regression splines (MARS), 
multiple regression 
 
 

Introduction 
 
The use of multiple regression analysis is 
widespread in empirical research. To use 
multiple regression analysis the full set of 
independent variables affecting the dependent 
variable must first be identified and all of the 
expected interactions among these explanatory 
variables specified. Since both theoretical and 
practical considerations make it impossible to 
pre-specify all possible interactions, the 
explanatory power of any given regression 
specification will be limited. In addition, while 
theory may provide guidance as to which 
predictors to use in a model, the functional form 
of the dependent variable on the predictors is 
unknown in many cases. This article describes 
two ways in which the data mining technique 
Multivariate Adaptive Regression Splines 
(MARS) can be utilized: first, to obtain possible 
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two ways in which the data mining technique 
Multivariate Adaptive Regression Splines 
(MARS) can be utilized: first, to obtain possible 
improvements in model specification, and 
second, to test for the robustness of findings 
from a regression analysis. An empirical 
illustration of how MARS can be used for both 
purposes is then provided.  
 The intuition underlying MARS is 
straightforward; the algorithm examines the data 
for all possible interactions among the specified 
explanatory variables and for non-linear 
relations between the dependent and explanatory 
variables and, in general, yields substantial 
improvements in explanatory power. Findings 
from the MARS analysis can be used in two 
possible ways. First, MARS may yield insight 
into possible empirical relationships that exist in 
data, but which have not been identified by the 
researcher. Such relationships can be examined 
for theoretical content and used to improve the 
specification of the regression model. 
 A second useful application of MARS is 
in the context of testing for the robustness of 
findings from a particular regression. For 
example, consider a research study interested in 
examining the relationship between employee 
gender and compensation. Because 
compensation is expected to depend on a variety 
of characteristics, the typical regression model 
includes a set of explanatory variables and a 
dummy variable to capture the gender effect. 
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The sign and statistical significance of the 
dummy variable and the explanatory power of 
the entire model depend on three factors: the 
choice of explanatory variables, the set of 
interactions included in the model, and the 
specified functional form of the dependent 
variable in terms of the predictors. While MARS 
can add no insight into the choice of explanatory 
variables, it can test for all possible interactions 
among the explanatory variables, the 
preponderance of which have not been included 
in a normal regression analysis. 

Moreover, MARS uses splines 
(understood here to be piecewise-linear 
functions) to allow for possible non-linearities in 
the data. Given that MARS will generally yield a 
substantial improvement in explanatory power, a 
finding that the sign and statistical significance 
of a variable of interest (the dummy variable for 
employee gender in our example) remains 
unchanged serves as a useful test for the 
robustness of the findings from the original 
regression. Normally, researchers using 
regression analysis provide the results from 
several model specifications to demonstrate the 
empirical strength of their conclusions. MARS 
provides a more structured approach to this 
model specification procedure and, thereby, 
generates a more powerful test of robustness. 

 
Methodology 

 
The Data 
Standard and Poor’s (S&P) ExecuComp 
database was used to examine the compensation 
of male and female CEOs. This database tracks a 
variety of corporate data for the 1500 largest 
companies in the U.S. from 1992 to 2003 and 
personal and compensation data for their 
associated CEOs. From 1992 through 2003, 56 
women served as CEOs of the top 1500 
Standard & Poor’s companies in the United 
States; in contrast, 4,242 men served as 
corporate CEOs over the same time period. The 
ExecuComp database yielded 214 individual 
executive/year observations for female CEOs 
and 18,179 observations for male CEOs. The 
CEOs are scattered across 369 4-digit SIC 
industries. To control for possible industry 
effects in salary determination, analysis focused 

on CEOs employed in the forty-one 4-digit SIC 
industries with at least one female CEO. 
 Table 1 gives a summary of the 
variables used in the analysis. The left-hand side 
of the table provides information on the OLS 
sample and the right-hand side provides 
information on the MARS sample. To be 
included in an OLS regression an observation 
must have a complete set of information on all 
explanatory variables. The MARS sample is 
larger because the MARS procedure explicitly 
controls for missing values, allowing all 
observations with information on total 
compensation to be included in the analysis, an 
important advantage of MARS over OLS. 
 The dependent variable used was the 
logarithm of the CEO’s total compensation for 
the year, which includes salary, bonus, restricted 
stock, stock options (evaluated using the Black-
Scholes procedure), long-term incentive 
payouts, and other types of compensation. The 
independent variables are fairly standard. Most 
studies of wages and salaries include 
information on human capital such as education, 
general labor market experience, and experience 
within a specific company (Topel, 1991; Willis, 
1986). The ExecuComp data does not provide 
information on education and measures of 
experience are somewhat spotty. To capture 
human capital characteristics included in the 
analysis are age and the number of years the 
person has served as CEO. (For some CEOs, the 
data lists the date the person started working for 
the company. Unfortunately, the information 
was available for only 59.2 percent of the 
sample and so was not used in the analysis.) 

Because economic theory indicates that 
investments in human capital should have 
positive but diminishing returns, also included 
were squares of age and years as CEO. While 
early studies of the pay-performance relationship 
found little evidence of such a link (see Jensen 
& Murphy, 1990), some recent work documents 
that CEO compensation is related to company 
size and company performance (see Bebchuk & 
Grinstein, 2005). Company size is measured 
using the dollar value of sales revenue and 
company performance using the return on assets. 
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Finally, to control for differences in pay across 
industries and over time the OLS analysis 
includes binary variables measuring the 
company’s 1-digit SIC code and a linear time 
trend. The MARS analysis permits a more 
detailed investigation of industry and time 
effects. The MARS procedure includes a 
categorical variable representing 41 different 4-
digit SIC industries and a categorical variable 
representing 12 different years. All dollar figures 
for total  compensation and  sales revenue have  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
been adjusted to correct for the impact of 
inflation and are stated in 2003 dollars. 
 Table 1 uncovers only a few statistically 
significant differences in means or proportions 
between male and female CEOs. Within the 
four-digit SIC industries examined, female 
CEOs are a few years younger than their male 
counterparts and the companies they operate are 
more likely to be involved in trade and less 
likely to be involved in transportation. In terms 
of compensation, the data provide no evidence 
that male and female CEOs are paid differently. 
 
  

Table 1: Means (Standard Deviations) 

Variable 
OLS 

Sample 
Men 

OLS 
Sample 
Women 

Difference in 
Means 

(absolute t/z 
statistic) 

MARS 
Sample 

Men 

MARS 
Sample 
Women 

Difference in 
Means 

(absolute t/z 
statistic) 

Total Compensation 
(thousands of 2003 $) 

5,036 
(17,332) 

4,926 
(9,402) 

110 
(0.15) 

4,797 
(16,589) 

4,768 
(9,257) 

28 
(0.04) 

Log Total 
Compensation 

7.69 
(1.176) 

7.73 
(1.151) 

-0.04 
(0.43) 

7.64 
(1.170) 

7.68 
(1.157) 

-0.04 
(0.45) 

Age 
53.96 

(7.396) 
51.14 

(7.396) 
2.82 

(5.30)** 
54.13 

(7.937) 
51.03 

(7.327) 
3.09 

(5.96)** 

Years as CEO 
8.11 

(7.957) 
7.97 

(11.991) 
0.14 

(0.16) 
8.06 

(7.894) 
7.93 

(11.974) 
0.13 

(0.15) 

Sales 
(billions of 2003 $) 

2.93 
(7.228) 

2.70 
(8.576) 

0.23 
(0.37) 

2.85 
(7.033) 

2.63 
(8.440) 

0.22 
(0.37) 

Return on assets 
(Percent) 

0.10 
(29.129) 

1.68 
(15.773) 

-1.58 
(1.31) 

0.44 
(28.033) 

1.82 
(15.564) 

-1.38 
(1.19) 

Manufacturing 0.406 0.405 
0.001 
(0.03) 

0.413 0.423 
-0.010 
(0.77) 

Transportation 0.149 0.049 
0.100 

(3.98)** 
0.152 0.047 

0.105 
(4.23)** 

Trade 0.072 0.195 
-0.123 

(6.35)** 
0.070 0.188 

-0.117 
(6.29)** 

Finance 0.049 0.078 
-0.029 
(1.88) 

0.051 0.075 
-0.024 
(1.56) 

Services 0.324 0.273 
0.051 
(1.53) 

0.314 0.268 
0.047 
(1.43) 

Number 3,689 205  4,058 213  
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The MARS methodology 
The MARS algorithm, proposed by 

Friedman in 1991, relies on the following basic 
ideas: 

For each continuous independent 
variable, MARS creates a piecewise linear 
function with too many change points (knots) to 
begin with, and then prunes unnecessary knots 
by a backward procedure. Consider the functions 
BF3 and BF4 (Basis Functions 3 and 4) 
identified by MARS (definitions of all Basis 
Functions are given in Appendix A). These two 
functions are preceded by BF1, as follows: 
 
BF1 = (SALES > .); 
BF3 = max(0, SALES – 1.747087) * BF1; 
BF4 = max(0, 1.747087 - SALES ) * BF1; 
 
BF1 is zero whenever the variable SALES is 
missing, and one otherwise. The functions BF3 
and BF 4, taken together, define a piecewise 
linear function of SALES, with a break point 
(otherwise referred to as a knot or a change 
point) at about 1.75 billion dollars. Note that 
BF3 is zero when SALES is less than 1.747, and 
BF4 is zero when SALES is greater than 1.747. 
Basis functions are chosen by MARS to achieve 
the best fit in a regression of the dependent 
variable on the Basis Functions. Of course, 
without any restriction on over-fitting, better and 
better fits will be attained by using more and 
more Basis Functions breaking at more and 
more knots. MARS uses a backward stepwise 
method to eliminate Basis Functions and knots 
which contribute least to the fit of the model. 
 For each independent categorical 
variable, MARS groups categories and creates 
dummy variables which correspond to these 
groups in such a way as to yield the best fit 
possible. For instance, the Basis Function BF5, 
given by the expression is: 
 

BF5 = (SICNEW = 1 OR SICNEW = 2 OR 
SICNEW = 5 OR SICNEW = 13 OR SICNEW 
= 15 OR SICNEW = 16 OR SICNEW = 21 OR 
SICNEW = 22 OR SICNEW = 23 OR SICNEW 
= 25 OR SICNEW = 26 OR SICNEW = 27 OR 
SICNEW = 28 OR SICNEW = 29 OR SICNEW 

= 31 OR SICNEW = 32) * BF1; 
 

BF5 equals one if the SICNEW code for an 
observation is one of those listed in the 
expression (1, 2, 5, 13, …, etc.), zero otherwise. 
This means that, of all the ways MARS 
considered to create a dummy variable that 
would represent a group of industries, the 
grouping in BF5 is one of the groupings it found 
would yield the best fit with the dependent 
variable. Other industry groupings are identified 
and expressed in other Basis Functions. 
 MARS looks for interactions among 
independent variables, by introducing into the 
model the product of two variables, if such an 
interaction leads to a sufficient improvement in 
the model. For example, the Basis Functions 
BF23 and BF24 represent an interaction of age 
with the number of years as CEO since BF21 
includes BF18 in its expression, which in turns 
includes age. An interesting aspect is that 
MARS can (and often will) create interactions, 
not between original variables, but between 
restrictions of these variables to a particular 
range as is done in BF23 and BF24. BF23 
(respectively BF24) interacts age with number 
of years as CEO, but only beyond 12 years as 
CEO (respectively up to 12 years as CEO), and 
in any case only up to ages of 43 years. BF23 
and BF24 have a different coefficient in the final 
model, so the strength of the interaction depends 
on the range of years as CEO involved in the 
interaction: it is stronger (.030) for BF24 than 
for BF23 (.019). 
 To summarize, MARS ends up with a 
collection of Basis Functions, which are 
transformations of independent variables taking 
into account non-linearities and interactions. 
MARS then estimates a least-squares model 
with a parsimonious set of Basis Functions as 
independent variables. Parsimony is achieved by 
removing Basis Functions, knots and 
interactions which do not contribute sufficiently 
to the model fit. 
 MARS, in essence, is an OLS 
procedure, but with judicious transformations of 
the independent variables. Risks of overfitting 
are controlled in various ways by the algorithm 
(Friedman, 1991, Section 3.6). To take into 
account the fact the data are used not only to 
estimate the coefficients of the Basis Functions 
but to create these Basis Functions in the first 
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place, a penalized sum of squared residuals is 
minimized to select the final model (in least 
squares regression, a non-penalized sum of 
squares would be used). This is achieved by 
minimizing a quantity referred to as the 
Generalized Cross Validation (GCV) criterion 
equal to (1/N) SSR/[1-C(M)/N]2 (see Friedman, 
1991, p. 20), where N is the number of 
observations, SSR is the residual sum of squares, 
and C(M) is a measure of the complexity of a 
model with M Basis Functions.  The complexity 
C(M), which would equal M in usual least 
squares modeling, is defined to be equal to M + 
dM, where d is a penalty for each additional 
Basis Function. 

The parameter D can be determined in a 
number of ways: a value of 3 has been 
recommended on the basis of simulations in 
Friedman (1991), but a larger value may be 
appropriate for larger sample sizes. An 
alternative, used in this article, is to determine 
the parameter d via ten-fold cross validation (not 
to be confused with the GCV mentioned above, 
the GCV does not actually involve cross-
validation). Ten-fold cross- validation involves 
randomly dividing the data into ten parts, 
building the model – with various values of the 
parameter d – with nine tenths of the data, and 
evaluating the performance of the model on the 
remaining tenth. This is done ten times, for each 
tenth in turns, and the performance averaged out 
over the ten runs. The value of d yielding the 
best performance is selected, and the GCV 
criterion is computed with this value of d. A 
clearly over-fitting model is first built, and Basis 
Functions are removed one after the other, 
yielding a sequence of models with a decreasing 
number of Basis Functions. A model is selected 
from that sequence which minimizes the GCV 
criterion. 
 A convenient place to get information 
with introductions to the MARS methodology, 
white papers, and useful references is the 
Salford Systems Web site (www.salford-
systems.com). The article by De Veaux, et al. 
(1993) includes a good introduction to MARS, 
albeit in the context of chemical engineering, 
and contrasts the MARS methodology with that 
of neural networks. The article by Sephton 
(2001) gives an introduction to MARS and 
evaluates how well MARS performs at 

forecasting recessions; the author finds that for 
the time series considered for predicting 
recessions, MARS yields a better in-sample, but 
a worse out-of-sample performance than for 
instance probit regression (with a dependent 
variable of 1 if a time period was in recession, 0 
if not); this may indicate that the MARS models 
used in this context were over-fitting the data to 
some extent. This is the reason why it is 
recommended in the literature (Deichman, et. al. 
2002; Munoz & Felicisimo 2004) to evaluate 
MARS on validation samples, independent of 
the sample used to build the data, in order to 
select a MARS model that will not over-fit the 
data and will predict well on validation samples. 

This approach is adopted in Deichman, 
et al. (2002) where MARS is used in the context 
of direct response modeling; the authors find 
that response models which use MARS Basis 
Functions perform better than alternatives on 
independent validation samples. Munoz & 
Felicisimo contrast a MARS methodology with 
several alternatives and reach two interesting 
conclusions: one is that MARS yields the best 
predictive power, and the other is that an 
independent validation sample is truly needed 
(cross-validation is not sufficient). 

 The issue of over-fitting is considered 
later in this article and will explain why in our 
case over-fitting does not risk calling results into 
question. Finally, an article where MARS is 
used in analyses of living standards in Vietnam 
(see for example Deichman, et. al. (2001)), 
where interesting interactions are revealed 
between regions of the country and other 
predictors when modeling the logarithm of 
household expenditure per capita, indicating that 
such models of household wealth are likely to 
differ across regions, with the importance of 
some predictors varying across these regions. 
 

Results 
 
Table 2 presents the OLS results. As is typical, 
several specifications to check for robustness are 
included. The first specification includes only 
human capital characteristics, while the second 
augments these characteristics with information 
on the company. The third specification controls 
for differences in pay by industry and over time 
and the fourth specification interacts each 
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independent variable with the binary variable 
indicating the gender of the CEO. The last 
specification is a test to determine if any 
significant differences exist in how male and 
female CEOs are paid across the variables 
considered. In standard parlance, it is a test to 
determine if it is permissible to pool male and 
female CEOs in the same sample. 
 The results in Table 2 appear 
remarkably robust. In none of the first three 
specifications is the female binary variable 
statistically significant, indicating no difference 
in pay between male and female CEOs. 
Although in the fourth specification the F-
statistic indicates male and female CEOs are 
paid differently, the only statistically significant 
difference in CEO pay is in the transportation 
industry, but the positive interaction term points 
to female CEOs earning more than their male 
counterparts. In short, in terms of pay the data 
provide no evidence of discrimination against 
women once they have made it to the highest 
rung of the corporate ladder. Almost all other 
studies of gender differences in compensation 
find women earning far less than men, 
controlling for other factors including 
occupation and title (Bertrand & Hallock, 2001). 
 The other variables in Table 2 are also 
robust across the four empirical specifications in 
terms of statistical significance and absolute 
size. In all four specifications general experience 
as measured by age raises log total 
compensation but at a decreasing rate (the 
coefficient on age is significantly positive and 
the coefficient on age squared is significantly 
negative). Company size as measured by sales 
and company performance as measured by 
return on assets significantly boost CEO 
compensation. The positive coefficient on time 
demonstrates a substantial yearly increase in real 
CEO compensation and the negative coefficients 
on transportation and trade shows CEOs in these 
industries earn less, all else equal, than CEOs in 
manufacturing (the excluded category). The 
other variables are insignificant across all four 
specifications. 
 Appendix A presents the full set of 
MARS results. The MARS model explains 
about 46 percent of the variability in (logged) 
total compensation, compared to about 17 

percent for the OLS model. This improvement is 
due (in part) to the fact that MARS identifies 
groups of industries for which the compensation 
model differs, a matter very much at the heart of 
compensation modeling, and successfully 
includes interactions of these industry groupings 
and other independent variables. 
 Most important to our analysis, gender 
does not enter the model at all once the above 
mentioned interactions are included. Even 
following a very structured approach for 
determining model specification, an approach 
which investigates hundreds of possible 
interactions among the independent variables 
and allows for complex non-linear relationships 
to exist between the dependent and independent 
variables, the data still uncovers no difference in 
how male and female CEOs are compensated.  A 
maximum of 80 basis functions were allowed to 
be used in this MARS model, and ten-fold cross-
validation were used to evaluate models 
considered by MARS. The maximum number of 
basis functions allowed (80) is sufficient for 
MARS to build a large enough model from 
which to prune to get a satisfactory final model 
(such a maximum should be at least as large as 
about twice the number of basis functions in the 
final model; in this case the final model contains 
33 basis functions, so an initial maximum of 80 
basis functions is ample). To determine how 
much to prune (in other words how many basis 
functions to drop) to yield a final model, MARS 
uses as a measure of performance a modified R-
square measure referred to as the Generalized 
Cross Validation (GCV) criterion; the GCV 
incorporates a cost per basis function into its 
formula; the higher the cost, the smaller the 
number of basis functions in the final model. 
The choice of that cost is quite crucial, and is 
performed here by ten-fold cross validation, 
which consists in splitting the data into ten parts, 
using 9/10 of the data to build the model and the 
remaining tenth to evaluate candidate models 
corresponding to different choices of cost in 
order to select the cost that yields the best 
performance on the held out tenth of the data. 
Typically, and here as well, each tenth of the 
data plays the role of a hold-out sample in turns 
and performance is judged on all ten such 
samples. The absence of a gender effect in CEO 
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Table 2: OLS Results on Log Total Compensation ($2003) 
 (1) (2) (3) (4) 

Constant 3.118 4.442 3.806 3.773 
 (2.31)* (3.33)** (2.91)** (2.79)** 

Female 0.041 0.035 -0.060 2.193 
 (0.24) (0.22) (0.35) (0.36) 

Age 0.166 0.117 0.133 0.134 
 (3.29)** (2.38)* (2.71)** (2.65)** 

Age squared -0.001 -0.001 -0.001 -0.001 
 (3.10)** (2.36)* (2.63)** (2.55)* 

Years CEO -0.011 -0.004 -0.011 -0.015 
 (0.96) (0.33) (1.03) (1.31) 

Years CEO squared 0.000 0.000 0.000 -0.000 
 (0.77) (0.45) (0.89) (1.05) 

Sales (billions  2003$)  0.049 0.049 0.049 
  (5.94)** (5.76)** (5.35)** 

Return on assets  0.003 0.004 0.004 
  (2.80)** (3.30)** (3.30)** 

Time   0.048 0.050 
   (6.13)** (6.24)** 

Transportation   -0.669 -0.694 
   (7.92)** (8.12)** 

Trade   -0.289 -0.330 
   (2.24)* (2.37)* 

Finance   -0.030 0.007 
   (0.19) (0.04) 

Service   -0.070 -0.083 
   (0.84) (0.98) 

Age×Female    -0.86 
    (0.36) 

Age squared×Female    0.001 
    (0.30) 

Years CEO×Female    0.104 
    (1.95) 

Years CEO squared×Female    -0.002 
    (1.90) 

Sales×Female    -0.002 
    (0.13) 

Return on assets×Female    -0.005 
    (0.96) 

Time×Female    -0.034 
    (0.80) 

Transportation×Female    0.967 
    (2.72)** 

Trade×Female    0.504 
    (1.31) 

Finance×Female    -0.586 
    (1.23) 

Service×Female    0.264 
    (0.69) 
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compensation is robust across empirical 
specifications. 

Tables 3 and 4 summarize the MARS 
results. To simplify matters, the two tables 
present results only for observations in the data 
set where none of the independent variables are 
missing. When one or more independent 
variables is missing, the model adjusts for that in 
the equations (see for example BF1 in Appendix 
A, which captures the fact that the variable 
SALES is not missing), but the adjustments 
involve a fairly small number of observations 
(see Table 1). 
An examination of the basis functions in 
Appendix A reveals that, for observations 
without missing values, MARS identifies 
fourteen groups of Standard Industry Codes 
(SIC) among which it determines that the 
models for (log of) total compensation differ. 
Table 3 categorizes each of the 41 4-digit SIC 
industries by MARS-created SIC group. The 
first column of the table lists the industry’s 1-
digit SIC code, the second column provides a 
description of the 4-digit SIC industry, and the 
final columns of the table identify which of the 
14 broadly related MARS industries each 4-digit 
SIC industry belongs. The effects of the various 
industry variables on total compensation depend 
on these industry groups; as seen in Appendix A 
that a 4-digit industry can appear in multiple 
MARS groupings since different industry 
groupings can interact with different 
independent variables. 

