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Regularized Covariance Matrix Estimation in

Complex Elliptically Symmetric Distributions

Using the Expected Likelihood Approach—Part 2:

The Under-Sampled Case
Olivier Besson, Senior Member, IEEE, and Yuri I. Abramovich, Fellow, IEEE

Abstract—In the Þrst part of these two papers, we extended the

expected likelihood approach originally developed in the Gaussian

case, to the broader class of complex elliptically symmetric (CES)

distributions and complex angular central Gaussian (ACG) dis-

tributions. More precisely, we demonstrated that the probability

density function (p.d.f.) of the likelihood ratio (LR) for the (un-

known) actual scatter matrix does not depend on the latter:

it only depends on the density generator for the CES distribution

and is distribution-free in the case of ACG distributed data, i.e., it

only depends on the matrix dimension and the number of inde-

pendent training samples , assuming that . Additionally,

regularized scatter matrix estimates based on the EL methodology

were derived. In this second part, we consider the under-sampled

scenario which deserves speciÞc treatment since con-

ventional maximum likelihood estimates do not exist. Indeed, in-

ference about the scatter matrix can only be made in the -dimen-

sional subspace spanned by the columns of the data matrix. We

extend the results derived under the Gaussian assumption to the

CES and ACG class of distributions. Invariance properties of the

under-sampled likelihood ratio evaluated at are presented. Re-

markably enough, in the ACG case, the p.d.f. of this LR can be

written in a rather simple form as a product of beta distributed

random variables. The regularized schemes derived in the Þrst

part, based on the EL principle, are extended to the under-sam-

pled scenario and assessed through numerical simulations.

Index Terms—Covariance matrix estimation, elliptically

symmetric distributions, expected likelihood, likelihood ratio,

regularization.

I. INTRODUCTION

T he Gaussian assumption has been historically the domi-

nating framework for adaptive radar detection problems,

partly because of the richness of statistical tools available

to derive detection/estimation schemes and to assess their

performance in Þnite sample problems. The most famous

examples include the celebrated Reed Mallet Brennan rule for
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characterization of the signal to noise ratio loss of adaptive

Þlters [1] or, for detection problems, the now classic papers by

Kelly [2]–[4] about generalized likelihood ratio test (GLRT)

in unknown Gaussian noise or the adaptive subspace detectors

of [5]–[7] in partially homogeneous noise environments. All

of them highly beneÞt from the beautiful and rich theory

of multivariate Gaussian distributions and Wishart matrices

[8]–[10] and have served as references for decades. At the

core of adaptive Þltering or adaptive detection is the problem

of estimating the disturbance covariance matrix. It is usually

addressed through the maximum likelihood (ML) principle,

mainly because ML estimates have the desirable property of

being asymptotically efÞcient [11], [12]. However, in low

sample support, their performance may degrade and they can

be signiÞcantly improved upon using regularized covariance

matrix estimates (CME), such as diagonal loading [13], [14].

Moreover, the ML estimator results in the ultimate equal to one

likelihood ratio (LR), a property that is questionable, as argued

in [15]–[17]. In the latter references, it is proved that the LR,

evaluated at the true covariance matrix , has a probability

density function (p.d.f.) that does not depend on but only on

the sample volume and the dimension of the observation

space, i.e., number of antennas or pulses. More importantly,

with high probability the LR takes values much lower than

one and, therefore, one may wonder if an estimate whose

LR signiÞcantly exceeds that of the true covariance matrix

is reasonable. Based on these results, the expected likelihood

(EL) principle was developed in [15]–[17] with successful

application to adaptive detection or direction of arrival (DoA)

estimation. In the former case, regularized estimation schemes

were investigated with a view to drive down the LR to values

that are compliant with those for , the true underlying

covariance matrix. As for DoA estimation, the EL approach

was instrumental in identifying severely erroneous MUSIC

DoA estimates (breakdown prediction) and rectifying the set

of these estimates to meet the expected likelihood ratio values

(breakdown cure) [15], [16].

However, in a number of applications, the Gaussian as-

sumption may be violated and detection/estimation schemes

based on this assumption may suffer from a certain lack of

robustness, resulting in signiÞcant performance degradation.

