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und Kollegen Dr. Markus Höchstötter bin ich für die vielen konstruktiven Gespräche
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Chapter 1

Overview about Factor Models

1.1 Introduction

Factor models are a fundamental approach in asset pricing and portfolio management.

In asset pricing theory they can help to explain and determine the price and return of an

asset. They offer parsimony, i.e. the ability to describe a large set of security returns

in terms of few factors, and the capacity to identify common sources of correlation

among securities. In portfolio management they are used to quantify a portfolio’s

return and risk characteristics. In particular, when dealing with large portfolios, only

factor models can make a quantitative approach to portfolio analysis feasible, since

they allow for financial modeling in much lower dimensions.

The literature about factor models starts with a one factor model introduced by

Sharpe (1963). The purpose of this model was to simplify the estimation of the covari-

ance matrix in the mean-variance approach developed by Markowitz (1952). One year

later the famous Capital Asset Pricing Model (CAPM) was derived by Sharpe (1964)

and Lintner (1965a), which is a one factor model. Ross (1976) developed the Arbi-

trage Pricing Theory (APT), implying a linear multifactor approach for asset pricing.

In the last three decades various factor models have been developed. One of the first

studies investigating and documentating the relationship between multiple factors and

asset returns was the one by Chen et al. (1986) for the US financial market. Since then

a score of studies, for example McElroy, and Burmeister (1988), Poon, and Taylor

(1991), Clare, and Thomas (1994), Jagannathan, and Wang (1996), Reyfman (1997)

and others, have identified the effects of such magnitudes as labor income, industrial

production, inflation and other macroeconomic variables. Alternatively, Fama, and

French (1993) and (1996) developed a three factor model (market, small market value

minus big market portfolio, highbook/market minus low book/market portfolio). They

found out that these factors successfully explain the average returns of size and book

market sorted portfolios, and also of other strategies. Although there is no satisfactory

1



2 1 OVERVIEW ABOUT FACTOR MODELS

theory explaining this phenomenon, these findings may suggest that these fundamental

factors are proxies for some macroeconomic ’distress’ of ’recession’ factor.

An economical justification for factor modeling can be achieved very elegantly by

the stochastic discount factor approach (see Cochrane (2001) for a thorough discussion

of this approach). This approach can be described by the following two equations

Pt = E(mt+1Xt+1|Ft)

mt+1 = f(data, parameters),

where Pt is the asset’s price at time t, Xt+1 is the asset payoff at time t + 1, E(.|Ft)
denotes the conditional expectation operator at time t, f denotes some function, and

mt+1 is the stochastic discount factor. The stochastic discount factor is a random

variable that computes market prices today (time t) by discounting, state by state, the

corresponding future payoff. Certainly, the advantages of the stochastic discount factor

approach are its universality, unification of more specific theories, and simplicity. The

fundamental obstacle in this approach is that we do not know mt+1. In the consump-

tion based theory one can show that the stochastic discount factor can be expressed in

terms of

mt+1 = β
u′(ct+1)
u′(ct)

,

where ct and ct+1 are consumption at time t and t+1, respectively, u(.) is an increasing

and concave utility function and the constant β captures the investor’s impatience1.

The term β u′(ct+1)
u′(ct)

can be interpreted as marginal utility. It should be plausible that

macroeconomic risk factors, which cannot be diversified and describe the state of the

economy, determines marginal utility of an investor. This argument can be expressed

mathematically by the following equation

mt+1 = β
u′(ct+1)
u′(ct)

≈
n∑

i=1

biFt+1,i. (1.1)

In the appendix we show that equation (1.1) leads to a factor model of the form

E(Ri,t+1|Ft) = Rf +
p∑

j=1

βijE(Ft+1|Ft), (1.2)

where βij ∈ R, i = 1, ..., d and j = 1, ..., p, are called factor loadings and measure the

sensitivity between the factor returns and the asset returns. Equation (1.2) says if one

knows the exposures (factor loadings) and the conditional mean of the factor returns,

1A high β refers to an impatient investor.
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factors

observed unobserved

Market Macro Statistical

Security
specific

Technical Industry Fundamental

Figure 1.1: Hierachy of Factors

one can forecast the asset return and thus, the fair price of the asset.

In portfolio and risk management we are primarily focused on understanding the

variances and covariances of the asset returns in the portfolio in order to understand

the risk characteristics. For example, if one has a portfolio consisting of d assets one

has to estimate d(d + 1)/2 variances and covariances for the risk characteristics, i.e.

in case of 200 and 2000 stocks in a portfolio, we have to estimate over 20 thousand

and 20 million variances and covariances, respectively! In most cases available sample

sizes are insufficient to estimate robustly a positive definite covariance matrix. Without

a factor model describing the behavior of asset returns by much fewer factors, say up

to 50, a quantitative approach to portfolio analysis is simply impossible. With a well

working factor model we can estimate the covariance matrix of the factor returns and

hence, the covariance matrix of the asset returns.

Equity risk factor models take a variety of forms. A basic categorization of fac-

tor models is whether the factor returns are observed or unobserved. Factor models

that rely on observed factor returns include market and macroeconomic factor models.

Alternatively, factor models exhibiting unobserved factors are statistical or fundamen-

tal factor models. Figure 1.1 depicts the hierarchy of the factors. In order to make

the classification a bit less abstract, Table 1.1 depicts examples for each factor class.

Figure 1.1 and Table 1.1 are adopted from Zangari (2003).
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Factor Class Examples
Market S&P 500, Wishire 5000, MSCI World indexes
Macroeconomic Industrial Production, unemployment rate, interest rate
Technical Excess stock return on previous month, trading volumes
Sector Energy, transportation, technology
Fundamental Value, growth, return on equity
Statistical Principal components

Table 1.1: Examples of Factors

The different classes of factor models require different kinds of estimation tech-

niques.

This chapter is organized as follows. In Section 1.2 we deal with observed factor

models. We present their basic properties, give examples and show how to calibrate

them to data. In Section 1.3 we consider fundamental and statistical factor models. As

mentioned before, both are unobserved factor models but they are based on different

approaches. In the last section we give an outlook of the thesis and describe how our

work contributes to the field of financial factor modeling.

1.2 Factor Models with Observed Factors

In this section we consider observed factor models, i.e. market and macroeconomic

factor models. We assume that we have identified a set of observed factors explaining

and determining asset returns. In practical work this identification process is driven by

macroeconomic consideration and intensive data analysis. In the model construction

process these factors are treated as exogenous variables.

After defining a factor model and presenting its mathematical basic properties we

give two examples of observed factor models. The first one is the so-called market

model that can be derived immediately from the CAPM. The second one is a macro-

economic factor model proposed by Chen et al. (1986), which can be considered to be

an extension of the market model by adding additional macroeconomic factors. We

conclude this section with statistical calibration of factor models.

1.2.1 Definition and Basic Properties

By using an observed factor model we try to explain and determine the randomness

in the components of a d-dimensional vector X in terms of a smaller set of common

factors F = (F1, ..., Fp)′. If the components of X = (X1, ...,Xd)′ represent asset

returns, it is clear that a large part of their variation can be explained in terms of the

variation of a smaller set of market or macroeconomic factors. Formally we define a

factor model as follows according to McNeil, Frey, and Embrechts (2005).
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Definition 1. A d-dimensional stochastic variable X is said to follow a p-factor model

if it can be decomposed as

X = a+BF + ε, (1.3)

where

(i) F = (F1, ..., Fp)′ is a random vector of common factors with p < d and a

covariance matrix that is positive definite;

(ii) ε = (ε1, ..., εd)′ is a random vector of idiosyncratic error terms, which are un-

correlated and have mean zero;

(iii) B ∈ Rd×p is a matrix of constant factor loadings and a ∈ Rd is a vector of

constants; and

(iv) Cov(F, ε) = E((F − E(F ))ε′) = 0.

Definition 1 says if we know the factors F we can determine X up to an idiosyn-

cratic error term ε. According to equation (1.3) the factor model induces a structure

for the covariance matrix Σ of X. If we denote the covariance matrix of F by Ω and

that of ε by the diagonal matrix Υ, it follows

Σ = Var(X) = Var(a+BF + ε)

= Var(BF ) + Var(ε) +B Cov(F, ε) + Cov(ε, F )B′

= BΩB′ + Υ. (1.4)

Hence, if we know the covariance matrix of F and the factor loading B (see appendix

for a statistical calibration), we can approximate the covariance matrix of X.

If we transfer Definition 1 in a time series framework meaning we replace the

random variable X by the process (Xt)t∈Z, F by (Ft)t∈Z and ε by (εt)t∈Z, we obtain

Xt = a+BFt + εt for all t ∈ Z, (1.5)

where we assume that the process (εt)t∈Z is a martingale difference (see chapter 3 for a

definition of this notion) and independent of (Ft)t∈Z. In particular, if we are capable to

forecast the future values of factor returns – this can be done by economical expertise

or an econometric model for the factor return – we can predict the future value of the

assets and asset returns. Mathematically expressed, we have

E(Xt+1|Ft) = a+BE(Ft+1|Ft),
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where E(εt+1|Ft) = 0, since et+1 is independent from present and past state of the

world. As stressed in the introduction of this chapter, forecasting expected values

of asset returns using historical information is one of the main applications of factor

models, especially, when we are dealing with long horizon return data. As shown by

Kim, Malz, and Mina (1999) forecasts for a horizon of at least three months produce

relatively accurate predictions of future returns.

On the contrary, when working with daily or weekly asset and factor return data

we can apply factor models to predict the temporal dependence structure of asset re-

turns and to explain systematic variations and comovements among stock returns. In

mathematical terms we have

Σt = Var(Xt+1|Ft)

= BVar(Ft+1|Ft)B′ + Var(εt+1|Ft)

= BΩtB
′ + Υt.

Instead of modeling the process of the conditional covariance (Σt)t∈Z, we focus on

modeling the process (Ωt)t∈Z. In case of p << d this is a huge simplification of

estimating and modeling the covariance process. These covariance processes can be

modeled by multivariate GARCH processes and we will see in chapter 3 that the di-

mension of these processes is the bottle-neck in terms of fitting the process to data.

Summing up, for daily or weekly asset return data factor models are primarily

applied to model the temporal dependence structure in terms of the conditional covari-

ance matrix, while for three monthly return data and data based on even longer periods

factor models are used to forecast expected return.

1.2.2 Two Examples

The first asset pricing model derived from economic theory is the Capital Asset Pricing

Model2. The CAPM is given by the following formula

E(Xi) = Xf + βi(E(XM ) −Xf ), (1.6)

where E(Xi) = the expected return on asset i;

E(XM ) = the expected return on the ”market portfolio”;

Xf = return on a risk-free security; and

βi = measure of systematic risk of asset i relative

to the ”market portfolio”.

One can further show that βi in equation (1.6) is given by Cov(Xi,XM )
Var(Xm) . The empir-

2For a derivation of this model see Sharpe (1964) and Lintner (1965a).
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ical analogue for equation (1.6) is

Xt,i −Xt,f = αi + βi(Xt,M −Xt,f ) + εt,i, (1.7)

where εt,i is the idiosyncratic error term and t = 1, .., n. Equation (1.7) is called the

characteristic line. Although simple, the CAPM may not offer the practitioner a useful

way to measure and explain risk. A manager may mistakenly select the wrong or not

sufficient proxy for the market portfolio in the analysis or may simply be interested

in a richer model to help explain sources of risk and return. Fama, and French (1996)

have shown that the market portfolio does a rather poor job at explaining movements in

individual stock returns. Thus, the market return may not be the only factor explaining

movements in excess stock returns, and therefore more factors are needed.

Chen et al. (1986) have investigated whether an extension of the CAPM can help

to explain stock returns by adding a set of macroeconomic factors. Examples of the

macroeconomic factors include: (1) the growth rate in monthly industrial production;

(2) a measure of default premium, measured as the difference between the return on

a high-yield bond index and the return on long-term government bonds.; (3) the real

interest rate; (4) the maturity premium, measured as the difference between return on

the long-term government bond and the one-month Treasury bill return; and (5) the

change in monthly expected inflation.

We incorporate the macroeconomic factors into the market model as follows. We

do not assume anymore that the expectation of the error term in equation 1.7 is zero,

since it is driven by macroeconomic risk factors that cannot be diversified and thus,

the investor should be rewarded for taking these risks.

E(Xi) = Xf + βi(E(XM ) −Xf ) + E(ei) (1.8)

E(ei) =
K−1∑
j=1

βijE(Fj), (1.9)

where βij measures the exposure of the jth factor on the ith asset and E(Fj) is the

expected return of the jth factor. The empirical analogue for equations (1.8) and (1.9)

is

Xt,i −Xt,f = αi + βi(Xt,M −Xt,f ) + et,i

et,i =
K−1∑
j=1

βijFt,j + εt,i, (1.10)
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where Ft,j = return on the ith macroeconomic factor at time t;

βij = exposure of the jth factor on the ith asset; and

εt,i = ith security’s idiosyncratic return.

Note, that we have assumed the factor loadings βij and the asset return’s αi to be

constant over time in both models. However, this assumption is questionable, since

fundamental changes in a company, such as mergers and acquisitions or changes in the

capital structure, should have considerable influence on the factor exposures.

1.3 Factor Models with Unobserved Factors

In this section we consider factor models whose factors are not observable. According

to Table 1.1 we distinguish between statistical factor models and security specific fac-

tor models including technical, sector and fundamental factor models. The key issue

in both classes of factor models is to estimate the unobserved values of the factors. We

will see that we require fundamentally different estimation techniques for calibrating

these two model classes.

1.3.1 Statistical Factor Models

In statistical factor modeling we extract a number of unobserved factors from a multi-

variate return series. The aim of statistical factor models is not to explain the returns of

an asset but rather to reduce the dimensionality of the data by finding a small number of

independent or at least uncorrelated factors that account for the systematic variations

and comovements among asset returns. The identified factors are linear combinations

of the asset returns and, certainly a drawback, they are difficult to interpret economi-

cally in most cases.

Principal Component Analysis

The most important statistical method to extract factors from data is the principal com-

ponent analysis (PCA) and this for two reasons. First, many commercially available

risk systems use this method as part of their risk models. Second, for many prac-

titioners PCA is what often comes to mind when thinking about factors and factor

models. In Chapter 2 we introduce PCA in a very general framework that has not been

developed so far in this chapter. The concept of PCA is used throughout the thesis. Af-

ter defining this method in Chapter 2, we apply it in the factor composed MGARCH

model (see Chapter 3). In Chapter 4 we show that multi-tail elliptical distributions

allow to model principal components with different tail indices. The PCA has been
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extensively applied in the financial literature. For example, Alexander (2002) used the

PCA in the so-called PC-GARCH model (see Chapter 3) and Borovkova (2006) used

the PCA very successfully in the commodity future market.

Factor Analysis

This section follows Johnson, and Wichern (1982). The essential purpose of factor

analysis is to describe, if possible, the covariance relationship among asset returns in

terms of a few underlying, but unobservable, random quantities called factors. We

assume the model described in Definition 1. Our objective is to find decomposition of

Σ according to equation (1.4). In addition, we assume that the covariance matrix Ω of

the factors equals the identity. This assumption leads to the decomposition

Σ = BB′ + Υ. (1.11)

It is important to note, that equation (1.11) determines the unobserved factors F only

up to an orthogonal transformation Γ ∈ Rd×d, since equation (1.3) in Definition 1 can

be rewritten

X = a+BF + ε = aBΓΓ′F + ε

= a+ B̃F̃ + ε,

where B̃ = BΓ and F̃ = Γ′F . Thus, we have

Var(X) = Var(a+ B̃F̃ + ε) = B̃Var(F̃ )B̃′ + Υ

= BΓΓ′ΓΓ′B′ + Υ = BB′ + Υ.

In factor analysis there are two very popular methods to obtain such a decomposition.

The first one is the principal component method and the second one the maximum

likelihood method.