Generally, researchers investigating 
industry effects classify firms based on the 
firm’s 1-digit or 2-digit SIC code. The OLS 
analysis in Table 2 allows CEO compensation to 
shift upward or downward depending on the 
firm’s  1-digit  SIC  industry.  The Swiss-cheese 

 
 
 
 
 
 
 
 
 
 
 

appearance of Table 3 indicates, at least in terms 
of CEO compensation, that industry effects are 
far more complex than a simple upward or 
downward shift in compensation. Multiple 
industry interactions exist among the 
independent variables and the interactions are 
not grouped according to 1-digit or 2-digit SIC 
industry. 
 Table 4 presents the impact of each of 
the independent variables by industry. The 
notation with a plus sign (+) as a superscript 
indicates the expression in brackets is evaluated 
only for observations where the expression is 
positive. The expression is set equal to zero for 
all other observations. Blanks in the table 
indicate that the coefficient of the expression in 
the 1st column is zero for that particular industry 
group. For example, Panel A demonstrates that, 
as estimated in the MARS model, in SIC1 a one 
percentage point increase in a company’s return 
on assets (ROA) raises total CEO compensation 
by 1.4 percent (0.014 log points) when ROA is 
below 7.047 percent but by 3.6 percent (0.035 
log points) when ROA is above 7.047 percent. 
(In a log-linear specification a one-unit change 

in an independent variable causes a 1
ˆ −βe  

percentage change in the dependent variable, 

where β̂  is the estimated parameter. For small 
values, β is approximately equal to the 
percentage change.) In the second SIC group a 
one percentage point increase in ROA has no 
impact on log total CEO compensation when 
ROA is below 1.206 percent but, surprisingly, 
reduces total CEO compensation by 8.0 percent 
(0.077 log points) when ROA is above 1.206 
percent. MARS uncovers no significant impact 
on CEO compensation from higher ROAs in the 
other 12 industry groups. The OLS regressions 
presented in Table 2 model pay for performance 

Table 2: OLS Results on Log Total Compensation ($2003) (continued) 
 (1) (2) (3) (4) 

R-squared 0.02 0.12 0.17 0.18 

F-statistic: all coefficients = 0 3.04** 8.59** 14.44** 10.50** 

F-statistic: female and female interaction terms = 0 2.93** 

* significant at 5%; ** significant at 1%  Note: The t statistics are calculated using standard errors that 
correct for heteroskedasticity and the correlation among observations for the same individual. Industry 
results are measured relative to the excluded category, manufacturing. 
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as a general phenomenon across industries. The 
MARS methodology, in contrast, discovers 
ROA affecting CEO pay in only a few 4-digit 
SIC industries, meaning that pay for 
performance is far more limited than one might 
have originally thought. 
 The second panel in Table 4 reveals that 
in all industry groups except for SIC5 and to 
some extent SIC3, CEO compensation rose over 
time. The coefficient on year is generally zero 
from 1992 to 1997 but positive for years 1998 to 
2003. The parameter of 0.206 on the years 1998 
to 2003 indicates that, all else equal, CEOs 
earned about 23 percent more in these years than 
in the years from 1992 to 1997 in industry 
groups other than SIC3, SIC4, and SIC5. The 
largest jump in salaries over time occurs in SIC4 
where the impact of year moves from a -0.439 
log points for years 1992 to 1997 to a +0.206 log 
points for years 1998 to 2003. Other studies also 
find a rise in CEO salaries in the 1990s 
(Bebchuk & Grinstein, 2005). The MARS 
results indicate not a general upward trend in 
CEO compensation in the 1990s, as implied by 
the OLS results in Table 2, but a structural break 
in compensation occurring in 1998. 
 As can be seen in Panel C, the impact of 
an additional year of CEO experience 
(YRSCEO) depends on the age of the CEO, a 
rough proxy for general labor market 
experience, and the overall level of CEO 
experience. For CEOs younger than 43 an 
additional year of CEO experience lowers total 
compensation for individuals serving as CEO for 
less than 12 years but raises it for individuals 
serving as CEO for more than 12 years. For 
CEOs older than 43 an additional year of CEO 
experience has no impact on total compensation 
except in SIC2 where the impact of greater CEO 
experience is positive and SIC3 where the 
impact of greater CEO experience is negative for 
individuals serving as CEO for less than 1.63 
years. 
 The MARS results on CEO experience 
are in contrast to the OLS results in Table 2. 
OLS finds no impact of CEO experience on total 
compensation, while MARS discovers additional 
CEO experience raising compensation in some 
cases but lowering it in others. The 
counterintuitive results of CEO experience 
reducing compensation apply to very few 

observations in the sample. Only 249 of the 
sample observations are for CEOs younger than 
43 with less than 12 years of CEO experience 
(6.4 percent) and only 340 observations are for 
CEOs with less than 1.63 years CEO experience 
in industry group SIC3 (8.7 percent). 

The positive impact of CEO experience 
on compensation pertains to many more 
observations: 926 observations in SIC2 have 
more than 0.583 years of CEO experience and 
are older than 43 (23.8 percent) and 30 
observations are for CEOs younger than 43 with 
more than 12 years CEO experience (0.8%). For 
the remaining 2,163 observations (55.5 percent) 
MARS finds no impact on compensation from 
greater CEO experience. In other words, the 
MARS results indicate for the vast majority of 
CEOs greater CEO experience has either a 
positive or a neutral impact on compensation 
although for a few CEOs in some industries and 
at some levels of general and CEO-specific 
experience greater years heading the company 
reduces compensation. 
 Panel D shows the impact on CEO 
compensation from increases in company size as 
measured by sales revenue. As can be seen, the 
impact of company size depends on the 
company’s current level of sales, the age of the 
CEO, and the industry. Ignoring the age effect, 
an increase in sales has a larger impact when a 
company is small, sales less than $1.7471 billion 
(70.9 percent of the sample), than when it is 
large, sales greater than $1.7471. 

Age augments the impact of sales on 
CEO compensation for CEOs older than 43 in 
companies with less than $8.1352 billion in sales 
revenue and for CEOs younger than 43 in 
companies with less than $4.4857 billion in sales 
revenue. Evaluated at the mean age of 53.8, a $1 
billion dollar increase in sales revenue raises 
CEO compensation in most industry groups by 
75.5 percent for companies with sales of less 
than $1.7471 billion, by 6.3 percent for 
companies with sales between $1.7471 billion 
and $8.1352 billion, and by 1.82 percent for 
companies with sales greater than $8.1352 
billion. Mathematically, company size appears 
to raise CEO compensation but at a decreasing 
rate. 
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Table 3. MARS identified industry groups 
1-digit SIC 

Industry 
4-digit SIC Industry 

SIC1 
BF5 

SIC2 
BF25 

SIC3 
BF6 

SIC4 
BF13 

SIC5 
BF61 

SIC6 
BF73 

SIC7 
BF45 

SIC8 
BF43 

SIC9 
BF11 

SIC10 
BF7 

SIC11 
BF57 

SIC12 
BF19 

SIC13 
BF51 

SIC14 
BF75 

Mfg Broadwoven Fabric Mills, Cotton                    

Mfg 
Apparel & Other Finished Prods 

of Fabrics & Similar Mat’l                  

Mfg 
Men's & Boys' Furnishings, Work 

Clothing, & Allied Garments                         

Mfg 
Newspapers: Publishing or 

Publishing & Printing                      

Mfg Commercial Printing                   

Mfg Pharmaceutical Preparations                    

Mfg 
Biological Products, (No 
Diagnostic Substances)                       

Mfg 
Perfumes, Cosmetics & Other 

Toilet Preparations                    

Mfg Pottery & Related Products                     

Mfg Special Industry Machinery, NEC                   

Mfg Computer & Office Equipment                    

Mfg 
Computer Peripheral Equipment, 

NEC                     

Mfg Electric Housewares & Fans                     

Mfg Telephone & Telegraph Apparatus                   

Mfg 
Motor Vehicle Parts & 

Accessories                  

Mfg Motor Homes                   

Mfg 
Electromedical & 

Electrotherapeutic Apparatus                    

Mfg Dolls & Stuffed Toys                    

Mfg 
Miscellaneous Manufacturing 

Industries                      

Trans, Comm 
& Utilities 

Communications Services, NEC 
                    

Trans, Comm 
& Utilities 

Electric Services 
                   

Trans, Comm 
& Utilities 

Natural Gas Distribution 
                      

Trade 
Retail-Apparel & Accessory 

Stores                     

Trade Retail-Women's Clothing Stores                     

Trade Retail-Furniture Stores                   

Trade 
Retail-Drug Stores & Proprietary 

Stores                 

Trade Retail-Jewelry Stores                   

Trade 
Retail-Catalog & Mail-Order 

Houses                    

Finance, Ins, 
Real Estate 

Savings Institution, Federally 
Chartered                  

Finance, Ins, 
Real Estate 

Patent Owners & Lessors 
                  

Services Services-Personal Services                     

Services Services-Help Supply Services                    

Services 
Services-Computer Programming, 

Data Processing, etc.                   

Services Services-Prepackaged Software                      

Services 
Services-Computer Integrated 

Systems Design                     

Services 
Services-Telephone Interconnect 

Systems                 

Services Services-Business Services, NEC                       

Services Services-Medical Laboratories                       

Services Services-Child Day Care Services                   

Services 
Services-Research, Accounting, 

Engineering, Management                   

Services 
Services-Commercial Physical & 

Biological Research                    
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Table 4: MARS Results on Log Total Compensation 
Panel A: Return on Assets (ROA) 

 SIC1 
BF5 

SIC2 
BF25 

SIC3 
BF6 

SIC4 
BF13 

SIC5 
BF61 

SIC6 
BF73 

SIC7 
BF45 

SIC8 
BF43 

SIC9 
BF11 

SIC10 
BF7 

SIC11 
BF57 

SIC12 
BF19 

SIC13 
BF51 

SIC14 
BF75 

(ROA−7.047)+ 0.035              

(7.047−ROA)+ -0.014              

(ROA−1.206)+  -0.077             

Panel B: Year 
 SIC1 

BF5 
SIC2 
BF25 

SIC3 
BF6 

SIC4 
BF13 

SIC5 
BF61 

SIC6 
BF73 

SIC7 
BF45 

SIC8 
BF43 

SIC9 
BF11 

SIC10 
BF7 

SIC11 
BF57 

SIC12 
BF19 

SIC13 
BF51 

SIC14 
BF75 

Yrs 98-03 0.206 0.206 0.206 0.206 0.206 0.051 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 

Yrs 92-97    -0.439 0.225          

Yrs 92,93,95,98,03   -0.228            

Panel C: CEO Tenure (YRSCEO) 

 
SIC1 
BF5 

SIC2 
BF25 

SIC3 
BF6 

SIC4 
BF13 

SIC5 
BF61 

SIC6 
BF73 

SIC7 
BF45 

SIC8 
BF43 

SIC9 
BF11 

SIC10 
BF7 

SIC11 
BF57 

SIC12 
BF19 

SIC13 
BF51 

SIC14 
BF75 

(YRSCEO−.583)+  0.018             

(1.63−YRSCEO)+   0.350            

(YRSCEO−12.0)+x
(43−AGE)+ 

0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

(12−YRSCEO)+x 
(43−AGE) + 

0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 

Panel D: Sales Revenue (SALES), in billions 2003 $ 

 
SIC1 
BF5 

SIC2 
BF25 

SIC3 
BF6 

SIC4 
BF13 

SIC5 
BF61 

SIC6 
BF73 

SIC7 
BF45 

SIC8 
BF43 

SIC9 
BF11 

SIC10 
BF7 

SIC11 
BF57 

SIC12 
BF19 

SIC13 
BF51 

SIC14 
BF75 

(SALES−1.7471)+ 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 -0.019 0.018 0.018 0.018 0.018 0.077 

(1.7471−SALES)+ -0.519 -0.519 -0.519 -0.519 -0.519 -0.519 -0.519 -0.821 -0.519 -0.519 -0.519 -0.519 -0.519 -0.519 

(0.2881−SALES)+  -3.000             

(8.1352−SALES)+

x(AGE−43)+ 
-0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 

(4.4857−SALES)+

x(43−AGE)+ 
0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 

Panel E: Age of the CEO (AGE) 
 SIC1 

BF5 
SIC2 
BF25 

SIC3 
BF6 

SIC4 
BF13 

SIC5 
BF61 

SIC6 
BF73 

SIC7 
BF45 

SIC8 
BF43 

SIC9 
BF11 

SIC10 
BF7 

SIC11 
BF57 

SIC12 
BF19 

SIC13 
BF51 

SIC14 
BF75 

(AGE−43)+ 0.035 0.035 0.035 0.035 0.035 0.035 0.017 0.035 0.035 0.035 0.035 -0.016 0.035 0.035 

(43−AGE) +             0.201  

(AGE−54) + -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 -0.052 

(AGE−43)+x 
(8.1352−SALES)+ 

-0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 

(43-AGE)+x 
(4.4857-SALES)+ 

0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 

(43−AGE)+x 
(YRSCEO−12)+ 

0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

(43−AGE)+x 
(12−YRSCEO)+ 

0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 

Note: Table 3 lists the specific 4-digit SIC industries comprising each SIC industry grouping. A superscript on a 
bracketed term indicates the expression is evaluated only for observations where the expression is positive. The 

expression equals zero for all other observations. Blanks in the table indicate the associated industry effect is zero. 
The table presents results only for observations with information on all independent variables. Appendix A 

presents the full set of MARS results including the impact of missing values. 
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 The OLS results in Table 2 examine the 
impact of sales revenue on CEO compensation 
but the impact of sales is assumed to be linear. 
The MARS results suggest that a more 
appropriate specification would include sales 
revenue and sales revenue squared to allow for 
the positive but diminishing returns from 
company size. (When both sales revenue and 
sales revenue squared are included in the OLS 
regression both coefficients are highly 
statistically significant (p values < 0.001) but the 
inclusion alters the size and significance of the 
other coefficients only slightly.) In Table 2 
across all specifications, an additional $1 billion 
of sales revenue creates a 5.0 percent increase in 
CEO compensation. In Table 3, an additional $1 
billion of sales revenue creates in most 
industries a 6.3 percent increase in CEO 
compensation when evaluated at the sample 
means of age and sales revenue ($2.914 billion). 
 The final panel of Table 4 reports the 
impact of age on CEO compensation. The last 
four rows of the Panel E simply duplicate the 
interactive results on age and sales and age and 
years as CEO discussed previously. Across all 
age groups higher sales revenue either expands 
the positive impact of age on total compensation 
or contracts the negative impact – the interaction 
between age and sales is positive. Surprisingly, 
for CEOs younger than 43 an additional year of 
general experience as measured by age reduces 
total compensation, all else equal. The reduction 
is smaller as years as CEO expands for CEOs 
serving for fewer than 12 years but is larger as 
years as CEO expands for CEOs serving more 
than 12 years. In all but SIC13 an additional 
year of general experience raises total 
compensation by 1.42 percent for CEOs from 43 
to 54 but reduces total compensation by 7.56 
percent for CEOs older than 54 when evaluated 
at the mean level of sales. The influence of age 
on total compensation is not impacted by years 
as CEO for CEOs older than 43. 
 The stereotypical age/earnings profile 
has a worker’s earnings rising steeply early in 
his or her career, leveling off over time, and then 
declining. Researchers include age and age 
squared as independent variables in an OLS 
analysis of earnings to capture the positive but 
diminishing impact of general experience on 

earnings and to allow for the possibility of 
earnings hitting a peak at some point. Based on 
the OLS results, CEO compensation hits a peak 
somewhere between 54.9 and 57.2 years of age 
depending on the empirical specification. 
Although the MARS results do not reproduce 
the standard leveling off of earnings, they do 
indicate an earnings peak at age 54, a result 
largely consistent with the OLS analysis. 
 

Conclusion 
 
In most empirical investigations theory guides 
the selection of independent variables but rarely 
dictates the functional relationship between the 
dependent and the independent variables or 
specifies all possible interactions among the 
independent variables. Consequently, 
researchers generally present several sets of 
results generated using slightly different 
estimating relationships to demonstrate that the 
conclusions of the analysis are robust to model 
specification. Multivariate Adaptive Regression 
Splines (MARS) is a data mining technique that 
examines data for all possible interactions 
among specified explanatory variables and for 
non-linear relations between the dependent and 
explanatory variables. By using MARS 
researchers can check for the robustness of their 
empirical findings in a highly structured manner, 
thereby providing a more convincing case that 
the results are insensitive to model specification. 
Additionally, MARS may uncover relationships 
that can be examined for theoretical content and 
aid future research in the area. 
 As an example of how MARS can be 
used as a procedure to check for robustness and 
as an aid in future research, we examine data on 
CEO compensation to determine if pay 
differences exist between men and women. Most 
studies find men out earn women by a sizable 
margin even after controlling for differences in 
education, experience, and occupation (Altonji 
& Blank, 1999; Bertrand & Hallock, 2001; 
Stanley & Jarrell, 1998). Using standard OLS 
analysis we find no evidence male CEOs have 
an advantage over female CEOs in terms of 
compensation. Across the four empirical 
specifications we examine female CEOs earn the 
same or more than male CEOs, all else equal.  In 
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the MARS methodology the variable 
representing gender never enters the model 
indicating that no significant pay difference 
exists between male and female CEOs. The 
MARS model controls for observable 
characteristics and considers all possible 
interactions among the observable 
characteristics and total compensation in 
addition to potential nonlinearities in the 
relationships between the observable 
characteristics and total compensation. In short, 
the absence of a gender effect on CEO 
compensation is robust. 
 In terms of the other factors affecting 
CEO compensation, OLS generates a fairly 
standard picture of CEO compensation. All else 
equal, CEOs leading larger companies as 
measured by sales revenue, more profitable 
companies as measured by return on assets, and 
who have more general labor market experience 
as measured by age earn more than CEOs 
leading smaller companies, less profitable 
companies, and who have less general labor 
market experience. Over time CEO 
compensation has expanded by almost 5 percent 
per year in real terms and CEOs in 
transportation and trade earn less than CEOs in 
manufacturing. Inconsistent with the human 
capital model of earnings, OLS finds no reward 
for CEO experience. 
 The MARS results are generally 
consistent with the OLS results but with some 
important distinctions. Similar to OLS, MARS 
finds sizable differences in CEO compensation 
across industries. Unlike OLS, the MARS 
grouping of industries is unrelated to a broader 
industry classification such as a 1- or 2-digit SIC 
code. Further, the MARS industry effects do not 
simply increase or decrease compensation but 
instead interact with the other independent 
variables, suggesting the underlying model of 
compensation varies by industry groupings. 
However, note that these industry groupings are 
not the recognized industry groups based on 1- 
or 2-digit SIC codes. Similar to OLS, MARS 
shows CEO compensation rising over time, but 
unlike OLS the rise is not gradual. In most of the 
MARS industry groups a structural break in 
compensation occurs in 1998 causing CEO pay 
to jump by about 23 percent. In the OLS 
analysis, the impact of return on assets is 

modeled as a general phenomenon across 
industries. The MARS analysis finds return on 
assets raising CEO compensation but in only one 
broad industry grouping – meaning pay for 
performance is fairly limited. The OLS analysis 
uncovers a positive, linear relationship between 
sales revenue and CEO compensation. The 
MARS results suggest sales revenue has a 
positive but diminishing impact on CEO 
compensation. In the OLS analysis, the number 
of years a person has served as CEO appears to 
have no impact on compensation, while MARS 
finds CEO experience raising total compensation 
but only in a few industry groupings. Finally, 
OLS indicates a CEO’s age, a proxy for general 
labor market experience, raises total 
compensation but at a decreasing rate, a result in 
line with the human capital model and the 
stereotypical age/earnings profile. MARS finds a 
far more complex relationship with 
compensation falling, rising, and then falling 
again as the CEO ages. Both the OLS and the 
MARS results imply CEO compensation peaks 
at around 54 years of age. 
 It is not suggested that MARS be used 
as a replacement to the standard procedures of 
model building and hypothesis testing. Instead, 
MARS may be viewed as a complement to the 
more traditional methods of analysis. There are 
implications for practicing managers to consider 
when evaluating the use of MARS and OLS. For 
the manager who wants to understand the 
dynamics of executive compensation, the MARS 
model provides more details about the specifics 
related his or her particular situation (e.g., the 
industry grouping formed by MARS and 
corresponding interactions). By examining data 
for unanticipated and possibly complex 
interactions among the independent variables 
and for potential nonlinear relationships between 
the dependent and independent variables, MARS 
allows researchers to conduct a structured test of 
robustness and determine important areas for 
future research. In particular, the MARS 
analysis of CEO compensation suggests 
additional work is required to determine the 
factors causing the compensation explosion in 
1998, the reasons for the paucity of pay for 
performance, and the elements generating 
common compensation practices across 
industries. 
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Appendix A: The MARS model; basis functions 
and estimated equation 

 
Basis Functions 
BF1 = (SALES > .); 
BF3 = max(0, SALES – 1.747087) * BF1; 
BF4 = max(0, 1.747087 - SALES ) * BF1; 
BF5 = (SICNEW = 1 OR SICNEW = 2 OR 

SICNEW = 5 OR SICNEW = 13 OR 
SICNEW = 15 OR SICNEW = 16 OR 
SICNEW = 21 OR SICNEW = 22 OR 
SICNEW = 23 OR SICNEW = 25 OR 
SICNEW = 26 OR SICNEW = 27 OR 
SICNEW = 28 OR SICNEW = 29 OR 
SICNEW = 31 OR SICNEW = 32) * BF1; 

BF6 = (SICNEW = 3 OR SICNEW = 4 OR 
SICNEW = 6 OR SICNEW = 7 OR 
SICNEW = 8 OR SICNEW = 9 OR 
SICNEW = 10 OR SICNEW = 11 OR 
SICNEW = 12 OR SICNEW = 14 OR 
SICNEW = 17 OR SICNEW = 18 OR 
SICNEW = 19 OR SICNEW = 20 OR 
SICNEW = 24 OR SICNEW = 30 OR 
SICNEW = 33 OR SICNEW = 34 OR 
SICNEW = 35 OR SICNEW = 36 OR 
SICNEW = 37 OR SICNEW = 38 OR 
SICNEW = 39 OR SICNEW = 40 OR 
SICNEW = 41) * BF1; 

BF7 = (SICNEW = 1 OR SICNEW = 3 OR 
SICNEW = 4 OR SICNEW = 10 OR 
SICNEW = 11 OR SICNEW = 12 OR 
SICNEW = 13 OR SICNEW = 16 OR 
SICNEW = 20 OR SICNEW = 21 OR 
SICNEW = 22 OR SICNEW = 24 OR 
SICNEW = 25 OR SICNEW = 28 OR 
SICNEW = 35 OR SICNEW = 38 OR 
SICNEW = 39 OR SICNEW = 41); 

BF9 = (YEAR = 1998 OR YEAR = 1999 OR 
YEAR = 2000 OR YEAR = 2001 OR 
YEAR = 2002 OR YEAR = 2003) * BF1; 

BF10 = (YEAR = 1992 OR YEAR = 1993 OR 
YEAR = 1994 OR YEAR = 1995 OR 
YEAR = 1996 OR YEAR = 1997) * BF1; 

BF11 = (SICNEW = 1 OR SICNEW = 3 OR 
SICNEW = 22 OR SICNEW = 25 OR 
SICNEW = 27 OR SICNEW = 28 OR 
SICNEW = 34) * BF3; 

BF13 = (SICNEW = 4 OR SICNEW = 6 OR 
SICNEW = 7 OR SICNEW = 8 OR 
SICNEW = 11 OR SICNEW = 13 OR 
SICNEW = 17 OR SICNEW = 21 OR 

SICNEW = 22 OR SICNEW = 24 OR 
SICNEW = 33 OR SICNEW = 35 OR 
SICNEW = 37 OR SICNEW = 38) * 
BF10; 

BF15 = (AGE > .) * BF1; 
BF16 = (AGE = .) * BF1; 
BF17 = max(0, AGE - 43.000) * BF15; 
BF18 = max(0, 43.000 - AGE ) * BF15; 
BF19 = (SICNEW = 3 OR SICNEW = 9 OR 

SICNEW = 14 OR SICNEW = 20 OR 
SICNEW = 32 OR SICNEW = 33 OR 
SICNEW = 34 OR SICNEW = 37 OR 
SICNEW = 40) * BF17; 

BF21 = (YRSCEO > .) * BF18; 
BF23 = max(0, YRSCEO - 11.997) * BF21; 
BF24 = max(0, 11.997 - YRSCEO ) * BF21; 
BF25 = (SICNEW = 3 OR SICNEW = 7 OR 

SICNEW = 8 OR SICNEW = 9 OR 
SICNEW = 13 OR SICNEW = 28 OR 
SICNEW = 30 OR SICNEW = 32 OR 
SICNEW = 34 OR SICNEW = 36 OR 
SICNEW = 37 OR SICNEW = 38); 

BF27 = (SALES > .) * BF25; 
BF30 = max(0, 0.288101 - SALES ) * BF27; 
BF32 = max(0, 8.135196 - SALES ) * BF17; 
BF33 = (YEAR = 1992 OR YEAR = 1993 OR 

YEAR = 1995 OR YEAR = 1998 OR 
YEAR = 2003) * BF6; 

BF35 = (ROA > .) * BF5; 
BF37 = max(0, ROA - 7.047) * BF35; 
BF38 = max(0, 7.047 - ROA ) * BF35; 
BF39 = (YRSCEO > .) * BF25; 
BF40 = (YRSCEO = .) * BF25; 
BF41 = max(0, YRSCEO - 0.583) * BF39; 
BF43 = (SICNEW = 3 OR SICNEW = 6 OR 

SICNEW = 9 OR SICNEW = 10 OR 
SICNEW = 12 OR SICNEW = 13 OR 
SICNEW = 14 OR SICNEW = 15 OR 
SICNEW = 16 OR SICNEW = 17 OR 
SICNEW = 18 OR SICNEW = 19 OR 
SICNEW = 20 OR SICNEW = 21 OR 
SICNEW = 30 OR SICNEW = 31 OR 
SICNEW = 33 OR SICNEW = 34 OR 
SICNEW = 35 OR SICNEW = 37 OR 
SICNEW = 38 OR SICNEW = 40 OR 
SICNEW = 41) * BF4; 