Therefore, many studies have focused on more accurate radar

data modeling along with corresponding detection/estimation

schemes. In this respect, the class of compound-Gaussian

models, see e.g., [18]–[20], has been extensively studied. The

radar return is here modeled as the product of a positive valued



random variable (r.va.) called texture and an independent

complex Gaussian random vector (r.v.) called speckle, and is

referred to as a spherically invariant random vector (SIRV).

Since exact knowledge of the p.d.f. of the texture is seldom

available, the usual way is to treat the textures as unknown

deterministic quantities and to carry out ML estimation of the

speckle covariance matrix [21]–[24]. This approach results

in an implicit equation which is solved through an iterative

procedure. SIRV belong to a broader class, namely complex

elliptically symmetric (CES) distributions [25], [26] which

have recently been studied for array processing applications,

see [27] and references therein. A CES distributed r.v. has

a stochastic representation of the form where

is the scatter matrix, is called the modular variate and

is independent of the complex random vector which is uni-

formly distributed on the complex -sphere. In most practical

situations, the p.d.f. of is not known, and therefore there is

an interest to estimate irrespective of it. A mechanism to

achieve this goal is to normalize as whose p.d.f.

is described by the complex angular central Gaussian (ACG)

distribution and is speciÞed by the scatter matrix only. There

is thus a growing interest in deriving scatter matrix estimates

(SME) within the framework of CES or ACG distributions,

see the comprehensive reviews of Esa Ollila et al. in [27] and

Ami Wiesel in [28]. In the Þrst part [29] of this series of pa-

pers, we addressed this problem using the EL approach. More

precisely, we extended the EL principle from the Gaussian

framework to the CES and ACG distributions, and proved

invariance properties of the LR for the true scatter matrix .

The over-sampled scenario only was considered in

[29]. However, in some applications the number of antenna

elements exceeds the number of i.i.d. training samples

and therefore the under-sampled scenario is of

utmost importance. This case deserves a special treatment as

MLE do not longer exist and inference about the scatter matrix

is possible only in the -dimensional subspace spanned by the

columns of the data matrix [30]. The goal of this paper is thus

to extend the results of [30], which deals with Gaussian data,

to CES and ACG distributed data and to complement [29] by

considering . Accordingly, the regularized estimation

schemes developed in [29] will be adapted to this new case. As

we hinted at above, CES distributions rely on the knowledge

of the p.d.f. of the modular variate while ACG distributions do

not. Therefore, in the sequel, we will concentrate on the ACG

case.

More precisely, in Section II, we derive the LR for ACG dis-

tributions in the under-sampled case. We demonstrate its invari-

ance properties and show that, for , it coincides with the

over-sampled LR of [29]. The case of CES distributions is ad-

dressed in the Appendix. In Section III we brießy review the

regularized estimates of [29] and indicate how their regulariza-

tion parameters are chosen in the under-sampled case. Numer-

ical simulations are presented in Section IV and our conclusions

are drawn in Section V.

II. LIKELIHOOD RATIO FOR COMPLEX ACG DISTRIBUTIONS IN

THE UNDER-SAMPLED CASE

As said previously, the likelihood ratio (and its p.d.f. when

evaluated at the true (covariance) scatter matrix) is the funda-

mental quantity for the EL approach. In this section, we de-

rive this likelihood ratio for under-sampled training conditions

in the case of complex ACG distributed data. For

Gaussian distributed data, the under-sampled scenario has been

studied in [30], [31] where the EL approach was used to detect

outliers produced by MUSIC DoA estimation, and in [32], [33]

for adaptive detection using regularized covariance matrix es-

timates. As explained in [30], this scenario requires a speciÞc

analysis since (unstructured) maximum likelihood estimates do

not longer exist, and information about the covariance matrix

can be retrieved only in the -dimensional subspace spanned by

the data matrix. Moreover, in deriving an under-sampled like-

lihood ratio , some requirements are in force. Of course,

should lie in the interval and maximization of the

likelihood ratio should be associated to maximization of the

likelihood function, at least over a restricted set. Additionally,

the p.d.f. of , when evaluated at the true covariance ma-

trix, should depend only on and , so as to implement an

EL approach. Finally, when , should coincide with

its over-sampled counterpart. In the sequel, we build upon the

theory developed in [30] and extend it to the case of ACG dis-

tributions.