The principal component method

The principal component method is based on the spectral decomposition theorem (see

appendix 1.5.2). Let Σ have eigenvalue-eigenvector pairs (λi, vi) with λ1 ≥ λ2 ≥
...λd ≥ 0. Then we have due to the spectral decomposition theorem

Σ =
d∑

i=1

λiviv
′
i

= (
√
λ1v1|...|

√
λdvd)(

√
λ1v1|...|

√
λdvd)′. (1.12)
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Equation (1.12) fits in the covariance structure of equation (1.11). Since we are pri-

marily interested in reducing the dimensionality of the factors we try to explain the

covariance structure in terms of a few common factors. One approach, when the last

d−p eigenvalues are small, is to neglect the contribution of
∑d

i=p+1 λiviv
′
i to Σ. Thus,

we obtain the approximation

Σ ≈ (
√
λ1v1|...|

√
λpvp)︸ ︷︷ ︸

=B

(
√
λ1v1|...|

√
λpvp)′︸ ︷︷ ︸

=B′

(1.13)

This approximation assumes that the idiosyncratic error terms ε in Definition 1 are of

minor importance and can be ignored.

If one is interested in including the error terms, one can take the diagonal elements

of Σ − BB′, where BB′ is defined in equation (1.13). Allowing for specific factors,

the approximation becomes

Σ ≈ BB′ + Υ

where Υii = σii −
∑p

j=1Bij , i = 1, 2, ..., p and Υij = 0, i �= j.

The maximum likelihood method

If the common factors F and the idiosyncratic error terms are assumed to be normally

distributed we can obtain the matrix B of factor loadings and the specific variances

Υ through maximum likelihood estimates. When Fj and εj , j = 1, ..., n are jointly

normal, the observations Xj − µ = BFj + εj are then normal, and the likelihood is

L(µ,Σ) = (2π)−np/2|Σ|−n/2e−
1
2

�n
j=1(xj−x̄)Σ−1(xj−x̄)

which depends onB and Υ through Σ = BB′+Υ. This model is still not well defined

because the solution is unique up to an orthogonal transformation as shown before.

We can achieve uniqueness of the solution by imposing the following computa-

tionally efficient uniqueness condition

B′ΥB = ∆ is diagonal. (1.14)

1.3.2 Fundamental Factor Models

This section follows Zangari (2003). The fundamental factor models relate to the

situation where the factors are unobserved, but the loading or exposure matrix B is

assumed to be known. More precisely, we group every asset in the considered universe

by geographical or industrial sector, firm size or other important characteristics. For

example, the return of a European technology company might have a high exposure to
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an unobserved factor representing technology companies and to an unobserved factor

representing European companies.

A very popular statistical approach for fundamental factor models is a linear cross

sectional model that is defined by

Xt = Bt−1Ft + εt, (1.15)

where Xt = d-dimensional vector of one-period asset (stock) returns;

Bt−1 = d× p matrix of asset exposures to factors as of time t− 1;

Ft = p-dimensional vector of one-period factor returns; and

εt = d-dimensional vector of one-period specific returns.

The model given in equation (1.15) can be interpreted as a regression model, where

the asset returns are treated as dependent variables and the exposures are the indepen-

dent variables. At any point in time we perform a cross-sectional regression leading

to

Ft = (B′t−1Bt−1)−1Bt−1Xt

where t = 1, ..., n (see Murray (2006) for a thorough discussion of ordinary least

square regression). In most applications of the cross sectional model it is too restrictive

to assume that idiosyncratic error terms εt,i, i = 1, ..., d, have the same variances.

Instead, we assume that the covariance matrix of the specific returns, εt, t = 1, ..., n,

is given by

Υt =

⎛
⎜⎜⎜⎜⎜⎝

σ2
t,1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 σ2

t,d

⎞
⎟⎟⎟⎟⎟⎠ ,

where σ2
t,i �= σ2

t,j for i �= j, i, j = 1, ..., d. In this situation ordinary least square re-

gression is not efficient and we have to apply generalized least square (GLS) regression

which leads to

Ft = (B′t−1ΥtBt−1)−1Bt−1Υ−1
t Xt,

where t = 1, ...n (see Murray (2006) for generalized least square regression).

Once, we have estimated the returns of the fundamental factors we can apply

econometric models in order to predict factor returns or to identify the temporal de-

pendence structure between them.
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Asset Exposure

So far, we have not discussed the different types of factors in a fundamental factor

model and how to determine the corresponding exposures. In particular, in a linear

cross-sectional factor model determining exposures is one of the essential tasks to do,

since they are treated as independent or exogenous variables in the model.

Typically, in a fundamental factor model an asset can have exposures to:

• itself

• a particular industry or sector

• a currency

• a country

• investment styles: volatility, market capitalization, value and others.

In the following we explain how to determine the raw exposure of an asset to a specific

class of factors, e.g. industry or investment styles. Subsequently, we show how to

standardize the raw exposures3 in order to combine them consistently in a linear factor

model.

Industry Exposures

Probably the easiest set of exposures to understand are industry exposures. There are

two different classification schemes to allocate an asset’s exposure to multiple indus-

tries or groups of industries (sectors).

(i) An asset’s exposure to an industry is one if it is in that industry, otherwise zero.

This classification may be coarse for companies belonging to multiple industries or

sectors. For example, a company can be assigned to two industries, where in one

industry the company generates 90% of its earning. In this situation it is questionable

to apply classification scheme (i).

(ii) If a company is exposed to more than one industry, we assign weights to these

industries or sectors according to certain criterion, where the weights sum up to

1.

The question is of course what the right criteria to choose are. One criteria might be

the percental profits or earnings gained in the industries.

3Note that raw exposures of different factor classes have different units and have to be normalized in
some way.
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These industry assignments are provided by various vendors. E.g., in the United

States we have Barra and Russel among others and in Europe there are FTSE and Dow

Jones STOXX and others. Note that each classification scheme groups industries in

different sectors providing a coarser grouping of assets.

Country or Local Market Exposures

In the same way in the case of industry exposures we present two ways to define an

asset’s country exposure. The first approach takes the following form.

(i) An asset’s country exposure takes a value of one if it belongs to a country, zero

otherwise.

The crucial question in this approach is, what do we mean by the term belongs? Is it the

country of domicile (the country where a company has been registered), the country

of issuance (the country where the stock has been issued) or is it the country where

the company sells its products? However, we see there are problems with using this

approach. An alternative approach to define an asset’s country exposure is to use local

market betas, leading to the following four step algorithm.

(ii) 1) Assign each asset to a country or countries

2) Identify the market portfolio corresponding to each country. This portfolio

is referred to as the local market index.

3) Regress the returns of the asset on the returns of the local market index to

get the beta.

4) The estimated value of beta is that asset’s exposure to the country.

This four step process applies to estimating multiple country exposures (i.e., multiple

betas) for a particular asset.

Investment Style/Risk Exposures

Investment style exposures capture an asset’s sensitivity to a particular investment

strategy. In the following we describe examples of very popular investment style asset

exposures.

(i) The volatility factor captures the volatility of assets. Assets that have high (low)

historical volatility have a high (low) exposure to the volatility factor. An asset’s

exposure to volatility may be computed as the standard deviation of its historical

returns.

(ii) The market capitalization also known as the size factor explains the asset returns

in terms of the company’s market capitalization. Companies with large (small)
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market capitalization have high (low) exposure to the size factor. An asset’s

raw exposure to this factor is defined as the square root of the observed market

capitalization of the company.

(iii) The value factor captures a company’s value orientation. An asset’s exposure to

value may be calculated as the ratio of its price to book value.

Note, that the investment style exposures are measured in different units. We call this

exposure also raw exposure. In the next section we show how to standardize exposures.

1.3.3 Standardizing Exposures

In a fundamental factor model we have to standardize an asset’s raw exposures to

different investment style factors, since we have to make exposures across different

investment styles comparable. For example, a company has a market capitalization

of $1 billion which gains a market size exposure of $31, 663 (see (ii) above). On the

other hand the same asset has an exposure to volatility of 24% (historical volatility

annualized). It is obvious that we have to convert them to standardized units, if we

want to incorporate these raw exposures into a factor model using regression.

In order to incorporate these raw exposures into a factor models using regression,

we have to convert them to standardized units.

We discuss two methodologies in order to standardize asset exposures. For the first

approach we have to carry out the following steps.

1) Define the universe of assets over which a particular group of exposures will be

standardized.

2) Compute the average raw exposure of this universe.

3) Compute the standard deviation of exposures for this universe.

4) An asset’s standardized exposure is defined as

βi =
βrj − µ

σ
, (1.16)

where βrj is the raw exposure of the jth asset, µ is the mean of the exposures in

the considered universe, and σ is the standard deviation of the exposures.

The standardized exposures from this approach are measured in units of standard de-

viation. In practice, there are some variations to this methodology. For example, the

universe used to standardize investment style exposures may be based on the com-

pany’s industry classification. In this case we group the asset according to its industry
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classification and we standardize the company’s raw exposure, e.g. size factor, due to

its industry group.

Chan, Karecedski, and Lakonishok (1998) suggest an alternative approach for stan-

dardization. They propose a three step algorithm.

1) Define the universe of assets over which a particular group of exposures is to be

standardized.

2) Rank exposures.

3) Rescale the ranked exposures so that their values lie between 0 and 1 according

to

βi =
ρ(βri) − 1

maxj=1,...,n(ρ(βrj) − 1)
,

where n is the number of assets in the universe, βrj is the raw exposure of the

jth asset, and the function ρ(.) ranks the raw exposures.

1.4 Motivation and Outline of the Thesis

As we have seen in the preceding sections one of the key applications of factor models

is to understand and to identify the risk and return characteristics of large asset portfo-

lios that demands a thorough modeling of the factor returns. The contribution of this

thesis to the field of factor models is to develop methods and models allowing to cap-

ture the important style facts about factor returns. In our work, we focus on statistical

factor models which are based on principal component analysis.

In empirical work we observe that principal components exhibit following statisti-

cal properties.

(i) Heavy tailed return distributions.

(ii) Tail dependency.

(iii) Multiple tail indices.

(iv) Clustering of the volatility.

An important class of distributions dedicated to capture properties (i) to (iii) are

α-stable distributions as shown by Rachev, and Mittnik (2000). Property (iv) is a time

series property. This property has been modeled with overwhelming success by ARCH

and GARCH processes.

One of the major objectives of the thesis is to combine these two concepts leading

to an α-stable multivariate GARCH model (see Chapter 3).
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In Chapter 2 we develop a moment type estimator for the dispersion matrix of an

α-stable sub-Gaussian distribution. We generalize this estimator so that it is capable

to estimate the dispersion matrix of any elliptical distribution. Such an estimator is

important in order to conduct an α-stable Principal Component Analysis. The chapter

corresponds to Kring et al. (2007).

In Chapter 3 we present a new class of multivariate GARCH models that we label

composed and factor composed multivariate GARCH models. We show important sta-

tistical properties of these processes such as covariance stationarity and transformation

invariance. Furthermore, we present estimation algorithms in order to calibrate these

processes. We conclude the chapter by introducing an α-stable version of the com-

posed and factor composed multivariate GARCH processes and applications. This

chapter refers to Kring et al. (2007b).

In Chapter 4 we introduce a new class of distributions that we call multi-tail el-

liptical distributions. Multi-tail elliptical distributions are an extension of elliptical

distributions (see Fang, Kotz and Ng (1987)) and a new subclass of generalized ellipti-

cal distributions (see Frahm (2004)). This chapter corresponds to Kring et al. (2007c).

Chapter 5 summarizes the results of the work.
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1.5 Appendix

1.5.1 Economical Explanation for Factor Models

In the following theorem we show the relation between factor models in terms of beta

pricing models and discount factor models. For a thorough treatment of this topic we

refer to Cochrane (2001). With loss of generality we assume E(F ) = 0, since we can

always standardize the factor return through

F = F̃ − E(F̃ ).

Theorem 1. Let F = (F1, ..., Fp)′ ∈ Rp be common factors with zero mean and

positive definite covariance matrix, a > 0 and b ∈ Rp. Furthermore, let

m = a+ b′F, 1 = E(mXi) (1.17)

be a discount factor model, where Xi is the ith asset return, i = 1, ..., d. Then there

exists a beta pricing model of the form

E(Xi) = γ +
p∑

j=1

βijλj, i = 1, ..., n, (1.18)

where

(i) βi = (βi1, ..., βip)′ = E(FF ′)−1E(XiF ) are the multiple regression coeffi-

cients of Xi on F ;

(ii) γ = 1
E(m) = 1

a ;

(iii) λ = −1
aE(mF ).

Conversly, given γ > 0 and λ ∈ Rp in a beta pricing model of the form (1.18) and

the common factors F ∈ Rp as above, then there exists a > 0 and b ∈ Rp such that

(1.17) holds.

Proof. The idea is to construct a relation between (a, b) and (γ, λ). Due to the model

(1.17) we have

1 = E(mXi) = Cov(m,Xi) −E(m)E(Xi).
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This is equivalent to

E(Xi) =
1

E(m)
− Cov(m,Xi)

E(m)

=
1
a
− Cov(a+ b′F,Xi)

E(m)
(since a > 0)

=
1
a
− 1
a

Cov(F ′,Xi)b

=
1
a
− 1
a
E(XiF

′)b (since E(F ) = 0).

In a beta pricing model the coefficients βi, i = 1, ..., n are the multiple regression

coefficients of Xi on F that are defined by

βi = E(FF ′)−1E(FXi). (1.19)

Since the last expression is equivalent to

E(XiF
′) = β′iE(FF ′),

we obtain

E(Xi) =
1
a
− β′i

E(FF ′)b
a

.

Hence, we define

γ :=
1

E(m)
=

1
a

λ := −E(FF ′)b
a

= −γE(mF ). (1.20)

Using equations (1.20), we can easily go backwards from the expected return-beta

representation to m = a+ b′F .

1.5.2 Spectral Decomposition Theorem

Theorem 2 (Spectral Decomposition Theorem). Let A ∈ Rd×d be a symmetric ma-

trix. Then there is an orthonormal basis of Rd consisting of eigenvectors of A. In

particular, A can be written

A =
d∑

i=1

λiviv
′
i,

where (λi, vi), i = 1, ..., d, are eigenvalue-eigenvector pairs of A.



Chapter 2

Estimation of α-Stable

Sub-Gaussian Distributions

2.1 Introduction

Classical models in financial risk management and portfolio optimization such as the

Markowitz portfolio optimization approach are based on the assumption that risk fac-

tor returns and stock returns are normally distributed. Since the seminal work of Man-

delbrot (1963) and further investigations by Fama (1965), Chen, and Rachev (1995),

McCulloch (1996), and Rachev, and Mittnik (2000) there has been overwhelming em-

pirical evidences that the normal distribution must be rejected. These investigations

led to the conclusion that marginal distributions of risk factors and stock returns ex-

hibit skewness and leptokurtosis, i.e., a phenomena that cannot be explained by the

normal distribution.

Stable or α-stable distributions have been suggested by the authors above for mod-

eling these peculiarities of financial time series. Beside the fact that α-stable distrib-

utions capture these phenomena very well, they have further attractive features which

allow them to generalize Gaussian-based financial theory. First, they have the prop-

erty of stability meaning, that a finite sum of independent and identically distributed

(i.i.d.) α-stable distributions is a stable distribution. Second, this class of distribution

allows for the generalized Central Limit Theorem: A normalized sum of i.i.d. random

variables converges in distribution to an α-stable random vector.

A drawback of stable distributions is that, with a few exceptions, they do not know

any analytic expressions for their densities. In the univariate case, this obstacle could

be negotiated by numerical approximation based on new computational possibilities.

These new possibilities make the α-stable distribution also accessible for practitioners

in the financial sector, at least, in the univariate case. The multivariate α-stable case

19
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is even much more complex, allowing for a very rich dependence structure, which

is represented by the so-called spectral measure. In general, the spectral measure is

very difficult to estimate even in low dimensions. This is certainly one of the main

reasons why multivariate α-stable distributions have not been used in many financial

applications.

In financial risk management as well as in portfolio optimization, all the mod-

els are inherently multivariate as stressed by McNeil, Frey, and Embrechts (2005).

The multivariate normal distribution is not appropriate to capture the complex depen-

dence structure between assets, since it does not allow for modeling tail dependen-

cies between the assets and leptokurtosis as well as heavy tails of the marginal return

distributions. In many models for market risk management multivariate elliptical dis-

tributions, e.g. t-distribution or symmetric generalized hyperbolic distributions, are

applied. They model better than the multivariate normal distributions (MNDs) the de-

pendence structure of assets and offer an efficient estimation procedure. In general,

elliptical distributions (EDs) are an extension of MNDs since they are also elliptically

contoured and characterized by the so-called dispersion matrix. The dispersion matrix

equals the variance covariance matrix up to a scaling constants if second moments of

the distributions exist, and has a similar interpretation as the variance-covariance ma-

trix for MNDs. In empirical studies 1 it is shown that especially data of multivariate

asset returns are roughly elliptically contoured.