BF45 = (SICNEW = 3 OR SICNEW = 4 OR 
SICNEW = 6 OR SICNEW = 7 OR 
SICNEW = 8 OR SICNEW = 9 OR 
SICNEW = 10 OR SICNEW = 11 OR 
SICNEW = 12 OR SICNEW = 18 OR 
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SICNEW = 19 OR SICNEW = 23 OR 
SICNEW = 24 OR SICNEW = 35 OR 
SICNEW = 37 OR SICNEW = 38 OR 
SICNEW = 39) * BF17; 

BF47 = (AGE > .) * BF39; 
BF49 = max(0, AGE - 54.000) * BF47; 
BF51 = (SICNEW = 4 OR SICNEW = 6 OR 

SICNEW = 7 OR SICNEW = 14 OR 
SICNEW = 19 OR SICNEW = 21 OR 
SICNEW = 23 OR SICNEW = 37) * 
BF21; 

BF53 = (ROA > .) * BF40; 
BF55 = max(0, ROA - 1.206) * BF53; 
BF57 = (SICNEW = 1 OR SICNEW = 2 OR 

SICNEW = 3 OR SICNEW = 5 OR 
SICNEW = 7 OR SICNEW = 8 OR 
SICNEW = 15 OR SICNEW = 17 OR 
SICNEW = 19 OR SICNEW = 22 OR 
SICNEW = 23 OR SICNEW = 24 OR 
SICNEW = 26 OR SICNEW = 28 OR 
SICNEW = 29 OR SICNEW = 31 OR 
SICNEW = 37 OR SICNEW = 38 OR 
SICNEW = 39 OR SICNEW = 41) * BF1; 

BF59 = (SICNEW = 12 OR SICNEW = 19 OR 
SICNEW = 24 OR SICNEW = 26 OR 
SICNEW = 30 OR SICNEW = 34) * 
BF16; BF61 = (SICNEW = 3 OR 
SICNEW = 7 OR SICNEW = 12 OR 
SICNEW = 19 OR SICNEW = 20 OR 
SICNEW = 22 OR SICNEW = 23 OR 
SICNEW = 25 OR SICNEW = 28 OR 
SICNEW = 32 OR SICNEW = 35) * 
BF10; 

BF63 = (YRSCEO = .) * BF9; 
BF64 = (YRSCEO > .) * BF9; 
BF66 = max(0, 4.485668 - SALES ) * BF21; 
BF67 = (SICNEW = 2 OR SICNEW = 5 OR 

SICNEW = 6 OR SICNEW = 7 OR 
SICNEW = 14 OR SICNEW = 16 OR 
SICNEW = 21 OR SICNEW = 31 OR 
SICNEW = 34 OR SICNEW = 40) * 
BF63; 

BF73 = (SICNEW = 1 OR SICNEW = 3 OR 
SICNEW = 4 OR SICNEW = 5 OR 
SICNEW = 9 OR SICNEW = 11 OR 
SICNEW = 12 OR SICNEW = 13 OR 
SICNEW = 17 OR SICNEW = 18 OR 
SICNEW = 19 OR SICNEW = 20 OR 
SICNEW = 22 OR SICNEW = 24 OR 
SICNEW = 27 OR SICNEW = 31 OR 

SICNEW = 32 OR SICNEW = 35 OR 
SICNEW = 37) * BF64; 

BF75 = (SICNEW = 2 OR SICNEW = 4 OR 
SICNEW = 5 OR SICNEW = 7 OR 
SICNEW = 16 OR SICNEW = 18 OR 
SICNEW = 22 OR SICNEW = 23 OR 
SICNEW = 29 OR SICNEW = 30 OR 
SICNEW = 31 OR SICNEW = 32 OR 
SICNEW = 34 OR SICNEW = 38 OR 
SICNEW = 40 OR SICNEW = 41) * BF3; 

BF77 = (YRSCEO > .) * BF6; 
BF80 = max(0, 1.626 - YRSCEO ) * BF77; 
 
Estimated Equation 
Y = 6.661 + 2.206 * BF1 + 0.0177346 * BF3 - 

0.518625 * BF4 - 1.014 * BF5 - 0.399 * 
BF7 + 0.206 * BF9 - 0.203566 * BF11 - 
0.439 * BF13 + 0.035 * BF17 - 0.051 * 
BF19 - 0.595 * BF21 + 0.019 * BF23 + 
0.030 * BF24 + 0.408 * BF25 – 3.000 * 
BF30 - 0.00353013 * BF32 - 0.228 * 
BF33 + 0.035 * BF37 - 0.014 * BF38 + 
0.018 * BF41 - 0.301961 * BF43 - 0.018 * 
BF45 - 0.052 * BF49 + 0.201 * BF51 - 
0.077 * BF55 - 0.158 * BF57 - 0.869 * 
BF59 + 0.225 * BF61 + 0.0589534 * 
BF66 - 0.762 * BF67 - 0.155 * BF73 + 
0.0590723 * BF75 + 0.350 * BF80; 

 
Appendix B: Variables 

 
AGE = age of the CEO. 
NEWSIC = 4-digit SIC industry. NEWSIC is a 

categorical variable ranging from 1 
(Broadwoven Fabric Mills, Cotton) 
to 41 (Services-Commercial 
Physical & Biological Research). 
See Table 3 for a complete listing of 
the 4-digit SIC industries. 

ROA = return on assets. 
SALES = sales revenue in billions of 2003 $. 
Y = log of total compensation. 
YEAR = observation year. 
YRSCEO = years serving as CEO. 
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Application of Dynamic Poisson Models to  
Japanese Cancer Mortality Data 
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A dynamic Poisson model is used with a Bayesian approach to modeling to predict cancer mortality. The 
complexity of the posterior distribution prohibits direct evaluation of the posterior, and so parameters are 
estimated by using a Markov Chain Monte Carlo method. The model is applied to analyze lung and 
stomach cancer data which have been collected in Japan. 
 
Key words: Dynamic Poisson model, Markov Chain Monte Carlo, cancer mortality data, age-period-
cohort model prediction. 
 
 

Introduction 
 
The number of cases of stomach cancer in the 
Japanese male population is tabulated in Table 
1, by five year period, and by 5 year age group. 
Periods are identified in the Table by their 
central year. For example, the period labeled 
1970 includes all data for the years 1968 through 
1972, inclusive. These data were obtained from 
the Japanese Ministry of Health and Welfare. 
(http://wwwdbtk.mhlw.go.jp/toukei/index.html) 

The goal of this article is the 
development trend models for these data, and in 
particular, the development of methods for short 
to medium term prediction, which will be 
important from the perspective of public health 
planning. The entries in Table 1 for the 2005 and 
2010 periods are, in fact, predictions, calculated 
as described in section 5 below. In assessing 
trends in such data, care must be taken to 
accommodate for trends in the underlying 
population structure. 
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In particular, the reduction in numbers of 
cancers at increased age is due primarily to the 
reduction in the associated number of 
individuals at risk. To accommodate for the 
number of individuals at risk, we focus on the 
incidence rate, equal to the number of events 
divided by the number at risk. Table 2 shows the 
incidence rate as numbers of stomach cancers 
per million males, calculated by dividing the raw 
incidence numbers from Table 1 by the 
population size (the total number of males in the 
associated age group), and multiplying by one 
million. The population cohort numbers were 
obtained from the Japanese Ministry of Internal 
Affairs and Communications. 

 There are some notable trends in the 
incidence rate data of Table 2. In particular, 
except for the oldest few age groups, the 
incidence rate is increasing with age, in each 
period. On the other hand, at least up until age 
65 or 70, the incidence rate within age group 
appears to be more or less decreasing over time. 
Incidence rates for female stomach cancer, and 
for male and female lung cancer, were similarly 
calculated, and are illustrated in the appendix, 
together with predictions for the periods 
centered at 2005 and 2010. Patterns similar to 
the males for the rate of female stomach cancer 
are noted (Table 5), and with respect to rates of 
lung cancer in both males and females, the data 
appear to show increasing rates over age group, 
and over time (Tables 6 and 7). 
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Table 1: Numbers of cases of stomach cancer - males 
Age 

Group 

5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 

15-19 9 9 15 17 19 9 5 5 11 5 4 5 5 

20-24 27 30 46 72 80 59 28 21 18 20 18 18 18 

25-29 65 106 127 158 162 162 104 87 49 49 30 45 45 

30-34 166 196 300 353 346 309 308 196 102 77 70 87 95 

35-39 359 395 470 615 628 562 526 453 315 207 142 171 165 

40-44 788 854 790 781 1004 1003 799 719 646 494 303 322 300 

45-49 1406 1568 1517 1309 1387 1638 1583 1192 1101 1027 724 766 581 

50-54 2206 2470 2488 2402 1991 1922 2465 2203 1772 1626 1608 1491 1231 

55-59 3024 3398 3717 3666 3214 2871 2632 3253 2992 2592 2458 2209 2068 

60-64 3602 4125 4569 4993 4638 4201 3603 3467 4263 4034 3408 3310 2929 

65-69 3465 4195 4799 5483 5699 5334 5013 4082 4081 5210 5237 4213 3998 

70-74 2505 3244 4147 4483 5228 5594 5472 4952 4258 4869 6009 4757 4257 

75-79 1063 1743 2289 3010 3459 4132 4743 4702 4613 4571 4859 4234 4005 

80-84 261 479 829 1034 1457 2000 2636 3273 3512 4073 3977 2976 2971 

85-89 61 78 170 241 313 536 804 1283 1727 2361 2767 1747 1580 

90- 3 15 16 28 35 77 134 269 460 806 1184 628 598 

Table 2: Stomach cancer - males, rate per million 

Age 
Group 

5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 

15-19 2 2 3 3 4 2 1 1 2 1 1 

20-24 7 7 11 16 15 13 7 5 4 4 4 

25-29 23 28 31 38 36 30 23 22 12 11 6 

30-34 70 70 80 85 83 67 57 43 26 19 16 

35-39 151 170 170 164 153 134 115 84 70 53 35 

40-44 358 367 347 286 275 244 193 160 121 110 78 

45-49 696 734 672 588 522 450 394 294 246 194 163 

50-54 1283 1280 1219 1105 930 740 698 565 444 370 310 

55-59 2193 2114 2062 1899 1584 1395 1055 959 791 667 575 

60-64 3246 3362 3178 3072 2656 2183 1864 1476 1318 1121 911 

65-69 4353 4564 4673 4498 4090 3411 2890 2305 1864 1744 1562 

70-74 4636 5463 5979 5682 5455 4892 4170 3332 2735 2521 2253 

75-79 3971 5096 6076 6661 6517 6021 5607 4718 3855 3644 2997 

80-84 2730 3596 4901 5531 6048 6511 6326 5978 5176 4957 4355 

85-89 2489 2304 3527 4008 4381 5321 5805 6696 6259 6540 5806 

90- 706 2573 1937 2040 2003 3554 4041 4873 5647 6894 6715 
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The numbers of deaths from cancer 
represent count data, and as such, statistical 
models for counts, rates or proportions are 
appropriate. Cancer mortality rates have often 
been modeled using a classical age-period-
cohort model, which is a type of Poisson 
regression model, and was used to make 
predictions for lung cancer mortality rates in 
England and Wales (Osmond, 1985), for 
example. In particular, for the data in Tables 1 
and 2, there are 16 age groups, 11 periods (the 5 
year time intervals), and 26 cohorts. Individual 
cohorts are represented as diagonal slices in the 
Table. For example, in Table 2, two cohorts are 
identified by boldface type. The oldest cohort 
includes those individuals who where were 90 
years or older in the period labeled 1950, and 
this is the only period in which data was 
recorded for this cohort. The youngest cohort 
includes those individuals who were 15-19 in the 
period labeled 2000, and there is again only one 
year of incidence data for this cohort. There are 
6 cohorts which include a maximum of 11 
periods of incidence data. 

Let )16,,2,1( ∈i  index age group, 
where age group 1 includes 15-19 year olds, age 
group 2 includes 20-24 year olds, and so on; 

)11,,2,1( ∈j  index 5 year period, with period 
1 centered at 1950, period 2 centered at 1955, 
and so on; and )26,,2,1( ∈k  index cohort, 
where, for example, cohort 26 includes 
individuals who were 15-19 in 2000, cohort 2 
includes individuals 85-89 in 1950, and so on. 

Let ijkY  denote the number of cases in age 

group i , period j  and cohort k . The classical 

age-period-cohort model assumes that ijkY  is a 

Poisson random variable with mean ijkλ , where 

.)log()log( kjiijkijk n γβαλ +++=   (1) 

Here iα , jβ  and kγ  are the effects of 

age group i , period j  and cohort k  
respectively. The size of the population at risk, 
assumed to be known without error from census 
data, is denoted as ijkn , and was used to 

transform the raw incidence data in Table 1 to 
the rates in Table 2. Inclusion of the offsets ijkn  

in the model for the Poisson mean implies that 

we are effectively modeling incidence rates

ijkijk n/λ , thereby correcting for the number at 

risk. 
It is clear that the parameterization is not 

identifiable, as we are using three co-ordinates 
to index into a two dimensional Table of counts. 
In particular, jik +−= 16 . 

Detailed discussions of this model, 
including identifiability issues, are included, for 
example, in Osmond and Gardner (1982), 
Clayton and Schifflers (1987a, b), and Holford 
(1991), and various methods have been 
suggested to overcome the non-identifiability 
problem, for example, imposing constraints on 
the parameters (Osmond & Gardner, 1982; 
Holford, 1991), or restricting consideration to 
certain estimable functions of the parameters 
(Clayton & Schifflers, 1987a; Holford, 1991). 
Clayton & Schifflers (1987a, b) advised the use 
of a reduced age-period or age-cohort model 
whenever possible and the use of the full age-
period-cohort model only when no other model 
provides a satisfactory fit. Tango (1985) showed 
that nonlinear effect parameters can be uniquely 
determined by imposing restrictions on each 
block of parameters, for example,

0===  lji γβα  , with the nonlinear 

age effects being specified as: 




=

=−=
A

j

A

j j

jj
AjL

AjL

1

2

1
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),(~ α
αα ,           (2) 

 

where 





 +−=

2

1
),(

A
jAjL . 

 
It is important to note that while 

individual age, period and cohort parameters are 
not identifiable, forward prediction is possible 
(Holford, 1985). 

Different cohorts are typically unequally 
represented in age-period-cohort data. In the 
present case, there are single observations on 
cohorts 1 and 26, two observations on cohorts 2 
and 25, eleven observations on each of cohorts 
11 through 16, and so on. Therefore, the 
precision of estimated cohort effects will differ 
markedly, which has important consequences for 
prediction. For example, simple predictive 
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models that carry forward estimated cohort 
effects may lead to predictions with a high 
degree of variability. Recently, Bayesian models 
have been used to smooth predictions by 
incorporating a priori beliefs about the 
smoothness of the model parameters. Berzuini 
and Clayton (1994) predicted lung cancer 
mortality rates using a Bayesian age-period-
cohort model. Besag, et al. (1995) fit a Bayesian 
logistic regression to prostate cancer mortality 
rates in the USA, with age, period and cohort as 
explanatory variables, and Bray (2000, 2002) 
used Gaussian autoregressive priors for 
incidence rates of Hodgkin's disease. 

This paper is organized as follows: A 
dynamic Poisson model and a dynamic age-
period-cohort model are specified, Markov 
Chain Monte Carlo is reviewed and the 
estimation method is discussed in detail, a 
prediction method is described, and the result of 
the analysis of Japanese cancer data is provided. 
Finally, concluding remarks are given. 
 
Model Specification 

Throughout in this section, ty  denotes 

the t-th in a sequence of observations, 
Tt ,,1= , tθ  is a p-dimensional parameter 

vector, tF  is a known p-dimensional vector of 

regressors, tG  is a known pp ×  matrix, tw  is 

a p-dimensional vector of errors with covariance 
matrix W, and )(⋅g  is a link function. 
 
Dynamic Poisson Model 

A dynamic Poisson model is a state 
space time series model consisting of 
observation and system equations, as follows: 
 
Observation equation: 

.')(,
!

)exp(
)|( ttt

t

y
tt

tt Fg
y

yP
t

θλλλλ =−=     (3) 

System (state) equation: 
].,0[~,1 WNG pttttt ηηθθ += −              (4) 

 
When there is no system equation, the dynamic 
Poisson model becomes the usual Poisson 
regression model. The dynamic Poisson model is 
a particular case of the general state space 

model, discussed, for example, in Kitagawa and 
Gersch (1996). There is currently much activity 
in the development of algorithms for general 
state space models, focusing primarily on so-
called particle filters. For example, see Kitagawa 
(1998) or Doucet, et al. (2001). 
 
Dynamic Age-Period-Cohort Model 

To incorporate the age-period-cohort 
model within the dynamic Poisson model, let 

)(ti , )(tj  and )(tk  denote the age, period and 

cohort indices associated with observation tY ,  

and denote the associated age, period and cohort 
effects as )(tiα , )(tjβ  and )(tiγ . Assume 

)1,1,1),(log(' tt nF = , where tn  is the number at 

risk  for observation t, and let 
),,,1(' )()()( tktjtit γβαθ = . 

Let ),,,0(' )()()(
γβα ηηηη tktjtit = , and IGi =  

be the 44×  identity matrix. In this case the 
dynamic state space model is specified by the 
following observation and system equations. 
 
Observation equation: 
 

( ) ( ) ( )log( ) log( )

exp( )
( | ) ,

!

.

t

t t i t j t k t

y
t t

t t
t

n

P y
y

λ α β γ

λ λλ

= + + +

−=
  (5) 

 
System (state) equation: 
 

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

, ~ [0, ],

, ~ [0, ],

, ~ [0, ].

i t i t i t i t

j t j t j t j t

k t k t k t k t

N W

N W

N W

α α
α

β β
β

γ γ
γ

α α η η

β β η η

γ γ η η

−

−

−

= +

= +

= +

  (6) 

 
This assumes that the system equation 

corresponds to three independently evolving 
random walks for age, period and cohort effect - 
the same model as considered by Knorr-Held 
and Rainer (2001). The state variables 

},,1,,,{ )()()( Tttktjti =γβα  take the form of 

time varying parameters, while the variances 

αW , βW , and γW  are assumed not to depend on 

time. 
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In addition to the observation and system 
equations, a Bayesian dynamic age-period-
cohort model requires the specification of prior 
distributions for model parameters. However, 
because of the recursive nature of the state 
equation, the Bayesian model requires prior 
distributions only for αW , βW , γW , 0α , 0β , 

0γ . Where ],[ 2σμN  denotes the normal 

distribution with mean μ  and variance 2σ  and 

],[ SIG ν  denotes the inverse gamma 

distribution with scale parameter S  and shape 
parameter ν , assume the following prior 
distributions: 0 ~ [ , ],N Rα αα μ  0 ~ [ , ],N Rβ ββ μ  

0 ~ [ , ],N Rγ γγ μ ~ [ , ],W IG Sα α αν
~ [ , ]W IG Sβ β βν  and ~ [ , ]W IG Sγ γ γν . Non-

informative priors are achieved by letting 1−
αR , 

1−
βR , 1−

γR , αν , βν , γν , αS , βS , and 0→γS . 

Other prior was applied to the dynamic age-
period-cohort model, but the result was similar 
to non-informative priors. 

Where there are A age groups, P periods 
and C cohorts, it follows that the joint posterior 
for 0 1, , , ,Aα α α  0 1, , , ,Pβ β β  

0 1, , , ,Cγ γ γ  αW , βW  and γW  is given by: 

0 0 0

1
12

1
1 1

1
12

1
1

1
12

1
1

1 2 1
0 0
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( ) exp( ( ))

! 2

1
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 × − −  
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(7) 
where )exp( )()()( tktjtitt n γβαλ ++= , and 

),;( Sf IG ν⋅  is the inverse gamma density 

function with parameters ν  and S . 

More generally, the independence 
structure of the priors could be removed by 
assuming that ),,( ′= γβα WWWW  follows a 

trivariate inverse Wishart distribution with 

kernel ( )





− −−

W

W
SWtrW 12

1

2

1
exp||

ν
, and that 

),,( 000 ′γβα  has a trivariate Gaussian 

distribution with mean vector μ  and covariance 

matrix R . 
 
Estimation Method 

A Bayesian approach is taken to 
estimate parameters using posterior means. As 
analytical calculation of integrals with respect to 
the posterior distribution is typically intractable, 
a Markov chain Monte Carlo method has been 
used to approximate the posterior means. The 
Gibbs sampler was used to generate samples 
from the joint posterior distribution. General 
discussions of the Gibbs sampler are provided, 
for example, by Geman and Geman (1984) and 
Gammerman (1997). The WinBugs 
implementation was used to carry out 
computations (Spiegelhalter, et al., 2003), with 
non-informative hyper-priors referred to 
previously. 

As described, Tango (1985) was 
followed in defining nonlinear age and period 
effects after applying zero sum constraints. Such 
mean constraints were also used by Berzuini and 
Clayton (1994) and Bray (2000, 2002). 

In order to assess convergence of the 
sampler, two chains of 10,000 iterations were 
run from different initial values and time series 
plots of the MCMC samples were examined. As 
an example, Figure 1 shows a plot of the 
sampled values of 1γ , for the male stomach 
cancer data. And Figure 2 shows the 
autocorrelation function of 1γ . The plot 
suggests that convergence was achieved, and it 
was confirmed that all other parameters were 
convergent in the same manner. 
 
Prediction 

Osmond (1985) used a standard age-
period-cohort model (1) to project lung cancer 
mortality rates for England and Wales. In this 
method, unknown period and cohort effects for 
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future periods are estimated using linear 
regression, while estimated age effects need not 
be extrapolated. 
 

Figure 1: Time series plots of MCMC 
iterations for 1γ . 

 
 

Figure 2: The autocorrelation function 
of 1γ . 

 
 

A criticism of the regression, while estimated 
age effects need not be extrapolated. A criticism 
of the method is the arbitrariness introduced by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the choice of past values to use in the regression, 
and the type of regression model (e.g., weighted 
or unweighted). 

More recently, parametric bootstrap 
methods have been used to make projections, for 
example, by Berzuini and Clayton (1994) and 
Bray (2000, 2002). In particular, to obtain a 

prediction for 1

~
+Tλ  given data TYY ,,1  , 

sample 

[ ]WGN TTT
ˆ,ˆ~

~
11 θθ ++ ,      (8) 

where Ŵ  and Tθ̂  are estimates based on 

TYY ,,1  . Then set 

111

~~
+++ ′= TTT F θλ .       (9) 

This process is repeated J  times leading to 

{ }Jjj
T ,,1,

~ )(
1 =+λ , which are then averaged to 

provide the overall prediction 1

~
+Tλ  of 1+TY . The 

prediction at time 2+T  is then based on the 

combined data TYY ,,1   and prediction 1

~
+Tλ . In 

carrying out the calculations, 100=J was used. 
The Table 3 shows predicted values and 
simulated 95% prediction intervals for male 
stomach cancer in 2005. 

Predictions were also made using the 
traditional age-period-cohort model (1). To 
estimate age and period effects, a simple linear 
regression was used on one previous period or 
age group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Predicted value and simulated 95% prediction intervals for male stomach cancer in 2005 
Age Group Lower Predicted Value Upper 

15-19 5.580305162 5.745869588 5.91469553 
20-24 17.96144371 18.07019342 18.17972061 
25-29 45.17424256 45.46220645 45.7517975 
30-34 86.88730352 87.43865363 87.9901386 
35-39 170.0798945 171.1925396 172.2686358 
40-44 320.5989165 322.6740741 324.7104773 
45-49 762.0522524 766.9412402 771.9716268 
50-54 1481.543376 1491.174459 1500.812711 
55-59 2195.522161 2209.505762 2223.767449 
60-64 3288.881735 3310300914 3331.643898 
65-69 4186.238369 4213.082323 4240.180761 
70-74 4727.281932 4757.428491 4788.496251 
75-79 4207.928407 4234.477476 4262.194609 
80-84 2957.042947 2976.174262 2995.429859 
85-89 1736.78588 1747.876571 1759.049125 

90- 624.2118163 628.1242619 632.1725958 
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To assess the adequacy of models for 
fitting and prediction, the first nine periods for 
model fitting were used and projections for the 
tenth and eleventh periods were constructed. 
Estimates and predictions were compared with 
observed counts using the following estimates of 
residual and prediction error. 