A vector is said to have a complex angular central Gaussian

(ACG) distribution, which we denote as , if

it can be written as where follows a complex

central Gaussian distribution, i.e., . For non-

singular , the p.d.f. of is given by [27], [34], [35]

(1)

where means proportional to. In fact, for any vector

which follows a central CES distribution with

scatter matrix and density generator , the p.d.f. of

is still given by (1), and therefore (1) is the density for

a large class of scaled vectors. Note that in (1) is identiÞable

only up to a scaling factor and can be seen as a shape matrix. Let

us assume that we have a set of i.i.d. samples drawn from

the p.d.f. in (1). Then, the joint distribution of

can be written as

(2)

Let us then consider the likelihood ratio for testing a parametric

scatter (or shape) matrix model where is a set of

parameters that uniquely specify the scatter matrix model. In

[29], we derived the LR for over-sampled training conditions

( ) and showed that

(3)

where is the maximum likelihood estimate of , and is the

unique (up to a scaling factor) solution [36] to

(4)

Let us now turn to the under-sampled scenario with .

Obviously, with training samples, any inference re-



garding the scatter matrix may be provided only regarding

its projection onto the -dimensional subspace spanned by the

columns of , or equivalently by the columns

of the -variate matrix of eigenvectors associated with

the non-zero eigenvalues of the sample matrix

, where stands for the diagonal matrix of the

eigenvalues. As already noted, whether

or , we still have the normalized vectors

. Therefore, without loss of generality, we may

consider the vectors as being generated by complex Gaussian

random vectors . For any given candidate , we need

to Þnd the full rank Hermitian matrix 1, such that the

construct is “closest” to the model

. In [30] it was demonstrated that may be speci-

Þed by the condition that the generalized non-zero eigenvalues

of the matrix pencil are all equal to

one, i.e., . Since ,

the generalized eigenvalues , are the same

as the non-zero eigenvalues of the -variate Hermitian ma-

trix or, since

, the non-zero eigenvalues of the -variate Hermitian matrix

, which immediately leads

to the solution [30]

(5)

and

(6)

Note that for any (arbitrary) matrix , we might con-

struct the corresponding and

: the latter gathers what

can be inferred of from the observation of snapshots.

It is important to note that for the given generating set of

i.i.d Gaussian data , , the scatter matrix

may be treated as an admissible singular covariance

matrix model.

At this stage, we need to deÞne ACG distributions with sin-

gular covariance matrices and we will follow the lines of Siotani

et al. [37] who considered singular Gaussian distributions. Let

be Gaussian distributed with a rank-deÞcient covari-

ance matrix where is a orthonormal

matrix whose columns span the range space of and is a

positive deÞnite Hermitian (PDH) matrix. Note that fully

resides in the subspace spanned by with probability one [10],

[37]. Let denote an orthonormal basis for the complement

of , i.e., and . Let

and let us make the change of variables

1We should have denoted and to emphasize that

these matrices are constructed from but, for the ease of notation, we

simplify to and .

Then and its p.d.f. is given by

where stands for the exponential of the trace of the matrix

between braces. Since the Jacobian from to is 1, [37] deÞnes

a singular Gaussian density as

(7)

for those vectors such that and . Let

us now consider and deÞne

Then follows an ACG distribution with

p.d.f.

Following Siotani et al., one can thus deÞne a singular ACG

density as

(8)

for and . A

set of independent snapshots can thus be represented as

, with density

(9)

Let us assume that is known. For , differentiating (9)

with respect to (for Þxed ), it follows that the MLE of

satisÞes, see also (4)

(10)

Furthermore, let us consider the speciÞc case where the rank

of equals the number of available observations, i.e., .

Assuming that the matrix is non-singular, one has

(11)

Indeed, in this case, one has

. Hence

(12)

which proves that veriÞes (10) for , and

hence is the MLE in this case. This observation is of utmost

importance when we consider the under-sampled case.



Indeed, for our speciÞc application with in (6) being

an admissible singular covariance matrix, we get

(13)

The previous equation provides the likelihood func-

tion for the parameterized scatter matrix . In order

to obtain the likelihood ratio

in under-sampled condi-

tions , we need to Þnd the global ML maximum of

over the PDH matrix .

As proved in (11), this MLE is simply

(14)

where is the diagonal matrix of the eigenvalues of .