In this chapter, we focus on multivariate α-stable sub-Gaussian distributions (MSSDs).

In two aspects they are a very natural extension of the MNDs. First, they have the

stability property and allow for the generalized Central Limit Theorem, important fea-

tures making them attractive for financial theory. Second, they belong to the class of

EDs implying that any linear combination of an α-stable sub-Gaussian random vec-

tor remains α-stable sub-Gaussian and therefore the Markowitz portfolio optimization

approach is applicable to them.

We derive two methods to estimate the dispersion matrix of an α-stable sub-

Gaussian random vector and analyze them empirically. The first method is based on the

covariation and the second one is a moment-type estimator. We will see that the second

one outperforms the first one. We conclude the chapter with an empirical analysis of

the DAX30 using α-stable sub-Gaussian random vectors.

In Section 2.2 we introduce α-stable distributions and MSSDs, respectively. In

Section 2.3 we provide background information about EDs and normal variance mix-

ture distributions, as well as outline their role in modern quantitative market risk man-

agement and modeling. In Section 2.4 we present our main theoretical results: we

derive two new moments estimators for the dispersion matrix of an MSSD and show

1For further information, see McNeil, Frey, and Embrechts (2005)
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the consistency of the estimators. In Section 2.5 we analyze the estimators empirically

using boxplots. In Section 2.6 we fit, as far as we know, for the first time an α-stable

sub-Gaussian distribution to the DAX30 and conduct a principal component analysis

of the stable dispersion matrix. We compare our results with the normal distribution

case. In Section 2.7 we summarize our findings.

2.2 α-stable Distribution: Definitions and Properties

2.2.1 Univariate α-stable Distributions

The applications of α-stable distributions to financial data come from the fact that

they generalize the normal (Gaussian) distribution and allow for the heavy tails and

skewness, frequently observed in financial data.

There are several ways to define stable distribution.

Definition 2. Let X,X1,X2, ...,Xn be i.i.d. random variables. If the equation

X1 +X2 + ...+Xn
d= cnX + dn

holds for all n ∈ N with cn > 0 and dn ∈ R, then we call X stable or α-stable

distributed.

The definition justifies the term stable because the sum of i.i.d. random variables

has the same distribution as X up to a scale and shift parameter. One can show that

the constant cn in Definition 2 equals n1/α.

The next definition represents univariate α-stable distributions in terms of their

characteristic functions and determines the parametric family which describes univari-

ate stable distributions.

Definition 3. A random variable is α-stable if the characteristic function of X is

E(exp(itX)) =

{
exp
(−σα|t|α [1 − iβ

(
tan πα

2

)
(sign t)

]
+ iµt

)
, α �= 1

exp
(−σ|t| [1 + iβ π

2 (sign ln |t|)]+ iµt
)

, α = 1.

where α ∈ (0, 2], β ∈ [−1, 1], σ ∈ (0,∞) and µ ∈ R.

The probability densities of α-stable random variables exist and are continuous

but, with a few exceptions, they are not known in closed forms. These exceptions

are the Gaussian distribution for α = 2, the Cauchy distribution for α = 1, and the

Lévy distribution for α = 1/2. (For further information, see Samorodnitsky and Taqqu

(1994), where the equivalence of these definitions is shown). The parameter α is called

the index of the law, the index of stability or the characteristic exponent. The parameter
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β is called skewness of the law. If β = 0, then the law is symmetric, if β > 0, it is

skewed to the right, if β < 0, it is skewed to the left. The parameter σ is the scale

parameter. Finally, the parameter µ is the location parameter. The parameters α and β

determine the shape of the distribution. Since the characteristic function of an α-stable

random variable is determined by these four parameters, we denote stable distributions

by Sα(σ, β, µ). X ∼ Sα(σ, β, µ), indicating that the random variable X has the

stable distribution Sα(σ, β, µ). The next definition of an α-stable distribution which is

equivalent to the previous definitions is the generalized Central Limit Theorem:

Definition 4. A random variable X is said to have a stable distribution if it has a

domain of attraction, i.e., if there is a sequence of i.i.d. random variables Y1, Y2, ...

and sequences of positive numbers (dn)n∈N and real numbers (an)n∈N, such that

Y1 + Y2 + ...+ Yn

dn
+ an

d→ X.

The notation
d→ denotes convergence in distribution. If we assume that the se-

quence of random variables (Yi)i∈N has second moments, we obtain the ordinary

Central Limit Theorem (CLT). In classical financial theory, the CLT is the theoretical

justification for the Gaussian approach, i.e., it is assumed that the price process (St)
follows a log-normal distribution. If we assume that the log-returns log(Sti/Sti−1),
i = 1, ..., n, are i.i.d. and have second moments, we conclude that log(St) is approxi-

mately normally distributed. This is a result of the ordinary CLT since the stock price

can be written as the sum of independent innovations,i.e.,

log(St) =
n∑

i=1

log
(
Sti) − log(Sti−1

)

=
n∑

i=1

log
(
Sti

Sti−1

)
,

where tn = t, t0 = 0, S0 = 1 and ti − ti−1 = 1/n. If we relax the assumption that

stock returns have second moments, we derive from the generalized CLT, that log(St)
is approximately α-stable distributed. With respect to the CLT, α-stable distributions

are the natural extension of the normal approach. The tail parameter α has an important

meaning for α-stable distributions. First, α determines the tail behavior of a stable

distribution, i.e.,

lim
λ→∞

λαP (X > λ) → C+

lim
λ→−∞

λαP (X < λ) → C−.
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Second, the parameter α characterizes the distributions in the domain of attraction

of a stable law. If X is a random variable with limλ→∞ λαP (|X| > λ) = C > 0 for

some 0 < α < 2, then X is in the domain of attraction of a stable law. Many authors

claim that the returns of assets should follow an infinitely divisible law, i.e., for all

n ∈ N there exists a sequence of i.i.d. random variable (Xn,k)k=1,...,n satisfying

X
d=

n∑
k=1

Xn,k.

The property is desirable for models of asset returns in efficient markets since

the dynamics of stock prices are caused from continuously arising but independent

information. From Definition 4, it is obvious that α-stable distribution are infinitely

divisible.

The next lemma is useful for deriving an estimator for the scale parameter σ.

Lemma 1. Let X ∼ Sα(σ, β, µ), 1 < α < 2 and β = 0. Then for any 0 < p < α

there exists a constant cα,β(p) such that:

E(|X − µ|p)1/p = cα,β(p)σ

where cα,β(p) = (E|X0|p)1/p, X0 ∼ Sα(1, β, 0).

Proof. See Samorodnitsky and Taqqu (1994).

To get a first feeling for the sort of data we are dealing with, we display in Figure

2.1 the kernel density plots of the empirical returns, the Gaussian fit and the α-stable

fit of some representative stocks. We can clearly discern the individual areas in the plot

where the normal fit causes problems. It is around the mode where the empirical peak

is too high to be captured by the Gaussian parameters. Moreover, in the mediocre parts

of the tails, the empirical distribution attributes less weight than the Gaussian distrib-

ution. And finally, the tails are underestimated, again. In contrast to the Gaussian, the

stable distribution appears to account for all these features of the empirical distribution

quite well.

Another means of presenting the aptitude of the stable class to represent stock re-

turns is the quantile plot. In Figure 2.2, we match the empirical stock return percentiles

of Adidas AG with simulated percentiles for the normal and stable distributions, for

the respective estimated parameter tuples. The stable distribution is liable to produce

almost absurd extreme values compared to the empirical data. Hence, we need to dis-

card the most extreme quantile pairs. However, the overall position of the line of the

joint empirical-stable percentiles with respect to the interquartile line appears quite



24 2 ESTIMATION OF α-STABLE SUB-GAUSSIAN DISTRIBUTIONS

−0.1 −0.05 0 0.05 0.1
0

5

10

15

20

25

30

35

 

 

Empirical Density
Stable Fit
Gaussian (Normal) Fit

Figure 2.1: Kernel density plots of Adidas AG: empirical, normal, and stable fits.

convincingly in favor of the stable distribution. 2

2.2.2 Multivariate α-Stable Distributions

Multivariate stable distributions are the distributions of stable random vectors. They

are defined by simply extending the definition of stable random variables to Rd. As

in the univariate case, multivariate Gaussian distribution is a particular case of mul-

tivariate stable distributions. Any linear combination of stable random vectors is a

stable random variate. This is an important property in terms of portfolio modeling.

Multivariate stable cumulative distribution functions or density functions are usually

not known in closed form and therefore, one works with their characteristic functions.

The representation of these characteristic functions include a finite measure on the unit

sphere, the so-called spectral measure. This measure describes the dependence struc-

ture of the stable random vector. In general, stable random vectors are difficult to use

for financial modeling, because the spectral measure is difficult to estimate even in low

dimensions. For stable financial model building, one has to focus on certain subclasses

of stable random vectors where the spectral measure has an easier representation. Such

a subclass is the multivariate α-stable sub-Gaussian law. They are obtained by multi-

plying a Gaussian vector byW1/2 where W is a stable random variable totally skewed

2In Figure 2.2 we remove the two most extreme points in the upper and lower tails, respectively.



2.2 α-STABLE DISTRIBUTION: DEFINITIONS AND PROPERTIES 25

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

normal

em
pi

ric
al

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

stable

em
pi

ric
al

Figure 2.2: Adidas AG quantile plots of empirical return percentiles vs normal (top)
and stable (bottom) fits.
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to the right. Stable sub-Gaussian distributions inherit their dependence structure from

the underlying Gaussian vector. In the next section we will see that the distribution

of multivariate stable sub-Gaussian random vectors belongs to the class of elliptical

distributions.The definition of stability in Rd is analogous to that in R.

Definition 5. A random vector X = (X1, ...,Xd) is said to be a stable random vector

in Rd if for any positive numbers A and B there is a positive number C and a vector

D ∈ Rd such that

AX(1) +BX(2) d= CX +D

where X(1) and X(2) are independent copies of X.

Note, that an α-stable random vector X is called symmetric stable if X satisfies

P (X ∈ A) = P (−X ∈ A)

for all Borel-sets A in Rd.

Theorem 3. Let X be a stable (respectively symmetric stable) vector in Rd. Then

there is a constant α ∈ (0, 2] such that in Definition 5, C = (Aα +Bα)1/α. Moreover,

any linear combination of the components of X of the type Y =
∑d

i=1 bkXk = b′X is

an α-stable (respectively symmetric stable) random variable.

Proof. A proof is given in Samorodnitsky and Taqqu (1994).

The parameter α in Theorem 3 is called the index of stability. It determines the tail

behavior of a stable random vector, i.e., the α-stable random vector is regularly varying

with tail index α3. For portfolio analysis and risk management, it is very important that

stable random vectors are closed under linear combinations of the components due to

Theorem 3. In the next section we will see that elliptically distributed random vectors

have this desirable feature as well.

The next theorem determines α-stable random vectors in terms of the character-

istic function. Since there is a lack of formulas for stable densities and distribution

functions, the characteristic function is the main device to fit stable random vectors to

data.

Theorem 4. The random vector X = (X1, ...,Xd) is an α-stable random vector in

Rd iff there exists an unique finite measure Γ on the unit sphere Sd−1, the so-called

spectral measure, and an unique vector µ ∈ Rd such that:

3For further information about regularly varying random vectors, see Resnick (1987).
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(i) If α �= 1,

E(eit
′X) = exp{−

∫
Sd−1

|(t, s)|α(1 − i sign((t, s)) tan
πα

2
)Γ(ds) + i(t, µ)}

(ii) If α = 1,

E(eit
′X) = exp{−

∫
Sd−1

|(t, s)|(1 + i
2
π

sign((t, s)) ln |(t, s)|)Γ(ds) + i(t, µ)}

In contrast to the univariate case, stable random vectors have not been applied

frequently in financial modeling. The reason is that the spectral measure, as a measure

on the unit sphere Sd−1, is extremely difficult to estimate even in low dimensions.

(For further information see Rachev, and Mittnik (2000) and Nolan, Panorska, and

McCulloch (2001).)

Another way to describe stable random vectors is in terms of linear projections.

We know from Theorem 3 that any linear combination

(b,X) =
d∑

i=1

biXi

has an α-stable distribution Sα(σ(b), β(b), µ(b)). By using Theorem 4 we obtain for

the parameters σ(b), β(b) and µ(b)

σ(b) =
(∫
Sd−1

|(b, s)|αΓ(ds)
)1/α

,

β(b) =

∫
Sd−1 |(b, s)|α sign(b, s)Γ(ds)∫

Sd−1 |(b, s)|αΓ(ds)

and

µ(b) =

{
(b, µ) if α �= 1

(b, µ) − 2
π

∫
Sd−1(b, s) ln |(b, s)|Γ(ds) if α = 1.

The parameters σ(b), β(b), and µ(b) are also called the projection parameters and σ(.),
β(.) and µ(.) are called the projection parameter functions. If one knows the values of

the projection functions for several directions, one can reconstruct approximatively the

dependence structure of an α-stable random vector by estimating the spectral measure.

Because of the complexity of this measure, the method is still not very efficient. But

for specific subclasses of stable random vectors where the spectral measure has a much

simpler form, we can use this technique to fit stable random vectors to data.

Another quantity for characterizing the dependence structure between two stable

random vectors is the covariation.
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Definition 6. LetX1 andX2 be jointly symmetric stable random variables with α > 1
and let Γ be the spectral measure of the random vector (X1,X2)′. The covariation of

X1 on X2 is the real number

[X1,X2]α =
∫
S1
s1s

<α−1>
2 Γ(ds), (2.1)

where the signed power a<p> equals

a<p> = |a|p sign a.

The covariance between two normal random variables X and Y can be interpreted

as the inner product of the space L2(Ω,A,P). The covariation is the analogue of

two α-stable random variables X and Y in the space Lα(Ω,A,P). Unfortunately,

Lα(Ω,A,P) is not a Hilbert space and this is why it lacks some of the desirable and

strong properties of the covariance. It follows immediately from the definition that the

covariation is linear in the first argument. Unfortunately, this statement is not true for

the second argument. In the case of α = 2, the covariation equals the covariance.

Proposition 1. Let (X,Y ) be jointly symmetric stable random vectors with α > 1.

Then for all 1 < p < α,

EXY <p−1>

E|Y |p =
[X,Y ]α
||Y ||αα

,

where ||Y ||α denotes the scale parameter of Y .

Proof. For the proof, see Samorodnitsky and Taqqu (1994).

In particular, we apply Proposition 1 in Section 2.4.1 in order to derive an estimator

for the dispersion matrix of an α-stable sub-Gaussian distribution.

2.2.3 α-Stable Sub-Gaussian Random Vectors

In general, as pointed out in the last section, α-stable random vectors have a complex

dependence structure defined by the spectral measure. Since this measure is very diffi-

cult to estimate even in low dimensions, we have to retract to certain subclasses, where

the spectral measure becomes simpler. One of these special classes is the multivariate

α-stable sub-Gaussian distribution.

Definition 7. Let Z be a zero mean Gaussian random vector with variance covariance

matrix Σ and W ∼ Sα/2((cos πα
4 )2/α, 1, 0) a totally skewed stable random variable
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independent of Z . The random vector

X = µ+
√
WZ

is said to be a sub-Gaussian α-stable random vector. The distribution of X is called

multivariate α-stable sub-Gaussian distribution.

An α-stable sub-Gaussian random vector inherits its dependence structure from the

underlying Gaussian random vector. The matrix Σ is also called the dispersion matrix.

The following theorem and proposition show properties of α-stable sub-Gaussian ran-

dom vectors. We need these properties to derive estimators for the dispersion matrix.

Theorem 5. The sub-Gaussian α-stable random vector X with location parameter

µ ∈ Rd has the characteristic function

E(eit
′X) = eit

′µe−( 1
2
t′Σt)α/2

,

where Σij = EZiZj , i, j = 1, ..., d are the covariances of the underlying Gaussian

random vector (Z1, ..., Zd)′.

For α-stable sub-Gaussian random vectors, we do not need the spectral measure

in the characteristic functions. This fact simplifies the calculation of the projection

functions.