Scaled residual error 
=

−
=

9

1

2

ˆ

)ˆ(

i i

ii

y

yy
,     (10) 

Scaled prediction error 
=

−
=

11

1

2

~
)~(

j j

jj

y

yy
,  (11) 

where iŷ  is the fitted value for period i  and jy~  

is the predicted value for period j . Table 4 
shows these estimates of residual and prediction 
errors for the age-period-cohort model and a 
dynamic Poisson models. The estimates of 
residual error are consistently a bit smaller for 
the age-period-cohort model, as compared to the 
dynamic Poisson model. 

For the male stomach cancer data, the 
estimated prediction error is a bit smaller using 
the age-period-cohort model. However, in the 
other three cases, the prediction error is smaller 
using the dynamic Poisson model, and 
dramatically so in the case of male lung cancer. 
This suggests that the dynamic Poisson model is 
the preferred method for making future 
predictions.  

The latter two columns of Tables 1, 5, 6 
and 7 contain predictions of lung and stomach 
cancer rates to the periods centered at 2005 and 
2010 using the dynamic Poisson model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modeling Variance Heterogeneity 
Thus far, we have assumed constant 

variances for each of the system variables )(tiα , 

)(tiβ , and )(tiγ  of the dynamic Poisson model. 

Under this assumption, we have observed that 
some estimated variances were very large, 
leading to imprecision of predictions. For 
example, children born during the years when 
war occurred, might be faced high risk, then the 
cohort effect become extremely large than 
children born at another time. In an attempt to 
reduce the variability in predictions, the model 
has been generalized to include non-constant 
variance, as follows. 

( )

( )

( )

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

, ~ 0, ,

, ~ 0, ,

, ~ 0, ,

i t

j t

k t

i t i t i t i t

j t j t j t j t

k t k t k t k t

N W

N W

N W

α α
α

β β
β

γ γ
γ

α α η η

β β η η

γ γ η η

−

−

−

= +

= +

= +

  
  
  

   (12) 

 
Again using non-informative priors, this led, for 

example, to estimates 
1

ˆ
βW ,

P
WW ββ
ˆ,,ˆ

2
  for the 

P  period effect variances, which were averaged 
to produce an overall estimate 

 =
= P

j j
WPW

1
ˆ1~

ββ . This latter quantity was 

then used to predict the $N+1$'st period effect, 
as 

[ ]βββ WN NjNj

~
,

~
~

~
)()1( + ,     (13) 

 
For moderately large P , βW

~  should typically be 

less than βŴ , thereby increasing the stability of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Scaled residual and scaled prediction error 
  Scaled Residual Scaled Prediction Error 

Stomach 
Man 

Dynamic Poisson model 6.62314 79.83967 

Age-Period-Cohort model 6.575341 73.35086 

Stomach 
Woman 

Dynamic Poisson model 8.740782 80.4833 

Age-Period-Cohort model 8.169002 100.3244 

Lung 
Man 

Dynamic Poisson model 2.066267 48.64581 

Age-Period-Cohort model 2.26717 234.6294 

Lung 
Woman 

Dynamic Poisson model 1.150069 49.20646 

Age-Period-Cohort model 1.12215 61.80142 
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the forecast. Indeed, a small βW
~  could be 

obtained when the number of death at a specific 
period group was increased. Table 5 shows the 
estimated variances for the fixed and 
heterogeneous variance models. 

 
Conclusion 

 
In the data sets considered, it was observed that 
the classical age-period-cohort model provided a 
better fit to past data than did the dynamic age-
period-cohort model. On the other hand, when 
the focus is on making projections, it was found 
that the classical age-period-cohort model, 
which  makes strong parametric  and  regression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

assumptions, was out performed by the dynamic 
model. Under the assumption of homogeneous 
error variances in the system equations of the 
dynamic age-period-cohort model, large 
standard errors were observed in several cases. It 
is possible that at least some of this imprecision 
is the result of natural variation in the Monte 
Carlo algorithm. Further research will focus on 
incorporating heterogeneous variances into the 
model. 

The focus has been on the dynamic 
Poisson model, but the dynamic model can be 
extended in a straightforward manner to 
incorporate generalized linear models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: The value of βW
~

 and βŴ  to each data in Japan 

  Variance For Period Variance For Cohort 

Stomach 
Man 

Homogeneous 
0.001324854 0.034891835 

βŴ  γŴ  

Heterogeneous 
0.003901684 0.02093981 

βW
~

 γW
~

 

Stomach 
Woman 

Homogeneous 
0.001282216 0.034843206 

βŴ  γŴ  

Heterogeneous 
0.003719764 0.029620221 

βW
~

 γW
~

 

Lung 
Man 

Homogeneous 
0.035637919 0.049188392 

βŴ  γŴ  

Heterogeneous 
0.031894849 0.040851123 

βW
~

 γW
~

 

Lung 
Woman 

Homogeneous 
0.049800797 0.039339103 

βŴ  γŴ  

Heterogeneous 
0.043756821 0.028132685 

βW
~

 γW
~
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Appendix 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Age 
Group 

Table 6: Stomach cancer - females, count 
5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
15-19 9 9 10 11 23 8 5 5 1 5 4 3 3 

20-24 39 43 55 65 86 63 43 21 26 10 9 15 15 

25-29 115 119 153 198 232 246 179 123 75 64 48 43 54 

30-34 242 289 389 432 380 465 431 293 180 126 98 90 93 

35-39 415 495 597 672 651 629 619 561 387 237 162 204 152 

40-44 679 784 857 857 937 874 745 693 677 448 306 330 318 

45-49 902 982 1152 1139 1194 1152 1003 870 714 831 596 641 489 

50-54 1166 1331 1398 1588 1430 1421 1296 1116 938 824 890 997 881 

55-59 1490 1675 1779 1836 1956 1658 1634 1423 1180 1072 987 1251 1272

60-64 1891 1951 2124 2217 2339 2274 2031 1903 1583 1432 1291 1533 1657

65-69 2139 2337 2366 2592 2766 2726 2579 2117 1991 1910 1638 1895 1972

70-74 1743 2111 2462 2628 2976 3009 2957 2706 2211 2340 2131 2091 2221

75-79 959 1517 1858 2036 2362 2653 2974 2864 2727 2545 2610 2247 2199

80-84 306 622 964 1076 1354 1596 2076 2388 2606 2976 2820 2123 2033

85-89 81 132 268 343 420 569 845 1301 1693 2194 2685 1557 1502

90- 9 22 45 63 74 123 202 373 585 1054 1592 1503 775 

Age 
Group 

Table 7: Lung cancer - males, count 
5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

15-19 9 5 10 6 5 1 5 1 1 5 4 5 5 

20-24 4 9 9 18 11 10 4 5 5 5 5 7 7 

25-29 6 12 17 21 18 22 23 12 17 14 10 13 14 

30-34 3 14 27 34 34 42 49 41 39 49 57 28 29 

35-39 10 19 31 68 66 80 115 157 149 102 97 101 67 

40-44 20 47 62 99 168 202 207 275 363 287 288 282 247 

45-49 43 105 174 190 226 415 450 450 577 757 635 710 627 

50-54 85 195 323 407 431 451 933 983 918 1138 1463 1444 1449

55-59 107 250 550 618 826 904 1218 1818 2020 1831 2210 2453 2578

60-64 153 362 669 1078 1249 1534 1856 2321 3655 3760 3352 3787 4310

65-69 175 398 734 1135 1742 2180 2727 3172 4165 6044 5804 4898 5772

70-74 111 306 603 935 1501 2408 3316 4228 4675 6105 8193 6549 6157

75-79 58 125 309 570 854 1636 2784 4018 5022 5703 7326 6881 6576

80-84 9 36 106 198 306 589 1340 2355 3495 4730 5445 4958 5375

85-89 0 6 17 27 63 142 342 849 1466 2206 3146 2580 2720

90- 1 0 5 3 8 15 74 153 313 660 1017 790 874 
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Age 
Group 

Table 8: Lung cancer - females, count 
5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
15-19 5 5 5 6 5 0 0 1 1 0 0 4 4 

20-24 1 5 9 10 6 0 4 5 0 5 0 6 6 

25-29 4 8 5 13 10 17 14 8 8 5 10 9 9 

30-34 6 20 31 37 34 33 43 18 27 36 30 25 26 

35-39 11 31 43 68 49 72 78 96 89 65 75 61 54 

40-44 19 50 50 88 107 98 121 151 164 169 146 147 111 

45-49 22 67 126 106 166 200 207 220 258 379 261 299 276 

50-54 46 85 139 232 211 297 350 374 425 551 667 557 542 

55-59 50 106 194 293 337 412 492 587 618 733 806 908 822 

60-64 49 120 250 356 482 545 688 843 886 1020 1069 1284 1368

65-69 49 139 251 374 506 671 932 1044 1239 1416 1601 1751 1892

70-74 44 113 203 344 483 728 1083 1353 1562 1767 2018 2239 2384

75-79 19 51 147 270 344 557 1001 1392 1811 2205 2459 2903 2894

80-84 6 16 63 109 194 277 610 1061 1382 2104 2453 3672 3113

85-89 0 5 17 27 43 117 190 480 864 1320 1989 3538 3327

90- 2 0 6 3 10 21 54 125 285 580 1096 2253 2493
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A Methodology to Improve PCI Use in Industry 
 

                            Milind A. Phadnis                                        Matthew E. Elam 
          The University of Alabama at Birmingham        Texas A&M University-Commerce 
 
 
This article presents the development of a methodology using decision trees to resolve issues in industry 
with using process capability indices (PCIs). The methodology forms the structure of a prototype decision 
support system (PDSS) for PCI selection, calculation, and interpretation. Download instructions for the 
PDSS are available at http://program.20m.com. 
 
Key words: Process capability index; decision tree; control chart; normality check; decision support 
system. 
 
 

Introduction 
 
Process capability may be defined as the ability 
of a process to achieve a certain objective. 
Process capability indices (PCIs) have been used 
for some time to provide a quantitative measure 
of this ability. Many PCIs have been developed 
in the literature for different situations 
encountered by industry. However, industry has 
not been able to achieve the full benefit from 
using PCIs for the following reasons: 
• Abuse of PCIs by violating their underlying 

statistical assumptions; 
• Lack of practical usage of multivariate PCIs 

and their interpretations; 
• Unavailability of PCIs for data limited 

(short-run) situations; 
• Shortcomings in software packages capable 

of calculating PCIs; and 
• Lack of appropriate usage of PCIs in data 

with asymmetric specifications. 
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This article details a methodology for 

resolving the above mentioned issues. It makes 
use of a top-down decision making approach to 
select the appropriate PCI(s) regarding particular 
kinds of data. It also makes use of the latest 
theory available in the statistical literature 
pertaining to the definitions and properties of 
various PCIs. The methodology was developed 
by considering the situations in which industry 
needs PCI results, determining the PCIs 
available for these situations, and determining 
the decision-making process for handling these 
situations simultaneously. 

The methodology forms the structure of 
a prototype decision support system (PDSS) 
built in order to facilitate easy usage in industry 
(Phadnis, Elam, Fonseca, Batson, & Adams, 
2005). The PDSS analyzes the process data, 
verifies the statistical assumptions necessary for 
handling different types of process data, selects 
the most appropriate PCI(s) depending on the 
process parameters, calculates the PCI(s), 
provides a practical interpretation of the PCI(s), 
and guides the user towards the source of 
corrective action needed, if any. Visual Basic 
6.0 and Microsoft Excel 2002 were used to 
design the PDSS so that it has a user-friendly 
graphical interface, portability, and ease of use 
for industry. The PDSS requires the user to enter 
only elementary characteristics of the collected 
process data, the process data itself, and the 
process's engineering specifications. Instructions 
for downloading the PDSS are available at 
http://program.20m.com. 
 



PHADNIS & ELAM 
 

589 
 

Methodology 
 
After considering the situations in which 
industry needs PCI results and studying the 
properties of the various PCIs available in the 
literature, the decision tree shown in Figure 1 
was constructed as the backbone of the complete 
structure of the methodology. This decision tree 
presents a basic overview of the formulations 
used in constructing the methodology and can be 
further expanded into various branches and sub-
branches. Thus, whenever branching is possible, 
a series of asterisks "*" is placed in the 
corresponding block to denote the same, and this 
particular block has been further expanded in 
subsequent figures in the Appendix. 

As shown in Figure 1, the constructed 
methodology is equipped to handle the 
following types of data collected by the user: 

 
• Type 1: univariate sufficient data (total 

number of observations ≥ 50), which also 
involves Appendix Figure 2; 

• Type 2: univariate short-run data (total 
number of observations < 50), which also 
involves Appendix Figure 3; and 

• Type 3: multivariate sufficient data (total 
number of observations ≥ 100), which also 
involves Appendix Figure 4. 
 

The methodology adopted for selecting and 
evaluating PCIs is different for each of the 
above mentioned data types. 
 
Type 1: Univariate Sufficient Data (≥ 50 
Observations) 

The classifications of sufficient data as 
that with at least 50 observations, and a short-
run situation as that with less than 50 
observations, are based on the fact that the 
statistical properties of the commonly used PCIs 
do not permit calculation of an index when less 
than 50 observations are available as noted by 
Deleryd & Vannman (1998). Univariate data 
may further be classified into data collected in 
subgroups and data collected as individual 
observations. Each of these cases is discussed 
below. (See Figure 1 and Appendix Figure 2.) 
 
 
 

 m Subgroups of Equal Size n 
 The data used to calculate any PCI must 
come from a stable process (i.e., a process 
governed by a single probability distribution). 
Statistical control charting with a delete and 
revise (D&R) procedure is one way to ensure 
this. In a D&R procedure, the data used to 
construct the control charts is also plotted on the 
charts to retrospectively test if the process was 
in control while the initial data was being 
obtained. Any points that plot outside the control 
limits are deleted and the remaining data is used 
to construct revised control charts. One of the 
several variations of the D&R procedure repeats 
this process until no points plot beyond the 
control limits, at which time the remaining data 
would be considered stable or in control. 

For 2 ≤ n ≤ 10, the usual X  and R 
control charts (Montgomery, 2001) are used to 
perform control charting in order to establish 
control of the data. For n > 10, the usual X  and 
S charts are used to perform control charting as 
the range method for estimating σ  loses 
statistical efficiency for moderate to large 
subgroup sizes, as mentioned in Montgomery 
(2001). 

Once the above procedure is completed, 
the remaining data is subjected to a normality 
check via the Kolmogorov-Smirnov (K-S) test, 
the procedure for which can be found in any 
standard statistical text, such as Ebeling (2000). 
If the normality assumption is satisfied, the 
decision tree approach makes use of the PCIs as 
shown in Figure 1 for this situation in order to 
evaluate process capability. PCIs like Cp, Cpk, 
Cpm (Kotz & Lovelace, 1998), and Cp(0,4) 
(Vannman, 1993) are used when the target value 
is equal to the midpoint of the specifications 
(target = midpoint). These values are compared 
to Cjkp (Kotz & Lovelace, 1998) if doubt of 
slight skewness exists in the data. If not, Cp, Cpk, 
and Cpm are compared to Cp (0,4). If the target 
value is not equal to the midpoint of the 
specifications, PCIs such as Cpmk (Kotz & 
Lovelace, 1998), pmC′ (Perakis & Xekalaki, 

2003), and Cpa (0,4) (Vannman, 1997) are used 
to evaluate process capability.  
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Figure 1: Main Decision Tree 
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If the normality assumption is not 
satisfied, non-normal PCIs such as Cθ , Cs , Cpc , 
CW

pm, and Cpλ (Kotz & Lovelace, 1998) are used 
to evaluate  process capability. Because there is 
no evidence in the statistical literature as to 
which of these indices is better for a particular 
situation, the values of these indices are 
compared with each other as per the 
methodology. 
 
  m Subgroups of Variable Sizes with 
Maximum Subgroup Size n 

In this case, the usual X  and S control 
charts for variable subgroup sizes (Montgomery, 
2001) are used to perform control charting in 
order to establish control of the data. Once the 
process data is stable, the methodology proceeds 
with normality, symmetric specification, and 
skewness checks as described previously. The 
appropriate PCI(s) are then selected. 
 
 m Individual Observations 

In this case, the usual Individuals (X) 
and Moving Range (MR) control charts 
(Montgomery, 2001) are used in order to 
establish control of the data. The moving range 
used here is defined by the equation: 

 

1−−= iii xxMR                         (1) 

 
where ix  and 1−ix  are two successive 
observations collected as individual process 
data. 

The PCI selection procedures for the 
data remaining after the D&R procedure are 
performed in the same manner discussed above. 
However, it is necessary to ascertain that 
individual observations obtained are normally 
distributed even before control limits for these 
charts are calculated, because even for moderate 
departures from normality the use of the X and 
MR charts is not appropriate. Hence, if the data 
collected is not normally distributed, it should be 
transformed to another variable that is 
approximately normally distributed (this was not 
an issue in previous descriptions because the 
Central Limit Theorem could be invoked 
subgrouped data). 

If the normality assumption is satisfied, 
the methodology suggests the continuation of 

the PCI selection procedure as mentioned 
earlier. However, if the normality assumption is 
not satisfied, the data should undergo a Box-Cox 
transformation of the type in equation: 

 

( ) λ−= λ 1XY                        (2) 
 

where the optimal value of λ  is determined by 
an iterative procedure using the following steps 
as mentioned by Johnson & Wichern (2003): 
1. Construct a normal probability plot of the 

individual observations and determine the 
correlation coefficient, r. 

2. For different values of λ  ranging from -2 to 
2, determine the value of r. Determine rmax, 
the maximum value of r among all the 
values calculated. 

3. The value of λ  which gives rmax is used for 
the transformation in accordance with the 
following values of λ : 2 (square 
transformation), 1 (use the original data), 1/2 
(square root transformation), 0 (logarithm 
transformation), -1/2 (reciprocal square root 
transformation), and -1 (reciprocal 
transformation). 

The transformed data is again checked for 
normality. If the transformed data is found to be 
normally distributed, the PCI selection 
procedure is conducted using the methods 
explained previously. However, if that is not the 
case, the data is considered to be strongly non-
normal. As a result, control charting cannot be 
done and PCIs cannot be selected. 
 
Type 2: Univariate Short Run Data (< 50 
Observations) 

In this case, the data may have been 
collected either in m subgroups each of size n or 
as individual observations. The following 
procedure is adopted for evaluating PCIs in this 
situation. (See Figure 1 and Appendix Figure 3.) 
 
 m Subgroups of Equal Size n 

The control charting procedure adopted 
in this case for establishing control of the data is 
the short run X  and S control charts from Elam 
& Case (2005a, 2005b). Once this procedure is 
completed, the remaining data is checked for 
normality via the Kolmogorov-Smirnov (K-S) 
test and the correlation coefficient test (Johnson 
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& Wichern, 2003) for normality at the specified 
level of significance. The underlying reason for 
using both tests is that, for a small number of 
observations, the correlation coefficient test is 
considered to be a very powerful test for 
normality. If the remaining data are found to be 
normally distributed, short-run PCIs such as Csp, 
Cspk, and Cspm are used to evaluate process 
capability as mentioned by Balamurali (2003). 
According to this procedure, the remaining data 
are bootstrapped into 1,000 resamples, each of 
which are equal to the total number of 
observations in the remaining data. These are 
then used to calculate the short-run PCIs, and the 
standard bootstrap method is used to construct a 
95% confidence interval for each index. 

If the remaining data is found to be non-
normal at the specified level of significance, the 
Box-Cox transformation is used to transform the 
original non-normal data to normal data. If the 
transformation is successful (the transformed 
data is subjected to the K-S test and the 
correlation coefficient test for normality), short-
run PCIs as discussed above are evaluated. If the 
transformation is unsuccessful, the short-run 
PCIs are still evaluated. It should be noted, 
however, that the results obtained from PCI 
calculations may be inaccurate, as for a non-
normal process, the coverage percentage points 
for 95% confidence limits might indicate a high 
proportion of values that are significantly 
different from the expected value of the index at 
the specified level of significance. 
 
 m Individual Observations 

The control charting procedure adopted 
in this case for establishing control of the data is 
the short run X and MR control charts from 
Elam & Case (2008, 2006). Once this procedure 
is completed, the remaining data is subjected to 
the same procedures as related earlier in the m 
Individual Observations, starting with the 
normality check. The short-run PCIs discussed 
previously are used to evaluate process 
capability. 
 
Type 3. Multivariate Sufficient Data 
(Observations ≥ 50) (See Figure 1 and Appendix 
Figure 4.) 
 

 m Subgroups of Size n 
In this case, the usual Hotelling T2 

control chart (Montgomery, 2001) is used along 
with the usual bivariate control chart for 
dispersion (Johnson & Wichern, 2003) to 
conduct control charting for establishing control 
of the data. The remaining data are subjected to 
a bivariate normality check because the PCIs to 
be calculated are strictly based on the 
assumption of bivariate normality. This bivariate 
normality check is performed by: 

 

( ) ( ) )5.0(2
2

1/ χμμ ≤−− − XSX            (3) 
 

The average μ  and variance-covariance matrix 

S  are for the remaining data grouped together. 
If approximately 50% of the remaining data 
grouped together satisfies equation (3) the data 
is considered to be bivariate normal as per 
Johnson & Wichern (2003). 

If the bivariate normality assumption is 
satisfied, the bivariate PCIs CpM and MCpm (for 
bivariate process data with asymmetric 
specifications) and MCpm (for bivariate process 
data with symmetric specifications) are 
evaluated as shown in Wang, Hubele, Lawrence, 
Miskulin & Shahriari (2000). If the bivariate 
normality assumption is not satisfied, the Box-
Cox transformation of the data is performed. 
The optimal value of λ  is the one that 
maximizes the following equation: 

( ) ( )  2( ) ( )

1

( ) 2 ln 1
n

j j
j

l n n x xλ λλ
=

 
 = − − +  

 


( ) [ ]
=

−λ
n

j
jxn

1

ln1                                 (4) 

where n  is the total number of filtered 

observations, ( ) λλλ 1)( −= xx  if 0≠λ , and 

)ln()( xx =λ  if 0=λ . If, after the above 
procedure, bivariate normality is not satisfied, 
then it is not possible to calculate a bivariate 
PCI. 
 
 m Individual Observations 

In the case of individual observations of 
bivariate data, the usual T2 control chart for 
individual observations (Johnson & Wichern, 
2003) is used to establish control of the data. 
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Once this has been accomplished, the bivariate 
data is subject to a bivariate normality check in 
accordance with the procedure discussed herein. 
The PCI selection procedure continues similarly 
to the case for bivariate data collected in 
subgroups. 
 

Results and Conclusion 
 
The methodology used in formulating a decision 
tree approach in order to aid industry 
practitioners regarding the selection of a PCI has 
been discussed; the main advantage of this 
methodology that it offers a structured approach 
for programming the same into a decision 
support system for easy usage in industry. By 
incorporating such a methodology into a 
computer program with the capability to select, 
calculate, and interpret the appropriate PCI(s) 
for the situation under consideration, the 
problems industry experiences with PCIs, as 
noted in the Introduction, are alleviated. As all 
statistical assumptions have been taken into 
consideration while developing this 
methodology, a robust structure to the 
application of PCI usage in industry has been 
accomplished. 
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Figure 2: Decision Tree for Univariate Data 
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Figure 3: Decision Tree for the Short-Run Situation 
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Figure 4: Decision Tree for Bivariate Data 
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The Multinomial Regression Modeling of the 
Cause-of-Death Mortality of the Oldest Old in the U.S. 
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The statistical modeling of the causes of death of the oldest old (persons aged 80 and over) in the U.S. in 
2001 was conducted in this article. Data were analyzed using a multinomial logistic regression model 
(MNLM) because multiple causes of death are coded on death certificates and the codes are nominal. The 
percentage distribution of the 10 major causes of death among the oldest old was first examined; we next 
estimated a multinomial logistic regression equation to predict the likelihood of elders dying of one of the 
causes of death compared to dying of an “other cause.” The independent variables used in the equation 
were age, sex, race, Hispanic origin, marital status, education, and metropolitan/non-metropolitan 
residence. Our analysis provides insights into the cause of death structure and dynamics of the oldest old 
in the U.S., demonstrates that MNLM is an appropriate statistical model when the dependent variable has 
nominal outcomes, and shows the statistical interpretation for complex results provided by MNLM. 
 