Therefore, for an under-sampled scenario, we may

use the under-sampled likelihood ratio which can be written in

the following equivalent forms:

(15)

It is noteworthy that is invariant to scaling

of . Let us now investigate the properties of this

under-sampled likelihood ratio.

Let us Þrst prove that, for T = M, the under-sam-

pled LR (15) coincides with its over-sampled counterpart

in (3). To do so, one needs to derive an

expression for Tyler’s MLE in (4). In fact, using deriva-

tions similar to those which led to (10), one can show that, for

, since and

hence

(16)

Reporting this value in (3) yields, for

(17)

which coincides with in (15) when

.

Let us now prove that similarly to the over-sampled

case, for the true scatter matrix , the p.d.f. for

does not depend on . Observing that

where or , it

ensues that

(18)

which is obviously distribution-free. More insights into the

distribution of can be gained by noticing that

the matrix has a complex Wishart distribution

with degrees of freedom, i.e., . Let

us consider the Bartlett decomposition where

is an upper-triangular matrix and all random variables

are independent [8]. Moreover,

where stands for the complex central chi-square distri-

bution with degrees of freedom, whose p.d.f. is given by

. Additionally, one has

for . It then ensues that

(19)

where stands for the beta distribution. The repre-

sentation (19) makes it very simple to estimate the distribu-

tion of . Additionally, the average value

of can be obtained in a straightforward

manner as

(20)

This average value (or the median value) can serve as a target

value for the likelihood ratio associated with any scatter matrix

estimate.

To summarize, for under-sampled ( ) training condi-

tions and ACG data with ,

we introduced the likelihood ratio

that for the true scatter matrix is described by

a scenario-invariant p.d.f. fully speciÞed by parameters

and . While an analytical expression for the above men-

tioned p.d.f. is not available, it can be pre-calculated for some

given and by Monte-Carlo simulations, using either



simulated i.i.d Gaussian r.v. , cf. Equation

(18) or beta distributed random variables, cf. Equation (19).

In the Appendix, we derive the under-sampled likelihood

ratio for CES distributed samples

. We show that, when evaluated at , its

p.d.f. does not depend on but still depends on the density

generator , similarly to what was observed in the over-sam-

pled case [29].

III. REGULARIZED SCATTERMATRIX ESTIMATION USING THE

EXPECTED LIKELIHOOD APPROACH

For the sake of clarity, we here brießy review the regular-

ized scatter matrix estimates (SME) which were introduced and

studied in part 1 for . More precisely, we focus on the

schemes which were shown to achieve the best performance.

The Þrst estimate is the conventional diagonal loading estimate

(21)

We also consider the Þxed point diagonally loaded estimator

[28], [38], [39] where is ob-

tained from the following iterative algorithm

(22a)

(22b)

We refer to as FP-DL in what follows. Both estimates are

governed by the loading factor which is chosen according to

the EL principle, i.e.,

(23)

where is the scenario-invariant p.d.f. of the -th

root of in (19), stands

for the median value and is the under-

sampled LR of (15):

(24)

In other words, the loading factor is such that

is closest to the median

value of . For comparison purposes, we

will consider the Oracle estimator of [39] deÞned through the

following choice of :

(25)

where is given by

(26)

We will also consider regularized TVAR( ) estimates,

namely the Dym-Gohberg regularization of (21)

(27)

where is the Dym-Gohberg band-inverse transforma-

tion of a Hermitian non negative deÞnite matrix, deÞned as [40]

(28a)

(28b)

Accordingly, we investigate the Þxed point diagonally

loaded TVAR( ) estimate [29] deÞned as

(a formal proof of convergence of this itera-

tive scheme is still an open issue) where

(29a)

(29b)

will be referred to as FP-DG-DL in the sequel. For

those (Þxed-point) diagonally loaded TVAR( ) estimates, the

value of is also selected according to the EL principle, i.e.,

(30)

IV. NUMERICAL SIMULATIONS

Similarly to [29], we consider the case of data distributed

according to a multivariate Student -distribution with degrees

of freedom:

(31)

In all simulations below, we use . We consider a ULA

with elements. The true scatter matrix was considered

to be as per AR(1) process

with . The SNR loss factor

(32)



Fig. 1. Median value of and

versus . .