Proposition 2. Let X ∈ Rd be an α-stable sub-Gaussian random vector with location

parameter µ ∈ Rd and dispersion matrix Σ. Then, for all a ∈ Rd, we have a′X ∼
Sα(σ(a), β(a), µ(a)), where

(i) σ(a) = (1
2a
′Σa)1/2

(ii) β(a) = 0

(iii) µ(a) = a′µ.

Proof. It is well known that the distribution of a′X is determined by its characteristic

function.

E(exp(it(a′X))) = E(exp(i(ta′)X)))

= exp(ita′µ) exp(−|1
2
(ta)′Σ(ta)|α/2|)

= exp(ita′µ) exp(−|1
2
t2a′Σa|α/2|)

= exp(−|t|α|(1
2
a′Σa)

1
2 |α + ita′µ)
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If we choose σ(a) = (1
2a
′Σa)1/2, β(a) = 0 and µ(a) = a′µ, then for all t ∈ R we

have

E(exp(it(a′X))) = exp
(
−σ(a)α|t|α

[
1 − iβ(a)

(
tan

πα

2

)
(sign t)

]
+ iµ(a)t

)
.

In particular, we can calculate the entries of the dispersion matrix directly.

Corollary 1. LetX = (X1, ...,Xn)′ be an α-stable sub-Gaussian random vector with

dispersion matrix Σ. Then we obtain

(i) σii = 2σ(ei)2

(ii) σij = σ2(ei+ej)−σ2(ei−ej)
2 .

Since α-stable sub-Gaussian random vectors inherit their dependence structure of

the underlying Gaussian vector, we can interpret σii as the quasi-variance of the com-

ponent Xi and σij as the quasi-covariance between Xi and Xj .

Proof. It follows from Proposition 2 that σ(ei) = 1
2σ

2
ii. Furthermore, if we set a =

ei + ej with i �= j, we yield σ(ei + ej) = (1
2(σii +2σij +σjj))1/2 and for b = ei − ej ,

we obtain σ(ei − ej) = (1
2 (σii − 2σij + σjj))1/2. Hence, we have

σij =
σ2(ei + ej) − σ2(ei − ej)

2
.

Proposition 3. Let X = (X1, ...,Xn)′ be a zero mean α-stable sub-Gaussian random

vector with dispersion matrix Σ. Then it follows

[Xi,Xj ]α = 2−α/2σijσ
(α−2)/2
jj .

Proof. For a proof see Samorodnitsky and Taqqu (1994).

2.3 Elliptical Distributions

Many important properties of α-stable sub-Gaussian distributions with respect to risk

management, portfolio optimization, and principal component analysis can be under-

stood very well, if we regard them as elliptical or normal variance mixture distribu-

tions. Elliptical distributions are a natural extension of the normal distribution which

is a special case of this class. They obtain their name because of the fact that, their
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densities are constant on ellipsoids. Furthermore, they constitute a kind of ideal en-

vironment for standard risk management, see Embrechts, McNeil, and Strautmann

(1999). First, correlation and covariance have a very similar interpretation as in the

Gaussian world and describe the dependence structure of risk factors. Second, the

Markowitz optimization approach is applicable. Third, value-at-risk is a coherent risk

measure. Fourth, they are closed under linear combinations, an important property in

terms for portfolio optimization. And finally, in the elliptical world minimizing risk

of a portfolio with respect to any coherent risk measures leads to the same optimal

portfolio.

Empirical investigations have shown that multivariate return data for groups of

similar assets often look roughly elliptical and in market risk management the elliptical

hypothesis can be justified. Elliptical distributions cannot be applied in credit risk or

operational risk, since hypothesis of elliptical risk factors are found to be rejected.

2.3.1 Elliptical Distributions and their Basic Properties

Definition 8. A random vector X = (X1, ...,Xd)′ has

(i) a spherical distribution iff, for every orthogonal matrix U ∈ Rd×d,

UX
d= X.

(ii) an elliptical distribution if

X
d= µ+AY,

where Y is a spherical random variable and A ∈ Rd×K and µ ∈ Rd are a

matrix and a vector of constants, respectively.

Elliptical distributions are obtained by multivariate affine transformations of spher-

ical distributions. Figure 2.3.1 (a) and (b) depict a bivariate scatterplot of BMW versus

Daimler Chrysler and Commerzbank versus Deutsche Bank log-returns. Both scatter-

plots are roughly elliptical contoured.

Theorem 6. The following statements are equivalent

(i) X is spherical.

(ii) There exists a function ψ of a scalar variable such that, for all t ∈ Rd,

φX(t) = E(eit
′X) = ψ(t′t) = ψ(t21 + ...+ t2d).
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Figure 2.3: Bivariate scatterplot of BMW versus DaimlerChrysler and Commerzbank
versus Deutsche Bank. Depicted are daily log-returns from May 6, 2002 through
March 31, 2006.

(iii) For all a ∈ Rd, we have

a′X d= ||a||X1

(iv) X can be represented as

X
d= RS

where S is uniformly distributed on Sd−1 = {x ∈ Rd : x′x = 1} and R ≥ 0 is

a radial random variable independent of S.

Proof. See McNeil, Frey, and Embrechts (2005)

ψ is called the characteristic generator of the spherical distribution and we use the

notation X ∈ Sd(ψ).

Corollary 2. Let X be a d-dimensional elliptical distribution with X
d= µ + AY ,

where Y is spherical and has the characteristic generator ψ. Then, the characteristic

function of X is given by

φX(t) := E(eit
′X) = eit

′µψ(t′Σt),

where Σ = AA′.
Furthermore, X can be represented by

X = µ+RAS,

where S is the uniform distribution on Sd−1 and R ≥ 0 is a radial random variable.
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Proof. We notice that

φX(t) = E(eit
′X) = E(eit

′(µ+AY )) = eit
′µE(ei(A

′t)′Y ) = eit
′µψ((A′t)′(A′t))

= eit
′µψ(t′AA′t)

Since the characteristic function of a random variate determines the distribution,

we denote an elliptical distribution by

X ∼ Ed(µ,Σ, ψ).

Because of

µ+RAS = µ+ cR
A

c
S,

the representation of the elliptical distribution in equation (2.2) is not unique. We call

the vector µ the location parameter and Σ the dispersion matrix of an elliptical dis-

tribution, since first and second moments of elliptical distributions do not necessarily

exist. But if they exist, the location parameter equals the mean and the dispersion ma-

trix equals the covariance matrix up to a scale parameter. In order to have uniqueness

for the dispersion matrix, we demand det(Σ) = 1.

If we take any affine linear combination of an elliptical random vector, then, this

combination remains elliptical with the same characteristic generator ψ. Let X ∼
Ed(µ,Σ, ψ), then it can be shown with similar arguments as in Corollary 2 that

BX + b ∼ Ek(Bµ+ b,BΣB′, ψ)

where B ∈ Rk×d and b ∈ Rd.

Let X be an elliptical distribution. Then the density f(x), x ∈ Rd, exists and is a

function of the quadratic form

f(x) = det(Σ)−1/2g(Q) with Q := (x− µ)′Σ−1(x− µ).

g is the density of the spherical distribution Y in Definition 8. We call g the density

generator of X. As a consequence, since Y has an unimodal density, so is the density

of X and clearly, the joint density f is constant on hypersheres Hc = {x ∈ Rd :
Q(x) = c}, c > 0. These hyperspheres Hc are elliptically contoured.

Example 1. An α-stable sub-Gaussian random vector is an elliptical random vector.

The random vector
√
WZ is spherical, where W ∼ Sα((cos πα

4 )2/α, 1, 0) and Z ∼
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N(0, 1) because of

√
WZ

d= U
√
WZ

for any orthogonal matrix. The equation is true, since Z is rotationally symmetric.

Hence any linear combination of
√
WZ is an elliptical random vector. The character-

istic function of an α-stable sub-Gaussian random vector is given by

E(eit
′X) = eit

′µe−( 1
2
t′Σt)α/2

due to Theorem 5. Thus, the characteristic generator of an α-stable sub-Gaussian

random vector equals

ψsub(s, α) = e−( 1
2
s)2/α

.

Using the characteristic generator, we can derive directly that an α-stable sub-Gaussian

random vector is infinitely divisible, since we have

ψsub(s, α) = e−( 1
2
s)α/2

=

(
e
−
�

1
2

s

n2/α

�α/2
)n

=
(
ψsub

( s

n2/α
, α
))n

.

2.3.2 Normal Variance Mixture Distributions

Normal variance mixture distributions are a subclass of elliptical distributions. We

will see that they inherit their dependence structure from the underlying Gaussian ran-

dom vector. Important distributions in risk management such as the multivariate t-,

generalized hyperbolic, or α-stable sub-Gaussian distribution belong to this class of

distributions.

Definition 9. The random vector X is said to have a (multivariate) normal variance

mixture distribution (NVMD) if

X = µ+W 1/2AZ

where

(i) Z ∼ Nd(0, Id);

(ii) W ≥ 0 is a non-negative, scalar-valued random variable which is independent

of G, and

(iii) A ∈ Rd×d and µ ∈ Rd are a matrix of constants, respectively.
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We call a random variable X with NVMD a normal variance mixture (NVM). We

observe that Xw = (X|W = w) ∼ Nd(µ,wΣ), where Σ = AA′. We can interpret

the distribution of X as a composite distribution. According to the law of W , we

take normal random vectors Xw with mean zero and covariance matrix wΣ randomly.

In the context of modeling asset returns or risk factor returns with normal variance

mixtures, the mixing variable W can be thought of as a shock that arises from new

information and influences the volatility of all stocks.

Since U
√
WZ

d=
√
WZ for all U ∈ O(d) every normal variance mixture distri-

bution is an elliptical distribution. The distribution F of X is called the mixing law.

Normal variance mixture are closed under affine linear combinations, since they are

elliptical. This can also be seen directly by

BX + µ1
d= B(

√
WAZ + µ0) + µ =

√
WBAZ + (Bµ0 + µ1)

=
√
WÃZ + µ̃.

This property makes NVMDs and, in particular, MSSDs applicable to portfolio theory.

The class of NVMD has the advantage that structural information about the mixing law

W can be transferred to the mixture law. This is true, for example, for the property of

infinite divisibility. If the mixing law is infinitely divisible, then so is the mixture law.

(For further information see Bingham, Kiesel and Schmidt (2003).) It is obvious from

the definition that an α-stable sub-Gaussian random vector is also a normal variance

mixture with mixing law W ∼ Sα((cos πα
4 )2/α, 1, 0).

2.3.3 Market Risk Management with Elliptical Distributions

In this section, we discuss the properties of elliptical distributions in terms of mar-

ket risk management and portfolio optimization. In risk management, one is mainly

interested in modeling the extreme losses which can occur. From empirical investiga-

tions, we know that an extreme loss in one asset very often occurs with high losses in

many other assets. We show that this market behavior cannot be modeled by the nor-

mal distribution but, with certain elliptical distributions, e.g. α-stable sub-Gaussian

distribution, we can capture this behavior.

The Markowitz’s portfolio optimization approach which is originally based on the

normal assumption can be extended to the class of elliptical distributions. Also, statis-

tical dimensionality reduction methods such as the principal component analysis are

applicable to them. But one must be careful, in contrast to the normal distribution,

these principal components are not independent.
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Let F be the distribution function of the random variable X, then we call

F←(α) = inf{x ∈ R : F (x) ≥ α}

the quantile function. F← is also the called generalized inverse, since we have

F (F←(α)) = α,

for any df F .

Definition 10. LetX1 andX2 be random variables with dfs F1 and F2. The coefficient

of the upper tail dependence of X1 and X2 is

λu := λu(X1,X2) := lim
q→1−

P (X2 > F←2 (q)|X1 > F←1 (q)), (2.2)

provided a limit λu ∈ [0, 1] exists. If λu ∈ (0, 1], then X1 and X2 are said to show

upper tail dependence; if λu = 0, they are asymptotically independent in the upper

tail. Analogously, the coefficient of the lower tail dependence is

λl = λl(X1,X2) = lim
q→0+

P (X2 ≤ F←(q)|X1 ≤ F←1 (q)), (2.3)

provided a limit λl ∈ [0, 1] exists.

For a better understanding of tail dependence we introduce the concept of copulas.

Definition 11. A d-dimensional copula is a distribution function on [0, 1]d.

It is easy to show that for U ∼ U(0, 1), we have P (F←(U) ≤ x) = F (x) and if

the random variable Y has a continuous df G, then G(Y ) ∼ U(0, 1). The concept of

copulas gained its importance because of Sklar’s Theorem.

Theorem 7. Let F be a joint distribution function with margins F1, ..., Fd. Then, there

exists a copula C : [0, 1]d → [0, 1] such that for all x1, ..., xd in R = [∞,∞],

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (2.4)

If the margins are continuous, then C is unique; otherwise C is uniquely determined

on F1(R) × F2(R) × .... × Fd(R). Conversely, if C is a copula and F1, ..., Fd are

univariate distribution functions, the function F defined in (2.4) is a joint distribution

function with margins F1, ..., Fd.

This fundamental theorem in the field of copulas, shows that any multivariate dis-

tribution F can be decomposed in a copula C and the marginal distributions of F . Vice
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versa, we can use a copula C and univariate dfs to construct a multivariate distribution

function.

With this short excursion in the theory of copulas we obtain a simpler expression

for the upper and the lower tail dependencies, i.e.,

λl = lim
q→0+

P (X2 ≤ F←(q),X1 ≤ F←1 (q))
P (X1 ≤ F←1 (q))

= lim
q→0+

C(q, q)
q

.

Elliptical distributions are radially symmetric, i.e., µ −X
d= µ +X, hence the coef-

ficient of lower tail dependence λl equals the coefficient of upper tail dependence λu.

We denote with λ the coefficient of tail dependence.

We call a measurable function f : R+ → R+ regularly varying (at ∞) with index

α ∈ R if, for any t > 0, limx→∞ f(tx)/f(x) = tα. It is now important to notice

that regularly varying functions with index α ∈ R behave asymptotically like a power

function. An elliptically distributed random vector X = RAU is said to be regularly

varying with tail index α, if the function f(x) = P (R ≥ x) is regularly varying with

tail index α. (see Resnick (1987).) The following theorem shows the relation between

the tail dependence coefficient and the tail index of elliptical distributions.

Theorem 8. Let X ∼ Ed(µ,Σ, ψ) be regularly varying with tail index α > 0 and Σ a

positive definite dispersion matrix. Then, every pair of components of X, say Xi and

Xj , is tail dependent and the coefficient of tail dependence corresponds to

λ(Xi,Xj ;α, ρij) =

∫ f(ρij)
0

sα√
1−s2

ds∫ 1
0

sα√
1−s2

ds
(2.5)

where f(ρij) =
√

1+ρij

2 and ρij = σij/
√
σiiσjj.

Proof. See Schmidt (2002).

It is not difficult to show that an α-stable sub-Gaussian distribution is regularly

varying with tail index α. The coefficient of tail dependence between two components,

say Xi and Xj , is determined by equation (2.5) in Theorem 8. In the next example, we

demonstrate that the coefficient of tail dependence of a normal distribution is zero.

Example 2. Let (X1,X2) be a bivariate normal random vector with correlation ρ ∈
(−1, 1) and standard normal marginals. LetCρ be the corresponding Gaussian copula
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due to Sklar’s theorem, then, by the L’Hôpital rule,

λ = lim
q→0+

Cρ(q, q)
q

l′H= lim
q→0+

dCρ(q, q)
dq

= lim
q→0+

lim
h→0+

Cρ(q + h, q + h) − Cρ(q, q)
h

= lim
q→0+

lim
h→0

Cρ(q + h, q + h) − Cρ(q + h, q) + Cρ(q + h, q) − Cρ(q, q)
h

= lim
q→0+

lim
h→0

P (U1 ≤ q + h, q ≤ U2 ≤ q + h))
P (q ≤ U2 ≤ q + h)

+ lim
q→0+

lim
h→0

P (q ≤ U1 ≤ q + h,U2 ≤ q)
P (q ≤ U1 ≤ q + h)

= lim
q→0+

P (U2 ≤ q|U1 = q) + lim
q→0+

P (U1 ≤ q|U2 = q)

= 2 lim
q→0+

P (U2 ≤ q|U1 = q)

= 2 lim
q→0+

P (Φ−1(U2) ≤ Φ−1(q)|Φ−1(U1) = Φ−1(q))

= 2 lim
x→−∞P (X2 ≤ x|X1 = x)

Since we have X2|X1 = x ∼ N(ρx, 1 − ρ2), we obtain

λ = 2 lim
x→−∞Φ(x

√
1 − ρ/

√
1 + ρ) = 0. (2.6)

Equation (2.6) shows that beside the fact that a normal distribution is not heavy

tailed the components are asymptotically independent. This, again, is a contradiction

to empirical investigations of market behavior. Especially, in extreme market situa-

tions, when a financial market declines in value, market participants tend to behave

homogeneously, i.e. they leave the market and sell their assets. This behavior causes

losses in many assets simultaneously. This phenomenon can only be captured by dis-

tributions which are asymptotically dependent.