Key words: multinomial regression, nominal outcome, logit, log odds, cause of death, mortality, oldest 
old, elderly, demography. 
 
 

Introduction 
 
Demographers use multinomial logistic 
regression models when a dependent variable 
has more than two nominal categories. The 
choice is between a logistic model and a probit 
model, because the nominal categories of a 
variable are assumed to be unordered and more 
than two. If the outcome is dichotomous, logistic 
models are preferred. If the outcome is ordered, 
ordered or probit models are most appropriate 
(Long & Freese, 2003). 

Background information about the 
causes of death of the U.S. is helpful in 
understanding the logic of the data analysis. The 
National Center for Health Statistics specifies 
the causes of death based on ICD-10 system 
(the10th version of International Classification of 
Disease System). The causes are numerous 
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and nominal. Although there is a ranking system 
for the causes of the death, the rank does not 
mean a certain cause is superior over another; 
they are ranked based on incidence alone. One 
cannot say that a death due to a certain disease is 
more meaningful than the others. This article 
examines the top 10 causes of death for persons 
aged 80 and older in the U.S., as well as the 
likelihood of dying of a particular cause versus 
other causes. 

The best-fitting statistical model for 
handling a nominal outcome is the multinomial 
logistic regression model (MNLM). It is not 
always easy to use MNLM, because MNLM has 
many parameters and the dependent variables 
have more than two categories. In addition, these 
parameters sometimes lead to complex results, 
which are often difficult to interpret. Poston & 
Min (2004) employed multinomial logit models 
for South Korean and American decedents and 
found that various sociodemographic factors 
influenced dying of specific causes of death 
compared to others.  

This article focuses mainly on 
methodological issues, namely, the 
appropriateness of multinomial logit models for 
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studying causes of death, and the interpretation 
of the results of such investigations. Thus, the 
goals were to examine the likelihood of dying of 
a certain cause versus other causes for the oldest 
old (age 80 years and over) in the United States 
and to offer an easily understandable 
interpretation of MNLM. This is a particularly 
important concern, given the expected increases 
in the numbers of persons aged 80 and over in 
the U.S. in the next few decades. In the year 
2000, the U.S. had a population of over 13 
million oldest old people, 1.5% of the total U.S. 
population (Hetzel & Smith, 2001). Projections 
are for 24 million oldest old population in 2050, 
over 6% of the total U.S. population (Census 
Bureau, 2000a; 2000b). 

Given such tremendous increases 
predicted for the population of the oldest old in 
the next few decades, an analysis of cause-of-
death mortality in the current American oldest 
old population is particularly relevant. A study 
of the dynamics of current causes of death 
should suggest patterns of mortality that may be 
anticipated in the U.S. as the numbers of oldest 
old increase by 200% over the next five decades. 
 

Methodology 
 
The data used in this article were obtained from 
death certificates filed in the U.S. The data were 
taken from 963,768 death certificates filed in 
2001 for decedents age 80 and over (National 
Center for Health Statistics, 2003). The top 10 
major causes of death for the oldest old 
Americans were heart disease; malignant 
neoplasms; cerebrovascular disease; chronic 
respiratory disease; Alzheimer’s; influenza and 
pneumonia; diabetes; nephritis, nephrotic 
syndrome, and nephrosis; accidents; and 
septicemia. 

Estimation from a multinomial logistic 
regression, which predicts the likelihood of 
dying among oldest old American decedents of 
one of the major causes of death, compared to 
dying of an other cause, provides the main focus 
of this research. The independent variables used 
in the multinomial logistic equations were age, 
sex, race, Hispanic origin, marital status, 
education, and metropolitan/non-metropolitan 
residence. 

With respect to the statistical method 
used herein, consider as an example only three 
major causes of death, and a residual category of 
all other causes. Thus, think of the multinomial 
logistic regression equation as providing an 
estimate for each of the independent variables 
and a set of four logit coefficients corresponding 
to each of the four categories of the dependent 
variable as follows (Stata Corporation, 2003, 
Vol. 2, p. 506-507): 

Pr(Y=1) = 
(1)

(1) (2) (3) (4)

Xb

Xb Xb Xb Xb
e

e e e e+ + +
 (1) 
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(2)

(1) (2) (3) (4)

Xb

Xb Xb Xb Xb
e

e e e e+ + +
 (2) 

 

Pr(Y=3) = 

(3)

(1) (2) (3) (4)

Xb

Xb Xb Xb Xb
e

e e e e+ + +
 (3) 

 

Pr(Y=4) = 

(4)

(1) (2) (3) (4)

Xb

Xb Xb Xb Xb
e

e e e e+ + +
 (4) 

 
The multinomial model cannot be 

identified unless one of the logits in each set is 
set to zero. Strictly speaking, it does not matter 
which one is set to zero. If we set b(1) to zero, 
then the remaining logit coefficients, b(2), b(3) 
and b(4), will represent the change relative to the 
y=1 category. In the example of cause-of-death 
mortality, b(1) will be the logit referring to deaths 
due to all other causes, and b(2), b(3) and b(4) will 
refer to deaths due to the three main causes 
being analyzed. Regarding the logit set to zero, 
its value becomes 1 because e0 = 1. 

If b(1) is set to zero, the equations for the 
four probabilities become: 
 

Pr(y=1) = 
(2) (3) (4)

1

1 Xb Xb Xbe e e+ + +
 (5) 

 

Pr(Y=2) = 
(2)

(2) (3) (4)1

Xb

Xb Xb Xb

e
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 (6) 
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Pr(Y=3) = 
(3)

(2) (3) (4)1

Xb

Xb Xb Xb

e
e e e+ + +

 (7) 

 

Pr(Y=4) = 
(4)

(2) (3) (4)1

Xb

Xb Xb Xb

e
e e e+ + +

 (8) 

 
In the actual multinomial logistic 

regression model, the top 10 causes of death and 
an 11th residual cause, i.e., dying of other causes, 
were used. Thus for each of the independent 
variables, 10 logits were formed from the 
contrasts of 10 non-redundant category pairs of 
the dependent variable modeling the logarithmic 
odds of dying of one of the 10 major causes of 
death versus dying of other causes. The 
estimated parameters are logit coefficients 
indicating the independent log odds of each 
independent variable being in the dependent 
variable category of interest, versus being in the 
base (or contrast) category of the dependent 
variable. The multinomial model was estimated 
using maximum likelihood procedures.  

Separate logit coefficients were 
estimated for each independent variable for each 
of the dependent variable categories, excluding 
the outcome reference category. Thus the total 
number of parameters to be estimated was K × (J 
-1), where K is the number of independent 
variables and J is the number of categories in the 
dependent variable. As shown below, there were 
14 independent variables and the dependent 
variable consisted of 10 specific causes of death 
and a residual category of other causes. Thus the 
multinomial logistic equation estimated 14 × 
(10-1) logits, for a total of 126 coefficients. The 
“biggest challenge in using the multinomial 
logistic regression model was that the model 
includes a lot of parameters, and it was easy to 
be overwhelmed by the complexity of the 
results” (Long & Freese, 2003, p. 189). 

 
Results 

 
In 2001, there were 963,768 death certificates 
filed for Americans age 80 and older in the U.S. 
As Table 1 shows, around 82% died from 10 
main causes of death, as follows: heart disease, 
36.7%; malignant neoplasms, 14.9%; 
cerebrovascular disease, 9.5%; chronic 

respiratory disease, 5.0%; Alzheimer’s, 4.2%; 
influenza and pneumonia, 4.0%; diabetes, 2.5%; 
nephritis, nephrotic syndrome, and nephrosis, 
1.9%; accidents, 1.8%, and septicemia, 1.4%. 
Around 18% of American oldest old decedents 
died of other causes. 

The U.S. has low mortality levels in the 
general population as well as among the oldest 
old.  The percentage of elderly decedents in 
2001 was 80% of total deaths because America 
has completed the epidemiological transition 
(Omran, 1971; 1981). Omran’s epidemiological 
transition describes and explains variations in 
countries’ experiences of mortality changes 
through time. For example, at the first stage, 
mortality is high and fluctuating, precluding 
sustained population growth. At the second 
stage, mortality declines progressively, as 
epidemics decrease in frequency and magnitude, 
and life expectancy increases. As the gap 
between birth and death rates widens, rapid 
population growth ensues. In the third stage, 
mortality continues to decline and eventually 
approaches stability. Thus, mortality is low, life 
expectancy is high (over 70 years for both males 
and females), and deaths mainly occur from 
degenerative and man-made diseases (Olshansky 
& Ault, 1986). 
 
Multinomial Logistic Regression Results  

We have shown that in 2001 there were 
10 principal causes of death responsible for 
more than 82% of the deaths of U.S. oldest old. 
The remaining 18% of the oldest old decedents 
died for some other reason, treated here as a 
residual category of other causes. 

Seven major classes of variables were 
used to predict cause-of-death mortality. They 
are age, sex, race, Hispanic origin, marital 
status, education and metro/non-metropolitan 
residence. From these seven classes of 
independent variables, we have developed 14 
dummy variables, which were scored 1 if yes, as 
follows: 1) Age 90-99, and 2) Age 100+ (with 
Age 80-89 used as the reference variable); 3) 
Female; 4) Whites; and 5) Blacks (with Other 
races used as the reference group); 6) Hispanic 
origin; 7) Married, 8) Divorced, and 9) 
Widowed (with Never Married used as the 
reference variable); 10) Elementary School, 11) 
Junior High School, 12) High School, and 13)  
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College or More (with Illiterate used as the 
reference variable); and 14) Metropolitan 
Residence. These 14 dummy variables are the 
explanatory (X) variables used in the 
multinomial logistic regression. 

In Table 2 frequency distributions for 
these 14 independent variables for the 963,768 
American oldest old who died in 2001 are 
presented. The majority of these decedents were 
aged 80-89 (almost 69%). Almost thirty percent 
were aged 90-99, and over 1% were aged 100 
and over. 

Almost two thirds were females (62%). 
Whites were the majority among the American 
oldest old (92%). Almost 7% were African 
Americans. Only 1.4% of oldest old Americans 
were other races. The majority of the oldest old 
Americans were of non-Hispanic origin (97%). 
According to Rogers et al. (2000), non-Hispanic 
whites have lower morality risks than other 
groups, except Asian Americans. Asian 
American mortality is generally lower than that 
of non-Hispanic whites. Young Hispanic adults 
also have higher odds of mortality compared to 
non-Hispanic whites. African Americans suffer 
from the highest mortality risks compared to the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
other groups. Widowed is the leading category 
in these decedents’ marital status (63%), and 
married is next (27%). Almost 5% of the oldest 
old American decedents were divorced, and 
another 5% were never married. Regarding 
education, less than 1% was illiterate and over 
two thirds had high school or more education.  

Most of these American oldest old lived 
in metropolitan areas at the time of death (76%). 
In the multinomial logistic regression model, 
therefore, 10 logits (one for each of the 
independent variables) are estimated for each of 
the 10 causes of death, modeling the log odds of 
dying of a major cause versus dying of other 
causes. Each logit coefficient will represent the 
independent log odds of the independent 
variable of being in the dependent variable 
category of interest, versus being in the base (or 
contrast) category of the dependent variable. In 
the multinomial logistic equation we will 
estimate 14 × (10-1) logits, for a total of 126 
coefficients. 

Table 3 presents the results of the 
multinomial logistic regression analysis for 
America’s oldest old who died in 2001. Ten 
logit coefficients were estimated for each of the 

Table 1: Top 10 Causes of Death among the Oldest Old (80+): U.S., 2001 

Cause of Death Number of Decedents Percent 
Heart Disease 353,315 36.66 

Malignant Neoplasms 143,915 14.93 

Cerebrovascular Disease 91,848 9.53 

Chronic Respiratory Disease 48,419 5.02 

Alzheimer’s 40,381 4.19 

Influenza & Pneumonia 38,254 3.97 

Diabetes 23,679 2.46 

Nephritis, Nephrotic Syndrome & Nephrosis 18,200 1.89 

Accidents 17,559 1.82 

Septicemia 13,054 1.35 

Other Causes 175,144 18.17 

TOTAL 963,768 100.00 
Note: National Center for Health Statistics, 2001 Multiple Cause-of-Death File, NCHS CD-
ROM, Series 20, No. 10H. Hyattsville, Maryland: National Center for Health Statistics, 2003. 
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10 principal causes of death. Each logit 
coefficient represents the independent log odds 
of the independent variable of being in the  
 

Table 2: Frequency Distributions for 
Explanatory Variables: The Oldest Old (80+) 

Decedents, U.S., 2001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
particular cause-of-death category, versus being 
in the contrast category of the dependent 
variable of other causes. If no relationship exists, 
the coefficient would be 0. Negative coefficients 
indicate a negative association, that is, negative 

chances or log odds of being in the dependent 
variable category of interest, and positive 
coefficients indicate positive chances. 

The second column of Table 3 presents 
the results of the log odds of dying of malignant 
neoplasms versus dying of other causes (the 
residual category). Malignant neoplasms were 
the second major cause of death among 
American oldest old who died in 2001, with 
143,915 deaths from this cause. Table 1 also 
shows that the residual category of other causes 
was the cause of death of 175,144 American 
oldest old in 2001. 

Ten independent variables were used to 
estimate the log odds of dying of malignant 
neoplasms versus dying of other causes. The 
first logit coefficient shown in the second 
column of Table 3 is -0.73 for age 90-99. This 
means that for decedents who were age 90-99 
compared to those who were 80-89, there is a 
decrease of 0.73 in the log odds of dying of 
malignant neoplasms compared to dying of other 
causes. The second logit coefficient is -1.65; this 
means that for American decedents age 100 or 
more, compared to those who were 80-89, there 
is a decrease of 1.65 in their log odds of dying of 
malignant neoplasms compared to dying of other 
causes. Hence, the older the decedent, the less 
the log odds that the person died of malignant 
neoplasms compared to other causes. Each logit 
coefficient reflects the effect of the particular 
independent variable on the dependent variable, 
controlling for the effects on the dependent 
variable of the other independent variables in the 
multinomial logistic regression equation. Thus, 
the effects of age on malignant neoplasms 
mortality are independent of the effects on 
malignant neoplasms of sex, marital status, race, 
Hispanic origin, educational attainment, and 
residence. 

The estimated parameter effects are 
interpreted straightforwardly when converted 
into odds ratios, which is done by 
exponentiating the coefficients. Odds ratios in 
the multinomial logistic regression equation are 
typically referred to as relative risk ratios. This 
is the relative risk, or the odds, of being in the 
dependent variable category of interest and not 
being in the contrast category of the dependent 
variable for the dummy independent variable 

 

Variable Frequency Percent 

Age 

80-89 661,738 68.66 

90-99 285,185 29.59 

100+ 16,845 1.75 

TOTAL 963,768 100.00 

Sex 
Male 362,292 37.59 

Female 601,476 62.41 

TOTAL 963,768 100.00 

Race 

White 883,639 91.69 

Black 66,393 6.89 

Others 13,736 1.43 

TOTAL 963,768 100.00 

Hispanic 
Hispanic 27,969 2.90 

Non-Hispanic 935,799 97.10 

TOTAL 963,768 100.00 

Marital 
Status 

Never Married 50,273 5.22 

Married 259,311 26.91 

Divorced 44,857 4.65 

Widowed 609,327 63.22 

TOTAL 963,768 100.00 

Education 

Illiterate 6,384 0.66 

Elementary 74,942 7.78 

Junior High 198,781 20.63 

High 455,744 47.29 

College+ 227,917 23.65 

TOTAL 963,768 100.00 

Residence 
Non-Metro 230,239 23.89 

Metro 733,529 76.11 

TOTAL 963,768 100.00 
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versus the reference category (Stata Corporation, 
2003, p. 510-511). 

The odds ratio for Age 90-99 is e-0.73 = 
0.48, which means that the odds of persons aged 
90-99, compared to those age 80-89, dying of 
malignant neoplasms versus dying of other 
causes may be multiplied by 0.48, which means 
they decrease. The percentage amount of change 
may be determined in the odds by subtracting 1 
from the odds ratio and multiplying the 
difference by 100: (0.48 -1) * 100 = -0.52. This 
indicates that the odds of dying of malignant 
neoplasms versus dying of other causes are 52% 
less for persons aged 90-99 compared to those 
aged 80-89. In contrast, the odds of dying of 
malignant neoplasms   versus  dying  of  other  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
causes are 81% less for persons aged 100 and 
over compared to those aged 80-89, that is,  
 

(e-1.65 -1) * 100 = -0.81. 
 
Logits on Each of the 10 Causes of Death 

The pattern of the effects shown for 
malignant neoplasms is one in which the log 
odds of 90-99 year-old decedents dying of 
malignant neoplasms versus dying of other 
causes are less than those of 80-89 year-old 
decedents, and the log odds of 100+ year-old 
decedents compared to those of 80-89 year-old 
decedents are more negative.  

This pattern of increasingly negative log 
odds for decedents 100 years or older compared 

Table 3: Logit Coefficients from Multinomial Logistic Regression of Dying of 1 of 11 Causes vs. Dying 
of other causes, on Selected Social and Demographic Factors: Oldest Old Decedents, U.S., 2001 

Independent 
Variables 

Cause of Death 
1 2 3 4 5 

Heart Disease 
Malignant 
Neoplasms 

Cerebrovascular 
Disease 

Chronic 
Respiratory 

Disease 
Alzheimer’s 

Age 80-89 Reference Reference Reference Reference Reference 
Age 90-99 0.03*** -0.73*** -0.06*** -0.63*** 0.26*** 
Age 100+ -0.00 -1.65*** -0.43*** -1.25*** 0.43*** 

Female -0.08*** -0.33*** 0.22*** -0.38*** -0.23*** 
Other races Reference Reference Reference Reference Reference 

White -0.01 -0.14*** -0.37*** 0.10* -0.50*** 
Black 0.06* 0.10** -0.26*** -0.41*** -0.55*** 

Hispanic 0.10*** 0.06* 0.01 -0.24*** 0.27*** 
Never Married Reference Reference Reference Reference Reference 

Married 0.01 0.31*** 0.21*** 0.08** -0.22*** 
Divorced 0.01 0.17*** 0.12*** 0.45*** -0.05 
Widowed 0.04** 0.14*** 0.15*** 0.22*** -0.10*** 
Illiterate Reference Reference Reference Reference Reference 

Elementary 0.08* 0.17*** -0.00 0.03 -0.06 
Junior High 0.07* 0.19*** 0.02 -0.04 -0.07 
High School 0.05 0.25*** -0.02 -0.00 -0.10 

College or More -0.05 0.24*** 0.03 -0.19** -0.12 
Metro Residence 0.03*** 0.03** -0.08*** 0.01 -0.03* 

Intercept 0.65*** -0.12*** -0.51*** -1.08*** -0.75*** 

N 353,315 143,925 91,848 48,419 40,381 
*p < .05; ** p < .01; ***p < .001; Reference group is dying of other causes (N = 175,144) 
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to 80-89 year-old decedents over the log odds of 
90-99 year-old decedents compared to 80-89 
year-old decedents is found in most of the other 
major causes of death except heart disease, 
Alzheimer’s, and diabetes. For instance, the logit 
coefficients for 90-99 and 100+ year-old 
decedents for cerebrovascular disease are -0.06 
and -0.43; chronic respiratory disease, -0.63 and 
1.25; influenza and pneumonia, -0.57 and -1.33; 
nephritis, nephrotic syndrome and nephrosis -
0.11 and -0.40; accidents -0.10 and -0.27; and 
for  septicemia  -0.21 and  -0.67, respectively.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, this association does not hold for heart 
disease, Alzheimer’s, and diabetes. Alzheimer’s 
has a positive association with increasing age.  

Sex was a dummy variable labeled 
female (female = 1, male = 0). The logit 
coefficient for female for malignant neoplasms 
is -0.33. Exponentiating the logit coefficient 
transforms it into an odds ratio; that is, e-0.33 = 
0.72. This means that the odds of females are 
28% lower than the odds of males of dying of 
malignant neoplasms compared to dying of other 
causes; that is, (e-0.33-1) × 100 = -28. These 
negative odds of females, compared to males, 

Table 3 Continued. Logit Coefficients from Multinomial Logistic Regression of Dying of 1 
of 11 Causes vs. Dying of other causes, on Selected Social and Demographic Factors: 

Oldest Old Decedents, U.S., 2001 

Independent 
Variables 

Cause of Death 
6 7 8 9 10 

Influenza & 
Pneumonia 

Diabetes 

Nephritis, 
Nephrotic 

Syndrome & 
Nephrosis 

Accidents Septicemia 

Age 80-89 Reference Reference Reference Reference Reference 
Age 90-99 -0.57*** 0.14*** -0.11*** -0.10*** -0.21*** 
Age 100+ -1.33*** -0.20*** -0.40*** -0.27*** -0.67*** 

Female 0.02 0.47*** -0.36*** -0.28*** -0.08*** 
Other races Reference Reference Reference Reference Reference 

White -0.49*** 0.53*** -0.19** -0.28*** 0.20* 
Black 0.14** 0.29*** 0.38*** -0.53*** 0.86*** 

Hispanic 0.74*** -0.22*** 0.11* -0.06 0.07 
Never Married Reference Reference Reference Reference Reference 

Married 0.23*** 0.37*** 0.04 -0.05 -0.19*** 
Divorced 0.18*** 0.16*** 0.01 -0.07 -0.13* 
Widowed 0.25*** 0.17*** 0.06 -0.07* -0.14*** 
Illiterate Reference Reference Reference Reference Reference 

Elementary 0.00 0.14 0.01 0.21 -0.01 
Junior High -0.03 0.17* 0.02 0.26* -0.03 
High School -0.18* 0.20* -0.08 0.27* -0.06 

College or More -0.39*** 0.28** -0.28** 0.33** -0.25* 
Metro Residence -0.14*** -0.00 -0.13*** -0.25*** 0.10*** 

Intercept -1.40*** -2.75*** -1.72*** -1.83*** -2.57*** 

N 38,254 23,679 18,200 17,559 13,054 

Model chi-square (df) = 39905.58*** (140); Pseudo R2 = .01 

*p < .05; **p < .01; ***p < .001; Reference group is Dying of other causes (N = 175,144) 
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are also found for heart disease; chronic 
respiratory disease; Alzheimer’s; nephritis, 
nephrotic syndrome, and nephrosis; accidents; 
and septicemia. For the remaining causes of 
death, the odds of a female compared to a male 
dying of the specified cause versus dying of 
other causes are more. There is no statistically 
significant relationship for the cause of influenza 
and pneumonia. 

Race was comprised of two dummy 
variables (White and Black), with the other races 
category used as the reference category. The 
logit coefficient for whites for malignant 
neoplasms is -0.14. Exponentiating the logit 
coefficient transforms it into an odds ratio; that 
is, e-0.14 = 0.87. This means that the odds of 
whites are 13% lower than the odds of other 
races of dying of malignant neoplasms 
compared to dying of other causes, that is, (e-0.14-
1) × 100 = -13. These negative odds of whites, 
compared to other races are also found for 
cerebrovascular disease; Alzheimer’s; influenza 
and pneumonia; nephritis, nephritic syndrome, 
and nephrosis; and accidents. For the remaining 
causes of death, except for heart disease, the 
odds of whites compared to other races of dying 
of the specified cause versus dying of other 
causes are more. There is no statistically 
significant relationship for this one cause of 
heart disease. The logit coefficient for blacks for 
malignant neoplasms is 0.10. Exponentiating the 
logit coefficient transforms it into an odds ratio, 
that is, e0.10 = 1.11. This means that the odds of 
blacks are 11% higher than the odds of other 
races of dying of malignant neoplasms 
compared to dying of other causes, that is, (e0.10-
1) × 100 = .11. We find these positive odds of 
blacks, compared to other races for heart 
disease; influenza and pneumonia; diabetes, 
nephritis, nephrotic syndrome, and nephrosis; 
and septicemia. For the remaining causes of 
death, the odds of blacks compared to other 
races of dying of the specified cause versus 
dying of other causes are less.  