Fig. 2. Probability density function of . and

.

will serve as the Þgure of merit for quality assess-

ment of the estimators. Above, is a generic SME and

stands for the

steering vector corresponding to the looked direction which

is set to .

We Þrst examine the distribution of

. Fig. 1 displays the median value

of versus : we also plot in this Þgure the

mean value of in the over-sampled

case. This Þgure conÞrms that for , the under-sam-

pled and over-sampled median values coincide. As can be

observed, the median value of decreases when

increases, achieves a minimal value for and then

increases when increases. Figs. 2–3 display the p.d.f.

for and respectively. As can

be seen, can take very small values and, as

increases, the support of this p.d.f. is smaller.

Fig. 3. Probability density function of . and

.

Our second simulation deals with the inßuence of the loading

factor on the SNR loss as well as on the LR, see Fig. 4. As can

be observed, the diagonally loaded estimates are not very sensi-

tive to variations in , at least when the SNR loss is concerned.

Their LR however is seen to vary. In contrast, TVAR( ) esti-

mates (especially DG-DL) have a SNR loss which exhibits large

variations when is varied: the latter should be chosen rather

small in order to have a good SNR loss. One can also observe a

correlation between SNR loss and LR:when increases, both of

them decrease. Whatever the estimate, it appears that choosing

according to the EL principle (23)–(30) results in negligible

SNR losses, although the LR could be quite far from the median

without penalizing too much SNR for the diagonally loaded es-

timates.

Fig. 5 displays SNR loss versus number of snapshots.

The average value of the loading factor selected from the

EL principle is also plotted, as is the average value of

for the Oracle estimator. A few

remarks are in order here. First, it can be seen that the LR

for the Oracle estimator is close but slightly different from

: at least, it is not as close as in the

over-sampled case. More important is the fact that the FP-DL

with the EL principle for choosing outperforms the Oracle

estimator: this is due to the fact that EL selects a higher loading

level, i.e., , in order to have a lower LR. This is a

quite remarkable result which shows that the minimization of

the MSE between and does not result in the highest

SNR in low sample support. As a second observation, notice

that the FP diagonally loaded TVAR(1) estimate provides the

highest SNR, which was also observed in the over-sampled

case.

Similarly to Part 1, we now consider estimation of both

and for estimates. We use the same pro-

cedure as in [29]. For Þxed , we follow the rule in (30) to

select . Then, we estimate as the minimal order for which



Fig. 4. Performance of diagonally loaded estimates versus . and

. (a) SNR loss. (b) Mean value of .

is above a threshold:

(33)

where is the quantile of , i.e.,

. Since the minimum value

of is , is necessarily in the interval . If none

of the orders yield a LR which exceeds the threshold, then

we select the model order which results in the LR closest

to the median. As in Part 1, we still consider the case of an

AR(1) scatter matrix and we also consider

a case where the element of corresponds to the

-th correlation lag of an process whose

spectrum (correlation) is close to but different from that of

the AR(1) process. The SNR loss and average LR for the

FP-DL, and

are displayed in Fig. 6 for the AR(1) case and Fig. 7 for the

Fig. 5. Performance of regularized estimates versus number of snapshots .

. (a) SNR loss (b)Mean value of (c)Mean

value of loading factor.

case. In these Þgures, the two solid black lines

represent the threshold and . First, it is



Fig. 6. Performance of Þxed-point diagonally loaded estimates

versus number of snapshots in the AR(1) case. . (a) SNR loss. (b)

Mean value of .

noteworthy that in the AR(1) case, the EL principle selects in

the vast majority of cases which corresponds to the true

model order. However, in contrast to the over-sampled case,

this may not be the best choice as orders results in better

SNR at the price of lower LR. For instance, it seems that

yields the highest SNR but the corresponding LR is below the

threshold . Next, note that FP-DG-DL outperforms FP-DL,

which is reasonable since belongs to the class of TVAR( )

matrices. The ARMA( ) case yields different results. As

noted in [29], FP-DL is now better than Þxed-point diagonally

loaded TVAR( ) estimates: the latter have lower SNR and LR

which are below the threshold, yielding matrices that are not

admissible. These two simulations conÞrm that FP-DL is an

ubiquitous estimate which can accommodate various types of

scatter matrices.