Markowitz (1952) optimizes the risk and return behavior of a portfolio based on

the expected returns and the covariances of the returns in the considered asset uni-

verse. The risk of a portfolio consisting of these assets is measured by the variance

of the portfolio return. In addition, he assumes that the asset returns follow a multi-

variate normal distribution with mean µ and covariance Σ. This approach leads to the

following optimization problem

min
w∈Rd

w′Σw,

subject to

w′µ = µp

w′1 = 1.
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This approach can be extended in two ways. First, we can replace the assump-

tion of normally distributed asset returns by elliptically distributed asset returns and

second, instead of using the variance as the risk measure, we can apply any positive-

homogeneous, translation-invariant measure of risk to rank risk or to determine the

optimal risk-minimizing portfolio. In general, due to the work of Artzner et al. (1999),

a risk measure is a real-valued function � : M → R, where M ⊂ L0(Ω,F , P ) is

a convex cone. L0(Ω,F , P ) is the set of all almost surely finite random variables.

The risk measure � is translation invariant if for all L ∈ M and every l ∈ R, we

have �(L + l) = �(L) + l. It is positive-homogeneous if for all λ > 0, we have

�(λL) = λ�(L). Note, that value-at-risk (VaR) as well as conditional value-at-risk

(CVaR) fulfill these two properties.

Theorem 9. Let the random vector of asset returns X be Ed(µ,Σ, ψ). We denote

by W = {w ∈ Rd :
∑d

i=1 wi = 1} the set of portfolio weights. Assume that the

current value of the portfolio is V and let L(w) = V
∑d

i=1wiXi be the (linearized)

portfolio loss. Let � be a real-valued risk measure depending only on the distribution

of a risk. Suppose � is positive homogeneous and translation invariant and let Y =
{w ∈ W : −w′µ = m} be the subset of portfolios giving expected return m. Then,

argminw∈Y �(L(w)) = argminw∈Y w′Σw.

Proof. See McNeil, Frey, and Embrechts (2005).

The last theorem stresses that the dispersion matrix contains all the information

for the management of risk. In particular, the tail index of an elliptical random vector

has no influence on optimizing risk. Of course, the index has an impact on the value

of the particular risk measure like VaR or CVaR, but not on the weights of the optimal

portfolio, due to the Markowitz approach.

In risk management, we have very often to deal with portfolios consisting of many

different assets. In many of these cases it is important to reduce the dimensionality

of the problem in order to not only understand the portfolio’s risk but also to forecast

the risk. A classical method to reduce the dimensionality of a portfolio whose assets

are highly correlated is principal component analysis (PCA). PCA is based on the

spectral decomposition theorem. Any symmetric or positive definite matrix Σ can be

decomposed in

Σ = PDP ′,

where P is an orthogonal matrix consisting of the eigenvectors of Σ in its columns and

D is a diagonal matrix of the eigenvalues of Σ. In addition, we demand λi ≥ λi−1,

i = 1, ..., d for the eigenvalues of Σ in D. If we apply the spectral decomposition
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theorem to the dispersion matrix of an elliptical random vector X with distribution

Ed(µ,Σ, ψ), we can interpret the principal components which are defined by

Yi = P ′i (X − µ), i = 1, ..., d, (2.7)

as the main statistical risk factors of the distribution of X in the following sense

P ′1ΣP1 = max{w′Σw : w′w = 1}. (2.8)

More generally,

P ′iΣPi = max{w′Σw : w ∈ {P1, ..., Pi−1}⊥, w′w = 1}.

From equation (2.8), we can derive that the linear combination Y1 = P ′1(X − µ)
has the highest dispersion of all linear combinations and P′i (X − µ) has the highest

dispersion in the linear subspace {P1, ..., Pi−1}⊥. If we interpret trace Σ =
∑d

j=1 σii

as a measure of total variability in X and since we have

d∑
i=1

P ′iΣPi =
d∑

i=1

λi = trace Σ =
d∑

i=1

σii,

we can measure the ability of the first principal component to explain the variability of

X by the ratio
∑k

j=1 λj/
∑d

j=1 λj .

Furthermore, we can use the principal components to construct a statistical factor

model. Due to equation (2.7), we have

Y = P ′(X − µ),

which can be inverted to

X = µ+ PY.

If we partition Y due to (Y1, Y2)′, where Y1 ∈ Rk and Y2 ∈ Rd−k and also P leading

to (P1, P2), where P1 ∈ Rd×k and P2 ∈ Rd×(d−k), we obtain the representation

X = µ+ P1Y1 + P2Y2 = µ+ P1Y1 + ε.

But one has to be careful. In contrast to the normal distribution case, the principal

components are only quasi-uncorrelated but not independent. Furthermore, we obtain

for the coefficient of tail dependence between two principal components, say Yi and



2.4 ESTIMATION OF α-STABLE SUB-GAUSSIAN DISTRIBUTIONS 41

Yj ,

λ(Yi, Yj, 0, α) =

∫√1/2
0

sα√
1−s2

ds∫ 1
0

sα√
1−s2

ds
.

2.4 Estimation of α-Stable Sub-Gaussian Distributions

In contrast to the general case of multivariate α-stable distributions, we show that the

estimation of the parameters of an α-stable sub-Gaussian distribution is feasible. As

shown in the last section, α-stable sub-Gaussian distributions belong to the class of

elliptical distributions. In general, one can apply a two-step estimation procedure for

the elliptical class. In the first step, we estimate independently the location parameter

µ ∈ Rd and the positive definite dispersion matrix Σ up to a scale parameter. In the

second step, we estimate the parameter of the radial random variable W .

We apply this idea to α-stable sub-Gaussian distributions. In Sections 2.4.1 and

2.4.2 we present our main theoretical results, deriving estimators for the dispersion

matrix and proving their consistency. In Section 2.4.3 we present a new procedure to

estimate the parameter α of an α-stable sub-Gaussian distribution.

2.4.1 Estimation of the Dispersion Matrix with Covariation

In Section 2.2.1, we introduced the covariation of a multivariate α-stable random vec-

tor. This quantity allows us to derive a consistent estimator for an α-stable dispersion

matrix. In order to shorten the notation we denote with σj = σ(ej) the scale parameter

of the jth component of an α-stable random vector X = (X1, ...,Xd)′ ∈ Rd.

Proposition 4. (a) Let X = (X1, ...,Xd)′ ∈ Rd be a zero mean α-stable sub-

Gaussian random vector with positive definite dispersion matrix Σ ∈ Rd×d.

Then, we have

σij =
2

cα,0(p)p
σ(ej)2−pE(XiX

<p−1>
j ), (2.9)

where p ∈ (1, α), cα,0(p) = E(|Y |p)1/p > 0 and Y ∼ Sα(1, 0, 0).

(b) Let X1,X2, ...,Xn be independent and identically distributed samples with the

same distribution as the random vector X. Let σ̂j be a consistent estimator

for σj , the scale parameter of the jth component of X, then, the estimator

σ̂
(2)
ij (n, p), defined as

σ̂
(2)
ij (n, p) =

2
cα,0(p)p

σ̂2−p
j

1
n

n∑
t=1

XtiX
<p−1>
tj , (2.10)
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is a consistent estimator for σij , where Xti refers to the ith entries of the obser-

vation Xt, t = 1, ..., n, cα,0(p) = E(|Y |p)1/p and Y ∼ Sα(1, 0, 0).

Proof. a) Due to the Proposition 3 we have

σij
Prop.3
= 2α/2σ

(2−p)/2
jj [Xi,Xj ]α

Prop.1
= 2α/2σ

(2−α)/2
jj E(XiX

<p−1>
j )σα

j /E(|Xj |p)
Lemma 1= 2α/2σ

(2−α)/2
jj E(XiX

<p−1>
j )σα

j /(cα,0(p)pσ
p
j )

Cor.1 (i)= 2p/2σ
(2−p)/2
jj E(XiX

<p−1>
j )/(cα,0(p)p)

b) The estimator σ̂j is consistent and f(x) = x2−p is continuous. Then, the

estimator σ̂2−p
j is consistent for σ2−p

j . 1
n

∑n
k=1XkiX

<p−1>
kj is consistent for

E(XiX
<p−1>
j ) due to the law of large numbers. Since the product of two con-

sistent estimators is consistent, the estimator

σ̂
(2)
ij = =

2
cα,0(p)p

σ̂2−p
j

1
n

n∑
t=1

XtiX
<p−1>
tj

is consistent.

2.4.2 Estimation of the Dispersion Matrix with Moment-Type Estimators

In this section, we present an approach of estimating the dispersion matrix up to a scale

parameter which is applicable to the class of normal variance mixtures. In particular,

we will see that if we know the tail parameter of an α-stable sub-Gaussian random

vector X ∈ Rd, this approach allows us to estimate the dispersion matrix of X.

We denote with (Wθ)θ∈Θ a parametric family of positive random variables.

Lemma 2. Let Z ∈ Rd a normally distributed random vector with mean zero and

positive definite dispersion matrix Σ ∈ Rd×d and letXθ = µ+
√
WθZ , θ ∈ Θ, be a d-

dimensional normal variance mixture with location parameter µ ∈ Rd. Furthermore,

we assume that
√
Wθ has tail parameter α(θ), θ ∈ Θ.4 Then, there exists a function

c : {(θ, p) ∈ Θ × R : p ∈ (0, α(θ))} → (0,∞) such that, for all a ∈ Rd \ {0}, we

have

E(|a′(Xθ − µ)|p) = c(θ, p)p(a′Σa)p/2. (2.11)

4Note, if the ranodom variable X has tail parameter α then E(|X|p) < ∞ for all p < α and
E(|X|p) = ∞ for all p ≥ α (see Samorodnitsky and Taqqu (1994)).
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The function c is defined by

c(θ, p) = E(W p/2
θ )E(|Z̃ |p),

where the random vector Z̃ ∈ Rd is standard normally distributed. Furthermore, c

satisfies

lim
p→0

c(θ, p) = 1, (2.12)

for all θ ∈ Θ.

We see from equation (2.11) that the covariance matrix of Z determines the dis-

persion matrix of Xθ up to a scaling constant.

Proof. Let θ ∈ Θ, p ∈ (0, α(θ)) and a ∈ Rd \ {0}, then we have

E(|a′(Xθ − µ)|p) = E(|a′W 1/2
θ Z|p)

= E(W p/2
θ )E(|a′Z/(a′Σa)1/2|p)︸ ︷︷ ︸

=:c(θ,p)

(a′Σa)p/2.

Note that Z̃ = a′Z/(a′Σa)1/2 is standard normally distributed, hence c(θ, p) is inde-

pendent of a. Since E(Wp/2
θ ) > 0 and E(|a′Z/(a′Σa)1/2|p) > 0, so c(θ, p) > 0.

Since we have xp ≤ max{1, xα(θ)} for p ∈ (0, α(θ)) and x > 0, it follows from

Lebesque’s Theorem

lim
p→0

c(θ, p) = lim
p→0

E(
√
Wθ

p
) lim

p→0
E(|Z̃|p)

= E(lim
p→0

√
Wθ

p
)E(lim

p→0
|Z̃|p)

= E(1)E(1)

= 1.

Theorem 10. Let Z , Xθ , θ ∈ Θ, and c : {(θ, p) ∈ Θ × R : p ∈ (0, α(θ))} → (0,∞)
be as in Lemma 2. Let X1, ...,Xn ∈ Rd be i.i.d. samples with the same distribution

as Xθ. The estimator

σ̂n(p, a) =
1
n

n∑
i=1

|a′(Xi − µ)|p
c(θ, p)p

(2.13)
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(i) is unbiased, i.e.,

E(σ̂n(p, a)) = (a′Σa)p/2 for all a ∈ Rd

(ii) is consistent, i.e.,

P (|σ̂n(p, a) − (a′Σa)p/2| > ε) → 0 (n→ ∞),

if p < α(θ)/2.

Proof. (i) follows directly from Lemma 2. For statement (ii), we have show that

P (n) := P (|σ̂n(p, a) − (a′Σa)p/2| > ε) → 0 (n→ ∞).

But this holds because of

P (n)
(∗)
≤ 1

ε2
Var(σ̂n(p, a))

=
1

ε2n2c(θ, p)2p
Var

(
n∑

i=1

|a(Xi − µ)|p
)

=
1

ε2nc(θ, p)2p
Var(|a′(X − µ)|p)

=
1

ε2nc(θ, p)2p
(E(|a′(X − µ)|2p) − E(|a′(X − µ)|p)2)

=
1

ε2nc(θ, p)2p

(
c(θ, 2p)2p(a′Σa)2p − c(θ, p)2p(a′Σa)2p

)
=

1
ε2n

((
c(θ, 2p)
c(θ, p)

)2p

− 1

)
(a′Σa)2p → 0 (n→ ∞).

The inequation (∗) holds because of the Chebyshev’s inequality and we haveE(|a′(X−
µ)|2p) <∞ because of the assumption p < α(θ)/2.

Note, that σ̂n(p, a)2/p, a ∈ Rd, is a biased, but consistent estimator for (aΣa′).
However, since we cannot determine c(θ, p) > 0 we have to use

σ̂n(p, a)c(θ, p)p =
1
n

n∑
i=1

|a′(Xi − µ)|p (2.14)

as the estimator. But then, Theorem 10 allows us the estimate the dispersion matrix

only up to a scaling constant by using linear combinations a′X1, ..., a
′Xn, a ∈ Rd of

the observations X1, ...,Xn. We can apply two different approaches to do this.
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The first approach is based on the fact that the following equation holds

σij =
(ei + ej)′Σ(ei + ej) − (ei − ej)′Σ(ei − ej)

4

for all 1 ≤ i < j ≤ d. Then, we can conclude that the estimator

σ̂ij(n, p) :=
c(θ, p)σ̂n(p, ei + ej)2/p − c(θ, p)σ̂n(p, ei − ej)2/p

4
(2.15)

is a consistent estimator for σij up to the scaling constant c(θ, p), that is the same for

all 1 ≤ i < j ≤ d.

For the second approach we use different linear projections a′iX1, ..., a
′
iXn, ai ∈

Rd, i = 1, ...,m, of the observations in order to reconstruct Σ through the following

optimization problem

Σ̂(n, p) = argminΣ∈Rd×d:sym.

m∑
i=1

(c(θ, p)σ̂n(p, ai)2/p − aiΣai)2. (2.16)

It is important to note that the optimization problem (2.16) can be solved by ordinary

least squares regression.

In the next theorem, we present an estimator that is based on the following obser-

vation. Letting Xθ,X1,X2,X3, ... be a sequence of i.i.d. normal variance mixtures,

then we have

lim
n→∞ lim

p→0

(
1
n

n∑
i=1

∣∣∣∣a′Xi − µ(a)
c(θ, p)

∣∣∣∣p
)1/p

(∗)
= lim

n→∞

n∏
i=1

|a′Xi − µ(a)|1/n

= (a′Σa)1/2.

The last equation is true because of (ii) of the following theorem. The proof of the

equality (*) can be found in Stoyanov (2005).

Theorem 11. Let Z , Xθ , θ ∈ Θ, and c : {(θ, p) ∈ Θ × R : p ∈ (0, α(θ))} → (0,∞)
be as in Lemma 2 and let X1, ...,Xn ∈ Rd be i.i.d. samples with the same distribution

as Xθ. The estimator

σ̂n(a) =
1

c(θ, 1/n)

n∏
i=1

|a′(Xi − µ)|1/n

(i) is unbiased, i.e.,

E(σ̂n(a)) = (a′Σa)1/2 for all a ∈ R
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(ii) is consistent, i.e.,

P (|σ̂n(a) − (a′Σa)1/2| > ε) → 0 (n→ ∞).