The Hispanic origin dummy variable 
was labeled Hispanic (Hispanic = 1, non-
Hispanic = 0). The logit coefficient for Hispanic 
origin for malignant neoplasms is 0.06. 
Exponentiating the logit coefficient transforms it 
into an odds ratio, that is, e0.06 = 1.06. This 
means that the odds for Hispanic origin are 6% 

higher than the odds for non-Hispanics dying of 
malignant neoplasms compared to dying of other 
causes, that is, (e.06-1) × 100 = 6. These positive 
odds for Hispanic origin, compared to non-
Hispanic origin, are also found for heart disease; 
Alzheimer’s; influenza and pneumonia; and 
nephritis, nephrotic syndrome, and nephrosis, 
accidents. For the remaining causes of death, 
except for cerebrovascular disease, accidents, 
and septicemia, the odds of Hispanics compared 
to non-Hispanics dying of the specified cause 
versus dying of other causes are less. There is no 
statistically significant relationship for 
cerebrovascular disease and accidents. 

Regarding marital status, 6 of 10 causes 
of death with the marital status variable had 
significant relationships. The logit coefficient 
for married for malignant neoplasms is 0.31. 
Exponentiating the logit coefficient to an odds 
ratio, equals e0.31 = 1.36. This means that the 
odds of those who were married of dying of 
malignant neoplasms compared to dying of other 
causes, are 36% higher than the odds of those 
who never married; that is, (e0.31-1) × 100 = 
0.36. 

These positive associations are also 
found for cerebrovascular disease, chronic 
respiratory disease, influenza and pneumonia, 
and diabetes. Only Alzheimer’s and septicemia 
show negative associations. The other remaining 
causes of death have no statistical relationships. 
This positive relationship between having been 
married and the odds of dying of malignant 
neoplasms versus dying of other causes are also 
similar to those who were divorced and 
widowed. The odds of those who were divorced 
compared to those who never married of dying 
of the specified cause versus dying of other 
causes are positive and significant for malignant 
neoplasms, cerebrovascular disease, chronic 
respiratory disease, influenza and pneumonia, 
and diabetes. 

Only septicemia has a negative 
relationship. The other remaining causes of 
death have no significant relationships. The odds 
of those widowed compared to those never 
married of dying of the specified cause versus 
dying of other causes are positive and significant 
for heart disease, malignant neoplasms, 
cerebrovascular disease, chronic respiratory 
disease, influenza and pneumonia, and diabetes. 
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Alzheimer’s, accidents, and septicemia have 
negative associations. The other remaining 
causes of death have no statistical relationships.  

Education was comprised of four 
dummy variables (elementary school, junior 
high school, high school, college or more), with 
the illiterate category used as the reference 
category. Education is the least important 
variable. Only malignant neoplasms has positive 
and significant relationships for all education 
categories. However, the highest education 
category does not show higher log odds than 
high school education. All the other causes of 
death, other than malignant neoplasms, are 
either not statistically significant, or only one or 
two are significant. 

The final explanatory variable pertains 
to metropolitan/non-metropolitan residence 
(scored 1 if the person was a metropolitan 
resident at the time of death, and 0 if a non-
metropolitan resident). The logit coefficient for 
this variable and the likelihood of dying of 
malignant neoplasms was 0.03. This means that 
if the oldest old decedent was residing in a 
metropolitan area at the time of death, he/she 
had odds of dying of malignant neoplasms 
versus dying of other causes that are 3% more 
than those of a decedent who was living in a 
non-metropolitan area at the time of death, that 
is (e0.03-1) * 100 = 3. This kind of positive 
association is also found for heart disease and 
septicemia. Five causes of death also have 
negative and statistically significant logits 
(cerebrovascular disease; Alzheimer’s; influenza 
and pneumonia; nephritis, nephrotic syndrome, 
and nephrosis; and accidents). The other 
remaining causes of death have no statistically 
significant relationships.  

At the base of Table 3 are two statistics 
that gauge the degree of fit of the overall model 
examined. The model chi-square statistic has a 
value of 39,905.58, with 140 degrees of freedom 
(one for each of the logits being estimated). 
These chi-square values are sufficiently large to 
reject the null hypothesis that the 126 logit 
coefficients are all zero. This finding is also 
shown by the fact that the majority of the logit 
coefficients are statistically significant. 

A value of 0.01 for Pseudo R2 statistic 
for the U.S. is also shown. Although this statistic 
does not have anywhere near as straightforward 

an interpretation as the explained variance 
interpretation that R2 has in ordinary least 
squares regression, it is nevertheless a rough 
gauge of the degree of fit of the model used. 
With a low value of 0.01, these indicate that 
there are surely other independent variables, in 
addition to those used in Table 3, that are 
important in predicting the likelihood of oldest 
old Americans dying of a major cause of death 
instead of dying of all other causes. 
 

Conclusion 
 

In this article, the cause of death structure for the 
oldest old decedents in the United States in 2001 
was examined. The three main causes-of-death 
for the American decedents, which comprised 
close to two thirds of all deaths, were heart 
disease, malignant neoplasms, and 
cerebrovascular disease. The top 10 causes of 
death accounted for over 82% of all deaths, and 
the residual category of other causes accounted 
for 18% of the deaths.  

A multinomial logistic regression 
equation was estimated to predict the patterns of 
cause-of-death mortality for the 963,768 oldest 
old Americans who died in 2001. The primary 
goal was to ascertain which independent 
variables best predicted the log odds of dying of 
one of the major causes of death compared to 
dying of other causes. The best predictors were 
age, sex, race, Hispanic origin, and metropolitan 
residence. Marital status and education did not 
perform as well. In particular, education was 
found to be the least important variable in the 
multinomial equation. 

Also, the older the American decedent, 
the less likely he/she would die of a major cause 
of death compared to other causes. This 
relationship was found for most of the 10 main 
causes of death. Regarding the independent 
variable of sex, it was found that females in the 
U.S. were less likely than males to die of one of 
seven main causes (heart disease; malignant 
disease; chronic respiratory disease; 
Alzheimer’s; nephritis, nephrotic syndrome, and 
nephrosis; accidents; and septicemia). 

With respect to race, whites had 
negative and statistically significant logits for 6 
of the 10 causes of death (malignant neoplasms; 
cerebrovascular disease; Alzheimer’s; influenza 
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and pneumonia; nephritis, nephritic syndrome, 
and nephrosis; and accidents); three causes of 
death had positive and statistically significant 
logits (chronic respiratory disease, diabetes, and 
septicemia), while heart disease had no 
statistical relationships. It was also found that 
blacks had positive and statistically significant 
logits for 6 of the 10 causes of death (heart 
disease; malignant neoplasms; influenza and 
pneumonia; diabetes; nephritis, nephrotic 
syndrome, and nephrosis; and septicemia); the 
remaining four causes of death had negative and 
statistically significant logits (cerebrovascular 
disease, chronic respiratory disease, 
Alzheimer’s, and accidents). 

Hispanic origin had positive and 
statistically significant logits for 5 of the 10 
causes of death (heart disease; malignant 
neoplasms; Alzheimer’s; influenza and 
pneumonia; nephritis, nephrotic syndrome, and 
nephrosis; and accidents); two causes of death 
had negative and statistically significant logits 
(chronic respiratory disease and diabetes), and 
the remaining other causes of death had no 
statistical relationships. 

Results indicated that metropolitan 
residence had negative and statistically 
significant logits for 5 of the 10 causes of death 
(cerebrovascular disease; Alzheimer’s; influenza 
and pneumonia; nephritis, nephrotic syndrome, 
and nephrosis; and accidents); three causes of 
death had positive and statistically significant 
logits (heart disease, malignant neoplasms, and 
septicemia), and the remaining causes of death 
had no statistical relationships. 

In the next 50 years, the number of 
oldest old persons in the U.S. is projected to 
increase almost two times, from 13 million in 
the year 2000 to almost 25 million in the year 
2050. The analyses and results reported in this 
paper of the cause-of-death structure of the U.S. 
oldest old decedents in 2001 could well reflect 
the cause-of-death structure of the increasingly 
large numbers of oldest old decedents in future 
decades. The analyses of the dynamics of the 
current causes of death could suggest the 
patterns of mortality that may be anticipated for 
the growing population of oldest old Americans 
in the next several decades. 

This study also demonstrates the 
appropriate usage of multinomial logistic 

regression models when the dependent variable 
has more than two nominal categories. It has 
been found that multinomial logistic modeling 
exhibits suitable statistical interpretations for 
complex results, weakening the criticism of 
using such a model for these types of data. 
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Construction of Insurance Scoring System using Regression Models 
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This study suggests the regression models of Lognormal, Normal and Gamma for constructing insurance 
scoring system. The main advantage of a scoring system is that it can be used by insurers to differentiate 
between high and low risks insureds, thus allowing the profitability of insureds to be predicted. 
 
Key words: Scoring system, insurance risks, regression model. 
 
 

Introduction 
 
One of the most recent developments in the U.S. 
and the European insurance industry is the 
rapidly growing use of a scoring system in 
pricing, underwriting and marketing of high 
volume and low premium insurance policies. In 
the Asian market, scoring system is still 
considered as relatively new, although several 
markets in the region have started utilizing the 
system especially in its rating of motor insurance 
premium. In Singapore for example, in 1992, the 
biggest private car insurer, NTUC Income, 
announced that it was changing from a tariff 
system to a scoring system, whereby the owners 
of newer cars and more expensive models would 
probably pay lower premiums (Lawrence 1996). 

There are several advantages of utilizing 
scoring system in pricing, underwriting and 
marketing of insurance. The main advantage is 
that the scores may be used by insurers to 
differentiate between good and bad insureds, 
thus allowing the profitability of insureds to be 
predicted by using a specified list of rating 
factors such as driver’s experience, vehicle’s 
characteristics and scope of coverage. 
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In addition to distinguishing the risks of 
insureds, insurers may also employ the scores to 
determine the amount of premium to be charged 
on each customer. 

Several studies on scoring system have 
been carried out in the actuarial and insurance 
literatures. For example, Coutts (1984) proposed 
the Orthogonal Weighted Least Squares 
(OWLS) to convert premiums into scores; he 
examined the impact of changing several input 
assumptions such as inflation rates, base periods 
of TPBI claims, expenses and weights on the 
structure of scores. Brockman & Wright (1992) 
suggested Gamma regression model to convert 
premiums into scores, rationalizing that the 
variance of Gamma depends on the weights or 
exposures, and not on the magnitude of 
premiums. 

In recent years, Miller & Smith (2003) 
analyzed the relationship between credit-based 
insurance scores and propensity of loss for 
private passenger automobile insurance, and 
found that insurance scores were correlated with 
propensity of loss due to the correlation between 
insurance scores and claim frequency rather than 
average claim severities. Anderson et al. (2004) 
suggested Generalized Linear Modeling (GLM) 
for deriving scores, and proposed the fitting of 
frequency and severity separately for each claim 
type as starting point. The expected claim costs 
resulting from frequency and severity fitting 
were then divided by the premiums to yield the 
expected loss ratios, and the profitability scores 
were derived by rescaling the loss ratios. Wu & 
Lucker (2004) reviewed the basic structure of 
several insurance credit scoring models in the 
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U.S. by dividing scoring algorithms into two 
main categories; the rule-based approach which 
assigns scores directly to each rating factor, and 
the formula approach which determines scores 
using mathematical formulas. The minimum 
bias and GLM were suggested for the rule-based 
approach, whereas the Neural Networks (NN) 
and Multivariate Adaptive Regression Splines 
(MARS) were suggested for the formula 
approach. Wu & Guszcza (2004) studied the 
relationship between credit scores and insurance 
losses using data mining methodology along 
with several predictive modeling techniques 
such as NN, GLM, Classification and 
Regression Trees (CART) and MARS. Vojtek & 
Kocenda (2006) reviewed several methods of 
credit scoring employed by banks such as linear 
discriminant analysis (LDA), logit analysis, k-
nearest neighbor classifier (k-NN) and NN to 
evaluate the applications of loans in Czech and 
Slovak Republics. Their results showed that the 
logit analysis and LDA methods were mainly 
used, the CART and NN methods were used 
only as supporting tools, and the k-NN method 
was rarely used in the process of selecting 
variables and evaluating the quality of credit 
scoring models.  

The objective of this article is to suggest 
the Lognormal, Normal and Gamma regression 
models for the construction of insurance scoring 
system. Even though several actuarial studies 
have been carried out on the construction of 
scoring system, the detailed procedures of these 
methods have not been provided, with the 
exception of Coutts (1984) who proposed the 
use of Orthogonal Weighted Least Squares 
(OWLS) to convert premiums into scores. 
Although the Lognormal model proposed in this 
study is similar to the OWLS method proposed 
by Coutts (1984), the fitting procedure slightly 
differs. The OWLS method assumed that the 
weights were possible to be factorized and the 
fitted values were calculated using the estimated 
weights, whereas in this study, the fitting 
procedure does not require the weights to be 
factorized and the weights were not replaced by 
the estimated weights. This study also compares 
the Lognormal, Normal and Gamma regression 
models whereby the comparisons were centered 

upon three main elements; fitting procedures, 
parameter estimates and structure of scores. 

 
Methodology 

 
The response variable, independent variables 
and weight for the regression models are the 
premiums, rating factors and exposures 
respectively. The datasets are ),( ii eg , where ig  

and ie  respectively denote the premiums and the 

exposure in the i -th rating class, ni ,...,2,1= . 
Appendix A shows a sample of rating 

factors, premiums and exposures for the data set. 
The premiums were written in Ringgit Malaysia 
(RM) currency based on motor insurance claims 
experience provided by an insurance company in 
Malaysia. The exposures were written in number 
of vehicle years, and the rating factors 
considered were scope of coverage 
(comprehensive, non-comprehensive), vehicle 
make (local, foreign), use-gender (private-male, 
private-female, business), vehicle year (0-1, 2-3, 
4-5, 6+) and location (Central, North, East, 
South, East Malaysia). 
 
Lognormal Model 

Let the relationship between premiums, 

ig  and scores, is , be written as, 
is

i bg = ,                           (1) 
or, 

iib sg =log .                       (2) 
 
In this study, the value of 1.1=b  was chosen for 
Equation (1) to accommodate the conversion of 
premiums ranging from RM30 to RM3,000 into 
scores ranging from 0 to 100. For example, the 
score corresponding to the premium amount of 
RM3,000 is equal to 84.  

If the premium, iG , is distributed as 

Lognormal with parameters is  and 21σ−
ie , then 

iG1.1log  is distributed as normal with mean is  

and variance 21σ−
ie , where the density is, 

2

22 1

(log )1
(log ; ) exp

22

i i i
i i

i

e g s
f g s

e σπσ −

 −
= − 

 
. 
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The relationship between scores, is , and 

rating factors, ijx , may be written in a linear 

function as, 


=

==
p

j
ijji xs

1

ββxT
i ,                  (3) 

where ix  denotes the vector of explanatory 

variables or rating factors, and β  the vector of 
regression parameters. In other words, 

pjj ,...,2,1, =β , represents the individual score 

of each rating factor, and is  represents the total 
scores of all rating factors. 

The first derivatives of Equation (3) 
may be simplified into, 

ij
j

i x
s

=
∂
∂
β

.                         (4) 

Therefore, the solution for β  may be obtained 
from the maximum likelihood equation, 

(log ) 0,   

1,2,..., .

i i i ij
ij

e g s x

j p

β
∂ = − =

∂

=


      (5) 

 
Since the maximum likelihood equation is also 
equivalent to the normal equation in standard 
weighted linear regression, β  may be solved by 
using normal equation. 
 
Normal Model 

Assume that the premium, iG , is 

distributed as normal with mean iδ  and variance 
21σ−

ie , where the density function is, 










 −
−=

− 2

2

12 2

)(
exp

2

1
);(

σ
δ

πσ
δ iii

i

ii

ge

e
gf . 

 
The conversion of premiums into scores 

may be implemented by letting the relationship 
between scores ( is ) and fitted premium ( iδ ) to 
be written in a log-linear function or 
multiplicative form. If the base value is equal to 
1.1, the fitted premium is, 

is
i )1.1(=δ ,                     (6) 

where 


=

==
p

j
ijji xs

1

ββxT
i . 

The first derivative of Equation (6) is, 

iji
j

i xδ
β
δ

)1.1log(=
∂
∂

,                (7) 

and the solution for β  may be obtained from the 
maximum likelihood equation. 
 

( ) 0,    

1,2,..., .

i i i i ij
ij

e g x

j p

δ δ
β
∂ = − =

∂

=


       (8) 

 
The maximum likelihood equation 

shown by Equation (8) is not as straightforward 
to be solved compared to the normal equation 
shown in Equation (5). However, since Equation 
(8) is equivalent to the weighted least squares, 
the fitting procedure may be carried out by using 
an iterative method of weighted least squares 
(see McCullagh & Nelder, 1989; Mildenhall, 
1999; Dobson, 2002; Ismail & Jemain, 2005; 
Ismail & Jemain, 2007). In this study, the 
iterative weighted least squares procedure was 
performed using SPLUS programming. 

 
Gamma Model 

The construction of a scoring system 
based on the Gamma Model is also similar to the 
Normal Model. Assume that the premium, iG , 

is distributed as Gamma with mean iδ  and 

variance 21
iv δ− , where the density function is, 









−








Γ

=
i

i

v

i

i

i
ii

vgvg

vg
gf

δδ
δ exp

)(

1
);( , 

and v  denotes the index parameter. 
The conversion of premiums into scores 

may also be implemented by letting the 
relationship between scores ( is ) and fitted 

premiums ( iδ ) to be written in a log-linear 
function or multiplicative form. Therefore, the 
first derivative is the same as Equation (7). 

Assume that the index parameter, v , 
varies within classes, and can be written as 

2−= σii ev . Therefore, the variance of the 

response variable is equal to 122 −
ii eδσ  and the 

solution for β  may be obtained through the 
maximum likelihood equation,  
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pj
xge

i i

ijiii

j

,...,2,1         ,
)(

=
−

=
∂
∂  δ

δ
β


. (9) 

The maximum likelihood equation 
shown by Equation (9) is not as straightforward 
to be solved compared to the normal equation 
shown by Equation (5), and the fitting procedure 
may be carried out using an iterative method of 
weighted least squares.  
 

Results 
 
Scoring System based on Lognormal Model 

The best model for lognormal regression 
may be determined by using standard analysis of 
variance. Based on the ANOVA results, all 
rating factors are significant, and 89.3% of the 

model’s variations )893.0( 2 =R  can be 
explained by using the same rating factors.  

The parameter estimates for the best 
regression model are shown in Table 1. The 
class for 2-3 year old vehicles is combined with 
0-1 year old vehicles (intercept), and the classes 
for East and South locations are combined with 
Central location (intercept) to provide significant 
effects on all individual regression parameters. 

 The negative estimates are converted 
into positive values using the following 
procedure. First, the smallest negative estimate 
of each rating factor is transformed into zero by 
adding an appropriate positive value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then, the same positive value is added 
to other estimates categorized under the same 
rating factor. Finally, the intercept is deducted 
by the total positive values which are added to 
all estimates. The final scores are then rounded 
into whole numbers to provide easier premium 
calculation and risk interpretation. The original 
estimates, modified estimates and final scores 
are shown in Table 2. 

The final scores shown in Table 2 
specify and summarize the degree of relative 
risks associated with each rating factor. For 
instance, the risks for foreign vehicles are 
relatively higher by four points compared to 
local vehicles, and the risks for male and female 
drivers who used their cars for private purposes 
are relatively higher by nine and five points 
compared to drivers who used their cars for 
business purposes. The goodness-of-fit of the 
scores in Table 2 may be tested by using two 
methods; (1) comparing the ratio of fitted over 
actual premium income, and (2) comparing the 
difference between fitted and actual premium 
income.  

Table 3 shows the total difference of 
premium income and the overall ratio of 
premium income. The total income of fitted 
premiums is understated by RM560,380 or 0.2% 
of the total income of actual premiums. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parameters Estimates Std.dev. p-values 

1β  Intercept 78.81 0.26 0.00 

2β  Non-comprehensive -14.52 0.43 0.00 

3β  Foreign 4.23 0.26 0.00 

4β  Female -4.30 0.28 0.00 

5β  Business -9.25 0.53 0.00 

6β  4-5 years -1.17 0.33 0.02 

7β  6+ years -1.56 0.30 0.01 

8β  North 0.84 0.29 0.04 

9β  East Malaysia -4.18 0.45 0.00 

Table 1: Parameter estimates for Lognormal Model
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Therefore, the fitted premiums for all 

classes are suggested to be multiplied by a 
correction factor of 1.002 to match their values 
with the actual premiums.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apart from differentiating between high 

and low risk insureds, a scoring system may also 
be used by insurers to calculate the amount of 
premium to be charged on each client. The 
procedure for converting scores into premium 
amounts involved two basic steps. 

Table 2: Original estimates, modified estimates and final scores 

Parameters 
Original 

Estimates 
Modified 
Estimates 

Final 
Scores 

Intercept (Minimum score) 78.81 49.30 49 
Coverage: 
Comprehensive 
Non-comprehensive 

 
0.00 

-14.52 

 
14.52 
0.00 

 
15 
0 

Vehicle make: 
Local 
Foreign 

 
0.00 
4.23 

 
0.00 
4.23 

 
0 
4 

Use-gender: 
Private-male 
Private-female 
Business 

 
0.00 
-4.30 
-9.25 

 
9.25 
4.95 
0.00 

 
9 
5 
0 

Vehicle year: 
0-1 year & 2-3 years 
4-5 years 
6+ years 

 
0.00 
-1.17 
-1.56 

 
1.56 
0.39 
0.00 

 
2 
0 
0 

Vehicle location: 
Central, East & South 
North 
East Malaysia 

 
0.00 
0.84 
-4.18 

 
4.18 
5.02 
0.00 

 
4 
5 
0 

Table 3: Total premium income difference and overall premium income ratio 
 Value 

Total number of businesses/policies/exposures 
240

1
i

i

e
=
  170,749 

Total income from fitted premiums 
240

1

ˆi i
i

e g
=
  RM 275,269,816 

Total income from actual premiums 
240

1
i i

i

e g
=
  RM 275,830,196 

Total premium income difference 
240

1

ˆ( )i i i
i

e g g
=

−  - RM 560,380 

Overall premium income ratio 

240

1
240

1

ˆi i
i

i i
i

e g

e g

=

=




 0.998 
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First, the scores for each rating factor 
are recorded and aggregated; then, the aggregate 
scores are converted into premium amount by 
using a scoring conversion table (a table listing 
the aggregate scores with associated monetary 
values). Table 4 shows a scoring conversion 
table, which is constructed using Equation (1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison of Scoring System based on 
Lognormal, Normal and Gamma Models 

Comparison of parameter estimates 
resulted from Lognormal, Normal and Gamma 
regression models are shown in Table 5. The 
parameter estimates for Lognormal, Normal and 
Gamma models provided similar values, except 
for 2β  and 5β  which produced larger values in 
Normal and Gamma models compared to 
Lognormal model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Scoring conversion table 
Aggregate 

Scores 
Premium 

Amounts (RM) 
Aggregate 

Scores 
Premium 

Amounts (RM) 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

107 
118 
129 
142 
157 
172 
189 
208 
229 
252 
277 
305 
336 
369 
406 
447 
491 
540 

67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

  595 
  654 
  719 
  791 
  870 
  958 
1053 
1159 
1274 
1402 
1542 
1696 
1866 
2052 
2258 
2484 
2732 
3005 

Table 5: Estimates for Lognormal, Normal and Gamma regression models 

Parameters 
Lognormal Normal Gamma 

Est. 
Std. 

Error 
p-

value 
Est. 

Std. 
Error 

p-
value 

Est. 
Std. 