Fig. 7. Performance of Þxed-point diagonally loaded estimates

versus number of snapshots in the case. . (a) SNR

loss (b) Mean value of .

V. CONCLUSIONS

In this paper, we extended the EL approach of [30] to the class

of CES and ACG distributions in the under-sampled case, where

the number of samples is less than the dimension of the

observation space. Together with the over-sampled case treated

in Part 1 [29], this offers a general methodology to regularized

scatter matrix estimation for a large and practically important

class of distributions. We demonstrated that the LR evaluated

at the true scatter matrix still enjoys the same type of in-

variance properties that were found in the Gaussian case. This

invariance makes it possible to assess the quality of any scatter

matrix estimate, and a useful tool to tune the regularization pa-

rameters of regularized SME. This was demonstrated in the case

of Þxed-point diagonally loaded estimates, where the Oracle es-

timator was shown to achieve a LR very close to the median

value of which also corresponds to the target LR of



the EL-based estimate. Accordingly, we developed regularized

estimation schemes based on modeling and inves-

tigated their use in conjunction with diagonal loading. For this

shrinkage to the structure methodology, the EL approach was

also efÞcient in providing estimates of both the model order and

the loading factor that yields SNR values very close to that of the

optimal (clairvoyant) Þlter. The framework and methodology of

this two-part paper has been demonstrated for adaptive Þltering,

but it can also serve as a useful framework for other problems

that call for Þtting of a parametrically-controlled covariance or

scatter matrix to under-sampled data.

APPENDIX

LIKELIHOOD RATIO FOR CES DISTRIBUTIONS IN THE

UNDER-SAMPLED CASE

In this appendix, we derive the likelihood ratio for under-

sampled training conditions in the case of CES distributions.

Let us start with a r.v. where is a rank-

matrix which can be decomposed as where

is a orthonormal matrix whose columns span the range

space of and is a positive deÞnite Hermitian matrix.

can be represented as [27]

(34)

where . Let denote an orthonormal basis for

the complement of and let . Let us make

the change of variables

Then and its p.d.f. is given by

Since the Jacobian from to is 1, one may deÞne a singular

CES density as

(35)

for vectors such that . The joint density of a set of

independent snapshots can thus be written as

(36)

Assuming that is known, for , theMLE of satisÞes,

see [27],

(37)

Let us now consider snapshots .

As noted in the ACG case, inference about the scatter matrix

is possible only in the -dimensional subspace spanned by

the columns of the -variate matrix of eigenvectors

associated with the non-zero eigenvalues of the sample ma-

trix . Again, for any given , we

need to Þnd the rank- Hermitian matrix , such that

the construct is “closest” to the

model which yields

and . From the pre-

vious deÞnition of singular CES distributions, we may write the

joint p.d.f. of as

(38)

In order to obtain the LR, we need to maximize

over the PDH matrix . As argued in

(37), the MLE of is the solution to

(39)

It follows that, for , the under-sampled likelihood ratio

is given by

(40)

Let us now prove that, for , the under-sam-

pled LR (40) coincides with its over-sampled counterpart

, which is given by [29]

(41)

where corresponds to the MLE of and satisÞes

(42)

with . Similarly to the ACG case, we need

to obtain the MLE in this special case . Let us then

prove that for

(43)



where is given in (39). First, observe that is a square

non-singular matrix so that in (43) is non singular

and its inverse is . Now, let us pre-

multiply (39) by and post-multiply it by to obtain

(44)

which coincides with (42). Using this expression in (40), we

have that for

(45)

which is exactly the over-sampled likelihood ratio of (41).

Finally, let us investigate the distribution of

. Since , it follows

from (40) that

(46)

where and

. Moreover, pre-multiplying (39) by

and post-multiply it by , it ensues that

(47)

Note that is a generalized inverse of , i.e., and

. Unlike the Moore-Penrose pseudo-inverse,

the generalized inverse is not unique. In this regard, note that

is the unique Moore-Penrose pseudo-inverse

of the matrix . Therefore, by specifying a particular

(Hermitian say) square root of we uniquely specify

the matrices and . Finally, from (47), the properties of

the matrices and are entirely speciÞed by a set of i.i.d

complex uniform vectors . This means that the

distribution of does not depend on but of course depends

on , similarly to the over-sampled case. It results that the

p.d.f. of is independent of .
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