Proof. (i) follows directly from Lemma 2. For statement (ii), we have show that

P (n) := P (|σ̂n(a) − (a′Σa)p/2| > ε) → 0 (n→ ∞).

But this holds because of

P (n)
(∗)
≤ 1

ε2
Var(σ̂n(a))

=
1

ε2c(θ, 1/n)2
Var

(
n∏

i=1

|a′(Xi − µ)|1/n

)

=
1

ε2c(θ, 1/n)2

(
n∏

i=1

E(|a′(Xi − µ)|2/n) −
n∏

i=1

E(|a′(Xi − µ)|1/n)2
)

=
1

ε2c(θ, 1/n)2
(E(|a′(X − µ)|2/n)n − E(|a′(X − µ)|1/n))2n)

=
1

ε2c(θ, 1/n)2
(c(θ, 2/n)2(a′Σa)2 − (c(θ, 1/n)2(a′Σa)2))

=
1
ε2

((
c(θ, 2/n)
c(θ, 1/n)

)2

− 1

)
(a′Σa)2 → 0 (n→ ∞).

The inequation (∗) holds because of the Chebyshev’s inequality. Then (ii) follows

from equation (2.12) in Lemma 2.

Note, that σ̂2
n(a), a ∈ Rd, is a biased but consistent estimator for (a′Σa).

For the rest of this section we concentrate on α-stable sub-Gaussian random vec-

tors. In this case, the family of positive random variables (Wθ)θ∈Θ is given by

(Wα)α∈(0,2) and Wα ∼ Sα/2(cos(
πα

4
), 1, 0).

Furthermore, the scaling function c(., .) defined in Lemma 2 satisfies

c(α, p)p = 2p Γ(p+1
2 )Γ(1 − p/α)

Γ(1 − p/2)
√
π

=
2
π

sin
(πp

2

)
Γ(p)Γ

(
1 − p

α

)
, (2.17)

where Γ(.) is the Gamma-function. For the proof of equation (2.17), see Hardin (1984)

and Stoyanov (2005). With Theorems 10 and 11, we derive two estimators for the

scale parameter σ(a) of the linear projection a′X fo an α-stable sub-Gaussian random
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vector X. The first one is

σ̂n(p, a) =
1
n

(
2
π

sin
(πp

2

)
Γ (p) Γ

(
1 − p

α

))−1 n∑
i=1

|a′Xi − µ(a)|p

based on Theorem 10. The second one is

σ̂n(a) =
1

c(α, 1/n)

n∏
i=1

(|a′Xi − µ(a)|)1/n

=
(

2
π

sin
( π

2n

)
Γ
(

1
n

)
Γ
(

1 − 1
nα

))−n

·
n∏

i=1

(|a′Xi − µ(a)|)1/n.

based on Theorem 11. We can reconstruct the stable dispersion matrix from the linear

projections as shown in the equations (2.15) and (2.16).

2.4.3 Estimation of the Parameter α

We assume that the data X1, ...,Xn ∈ Rd follow a sub-Gaussian α-stable distribu-

tion. We propose the following algorithm to obtain the underlying parameter α of the

distribution.

(i) Generate i.i.d. samples u1, u2, ..., un according to the uniform distribution on

the unit hypersphere Sd−1.

(ii) For all i from 1 to n estimate the index of stability αi with respect to the data

u′iX1, u
′
iX2, ..., u

′
iXn, using an unbiased and fast estimator α̂ for the index.

(iii) Calculate the index of stability of the distribution by

α̂ =
1
n

n∑
k=1

α̂k.

The algorithm converges to the index of stability α of the distribution. (For further

information we refer to Rachev, and Mittnik (2000).)

2.4.4 Simulation of α-Stable Sub-Gaussian Distributions

Efficient and fast multivariate random number generators are indispensable for mod-

ern portfolio investigations. They are important for Monte-Carlo simulations for VaR,

which have to be sampled in a reasonable time frame. For the class of elliptical distri-

butions we present a fast and efficient algorithm which will be used for the simulation
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of α-stable sub-Gaussian distributions in the next section. We assume the dispersion

matrix Σ to be positive definite. Hence we obtain for the Cholesky decomposition

Σ = AA′ a unique full-rank lower-triangular matrix A ∈ Rd×d. We present a generic

algorithm for generating multivariate elliptically-distributed random vectors. The al-

gorithm is based on the stochastic representation of Corollary 2. For the generation of

our samples, we use the following algorithm:

Algorithm for ECr(µ,R;ψsub) simulation

(i) Set Σ = AA′, via Cholesky decomposition.

(ii) Sample a random number from W .

(iii) Sample d independent random numbers Z1, ..., Zd from a N1(0, 1) law.

(iv) Set U = Z/||Z|| with Z = (Z1, ..., Zd).

(v) Return X = µ+
√
WAU

If we want to generate random number with a Ed(µ,Σ, ψsub) law with the algorithm,

we choose W
d= Sα/2(cos(πα

4 )2/α, 1, 0)||Z||2, where Z is Nd(0, Id) distributed. It

can be shown that ||Z||2 is independent of both W as well as Z/||Z||.

2.5 Empirical Analysis of the Estimators

In this section, we evaluate two different estimators for the dispersion matrix of an

α-stable sub-Gaussian distribution using boxplots. We are primarily interested in es-

timating the off-diagonal entries, since the diagonal entries σii are essentially only

the square of the scale parameter σ. Estimators for the scale parameter σ have been

analyzed in numerous studies. Due to Corollary 1 and Theorem 11, the estimator

σ̂
(1)
ij (n) =

(σ̂n(ei + ej))2 − (σ̂n(ei − ej))2

2
(2.18)

is a consistent estimator for σij and the second estimator

σ̂
(2)
ij (n, p) =

2
cα,0(p)p

σ̂n(ej)2−p 1
n

n∑
k=1

XkiX
<p−1>
kj . (2.19)

is consistent because of Proposition 4 for i �= j. We analyze the estimators empirically.

For an empirical evaluation of the estimators described above, it is sufficient to

exploit the two-dimensional sub-Gaussian law since for estimating σij we only need
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Figure 2.4: Sample size 500
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Figure 2.5: Sample size 1000

the ith and jth component of the dataX1,X2, ...,Xn ∈ Rd. For a better understanding

of the speed of convergence of the estimators, we choose different sample sizes (n =
100, 300, 500, 1000). Due to the fact that asset returns exhibit an index of stability in

the range between 1.5 and 2, we only consider the values α = 1.5, 1.6, ..., 1.9. For the

empirical analysis of the estimators, we choose the matrix

A =

(
1 2
3 4

)
.

The corresponding dispersion matrix is

Σ = AA′ =

(
5 11
11 25

)
.

2.5.1 Empirical Analysis of σ̂
(1)
ij (n)

For the empirical analysis of σ̂(1)
ij (n), we generate samples as described in the previous

paragraph and use the algorithm described in Section 2.4.4. The generated samples

follow an α-stable sub-Gaussian distribution, i.e., Xi ∼ E2(0,Σ, ψsub(., α)), i =
1, ..., n, where A is defined above. Hence, the value of the off-diagonal entry of the

dispersion matrix σ12 is 11.

In Figures 2.6 through 2.5, we illustrate the behavior of the estimator σ̂(1)ij (n) for

several sample sizes and various values for the tail index, i.e., α = 1.5, 1.6, ..., 1.9. We

demonstrate the behavior of the estimator using boxplots based on 1,000 sample runs

for each setting of sample length and parameter value.

In general, one can see that for all values of α the estimators are median-unbiased.

By analyzing the figures, we can additionally conclude that all estimators are slightly

skewed to the right. Turning our attention to the rate of convergence of the estimates

towards the median value of 11, we examine the boxplots. Figure 2.6 reveals that for a
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sample size of n = 100 the interquartile range is roughly equal to four for all values of

α. The range diminishes gradually for increasing sample sizes until which can be seen

in Figures 2.6 to 2.5. Finally in Figure 2.5, the interquartile range is equal to about

1.45 for all values of α. The rate of decay is roughly n−1/2. Extreme outliers can be

observed for small sample sizes larger than twice the median, regardless of the value

of α. For n = 1, 000, we have a maximal error around about 1.5 times the median.

Due to right-skewness, extreme values are observed mostly to the right of the median.

2.5.2 Empirical Analysis of σ̂
(2)
ij (n, p)

We examine the consistency behavior of the second estimator as defined in (2.19)

again using boxplots. In Figures 2.7 through 2.12 we depict the statistical behav-

ior of the estimator. For generating independent samples of various lengths for α =
1.5, 1.6, 1.7, 1.8, and 1.9, and two different values of p we use the algorithm described

in Section 2.4.4.5 For the values of p, we select 1.0001 and 1.3, respectively. A value

for p closer to one leads to improved properties of the estimator as will be seen.

In general, we can observe that the estimates are strongly skewed. This is more

pronounced for lower values of α while skewness vanishes slightly for increasing α.

All figures display a noticeable bias in the median towards low values. Finally, as will

be seen, σ̂(1)
ij (n) seems more appealing than σ̂(2)

ij (n, p).

For a sample length of n = 100, Figures 2.8 and 2.9 show that the bodies of the

boxplots which are represented by the innerquartile ranges are as high as 4.5 for a lower

value of p and α. As α increases, this effect vanishes slightly. However, results are

worse for p = 1.3 as already indicated. For sample lengths of n = 300, Figures 2.10

and 2.11 show interquartile ranges between 1.9 and 2.4 for lower values of p. Again,

results are worse for p = 1.3. For n = 500, Figures 2.12 and 2.13 reveal ranges

between 1.3 and 2.3 as α increases. Again, this worsens when p increases. And finally

for samples of length n = 1, 000, Figures 2.14 and 2.15 indicate that for p = 1.00001
the interquartile ranges extend between 1 for α = 1.9 and 1.5 for α = 1.5. Depending

on α, the same pattern but on a worse level is displayed for p = 1.3.

It is clear from the statistical analysis that concerning skewness and median bias,

the estimator σ̂(1)
ij (n) has properties superior to estimator σ̂(2)

ij (n, p) for both values of

p. Hence, we use estimator σ̂(1)
ij (n).

5In most of these plots, extreme estimates had to be removed to provide for a clear display of the
boxplots.
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Figure 2.6: Sample size 100
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Figure 2.7: Sample size 300
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Figure 2.8: Sample size 100, p=1.00001
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Figure 2.9: Sample size 100, p=1.3
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Figure 2.10: Sample size 300, p=1.00001
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Figure 2.11: Sample size 300,p=1.3
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Figure 2.12: Sample size 500
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Figure 2.13: Sample size 500
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Figure 2.14: Sample size 1000
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Figure 2.15: Sample size 1000

2.6 Application to the DAX 30

For the empirical analysis of the DAX30 index, we use the data from the Karlsruher

Kapitaldatenbank. We analyze data from May 6, 2002 to March 31, 2006. For each

company listed in the DAX30, we consider 1, 000 daily log-returns in the study pe-

riod.6

2.6.1 Model Check and Estimation of the Parameter α

Before fitting an α-stable sub-Gaussian distribution, we assessed if the data are appro-

priate for a sub-Gaussian model. This can be done with at least two different methods.

In the first method, we analyze the data by pursuing the following steps (also Nolan

(2005)):

(i) For every stock Xi, we estimate θ̂ = (α̂i, β̂i, σ̂i, µ̂i), i = 1, ..., d.

6During our period of analysis Hypo Real Estate Holding AG was in the DAX for only 630 days.
Therefore we exclude this company from further treatment leaving us with 29 stocks.
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Figure 2.16: Bivariate Scatterplots of BASF and Lufthansa in (a); and of Continental
and MAN in (b).

(ii) The estimated α̂i’s should not differ much from each other.

(iii) The estimated β̂i’s should be close to zero.

(iv) Bivariate scatterplots of the components should be elliptically contoured.

(v) If the data fulfill criteria (ii)-(iv), a sub-Gaussian model can be justified. If there

is a strong discrepancy to one of these criteria we have to reject a sub-Gaussian

model.

In Table 2.1, we depict the maximum likelihood estimates for the DAX30 compo-

nents. The estimated α̂i, i = 1, ..., 29, are significantly below 2, indicating leptokurto-

sis. We calculate the average to be ᾱ = 1.6. These estimates agree with earlier results

from Höchstötter, Rachev, and Fabozzi (2005). In that work, stocks of the DAX30 are

analyzed during the period 1988 through 2002. Although using different estimation

procedures, the results coincide in most cases. The estimated β̂i, i = 1, ..., 29, are

between −0.1756 and 0.1963 and the average, β̄, equals −0.0129. Observe the sub-

stantial variability in the α’s and that not all β’s are close to zero. These results agree

with Nolan (2005) who analyzed the Dow Jones Industrial Average. Concerning item

(iv), it is certainly not feasible to look at each bivariate scatterplot of the data. Figure

2.16 depicts randomly chosen bivariate plots. Both scatterplots are roughly elliptical

contoured.

The second method to analyze if a dataset allows for a sub-Gaussian model is

quite similar to the first one. Instead of considering the components of the DAX30

directly, we examine randomly chosen linear combinations of the components. We

only demand that the Euclidean norm of the weights of the linear combination is 1. Due

to the theory of α-stable sub-Gaussian distributions, the index of stability is invariant

under linear combinations. Furthermore, the estimated β̂ of linear combination should
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Name Ticker Symbol α̂ β̂ σ̂ µ̂

Addidas ADS 1.716 0.196 0.009 0.001
Allianz ALV 1.515 -0.176 0.013 -0.001
Atlanta ALT 1.419 0.012 0.009 0.000
BASF BAS 1.674 -0.070 0.009 0.000
BMW BMW 1.595 -0.108 0.010 0.000
Bayer BAY 1.576 -0.077 0.011 0.000
Commerzbank CBK 1.534 0.054 0.012 0.001
Continental CON 1.766 0.012 0.011 0.002
Daimler-Chryser DCX 1.675 -0.013 0.011 0.000
Deutsch Bank DBK 1.634 -0.084 0.011 0.000
Deutsche Brse DB1 1.741 0.049 0.010 0.001
Deutsche Post DPW 1.778 -0.071 0.011 0.000
Telekom DTE 1.350 0.030 0.009 0.000
Eon EOA 1.594 -0.069 0.009 0.000
FresenMed FME 1.487 0.029 0.010 0.001
Henkel HEN3 1.634 0.103 0.008 0.000
Infineon IFX 1.618 0.019 0.017 -0.001
Linde LIN 1.534 0.063 0.009 0.000
Lufthansa LHA 1.670 0.030 0.012 -0.001
Man MAN 1.684 -0.074 0.013 0.001
Metro MEO 1.526 0.125 0.011 0.001
MncherRck MUV2 1.376 -0.070 0.011 -0.001
RWE RWE 1.744 -0.004 0.010 0.000
SAP SAP 1.415 -0.093 0.011 -0.001
Schering SCH 1.494 -0.045 0.009 0.000
Siemens SIE 1.574 -0.125 0.011 0.000
Thyssen TKA 1.650 -0.027 0.011 0.000
Tui TUI 1.538 0.035 0.012 -0.001
Volkswagen VOW 1.690 -0.024 0.012 0.000

Average values ᾱ = 1, 6 β̄ = −0, 0129

Table 2.1: Stable parameter estimates using the maximum likelihood estimator
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be close to zero under the sub-Gaussian assumption. These considerations lead us to

the following model check procedure:

(i) Generate i.i.d. samples u1, ..., un ∈ Rd according to the uniform distribution on

the hypersphere Sd−1.

(ii) For each linear combination u′iX, i = 1, ..., n, estimate θi = (α̂i, β̂i, σ̂i, µ̂i).

(iii) The estimated α̂i’s should not differ much from each other.

(iv) The estimated β̂i’s should be close to zero.

(v) Bivariate scatterplots of the components should be elliptically contoured.

(vi) If the data fulfill criteria (ii)-(v) a sub-Gaussian model can be justified.

If we conclude after the model check that our data are sub-Gaussian distributed, we

estimate the α of the distribution by taking the mean ᾱ = 1
n

∑n
i=1 α̂i. This approach

has the advantage compared to the former one that we incorporate more information

from the dataset and we can generate more sample estimates α̂i and β̂i. In the former

approach, we analyze only the marginal distributions.