Error 
p-

value 

1β  Intercept 78.81 0.26 0.00 79.02 0.01 0.00 78.89 0.02 0.00 

2β  Non-comp -14.52 0.43 0.00 -12.79 0.05 0.00 -13.71 0.03 0.00 

3β  Foreign 4.23 0.26 0.00 4.02 0.01 0.00 4.19 0.02 0.00 

4β  Female -4.30 0.28 0.00 -4.03 0.01 0.00 -4.25 0.02 0.00 

5β  Business -9.25 0.53 0.00 -7.40 0.03 0.00 -8.55 0.04 0.00 

6β  4-5 years -1.17 0.33 0.02 -1.17 0.01 0.00 -1.17 0.02 0.00 

7β  6+ years -1.56 0.30 0.01 -2.10 0.01 0.00 -1.73 0.02 0.00 

8β  North 0.84 0.29 0.04 0.49 0.01 0.00 0.81 0.02 0.00 

9β  East M’sia -4.18 0.45 0.00 -4.01 0.03 0.00 -4.21 0.03 0.00 
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Comparison of scoring system resulted 
from Lognormal, Normal and Gamma 
regression models are shown in Table 6. The 
scores for Lognormal range from 49 to 84, the 
scores for Normal range from 53 to 84, and the 
scores for Gamma range from 51 to 85. In terms 
of risk relativities, both Lognormal and Gamma 
models resulted in a relatively higher score for 
male driver, female driver and comprehensive 
coverage. Therefore, if an insurer is interested in 
charging higher premiums for male driver, 
female driver and comprehensive coverage, both 
Lognormal and Gamma models may be suitable 
for fulfilling this strategy. However, the 
difference between Lognormal and Gamma 
model is that the scores for low risk classes 
provided by Gamma are slightly higher 
compared to Lognormal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 

This article shows the procedure for constructing 
insurance scoring systems using three different 
regression models; Lognormal, Normal and 
Gamma. The main advantage of a scoring 
system is that it may be used by insurers to 
differentiate between “good” and “bad” 
insureds, thus allowing the profitability of 
insureds to be predicted. In addition, the scoring 
system has an operational advantage of reducing 
premium calculations and can be treated as a 
more sophisticated device for customers to 
assess their individual risks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Scoring system for Lognormal, Normal 
and Gamma regression models 

Rating factors 
Scores 

Lognormal Normal Gamma 
Minimum scores 
Coverage: 

Comprehensive 
Non-comprehensive 

Vehicle make: 
Local 
Foreign 

Use-gender: 
Private-male 
Private-female 
Business 

Vehicle year: 
0-1 year 
2-3 years 
4-5 years 
6+ years 

Location: 
Central 
North 
East 
South 
East Malaysia 

49 
 

15 
0 
 

0 
4 
 

9 
5 
0 
 

2 
2 
0 
0 
 

4 
5 
4 
4 
0 

53 
 

13 
0 
 

0 
4 
 

7 
3 
0 
 

2 
2 
1 
0 
 

4 
5 
4 
4 
0 

51 
 

14 
0 
 

0 
4 
 

9 
4 
0 
 

2 
2 
1 
0 
 

4 
5 
4 
4 
0 
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The relationship between aggregate 
scores and rating factors in Lognormal model 
was suggested as linear function or additive 
form, whereas the relationship between 
aggregate scores and rating factors in Normal 
and Gamma models were proposed as log-linear 
function or multiplicative form.  

The best regression model for 
Lognormal model was selected by implementing 
the standard analysis of variance. The goodness-
of-fit of scores estimates were tested by 
comparing the ratio of fitted over actual 
premium income and by comparing the 
difference between fitted and actual premium 
income. 
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Appendix A: Rating factors, exposures and premium amounts for Malaysian data 

Rating factors 
Exposure 

(vehicle-year) 

Premium 
amount 
(RM) Coverage 

Vehicle 
make 

Use-gender 
Vehicle 

year 
Location 

Comprehensive Local Private-male 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Private-female 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Business 

0-1 year 
 
 
 
 

2-3 years 
 
 
 
 

4-5 years 
 
 
 
 

6+ years 
 
 
 
 

0-1 year 
 
 
 
 

2-3 years 
 
 
 
 

4-5 years 
 
 
 
 

6+ years 
 
 
 
 

0-1 year 
 
 
 
 

2-3 years 
 
 
 
 

4-5 years 
 
 
 
 

6+ years 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

Central 
North 
East 

South 
East Malaysia 

4243 
2567 
598 
1281 
219 
6926 
4896 
1123 
2865 
679 
6286 
4125 
1152 
2675 
700 
6905 
5784 
2156 
3310 
1406 
2025 
1635 
301 
608 
126 
3661 
2619 
527 
1192 
359 
2939 
1927 
439 
959 
376 
2215 
1989 
581 
937 
589 
290 
66 
24 
52 
6 

572 
148 
40 
91 
17 

487 
100 
40 
59 
22 

468 
93 
33 
77 
25 

1811 
2012 
1927 
1869 
983 

1704 
1919 
1854 
1794 
1301 
1613 
1840 
1770 
1687 
1162 
1524 
1790 
1734 
1633 
1144 
1256 
1343 
1396 
1289 
787 

1210 
1298 
1255 
1212 
942 

1139 
1243 
1125 
1176 
652 

1072 
1215 
1219 
1112 
623 
722 
547 
107 
685 
107 
731 
630 
107 
657 
107 
654 
549 
540 
571 
493 
567 
518 
562 
515 
402 
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EARLY SCHOLARS 
On Some Properties of Quasi-Negative-Binomial Distribution and Its Applications 

 
Anwar Hassan     Sheikh Bilal 

  University of Kashmir         Degree College 
 India        India 

 
 
The quasi-negative-binomial distribution was applied to queuing theory for determining the distribution 
of total number of customers served before the queue vanishes under certain assumptions. Some structural 
properties (probability generating function, convolution, mode and recurrence relation) for the moments 
of quasi-negative-binomial distribution are discussed. The distribution’s characterization and its relation 
with other distributions were investigated. A computer program was developed using R to obtain ML 
estimates and the distribution was fitted to some observed sets of data to test its goodness of fit. 
 
Key words: Simultaneous quasi-negative-binomial distribution, Borel-Tanner distribution, probability 
generating function, convolution property, characterization, chi-square fitting. 
 
 

Introduction 
 

The classical negative binomial distribution has 
become increasingly popular as a more flexible 
alternative to the Poisson distribution, especially 
in cases when it is doubtful whether the strict 
independence requirements for a Poisson 
distribution will be satisfied. In a classical 
negative binomial distribution the probability of 
success from trial to trial is assumed to be 
constant, but this assumption holds true only in 
the case of chance mechanism and is not 
realistic for many practical situations. Most 
living beings use past experiences (successes or 
failures) and wisdom to help determine future 
strategies to achieve goals, thus, the probability 
of success or failure does not remain constant. It 
is generally felt that the probability of a success  
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depends on the number of previous failures, and 
the quasi- negative-binomial distribution, as 
well as other distributions, takes this fact into 
consideration. 

Much work has been done on the quasi-
binomial distribution, but little has been done on 
quasi-negative-binomial distribution. The quasi-
negative-binomial distribution has been obtained 
in different forms by Janardan (1975), Nandi & 
Das (1994), and Sen & Jain (1996), but has not 
to date been studied in detail. This article 
examines various aspects of this distribution. 
The distribution of the number of customers 
served in the queuing theory under certain 
assumptions, which gives rise to a quasi-
negative-binomial distribution, was derived. It is 
also shown that the quasi-negative-binomial 
distribution belongs to a family of Abel series 
distributions. Some structural properties of the 
distribution are discussed, along with its relation 
with some other important distributions, and a 
characterization of the distribution is provided. 
A computer program written in R was developed 
to obtain ML estimates and the distribution was 
fitted to a number of data sets to show its 
superiority over other distributions. 
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Methodology 
 

Quasi-negative-binomial distribution (QNBD) 
In the theory of queuing, suppose there exists a 
single queue beginning with r customers. Haight 
& Brever (1960) showed that, if it is first 
assumed that the random arrival time of a 
customer is at a constant rate ( λ ), and a 
constant amount of time is devoted to serving 
each customer ( β ), then the probability 
distribution of the total number of customers 
served before the queue vanishes is: 

1( : ) ( )
( )!

, 1,.......

x r x r xrP X x x e
x r

x r r

λβλβ− − − −=
−

= +
 (2.1) 

This is known as the Borel-Tanner distribution 
and it gives the probability of a customer 
arriving during the period ),( ttt Δ+ as

)(0)( tt Δ+Δλ , by assuming λ  is constant, 

where )(0 tΔ is the probability of two or more 
customers arriving in this period. This 
assumption, however, is not realistic. The 
random arrival time of customers is not at a 
constant rate, it varies from interval to interval 
of equal length. In order to make the formula 
more flexible it is allowed to vary in different 
intervals of equal length with a constant amount 
of time ( β ) spent serving each customer. Thus 
gives the probability distribution of total number 
of customers served before the queue vanishes 
as: 

1

( : )

( )
( )!

x r x r x

P X x

rE x e
x r

λβλβ− − − −

=

 
 − 

 

(2.2) 
 
where expectation is to be taken over λ . 
Suppose that the distribution of λ  is a gamma 
variate with parameters (a, b), then the above 
equation becomes: 

1

1 ( )

0

( )
( )!

( )

x r

a
x r a x r b x

rP X x x
x r

b e d
a

λ ββ λ λ

− −

∞
− + − − − +

= =
−

Γ 
 

(2.3) 

rxa

a
rx

xb
rxa

a
bx

rx
r

−+
−−

+
−+Γ

Γ−
=

)(

)(

)(
)(

)!(
1

β
ββ

 

 
Taking rxx += , that is, starting with an idle 

queue the probability distribution becomes: 
1( ) ( ) ( )

( : )
( ) ! ( )

0,1,2,...........

a x

a x

a x r b r xP X x
a x b r x

x

β β β
β β

−

+

Γ + +=
Γ + +

=  
 

xa

xxa

x x
x

+

−−+

++
+









=

)1(

)(

21

1
211

1

θθ
θθθ

 

0,1,2,.....x =  
(2.4) 

 

where 1
1 θβ =−rb , 2

1 θβ =−b . The distribution 
represented by (2.4) is a quasi-negative-binomial 
distribution (QNBD). Hence, the distribution of 
the total number of customers served before the 
queue vanishes, assuming a start with an idle 
queue wherein the random arrival time of 
customers follows a gamma distribution and the 
time occupied in serving each customer is 
constant, is a QNBD. 

Equation 2.3 clearly suggests that the 
quasi-negative-binomial distribution is a mixture 
of the Borel-Tanner distribution (2.1) with 
gamma ),( baγ  as the mixing distribution. 
Another way of obtaining the QNBD (2.4) is to 
compound the restricted generalized Poisson 
model ),( αθθ  with the gamma distribution

),( baγ , where 1
1

−= bθ  and 1
2

−= bαθ . This 
is the method employed to obtain the probability 
generating function of the proposed model (2.4).  
 
The Abel series distribution and QNBD. 

Charalambides (1990) explored the use 
of the Abel series and introduced the family of 
Abel series distributions with applications to 
fluctuations of sample functions of stochastic 
processes. Nandi & Das (1994) defined a family 
of Abel series distributions for real valued 
parameters r  and b  by its probability function: 
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)(

),()(
)(

1

rf
bxhbxrrxP

x−+=  

,........2,1,0=x  
(3.1) 

where 0),( ≥bxh ; 0≥r  if 0≥b  and 

0≥+ xbr  if 0≤b ; )(rf  is finite and positive 
function given by: 

),()()( 1

0

bxhbxrrrf x

x

−
∞

=
+=   

and 

xbrx

x

dr
rfd

x
bxh −== )(

!

1
),( . 

 
Taking 

arcrf −−= )()(  
 
results in 

xabxc
xa

xabxh −−+
−

−+= )(
!)!1(

)!1(
),(  

 
and, using (3.1), gives 
 

11 ( ) ( )
( : )

( )

x a xa x

ax

r r bx c bxP X x
c r

− − −+ −

−

+ + =   − 
 

,.......1,0=x . 
(3.2) 

Finally, taking 
 

21 )(
,

)(
θθ =

−
=

− rc
b

rc
r

  

and 

11
)(

1
)(

θ+=
−

+=
− rc

r
rc

c
 

 
the quasi-negative-binomial distribution (2.4) is 
obtained. Hence, the QNBD is a member of the 
Abel series of distributions. 
 
Structural properties. 

Some of the structural properties that 
describe the nature of the quasi-negative-
binomial distribution were studied. These 
properties are described as follows: 
 

Convolution property. 
Using (3.2) it is possible to show that 

quasi-negative-binomial variates possess the 
important – and very desirable – convolution 
property given by Theorem 4.1: The sum of two 
independent quasi-negative-binomial variates 

1X  and 2X  with parameters ),,( 211 θθa  and 

),,( 212 θθa , respectively, is a quasi-negative-
binomial variate with parameters 

),,( 2121 θθaa + . 
 
Proof: 

The sum of the probabilities of the 
QNBD equals unity, therefore from (3.2) the 
following results: 
 

xax

x

xa

x

a bxcbxrrrc −−−
∞

=

−+
− ++








=−  )()()( 1

0

1

(4.1) 
 
Considering the expansion of 

2121 )()()( )( aaaa rcrcrc −−+− −−=−  as a 
single series of Abel polynomials on the left-
hand side and the product of two series of Abel 
polynomials on the right-hand side, using (4.1) 
and simplifying, the following identity is 
obtained: 
 

)(1
1

21
21

)()( xaax
xaa

x
bxcbxrr ++−−

−++
++









 
 

1 2

1 2

1 ( ) 1
1 1

0

( ) ( )

( ) ( ( )

( ) ( ( )

x a t a x t
t x t

t x tt

a t a x t

r r bt r r b x t

c bt c b x t

+ − + − −
− − −

−=

− + − + −

  = + + −  
  

+ + −



 
(4.2) 

This identity reduces to a Vandermonde-type 
identity on 0=b , Lagrangian Probability 
Distribution (Consul & Famoye, 2006).  

Assuming the sum xXX =+ 21 , then 
by definition: 

( )1 2 1 2
0

( ) : ( , , , ) ( , , , )
x

t x t
t

P X X x P a r b c P a r b c−
=

+ =
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1 2

1 2

1 2

1 ( ) 1
1

( )
0

( ) ( )1

1
( )

( )

( ( ) ( ) ( ( )

x a t a x t
t

a a t x tt

a t a x tx t

r r bx
c r

r r b x t c bt c b x t

+ − + − −
−

− + −=

− + − + −− −

   = +   −    
+ − + + −



 
Using the result (4.2) in the above gives: 

( )
1 21 2

1 2

1 2

( )11

( )

( ) :

( ) ( )

( )

a a xxa a x

a ax

P X X x

r bx c bx
c r

− + +−+ + −

− +

+

+ + =   −  . 
 
Next, taking 

21 )(
,

)(
θθ =

−
=

− rc
b

rc
r

and 

 

11
)(

1
)(

θ+=
−

+=
− rc

r
rc

c
 

 
results in the convolution property: 
 

1 2

1 2

1 2

1
1

1 1 2

( )
1 2

1 2 1 2

( )

( )

(1 )

( , , )

a a x
x

x

a a x

X

P X X x

x

x
P a a

θ θ θ

θ θ
θ θ

+ + −
−

− + +

+ =

 = + 
 
+ +

= +
 
More generally the sum of n independent quasi-
negative-binomial variates with parameters 

),,( 21 θθia , ni ,.........2,1=  is also a quasi-

negative-binomial variate with parameters

( )21 ,, θθ ia . 

 
Unimodality 

The QNBD is unimodal according to the 
Lemma: if the mixing distribution is non-
negative, continuous, and unimodal then the 
resulting distribution is unimodal. (Holgate, 
1970) Thus, the proposed model is unimodal 
since the mixing distribution is the gamma 
distribution, which is unimodal. 

Theorem 4.2: The QNB model (2.4) is 
unimodal for all values of ),,( 21 θθa  and the 

mode is 0=x  if 11 <θa  and, for 11 >θa , the 

mode is at some point Mx =  such that 

1

1

1

1

1

)1(

1

1

θ
θ

θ
θ

−
−

<<
−

− aMa
. 

 
Proof: 

The QNBD model (2.4) gives the ratio  

 1 
)1(

)1(

)0(

)1(
1

21

11 <
++
+

= +a

aa
P
P

θθ
θθ

 If 11 <θa , 

 

since 1
)1(

)1(
1

21

1 <
++

+
+a

a

θθ
θ

   ),,( 21 θθa∀  

 
In general, the ratio of any two successive 
probabilities of QNBD (2.4) is: 

1 2 2 1 2
1

1 2 1 2 2

( 1)

( )

( ) (1 )
11 ( ) (1 )

x a x

x

P x
P x

x xa x
a xx x x

θ θ θ θ θ
θ θ θ θ θ

+

−

+

+ + + ++= + ++ + + + +
(4.3) 

Since  1 
1)1(

)1(

221

21 <+++++

++ +

xax
x xa

θθθ
θθ

),,( 21 θθa∀ , the ratio 1
)(

)1( <+
xP

xP
, if 

x

x

x
x

x
xa

)1(

)1(

1

)(
1

12
1

12

11
121

−−

−−

++
+

<
+
+

θθθθ
θθθ

 , which 

is true only if 11 <θa  as 

1
)1(

)1(
1

12
1

12

11
12 <

++
+

−−

−−

x

x

x
x

θθθθ
θθ

      ),( 21 θθ∀ . 

Hence, for 11 <θa , the ratio
)(

)1(

xP
xP +

 is a non-

increasing function, therefore the mode of the 
distribution is 0=x . Suppose 11 >θa and the 

mode is at Mx = , the ratio defined by (4.3) 
gives two inequalities: 
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1 2 2
1

1 2

1 2

1 2 2

( 1)

( )

( )

1 ( )

(1 )
1(1 )

1

M

M

a M

P M
P M

Ma M
M M

M
a MM

θ θ θ
θ θ

θ θ
θ θ θ

−

+

+ =

+ ++
+ +

+ +
+ ++ + +

<

(4.4) 

 
and 

1
1 2

2
1 2 2

1
1 2 2

1 2

( )

( 1)

( )1

( )

(1 )

(1 )

1

M

M

a M

P M
P M

Ma M
M M

M
a MM

θ θ
θ θ θ

θ θ θ
θ θ

−

−

+ −

=
−

++ −
− +

+ − +
++ +

>

 

(4.5) 
By inequality (4.4): 
 

1
)1(

)1(

1

)(
1

12
1

12

11
121 <

++
+

<
+
+

−−

−−

M

M

M
M

M
Ma

θθθθ
θθθ

 

….                                                                 (4.6) 
since 

1
)1(

)1(
1

12
1

12

11
12 <

++
+

−−

−−

M

M

M
M

θθθθ
θθ

     ),( 21 θθ∀  

 
The inequality (4.6) gives the lower bond to M 
as: 

1

1

1

1

θ
θ
−

−
>

aM
.
                         (4.7) 

 
And by inequality (4.5): 
 

1
1 2

2
1 2 2

1 2
1

1 2 2

( )1

( )

(1 )

(1 )

M

M

a M

Ma M
M M

a MM
M

θ θ
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θ θ
θ θ θ
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− +
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+ − + .

 

 
Again  

1
)1(

)1(
1

221

21 >
+−+

+++
−+MaM

MaM
θθθ

θθ
 ),,( 21 θθa∀   

 
gives 
 

11
12

21
12

1
121

)1(

)1()1(
−−

−−−

+
+−

>
−+

M

M

M
M

M
Ma

θθ
θθθθθ

 
(4.8) 

because 

11 >θa , 1
)1(1 >

−+
M

Maθ
 ),( 21 θθ∀  

 
and 
 

1
)1(

)1(
11

12

21
12

1
12 <
+

+−
−−

−−−

M

M

M
M
θθ

θθθθ
    ),( 21 θθ∀  

 
Thus, (4.8) can be written as: 
 

11
12
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)1(
1

)1(
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+
+−

>>
−+

M

M

M
M

M
Ma

θθ
θθθθθ

 
which gives the upper bond to M as: 

1

1

1

)1(

θ
θ

−
−

<
aM                      (4.9) 

 
By combining (4.7) and (4.9): 
 

1

1

1

1

1

)1(

1

1

θ
θ

θ
θ

−
−

<<
−

− aMa
 

 
the proof is completed. 
 
Probability generating function 

Consul & Shenton (1972, 1974) showed 
that the derivation of the probability generating 
function (PGF) of a generalized Poisson variate 
is not straightforward and is based on the power 
series expansion of a function in terms of 
another variable (see GPD by Consul-1989). As 
they show, the PGF of a generalized Poisson 
variate ),( αθθ  is: 

)1()()( −== tX
x euEuG θ  
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where )1( −= tuet αθ
,  and u is a dummy 

variable. 
Similar to the generalized Poisson 

variate, the PGF of QNBD also does not seem to 
be straightforward. Therefore, by compounding 
the restricted generalized Poisson model 

),( αθθ  with the gamma distribution ),( baγ , 

where 1
1

−= bθ  and 1
2

−= bαθ , and using a 
theorem by Feller (1943), the PGF of a QNBD 
is: 

1 ( 1)

0

( )
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a
b a t

x
bG u e e d

a
θ θθ θ

∞
− − −=

Γ 
 

 
atb −−+= )1( 11 θθ , 1

1
−= bθ and 1

2
−= bαθ  

 

where )1( −= tuet αθ
. 

 
The function t(u) can be written explicitly using 
Lagrange’s Theorem (see Whittaker and 
Watson, 1927) as: 
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Since θ  is varying as gamma distribution 

),(~ baγθ , the equation above gives: 
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And, after simplification results in: 
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na
naut

α
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Taking 1
1

−= bθ and 1
2

−= bαθ : 
 

1
2

1
2

2

1

2

1 )1( −+

−−∞

=

−+

− +
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n

n
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θ
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Hence the PGF of a QNBD (2.4) is: 
 

a
x tbuG −−+= )1()( 11 θθ  

 
where 

1
2

1
2

2

1

2

1 )1( −+

−−∞
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− +
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n
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n

n

n
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θ
θ
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Recurrence relation between the moments 

Suppose ),( 1θμ ak′  denotes the rth 

moment about the origin of a QNBD (2.4), then  

xa

x

x

k
k x

x
xa

xaxa +

−∞

= ++
+

−
−+=′ 

)1(

)(

!)!1(

)!1(
),(

21

1
211

0
11 θθ

θθθθθμ

xa

x

x

k

x
x

xa
xax +

−∞

=

−

++
+

−−
−+= 

)1(

)(

)!1()!1(

)!1(

21

1
211

1

1
1 θθ

θθθθ  

taking 1+= xx  and expanding 1)1( −+ kx  
results in: 

1

1 1

1 1 2 2
0 0

1
1 1 2 2

1
1 2 2

( , )

( )

( )( 1 1)!

( 1 1)! ! (1 )

k
k k

j

jj x

x

a x

a

a x x

xa x
a x x

μ θ

θ θ θ θ

θ θ θ θ
θ θ θ

− ∞−

= =

−

+ +

′ =

  + + 
 

+ ++ + −
+ − + + +

 

 
Converting the above series into ),( 1θμ ak′  

functions the recurrence relation  
1 1

1 1
0

1 2

2
1 1 2

1 2

( , )

( 1, )

( 1, )
( )

k k

k jj

j

j

a a

a

a

μ θ θ

μ θ θ
θ μ θ θ

θ θ

− −

=

+

 ′ =  
 

′ + + + 
 
 ′ + +
 + 


(4.10) 

is obtained. 
Where ),1( 21 θθμ ++′ aj  is the jth 

moment about the origin of a QNBD with 
parameters ),,1( 221 θθθ ++a . The relation 
(4.10) is used to determine the moments about 
the origin of a QNBD. Thus the mean of the 
distribution is: 









++′

+
+=′ ),1(

)(
1 211

21

2
11 θθμ

θθ
θθμ aa  

(4.11) 
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Using (4.10) recursively on the function 1μ′ , the 

mean is ]_;,1,1[ 20211 θθμ +=′ aFa , where 

]_;,1,1[ 202 θ+aF  is a hypergeometric function 

defined by: 

!
)1(1]_;,1,1[ 2

0

][][
202 j

aaF
j

j

jj θθ 
∞

=

+=+ . 

 
The second moment about the origin is 
determined from (4.10) as: 

1 2
1 1 2

1 2
2 1

2
2 1 2

1 2

2
1 ( 1, )

( 1, )

a
a

a

θ θ μ θ θ
θ θ

μ θ
θ μ θ θ

θ θ

+ ′+ + + + + ′ =
 ′ + + + 

(4.12) 

 
Repeated use of (4.12) on the function 2μ′  gives: 

}]_;,1,1[{ 120212 AaFa ++=′ θθμ      (4.13) 

 
where 
 

1 2
1 1 1 2

1 2

2
2 1 1 2

1 2

2 1 2
2

1 2

1 1 2

2
( 1, ) ( 1)

3
( 2, 2 )

2

4
( 1)( 2)

3

( 3, 3 ) ...