Figure 2.17 depicts the maximum likelihood estimates for 100 linear combinations

due to (ii). We observe that the estimated α̂i, i = 1, ..., n, range from 1.5 to 1.84. The

average, ᾱ, equals 1.69. Compared to the first approach, the tail indices increase,

meaning less leptokurtosis, but the range of the estimates decreases. The estimated

β̂i’s, i = 1, ..., n, lie in a range of −0.4 and 0.4 and the average, β̄, is −0.0129. In

contrast to the first approach, the variability in the β’s increases. It is certainly not

to be expected that the DAX30 log-returns follow a pure i.i.d. α stable sub-Gaussian

model, since we do not account for time dependencies of the returns. The variability

of the estimated α̂’s might be explained with GARCH-effects such as clustering of

volatility. The observed skewness in the data7 cannot be captured by a sub-Gaussian

or any elliptical model. Nevertheless, we observe that the mean of the β’s is close to

zero.

2.6.2 Estimation of the Stable DAX30 Dispersion Matrix

In this section, we focus on estimating the sample dispersion matrix of an α-stable sub-

Gaussian distribution based on the DAX30 data. For the estimation procedure, we use

the estimator σ̂(1)
ij (n), i �= j presented in Section 2.5. Before applying this estimator,

we center each time series by subtracting its sample mean. Estimator σ̂(1)ij (n) has the

disadvantage that it cannot handle zeros. But after centering the data, there are no zero

7The estimated β̂’s differ sometimes significantly from zero.



56 2 ESTIMATION OF α-STABLE SUB-GAUSSIAN DISTRIBUTIONS

0 20 40 60 80 100
1  

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2  

A
lp

ha
s

α

0 20 40 60 80 100
−1  

−0.8

−0.6

−0.4

−0.2

0   

0.2 

0.4 

0.6 

0.8 

1   

B
et

as

β

Figure 2.17: Scatterplot of the estimated α’s and β’s for 100 linear combinations.

log-returns in the time series. In general, this is a point which has to be considered

carefully.

For the sake of clarity, we display the sample dispersion matrix and covariance

matrix as heat maps, respectively. Figure 2.18 is a heat map of the sample dispersion

matrix of the α-stable sub-Gaussian distribution. The sample dispersion matrix is

positive definite and has a very similar shape and structure as the sample covariance

matrix which is depicted in Figure 2.19. Dark blue colors correspond to low values,

whereas dark red colors depict high values.

Figure 2.20 (a) and (b) illustrate the eigenvalues λi, i = 1, ...29, of the sample

dispersion matrix and covariance matrix, respectively. In both Figures, the first eigen-

value is significantly larger than the others. The amounts of the eigenvectors decline

in similar fashion.

Figures 2.21 (a) and (b) depict the cumulative proportion of the total variability

explained by the first k principal components corresponding to the k largest eigenval-

ues. In both figures, more than 50% is explained by the first principal component.

We observe that the first principal component in the stable case explains slightly more

variability than in the ordinary case, e.g., 70% of the total amount of dispersion is

captured by the first six stable components whereas in the normal case, only 65% is

explained. In contrast to the normal PCA the stable components are not independent

but quasi-uncorrelated. Furthermore, in the case of α = 1.69, the coefficient of tail

dependence for two principal components, say Yi and Yj , is

λ(Yi, Yj , 0, 1.69) =

∫√1/2
0

s1.69√
1−s2

ds∫ 1
0

s1.69√
1−s2

ds
≈ 0.21

due to Theorem 8 for all i �= j, i, j = 1, ..., 29.
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Figure 2.18: Heat map of the sample dispersion matrix. Dark blue colors corresponds
to low values (min=0.0000278), to blue, to green, to yellow, to red for high values
(max=0,00051)

In Figure 2.22 (a), (b),(c), and (d) we show the first four eigenvectors of the sam-

ple dispersion matrix, the so-called vectors of loadings. The first vector is positively

weighted for all stocks and can be thought of as describing a kind of index portfolio.

The weights of this vector do not sum to one but they can be scaled to be so. The second

vector has positive weights for technology titles such as Deutsche Telekom, Infineon,

SAP, Siemens and also to the non-technology companies Allianz, Commerzbank, and

Tui. The second principal component can be regarded as a trading strategy of buy-

ing technology titles and selling the other DAX30 stocks except for Allianz, Com-

merzbank, and Tui. The first two principal components explain around 56% of the

total variability. The vectors of loadings in (c) and (d) correspond to the third and

fourth principal component, respectively. It is slightly difficult to interpret this with

respect to any economic meaning, hence, we consider them as pure statistical quanti-

ties. In conclusion, the estimator σ̂ij(n), i �= j, offers a simple way to estimate the

dispersion matrix in an i.i.d. α-stable sub-Gaussian model. The results delivered by

the estimator are reasonable and consistent with economic theory. Finally, we stress

that a stable PCA is feasible.
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Figure 2.19: Heat map of the sample covariance matrix. Dark blue colors corresponds
to low values (min=0.000053), to blue, to green, to yellow, to red for high values
(max=0,00097)
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Figure 2.20: Barplots (a) and (b) depict the eigenvalues of the sample dispersion matrix
and the sample covariance matrix.
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Figure 2.21: Barplot (a) and (b) show the cumulative proportion of the total dispersion
and variance explained by the components, i.e.,

∑k
i=1 λi/

∑29
i=1 λi.
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Figure 2.22: Barplot summarizing the loadings vectors g1, g2, g3 and g4 defining the
first four principal components:(a) factor 1 loadings; (b) factor 2 loadings; (c) factor 3
loadings; and (d) factor 4 loadings



60 2 ESTIMATION OF α-STABLE SUB-GAUSSIAN DISTRIBUTIONS

2.7 Conclusion

In this chapter we present different estimators which allow one to estimate the dis-

persion matrix of any normal variance mixture distribution. We analyze the estima-

tors theoretically and show their consistency. We find empirically that the estimator

σ̂
(1)
ij (n) has better statistical properties than the estimator σ̂(2)ij (n, p) for i �= j. We

fit an α-stable sub-Gaussian distribution to the DAX30 components for the first time.

The sub-Gaussian model is certainly more realistic than a normal model, since it cap-

tures tail dependencies. But it has still the drawback that it cannot incorporate time

dependencies.



Chapter 3

Composed and Factor Composed

Multivariate GARCH Models

3.1 Introduction

In modern risk management and factor modeling it is important to understand and to

predict the temporal dependence structure of assets and risk factor returns in a multi-

variate time series framework. It is now widely accepted, and some researchers call

it even a stylized fact (see McNeil, Frey, and Embrechts (2005)), that the conditional

volatilities and the conditional correlation of multivariate financial time series vary

over time and occur in clusters.

These style facts are very well understood and modeled by univariate GARCH

models for one-dimensional time series. It is straightforward to generalize univariate

GARCH models to multivariate GARCH models. Although they are the natural candi-

date to capture these stylized facts about multivariate financial time series, multivariate

GARCH modeling has not been applied very often in the financial industry. The reason

is that the implementation of these models is extremely difficult even in low dimen-

sions, their major problem being that the number of parameters tends to explode with

the dimension of the model. Because of this, the maximum likelihood function be-

comes very flat and optimization of the likelihood is practicably impossible in higher

dimensions, as stressed by Alexander (2002). But from the an asset manager’s per-

spective, a multivariate modeling framework is desirable since it opens the door to

better decision tools in various areas, such as asset pricing, portfolio selection, factor

modeling, and risk management.

Multivariate GARCH models were introduced by Bollerslev, Engle, and Wooldridge

(1988). At the beginning of the 1990s new models were developed such as the constant

conditional correlation (CCC) GARCH model by Bollerslev (1990), the principal com-

61
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ponent GARCH model by Ding, and Engle (1994), the BEKK model of Baba, Engle,

Kroner and Kraft (1995), and others. At the beginning of the 2000s Christodoulakis,

and Satchell (2002), Engle (2002), and Tse, and Tsui (2002) developed the dynamic

conditional correlation (DCC)-GARCH model that can be considered to be an ex-

tension of the CCC-GARCH model. Furthermore, Patton (2000) and Jondeau, and

Rockinger (2006) introduced copula-GARCH models.

The most common applications of multivariate GARCH models are for the study

of the conditional covariance and correlation between several markets. Multivariate

GARCH models can help asset managers understand if the volatility of one market

(e.g., the Dow Jones 30), leads the volatilities of several other markets (such as Euro

Stoxx 50, DAX 30 or Nikkei).

In asset pricing theory, the asset excess returns are modeled as linear combina-

tions of factors (e.g., market return). In arbitrary approaches, the coefficients of the

factors are assumed to be constant and estimated by an ordinary least squares (OLS-

regression. Since these coefficients are the covariance between the asset excess return

and the factor returns divided by the variance of the factor returns, these coefficients

can be modeled as time varying by a multivariate GARCH model.

In asset management it is not recommended modeling directly all assets in a large

portfolio by a multivariate GARCH model since the parameters of the model explode

as noted above. Instead, an asset manager should use factor-model strategies in order

to reduce the overall dimension of the time series modeling problem. After that the

factors obtained can be modeled thoroughly by a multivariate GARCH or, even better,

VARMA-MGARCH model.

In this chapter we introduce two new multivariate GARCH models, which we refer

to as the composed and factor composed MGARCH models. The idea behind these

models comes from a common technique in portfolio risk management: Risk managers

of large portfolios have to forecast risk functionals such as value-at-risk (VaR) or ex-

pected shortfall of the underlying portfolio. A common approach is to generate a uni-

variate return series from the current asset shares and the multivariate return series of

the assets in the portfolio. A univariate model such as a GARCH or ARMA-GARCH

model is fitted to this time series allowing the calculation of these risk functionals.

However, the univariate model is only valid for the current weights. Since the weights

change daily, we have to repeat this procedure every day. Furthermore, the univariate

model does not provide any information about the dependence structure of the assets,

which is important for the portfolio risk manager. The basic idea behind the composed

and factor composed MGARCH models is to use many linear combinations of the

multivariate asset return series in the portfolio in order to reconstruct the conditional

covariance matrix Σt. The matrix Σt can be reconstructed by solving an optimization
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problem ensuring the positivity of Σt.

We extend the composed and factor composed MGARCH model to an α-stable

version with multivariate α-stable sub-Gaussian innovations. According to Rachev,

and Mittnik (2000), there are empirical as well as theoretical evidences that α-stable

laws are the fundamental ”building blocks” (i.e., innovations) that drive asset return

series in many sectors of the financial market.

This chapter is organized as follows. In Section 3.2 we provide a short review of

ARMA-GARCH models since they are the key device for the composed MGARCH

models. In Section 3.3 we present and discuss the advantages and disadvantages of

the most common multivariate GARCH models. In Section 3.4 we introduce the com-

posed and factor composed GARCH models, put them in the context of the former

models, and propose methods to fit composed and factor composed MGARCH mod-

els to data. We introduce an α-stable version of the composed and factor composed

MGARCH model, that is based on the α-stable power GARCH processes introduced

by Mittnik, Paolella, and Rachev (2002) in Section 3.5. In Section 3.6, the α-stable

composed MGARCH model is applied to the returns on four German stocks included

in the DAX index. We compare the performance of the proposed model with the ex-

ponentially weighted moving average (EWMA) model of RiskMetrics. Section 3.7

concludes the chapter.

3.2 Univariate GARCH Models

The univariate generalized autoregressive conditional heteroscedasticity (GARCH) mod-

els have been successfully applied in financial econometrics since their introduction by

Engle (1982) and Bollerslev (1986). They have been used with great success in volatil-

ity forecasting in several financial markets.

The voluminous literature related to GARCH models spans modeling exchange

rates, equity returns, convergent term structure volatility forecast, and stochastic volatil-

ity models for option pricing and hedging. For a survey of ARCH-type models, see

Bollerslev, Chou, and Kroner (1992), Bera, and Higgins (1993), Shephard (1996),

Alexander (2001), among others.

In this section we review the basic definitions and properties in the field of uni-

variate GARCH models. We do so because they are the fundamental device for multi-

variate GARCH modeling. We denote with µt = E(Xt|Ft−1), t ∈ Z the conditional

mean of the time series (Xt)t∈Z, where Ft = σ({Xs : s ≤ t}), t ∈ Z, is the sigma

field generated by the past and present values of (Xt)t∈Z.

Definition 12. (Zt)t∈Z is a strict white noise (SWN) process if it is a series of identi-

cally distributed, finite-variance random variables.
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An important property of financial return series is whether they are strictly sta-

tionary or covariance stationary (see, e.g., McNeil, Frey, and Embrechts (2005) for a

definition of this properties). Both of these definitions attempt to formalize the notion

that the behavior of a time series is similar in any epoch in which we might observe

it. Systematic changes in mean, variance, or the covariances between equally spaced

observations are inconsistent with stationarity. We require these notions for the next

definition.

Definition 13. Let (Zt)t∈Z be SWN(0, 1). The process (Xt)t∈Z is a GARCH(p, q)

process if it is strictly stationary and if it satisfies, for all t ∈ Z and some strictly

positive-valued process (σt)t∈Z, the equations

Xt = σtZt, σ
2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j

where α0 > 0, αi ≥ 0, i = 1, ..., p, and βj ≥ 0, j = 1, ..., q.

We demand strictly stationarity of univariate GARCH processes, since most finan-

cial return series seem to have this property.

It is straightforward to generalize GARCH processes to so-called ARMA-GARCH

processes (Xt)t∈Z satisfying the equation

Xt = µt + σtZt,

where (Xt − µt)t∈Z follows a GARCH(p, q) process and (µt)t∈Z an ARMA process.

(For an introduction to ARMA processes, see Hamilton (1994).) In daily return se-

ries volatility effects captured by the GARCH part are much more important than the

mean effects modeled by the ARMA part of the model.1 Because of this fact and for

notational ease we do not consider ARMA processes in this chapter.

In the next theorem we give sufficient and necessary conditions for covariance

stationarity of GARCH processes.

Theorem 12. A GARCH(p,q) process is a covariance-stationary white noise process

if and only if
∑p

i=1 αi +
∑q

j=1 βj < 1. The variance of the covariance-stationary

process is given by α0/(1 −∑p
i=1 αi +

∑q
j=1 βj).

Proof. See McNeil, Frey, and Embrechts (2005).

We will see in Section 3.4 that Theorem 12 is very useful to ensure covariance

stationarity of composed and factor composed MGARCH processes.

1For a more detailed discussion of this issue, see RiskMetrics (1996) and McNeil, Frey, and Embrechts
(2005).
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3.3 Multivariate GARCH Models

In this section we give an historical overview2 of the more important multivariate

GARCH models. As stressed in Section 3.1 we always have to consider a trade-off

between the complexity of the model (i.e., amount of parameters) and its applicabil-

ity for financial modeling. A sophisticated multivariate GARCH specification might

have the capability to capture all the phenomenons in the underlying multivariate time

series, but if there may not exist an estimation procedure to fit the model to data, the

model is not applicable. On the other hand, if the model has a too parsimonious para-

metrization, we can fit it easily to data but it might be worthless since it does not model

the data appropriately.

Additional important properties of multivariate GARCH models are if the defini-

tion of the model ensures the positive definiteness of the conditional covariance matrix,

the covariance stationarity of the process and the invariance of the model under linear

transformation. A positive definite conditional covariance matrix can be achieved in

most models, whereas the covariance stationarity is difficult to derive. For practical

purposes, the former property is more important because we require a positive defi-

nite covariance matrix for the Cholesky decomposition in the definition of MGARCH

processes.3

At the end of this section we describe how to integrate MGARCH models into fac-

tor models. This is an important issue in risk management since it is still not possible

to model all risk factors of a large portfolio in one MGARCH model. Instead, we have

to identify the common underlying risk factors of the portfolio and thoroughly model

them by an MGARCH process.

But before beginning with an historical overview of the most common MGARCH

models, we present the basic definitions and properties of this model class.

3.3.1 Basic Definitions and Properties

Consider a d-dimensional multivariate time series (Xt)t∈Z defined on some probability

space (Ω,F , P ). We assume for the rest that (Xt)t∈Z is always a d-dimensional time

series. We denote with Ft = σt({Xs : s ≤ t}) the sigma field generated by the past

and present values of the time series (Xt)t∈Z. Based on the efficient market hypothesis

(see Fama (1991)) the sigma field Ft can be interpreted as representing the publicly

available information at time t. Furthermore, we refer to

µt = Et−1(Xt) = E(Xt|Ft−1)

2Detailed surveys about multivariate GARCH models can be found in Bauwens, Laurent, and Rom-
bouts (2006) and McNeil, Frey, and Embrechts (2005).