A a a

a

a a

a

θ θ μ θ θ
θ θ
θ θθ μ θ θ
θ θ

θ θθ
θ θ

μ θ θ

+ ′= + + + +
+
+ ′ + +
+

++ + +
+

′ + + +

 

 
Repeated use of (4.11) on the function 1μ′  gives: 

2
1 1 2 2 0 2 2

2 0 2

( 2 )( 1) [2, 2, _; ]

( 1)( 2) [3, 3, _; ]

A a F a
a a F a
θ θ θ θ

θ
= + + + +

+ + +
On substituting the value of 1A in (4.12) the 
second moment is obtained by: 
 

2 1 2 0 2

1 1 2 2 0 2

2
1 2 2 0 2

[1, 1, _; ]

( 2 ) ( 1) [2, 2, _; ]

( 1)( 2) [3, 3, _; ]

a F a
a a F a

a a a F a

μ θ θ
θ θ θ θ
θ θ θ

′ = +
+ + + +

+ + + +
 
Placing 3=k  in (4.10) the third moment is 
obtained by: 

1 2
3 1 1 1 2

1 2

1 2
2 1 2

1 2

2
3 1 2

1 2

2 3
1 ( 1, )

3
( 1, )

( 1, )

a a

a

a

θ θμ θ μ θ θ
θ θ

θ θ μ θ θ
θ θ

θ μ θ θ
θ θ

 +′ ′= + + + +
+ ′+ + +
+

′+ + + + 

 

(4.14) 
Repeated use of (4.14) on the function 3μ′  gives: 

}]_;,1,1[{ 3220213 AAaFa +++=′ θθμ (4.15) 

where 

1 2
2 1 1 2 2

1 2

1 2
1 1 2

1 2

2
2

1 2
1 1 2

1 2

2 3
( 1, ) ( 1)

2 5
( 2, 2 )

2

( 1)( 2)

2 7
( 3, 3 ) ...

3

A a a

a

a a

a

θ θ μ θ θ θ
θ θ

θ θ μ θ θ
θ θ

θ
θ θ μ θ θ
θ θ

+ ′= + + + +
+

+ ′ + +
+

+ + +
+ ′ + + +
+  

(4.16) 
and 

1 2
3 2 1 2 2

1 2

1 2
2 1 2

1 2

2
2

1 2
2 1 2

1 2

3
( 1, ) ( 1)

4
( 2, 2 )

2

( 1)( 2)

5
( 3, 3 ) ...

3

A a a

a

a a

a

θ θ μ θ θ θ
θ θ

θ θ μ θ θ
θ θ

θ
θ θ μ θ θ
θ θ

+ ′= + + + +
+

+ ′ + +
+

+ + +
+ ′ + + +
+

 

(4.17) 
Repeated use of (4.11) in (4.16) gives: 

2
2 1 2 2 0 2 2

2 0 2

(2 3 ) ( 1) [2, 2, _; ] 2

( 1)( 2) [3, 3, _; ]

A a F a
a a F a

θ θ θ θ
θ

= + + + +
+ + +

 

Converting 2μ′  functions on the right hand side 

of (4.17) into 1μ′ functions by the repeated use 

of (4.12) and using (4.11) on the function 1μ′  
gives: 
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3 1 2 2 0

2
2 2 2 0 2

2 2
1 1 2 2 2 0 2

2
1 2 2 2 0 2

4
2 2 0 2

( 3 )( 1)

[2, 2, _; ] ( 1)( 2) [3, 3, _; ]

( 6 9 )( 1)( 2) [3, 3, _ ; ]

(3 10 )( 1)( 2)( 3) [4, 4, _ ; ]

3 ( 1)( 2)( 3)( 4) [5, 5, _ ; ]

A a F
a a a a F a

a a F a
a a a F a

a a a a F a

θ θ
θ θ θ

θ θ θ θ θ
θ θ θ θ

θ θ

= + +

+ + + + +

+ + + + + +

+ + + + + +

+ + + + + +
 
Substituting the values of 2A and 3A into (4.15) 

results in: 

3 1 2 0 2 1

1 2 2 0 2

2 2

1 1 1 2 2

2 0 2

2

1 2 1 2 2

2 0 2

4

1 2

2 0 2

[1, 1, _; ]

3( 2 ) ( 1) [2, 2, _; ]

( 6 12 ) ( 1)

( 2) [3, 3, _ ; ]

(3 10 ) ( 1)

( 2)( 3) [4, 4, _ ; ]

3 ( 1)( 2)( 3)

( 4) [5, 5, _ ; ]

a F a

a a F a

a a

a F a

a a

a a F a

a a a a
a F a

μ θ θ θ
θ θ θ

θ θ θ θ θ
θ

θ θ θ θ θ
θ

θ θ
θ
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+ + +

+ + + +

+ +

+ + +

+ + +

+ + + +

+ +

 

 
Similarly the fourth moment can be determined 
from (4.10) as: 

1 2
4 1 1 1 2

1 2

1 2
2 1 2

1 2

1 2
3 1 2

1 2

2
4 1 2

1 2

3 4
1 ( 1, )

3( 2 )
( 1, )

4
( 1, )

( 1, )

a a

a

a

a

θ θμ θ μ θ θ
θ θ

θ θ μ θ θ
θ θ

θ θ μ θ θ
θ θ

θ μ θ θ
θ θ

 +′ ′= + + + +
+ ′+ + +
+

+ ′+ + +
+

′+ + + + 
(4.18) 

Repeated use of (4.18) on the function 4μ′  gives: 

4 1 2 0 2

1 2
1 1 2

1 2

[1, 1; _ , ]

3 4
( 1, )

a F a

a

μ θ θ

θ θ μ θ θ
θ θ
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21 2
2 1 1 2

1 2

3 10
( 1)( 2) ( 3, 3 ) ...

3
a a aθ θ θ μ θ θ

θ θ
+ ′+ + + + + + + 

 

1 2
2 1 2

1 2

1 2
2 2 1 2

1 2

21 2
2 2 1 2

1 2

2
3 ( 1, )

3
( 1) ( 2, 2 )

2

4
( 1)( 2) ( 3, 3 ) ...

3

a

a a

a a a

θ θ μ θ θ
θ θ

θ θ θ μ θ θ
θ θ
θ θ θ μ θ θ
θ θ

 + ′+ + + +
+ ′+ + + +
+

+ ′+ + + + + + + 

1 2
3 1 2

1 2

1 2
2 3 1 2

1 2

21 2
2 3 1 2

1 2

4
( 1, )

5
( 1) ( 2, 2 )

2

6
( 1)( 2) ( 3, 3 ) ...

3

a

a a

a a a

θ θ μ θ θ
θ θ

θ θ θ μ θ θ
θ θ
θ θ θ μ θ θ
θ θ

 + ′+ + + +
+ ′+ + + +
+

 + ′+ + + + + +  +  
 
Repeated use of (4.11), (4.12), and (4.14) 
recursively on the functions 1μ′ , 2μ′  and 3μ′  

respectively with simplifications results in: 
 

4 1 2 0 2 1

1 2 2 0 2

2 2
1 1 1 2 2 2

2 0 2

[1, 1, _; ]

(7 14 ) ( 1) [2, 2, _; ]

(6 36 6 55 ) ( 1)

( 2) [3, 3, _ ; ]

a F a
a a F a

a a
a F a

μ θ θ θ
θ θ θ

θ θ θ θ θ θ
θ

′ = + +
+ + +

+ + + + +
+ +

 

3 2 2
1 1 1 2 1 2 1 2

2 3
2 2

2
2 0 2 1 2 1 2

2 3
1 2 2

( 3 12 63

13 114 ) ( 1)( 2)( 3)

[4, 4, _ ; ] (6

52 131 ) ( 1)( 2)

a a a a
F a

a a a

θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ θ
θ θ θ

+ + + +

+ + + + +

+ +

+ + + +

 

2
2 0 2 1 2

2 3
1 2 2

6
2 0 2 1 2

2 0 2

( 3)( 4) [5, 5, _ ; ]

(15 70 ) ( 1)( 2)( 3)

( 4)( 5) [6, 6, _ ; ] 15

( 1)( 2) ( 3)( 4)

( 5)( 6) [7, 7, _ ; ]

a a F a
a a a a

a a F a
a a a a a
a a F a

θ θ θ
θ θ θ

θ θ θ

θ

+ + + +

+ + + +

+ + + +
+ + + +

+ + +
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The moments about the origin can be easily 
verified for the negative-binomial distribution 
when 02 =θ . Further, central moments can be 
obtained from the moments about origin, thus 
resulting in the variance: 

[ ]

2 1 2 0 2 1 1 2

2 0 2

2
1 2 2 0

2

2 1 2 0 2

[1, 1, _; ] ( 2 )

( 1) [2, 2, _; ]

( 1)( 2)

[3, 3, _; ] [1, 1, _; ]

a F a
a a F a

a a a F

a a F a

μ θ θ θ θ θ
θ

θ θ

θ θ θ

= + + +
+ +

+ + +

+ − +

 

 
The third and fourth central moments are 
coming in messy forms and are not shown here. 
 
Relation with other distributions. 

Theorem 5.1: Let X = a quasi-negative-
binomial variate with parameters ),,( 21 θθa . If 

∞→a  such that αθ =1a  and λθ =2a  show 
that X tends to generalized Poisson distribution 
with parameters ),( λα . 

 
Proof: 
The QNBD can be expressed as: 
 

1
1 1 2

1 2

( 1)...( 1)
( : )

!

( )

(1 )

x

a x

a a a xP X x
x

x
x

θ θ θ
θ θ

−

+

+ + −=

+
+ +

   (5.1) 

 
1 1

1
1 1 2

1 2

2
1 2 1 2

(1 ).......(1 ( 1)  )

!

( ) ( )
( )( 1)

1 ( )( )
2!

( ) ...( )

x

a x

a x a
x

a a a x
a x a xa x x

x x

θ θ θ

θ θ

θ θ θ θ

− −

−

+

+ + −=

+
+ + −+ + + +

+ + +

 

 
Taking limit ∞→a , such that αθ =1a  and 

λθ =2a  results in a generalized Poisson 

distribution with parameters ),( λα as defined 
by Consul & Jain (1973). 
 

Theorem 5.2: Let X = a quasi-negative-
binomial variate with parameters ),,( 21 θθa . If 

∞→a  such that αλ =−1a , show that X tends 
to the Borel-Tanner distribution. 
 
Proof: 
Stating (5.1) as: 

1

( 1)......( 1)
( : )

!

( )

( )

x a

a x

a a a xP X x
x

r r x
r x

λ
λ

−

+

+ + −=

+
+ +

 

 
where 

2

1

θ
θ

=r  and 
2

1

θ
λ = . 

 
Shifting the support of x from 0 to r, that is, 

rxx −=  , results in: 

1

( : )

( 1)......( 1)

( )! ( )

, 1, 2,...

x r a

a x r

P X x
a a a x r rx

x r x
x r r r

λ
λ

− −

+ −

=
+ + − −

− +
= + +

 

rxarx

rx

x
rxaaa

rx
rx

−+−−

−−

+
−−++

−
=

)1(

)1)......(1(

!)( 1

1

λλ
 

 
Taking the limit ∞→a  in such a way so 

αλ =−1a  results in the Borel-Tanner 
distribution  

1( : ) ,
( )!

, 1, 2,...

x r x x rrP X x x e
x r

x r r r

α α− − − −=
−

= + + . 
 

Theorem 5.3: Let X = a quasi-negative-
binomial variate with parameters ),,( 21 θθa . 
Show that zero-truncated quasi-negative-
binomial distribution tends to quasi-logarithmic 
series distribution as 0→a . 
 
Proof: 
The zero-truncated quasi-negative-binomial 
distribution is 
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1

1
1 1 2

1 1 2

( )
( )  

( ) ( 1)

( )
,

[1 (1 ) ](1 )

1,2,.....

x

a a x

a xP x
a x

x
x

x

θ θ θ
θ θ θ

−

− +

Γ +=
Γ Γ +

+
− + + +

=  
(5.2) 

 
Writing: 
 

1

1

2 3
1 1

( ) 1 (1 )

( 1)
1 (1

2!( )
( 1)( 2)

...
3!

aa

a aa
a

a a a

θ

θ

θ θ

− Γ − + = 
+ − − + 

Γ  
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2
1 1

3
1

( 1)
(

2!( 1)
( 1)( 2)

......)
3!

a

a
a a

θ θ

θ

+ − − + 
= Γ +  

+ + 
  

       (5.3) 

 
Substituting the value from (5.3) into (5.2) and 
taking limit 0→a  the quasi-logarithmic series 
distribution is obtained: 

1
1 1 2

1
1 1 2

( )
( ) ,

[ log(1 )](1 )

1,2,...

x

a x

xP x
x x

x

θ θ θ
θ θ θ

−

+

+=
− − + +

=
 

Theorem 5.4: If 1X and 2X  are two 
independent quasi-negative-binomial variates 
with parameters ),,( 211 θθn  and ),,( 212 θθn , 
respectively, then the conditional probability of

1X , given nXX =+ 21 , gives a 
hypergeometric-QNBD. 
 
Proof: 

Because 1X and 2X  are two 
independent quasi-negative-binomial variates, 
the conditional probability 
 

( )
1

1 2

1 2

1 2
0

:
:

( , )

( , )
n

x

X xP X X n

P X x X n x

P X x X n x
=

  = + 
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= = −

 

can be written as  

( )
1

1

2

2

1 2

1 2

1

1 2

11
1 1 2

1 2

11
1 1 2

1 2
11

1 1 2

1 2

:
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( ( ) )
(1 ( ) )
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xn x

n xx

n xn n x

n n xn x

nn n n

n n nn

X xP X X n

x
x

n x
n x

n
n

θ θ θ
θ θ

θ θ θ
θ θ
θ θ θ

θ θ

−+ −

+

− −+ − −

+ −−

−+ + −

+ +

 
 + 

+ 
  + + 

+ − 
  + + − =

+ 
  + + 

 

1 2

1 2

1 2

1

2

1 1

1

1
1 1 2

1
1 2 1 2

1 2

1
1 2 1 2

( )

( ( ) ) (1 )

(1 )

(1 ( ) ) ( )

n x n n x

x n x

n n n

n

x

n n nn x

n x

n n x n

x
n x n

x
n x n

θ θ θ
θ θ θ θ

θ θ
θ θ θ θ

+ − + − −

−

+ + −

−

+ +− −

+

+ − −

  
  
  =

 
 
 
+

+ − + +
+ +

+ + − +

 

 
Thus resulting in a new distribution, here called 
the hypergeometric QNBD. This probability 
distribution reduces to the classical 
hypergeometric distribution on 02 =θ . 
 
Some characterization. 

A number of complex distributions can be 
reduced to the simpler form QNBD as shown in 
the following theorems. 
 

Theorem: 6.1. If X is a quasi-inverse 
Polya variate with parameters (n, a, b, t), and if 

∞→b such that 1
1 λ=−ab  and 2

1 λ=−tb  
show that X approaches to quasi-negative-
binomial variate. 
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Proof: 
If X is a quasi-inverse Polya variate with 

parameters (n, a, b, t), then its probability mass 
function is: 

 

[ ] [ ]

[ ]

( : )

( ) ( )

( )

0,1,2,.....

n x

x

x n

n x

nP X x
n x

a a xt b xt
a xt a b n x t

x

+

+

 =  +  
+ +

+ + + +
=

,

 

 
which can be rewritten as: 
 

( 1)....( 1)
( : )

!
( 1)...( 1)

( )...( 1)

( )...

( 1)

n n n xP X x
x

a a xt a xt x
b xt b xt n

a b n x t

a b n x t n x

+ + −=

+ + + + −
+ + + −

+ + +

+ + + + + − .

 

 

Taking limit ∞→b  such that 1
1 λ=−ab  and 

2
1 λ=−tb  results in: 

1
1 1 2

( )1
1 2

2

( )

(1 ( ) )
( : )

(1 ) .

x

n xn x

nx

x
n xP X x
n

λ λ λ
λ λ

λ

−

− ++ −

−

+

+ + + =   + 
 

 

Incorporating 1
211 )1( −+= λλθ n  and 

1
222 )1( −+= λλθ n , the QNBD (2.4) is 

obtained. 
Theorem 6.2: If X is a generalized 

negative Polya-Eggenberger variate with 
parameters ),,,( γαβn , and if ∞→β  such 

that 1
1 λβ =−n  and 2

1 λγβ =−  show that X 
approaches to quasi-negative-binomial variate. 
 
Proof: 
The generalized negative Polya-Eggenberger 
distribution with parameters ),,,( γαβn  is: 
 

[ ] [ ]

[ ]
( ) ,

( ) ( )

0,1,2,.......

x n x xn x

n xx

n a bP X x
n x a b

x

ββ

ββ

+ −+

+
 = =  + + 

=
 

 
This can be rewritten as: 

[ ] [ ]

[ ]

( : )

( 1)....( 1)

!

( )

x n x x

n x

P X x
n n x n x x

x
β

β

β β

α γ
α γ

+ −

+

=
+ − + − +

+

     (6.1) 

 
Writing 
 

][

][][

][

][

)( xxxn

xxn

xn

xxn

++−+

−+

+

−+
=

+ αβ

βα

β

β

γ
γγ

γα
γ

 

][

][

)( xxxn +−++
= α

α

βγ
γ

 

( 1)...( 1)

( )...

( 1)

n x x
n x x x

γ γ γ α
γ β
γ β α

+ + −=
+ + −
+ + − + + −

 

 
On substituting this value into (6.1) and taking 

the limit ∞→β , such that 1
1 λβ =−n  and 

2
1 λγβ =−  results in: 

 
11

1 1 2

1 2

( )
( : )

( )

0,1,...

xx

xx

xP X x
x

x

αα

α
λ λ λ

λ λ

−+ −

+

+ =  + + 
=

 

Taking 1
211

−= λλθ  and 1
22

−= λθ  QNBD 
(2.4) is obtained. 

Theorem 6.3: If X is a quasi-inverse 
hypergeometric variate with parameters (n, a, b, 

t), and if ∞→b  such that 1
1 λ=−ab  and 

2
1 λ=−tb , show that X approaches to quasi-

negative-binomial variate. 
 
Proof: 
If X is a quasi-inverse hypergeometric variate 
with parameters (n, a, b, t) then its probability 
mass function is: 
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( : )

0,1,2,.....

a xt b nt

x n

a b n x t

n x

n aP X x
n x a xt

x

+ +

+ + +

+

  
  
  =

+ +  
 
 

=

 

Restating this as 

[ ] [ ]

[ ]

( 1)!
( : )

( 1)! !

( 1) ( 1)

( ( ) ( ) 1)

x n

n x

n x aP X x
n x a xt

a xt x b nt n
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and taking limit ∞→b , such that 1
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and 2
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Taking 1
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where )1)......(1( 1222
][

2
1 −++= nnnnn n  and 

0,0,0,0 2121 >>>> nnθθ ,show that 1X
and 2X  are two independent quasi-negative-

binomial variates with parameters ),,( 211 θθn
and ),,( 212 θθn respectively. 
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(6.3) 

Dividing (6.2) by (6.3) results in: 
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which gives a recurrence relation 
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Repeated use of the equation above gives: 
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This is a quasi-negative-binomial distribution 
with parameters ),,( 212 θθn . Similarly it can 

be shown that )(xf  also represents a quasi-
negative-binomial distribution with parameters

),,( 211 θθn . 
 
Goodness of Fit 

Due to its complicated likelihood 
function, the maximum likelihood estimate of 
the parameters of the proposed distribution are 
not straightforward and require some iterative 
procedure such as Fisher’s scoring method or the 
Newton-Rampson method for their solution. R-
software provides one such solution. In R-
software there exists the function nlm, which 
minimizes the negative log-likelihood function 
or equivalently maximizes the log likelihood 
function for estimating the parameters of the 
distribution by adopting the Newton-Rampson 
iterative procedure. A random start procedure is 
employed, that is, for a set of random starting 
points, the function nlm searches recursively 
until global maxima is reached. To verify that 
the global maximum has been found the gradient 
should be equal to zero. The closer the value of 
the random starting points to the ML estimate, 
the lesser number of iterations will be required 
to obtain the global maximum. 

Two data sets examine the fitting of the 
proposed model and compare it with the 
negative binomial distribution and generalized 
negative binomial distribution defined by Jain & 
Consul (1971). A computer program was 
developed using R-software to estimate the 
parameters of the distribution by using the nlm 
function. The ML estimates of the parameters so 
obtained are shown at the bottom of the tables. It 
is evident from tables 4.1 and 4.2 that, in all 
cases, the Chi-square values of the proposed 
model give the best fit as compared to other 
distributions. 
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Table 4.1: Absenteeism among shift-workers in steel industry; data from Arbous & Sichel, 1954 

Count 
Observed 
Frequency 

Expected Frequencies 

NBD 
GNBD Jain & 

Consul’s (1971) 
QNBD Proposed 

Model 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

25-48 

7 
16 
23 
20 
23 
24 
12 
13 
09 
09 
08 
10 
08 
07 
02 
12 
03 
05 
04 
02 
02 
05 
05 
02 
01 
16 

12.02 
16.16 
17.77 
18.08 
17.65 
16.80 
15.72 
14.52 
13.28 
12.06 
10.89 
09.78 
08.75 
07.80 
06.93 
06.14 
05.43 
04.79 
04.22 
03.17 
03.23 
02.86 
02.50 
02.91 
01.91 
12.77 

10.51 
17.45 
20.38 
20.80 
19.88 
18.34 
16.56 
14.78 
13.08 
11.53 
10.13 
08.89 
07.79 
16.83 
05.99 
05.26 
04.61 
04.05 
03.56 
03.14 
02.76 
02.43 
02.15 
01.90 
01.68 
13.50 

10.47 
16.05 
18.55 
19.19 
18.72 
17.63 
16.24 
14.74 
13.23 
11.80 
10.46 
9.25 
8.15 
7.18 
6.31 
5.55 
4.88 
4.30 
3.79 
3.34 
2.94 
2.60 
2.30 
2.04 
1.81 
16.48 

TOTAL 248 248 248 248 

ML 
Estimate 

 
p=0.854 
n=1.576 

 

p=0.00010775 
β =5978.5288 

n=29337.08391 

2.0034559=a  
 3.8528528 1 =θ  

0.06097762 =θ  

χ2 
d.f. 

 
14.92 

17 
27.79 

16 
11.18 

16 
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Multilevel Modeling of Educational Data
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Multilevel Modeling of Educational Data, co-edited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach,
Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences:
Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians’
Special Interest Group (Ed-Stat SIG) of the American Educational Research Association. The use of
multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the
past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model
data that occur within multiple hierarchies (i.e.- the classroom, the school, and/or the district). Examples of
multilevel research problems involving schools include establishing trajectories of academic achievement for
children within diverse classrooms or schools or studying school-level characteristics on the incidence of
bullying. Multilevel models provide an improvement over traditional single-level approaches to working with clustered or hierarchical data; however,
multilevel data present complex and interesting methodological challenges for the applied education research community. 

In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational
data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel
modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative
methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this
volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A
supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through hands-on data
analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral
research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data. 

CONTENTS: Series Introduction, Ronald C. Serlin. Acknowledgements. Part I: Design Contexts for Multilevel MoDels. Introduction, Ann A.
O’Connell and D. Betsy McCoach. The Use of National Datasets for Teaching and Research, Laura M. Stapleton and Scott L. Thomas. Using Multi-
level Modeling to Investigate School Effects, Xin Ma, Lingling Ma, and Kelly D. Bradley. Modeling Growth Using Multilevel and Alternative
Approaches, Janet K. Holt. Cross-Classified Random Effects Models, S. Natasha Beretvas. Multilevel
Logistic Models for Dichotomous and Ordinal Data, Ann A. O’Connell, Jessica Goldstein, H. Jane Rog-
ers,and C. Y. Joanne Peng. Part II: Planning and Evaluating Multilevel Models. Evaluation of Model
Fit and Adequacy , D. Betsy McCoach and Anne C. Black. Power, Sample Size, and Design, Jessaca
Spybrook. Part III: Extending the Multilevel Framework. Multilevel Methods for Meta-Analysis,
Sema A. Kalaian and Rafa M. Kasim. Multilevel Measurement Modeling, Kihito Kamata, Daniel J.
Bauer, and Yasuo Miyazaki. Part IV: Mastering the Technique. Reporting Results from Multilevel
Analyses, John M. Ferron, Kristin Y. Hogarty, Robert F. Dedrick,Melinda R. Hess, John D. Niles, and
Jeffrey D. Kromrey. Software Options for Multilevel Models, J. Kyle Roberts and Patrick McLeod. Esti-
mation Procedures for Hierarchical Linear Models, Hariharan Swaminathan and H. Jane Rogers.
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