3See Hamilton (1994) for a discussion of the Cholesky decomposition.
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as the conditional mean and to

Vart−1(Xt) = E((Xt − µt)(Xt − µt)′|Ft−1)

as the conditional covariance matrix. The conditional covariance matrix Pt is defined

by

Pt = P(Σt) = ∆(Σt)−1Σt∆(Σt)−1,

where the operator P(.) extracts the correlation matrix from the covariance matrix and

the operator ∆ satisfies

∆(Σ) = diag(
√
σ11, ...,

√
σdd).

A d-dimensional time series (Zt)t∈Z is called multivariate strict white noise, denoted

by SNW(µ,Σ), if it is a series of independent elliptically distributed random vectors

with mean µ and covariance matrix Σ.

Definition 14. A process (Xt)t∈Z has a multivariate martingale difference property

with respect to the filtration (Ft)t∈Z if it satisfies

E|Xt| <∞ and E(Xt|Ft−1) = 0,

for all t ∈ Z.

The martingale difference property corresponds to the stylized fact about daily

financial return series that conditional expected returns are close to zero.4 We will see

below that a multivariate GARCH process fulfills this property.

Further important properties of multivariate time series can be captured by the

following definitions.

Definition 15. The multivariate time series (Xt)t∈Z is strictly stationary if

(X ′t1 , ...,X
′
tn ) d= (X ′t1+k, ...,X

′
tn+k),

for all t1, ..., tn, k ∈ Z and for all n ∈ N.

Definition 16. The multivariate time series (Xt)t∈Z is covariance stationary if the

first two moments exist and satisfy

E(Xt) = µ(t) = µ, t ∈ Z

Cov(Xt,Xs) = Cov(Xt+k,Xs+k) t, s, k ∈ Z.

4For a more detail treatment of this topic see McNeil, Frey, and Embrechts (2005).
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Definitions 15 and 16 formalize the notion that the behavior of a time series is sim-

ilar in any epoch in which we might observe it. Systematic changes in mean, variance

or covariances between equally spaces observation are inconsistent with stationarity.

We turn now our attention to the definition of a multivariate GARCH process.

Definition 17. Let (Zt)t∈Z be SWN(0, Id). The process (Xt)t∈Z is said to be a multi-

variate GARCH process if it is strictly stationary and satisfies equations of the form

Xt = Σ1/2
t Zt, t ∈ Z,

where Σ1/2 is the Cholesky factor of a positive-definite matrix Σt which isH measur-

able with respect to Ft−1.

The most important property about multivariate GARCH models is that the con-

ditional covariance Σt is measurable with respect to Ft−1. This means that the co-

variance matrix of tomorrow’s asset returns is known today. Note that in contrast to

the definition of univariate GARCH processes, there is no functional specification of

Σt in Definition 17. The functional form will depend on the specific model we de-

fine. Because of missing specification we cannot derive the general conditions that are

necessary or sufficient for covariance stationarity of a multivariate GARCH process.

It is an immediate conclusion that any pure MGARCH process (Xt)t∈Z has the

martingale difference property, since we have

E(Xt|Ft) = E(Σ1/2
t Zt|Ft−1) = Σ1/2

t E(Zt) = 0.

Furthermore, Σt is the conditional covariance matrix of any MGARCH process, since

we have

Vart−1(Xt) = E(XtX
′
t|Ft−1) = Σ1/2

t E(ZtZ
′
t)(Σ

1/2
t )′ = Σ1/2

t (Σ1/2
t )′ = Σt.

In particular, in the context of MGARCH models we use Σt interchangeably with

conditional covariance Var(Xt|Ft−1).

Proposition 5. Let (Xt)t∈Z be a multivariate GARCH process with conditional co-

variance matrix process (Σt)t∈Z. Then the univariate process (a′Xt)t∈Z has a condi-

tional variance process (a′Σta)t∈Z that is conditioned on the filtration (Ft)t∈Z for all

a ∈ Rd.

Proof.

Vart−1(a′Xt) = Var(a′Xt|Ft−1) = a′Var(Xt|Ft−1)a = a′Σta,

for all a ∈ Rd.
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As in the univariate case, one can extend the definition of an multivariate GARCH

process to a VARMA-GARCH process satisfying equations of the form

Xt = µt + Σ1/2
t Zt,

where (Xt −µt)t∈Z follows a MGARCH process and (µt)t∈Z a VARMA process (see

Hamilton (1994)). But such as in the univariate case volatility effects are much more

important than mean effects with respect to daily return series. Because of this and the

notational ease, we do not model the conditional mean process (µt)t∈Z in this chapter.

3.3.2 MGARCH Models - an Historical Overview

Multivariate GARCH models were introduced by Bollerslev, Engle, and Wooldridge

(1988) in the familiar half-vec (vech) form, providing a general framework for mul-

tivariate volatility models. In their paper they suggest the vector GARCH or VEC

model.

Definition 18. The process (Xt)t∈Z is a VEC process if it has the general structure

given in Definition 17, and the dynamics of the conditional covariance matrix Σt are

given by the equations

vech Σt = a0 +
p∑

i=1

Ãi vech (Xt−iX
′
t−i) +

q∑
j=1

B̃j vech(Σt−j),

for a0 ∈ Rd(d+1)/2 and matrices Ãi and B̃j in R(d(d+1)/2)×(d(d+1)/2) .

The operator vech in Definition 18 stacks the columns of the lower triangle of a

symmetric matrix in a single column vector of the length d(d + 1)/2. In this gen-

eral definition each element of Σt is a linear function of the lagged squared errors

and cross-products of errors and the values of the lagged conditional covariance matri-

ces. The fully unrestricted VEC model requires O(d4) parameters to be estimated by

maximum likelihood, where d denotes the dimension of the underlying multivariate

time series. The VEC model is certainly the most general MGARCH model, but it

has too many parameters for practical purposes and is only of theoretical interest. It

is also difficult to ensure the positive definiteness of the conditional covariance ma-

trix. In order to overcome the drawbacks of the VEC model, Bollerslev, Engle, and

Wooldbridge proposed the diagonal VEC or DVEC model in the same paper. The

DVEC model is essential in the VEC model, but with the additional restriction that

the matrices Ãi and B̃j in Definition 18 have to be diagonal. The DVEC model can

be formulated elegantly in terms of the Hadamard product, denoted ◦, which signifies

element-by-element multiplication of two matrices of the same size.
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Definition 19. The process (Xt)t∈Z is called DVEC process if it has the general struc-

ture given in Definition 17 and satisfies equations of the form

Σt = A0 +
p∑

i=1

Ai ◦ (Xt−iX
′
t−i) +

q∑
j=1

Bj ◦ Σt−j

where A0, Ai and Bj are symmetric matrices in Rd×d such that A0 has positive diag-

onal elements and all others matrices have non-negative diagonal elements.

The conditional covariance matrix Σt is a linear combination of own lagged squared

errors and cross-products of errors. The advantage of the model compared to former

ones is that only O(d2) parameters needed to be estimated by maximum likelihood.

Furthermore, because of the Hadamard representation of the model it is easy to guar-

antee that Σt is positive definite for all t: Provided that A0, Ai, Bj and the initial

covariance matrix Σ0 are positive definite for all t Attansio (1991) showed that Σt is

positive definite for all t. Certainly, a disadvantage of the DVEC specification is that,

in contrast to the VEC model, the volatility of a single component series cannot be

affected directly by large lagged values in other time series. It should be mentioned

that the DVEC model is still highly parameterized and large-scale systems are difficult

to estimate in practice.

Bollerslev (1990) proposed the constant conditional correlation (CCC) multivari-

ate GARCH specification. The CCC-GARCH model is the simplest representative of

the class of MGARCH processes, where the marginals and the dependence structure

of the multivariate time series are modeled separately. In this class, the marginals are

modeled by univariate GARCH processes, whereas the dependence structure is defined

model specific. In the case of the CCC-GARCH model, the dependence structure is

captured by a constant correlation matrix leading to the following definition.

Definition 20. The process (Xt)t∈Z is called a CCC-GARCH process if it is a process

with the general structure given in Definition 17. The conditional covariance matrix

is of the form ∆tPc∆t, where

(i) Pc is a constant, positive definite correlation matrix; and

(ii) ∆t is a diagonal volatility matrix with elements σt,k satisfying

σ2
t,k = αk0 +

pk∑
i=1

αkiX
2
t−i,k +

qk∑
j=1

βkjσ
2
t−j,k, k = 1, ..., d, (3.1)

where αk0 > 0, αki ≥ 0, i = 1, ..., pk , βkj ≥ 0, j = 1, ..., qk .

It is easy to show that the design of the models guarantees a positive definite con-

ditional covariance matrix. Because of the separation of the marginals and the depen-
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dence structure, an efficient two-step estimation procedure is available. In the first step

we fit univariate GARCH models to the marginals and in the second step we use the

devolatized residuals Yt = ∆−1Xt to estimate the constant correlation matrix Pc. This

approach has the advantage that it opens the door to modeling large-scale systems. On

the other hand, the model has a very parsimonious specification and the assumption

of constant correlation may seem to be questionable in empirical work. In particular,

Tsui, and Yu (1999) have found that constant correlation can be rejected for certain

multivariate time series. However, the CCC-GARCH model is more popular in the

financial industry than the models described before and because of its simplicity it is a

good starting point for MGARCH modeling.

The BEKK model of Baba, Engle, Kroner and Kraft was published in Engle, and

Kroner (1995). The model was also named after the two other authors who co-authored

an earlier unpublished manuscript.

Definition 21. The process (Xt)t∈Z is a BEKK process if it has the general structure

given in Definition 17 and if the conditional covariance matrix Σt follows the specifi-

cation

Σt = A0 +
K∑

k=1

p∑
i=1

A′k,iXt−iX
′
t−iAk,i +

K∑
k=1

q∑
i=1

Bk,jΣt−jBk,j,

where t ∈ Z, all matrices Ak,i and Bk,j are in Rd×d and A0 is symmetric and positive

definite.

The advantage of the model is that it guarantees the positivity of the conditional

covariance matrix Σt without imposing further restrictions. This is because of the gen-

eral quadratic structure of the model. One can show that the BEKK model is a special

case of the VEC model. The parameter K determines the generality of the process and

one can show that the BEKK model covers all DVEC models. In practical applications

the parameter K equals 1; even in this case the model is difficult to fit to data and it is

rarely used in dimension larger than 3 or 4. In the most common version of the BEKK

model O(d2) parameters have to be estimated. Certainly, a further disadvantage of the

model is that the exact interpretation of the individual parameters is not obvious.

Ding, and Engle (1994) described the principal component GARCH (PC-GARCH)

model for the first time. This model was extensively investigated by Alexander (2002)

under the name orthogonal GARCH.

Definition 22. The process (Xt)t∈Z follows a PC-GARCH model if it has the general

structure of the process described in Definition 17 and if there exists some orthogonal

matrix Γ ∈ Rd×d with ΓΓ′ = Γ′Γ = Id such that (Γ′Xt)t∈Z follows a pure diagonal
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GARCH model. The conditional covariance matrix Σt satisfies for all t

Σt = Γ∆tΓ′,

where ∆t is defined as in Definition 20.

It can be seen that the model ensures a positive definite covariance matrix Σt for

all t without imposing further constrains. The strength of this approach is its simplic-

ity and the possibility for dimensionality reduction. The model allows the estimation

of large conditional covariance matrices since we have a straightforward estimation

technique: In the first step we estimate the sample covariance matrix and by using

the Spectral Decomposition Theorem, we calculate the sample principal components.

In a second step we fit univariate GARCH models to the principal components. Fur-

thermore, if certain components do not contribute much to the variability of the whole

system, they can be neglected, leading to a dimensionality reduction. As Alexander

(2002) stresses, the strength of the approach relies on modeling highly correlated sys-

tems such as the term structure of commodities futures or interest rates, where only

a few principal components capture the behavior of the underlying multivariate time

series. On the other hand, the simplicity of the model permits only a very limited

evolution of the time series (Σt)t∈Z. If we have in mind that there is a one-to-one cor-

respondence between a covariance matrix and an ellipsoid, we can visualize the evo-

lution of (Σt)t∈Z: The corresponding ellipsoid can only be diluted and edged along

its principal components, a rotation of the ellipsoid is not possible. As a result, the

model only works well in those time series where the directions of the components

do not vary over time since the principal components vary their directions over time.

This is why the model reveals its weakness in modeling conditional correlation of asset

returns.

In 1996 RiskMetrics suggested the exponentially weighted moving average scheme

for modeling the conditional covariance matrix in RiskMetrics (1996).

Definition 23. The process (Xt)t∈Z is an exponentially weighted moving average

(EWMA) process if it is a VEC process satisfying the updating scheme

Σt = (1 − λ)Xt−1X
′
t−1 + λΣt−1,

or equivalent,

Σt = (1 − λ)
t−1∑

i=−∞
XiX

′
i,

for all t.
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The RiskMetrics model is widely used in industry, especially for portfolio VaR and

is now considered to be an industry standard for market risk. The primary advantage of

the RiskMetrics model is that it is extremely easy to estimate, since it has no parameters

to be estimated. RiskMetrics suggested the smoothing factor λ to be 0.94 for daily

log-returns and λ = 0.97 for monthly log-returns based on extensive data analysis in

various markets and countries. Since in practice we use only the last M observations,

we have to rescale the updating scheme in Definition 23, leading to

Σt =
1 − λ

1 − λM+1

M∑
i=1

λiXt−iX
′
t−i.

The obvious drawback of the model is that it has no estimated parameters, and that it

forces all assets to have the same decay coefficient irrespective of the asset type. It

is necessary to assume the same decay coefficient for all assets to guarantee a posi-

tive definite conditional covariance matrix. The EWMA model of RiskMetrics can be

regarded as the benchmark model that all other MGARCH models have to outperform.

As mentioned earlier, the assumption of constant correlation in the CCC-GARCH

model seems unrealistic in empirical application. Christodoulakis, and Satchell (2002),

Engle, and Sheppard (2001), and Tse, and Tsui (2002) suggest a generalization of

the CCC-GARCH model the so-called dynamic conditional correlation (DCC) model.

There are different versions of the DCC model, the two most common being those of

Tse, and Tsui (2002), denoted DCCT, and the one of Engle (2002), denoted DCCE.

Definition 24. The process (Xt)t∈Z is a DCCT-GARCH process if it is a process with

the general structure given in Definition 17. The conditional covariance matrix is of

the form Σt = ∆tPt∆t. The volatility matrix ∆t is defined as in Definition 20 and Pt

satisfies

Pt = (1 − α− β)Pc + αΨt−1 + βPt−1 (3.2)

where α ≥ 0, β ≥ 0 and α + β < 1, Pc ∈ Rd×d is a positive definite matrix

and Ψt−1 ∈ Rd×d is the correlation matrix of (Yt−1, ..., Yt−M ), where (Yt)t∈Z =
(∆−1

t Xt)t∈Z is the devolatized process.

Definition 25. The process (Xt)t∈Z is a DCCE-GARCH process if it has the structure

of the process given in Definition 24, but Pt satisfies

Pt = P(Qt) and Qt = (1 −
p∑

i=1

αi −
q∑

j=1

βj)Qc +
p∑

i=1

αiYt−iY
′
t−i +

q∑
j=1

βjQt−j(3.3)

for all t, where Qc is the unconditional covariance matrix of the time series (Yt)t∈Z =
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(∆−1
t Xt)t∈Z and the coefficients satisfy αi ≥ 0, βj ≥ 0 and

∑p
i=1 αi +

∑q
j=1 βj < 1.

The two versions of the DCC-GARCH model permit estimating large conditional

covariance matrices since we have the same two-step estimation procedure as in the

CCC-GARCH model. The chief difference is that the dependence structure is modeled

by a time dependent correlation matrix which is defined by equation (3.2) and equation

(3.3), respectively. In particular, we can divide the second step into sub-steps. In

the first sub-step, we estimate the matrices Pc and Qc and in the second sub-step we

estimate the scalars α and β and αi and βj , respectively. The DCC-GARCH model

guarantees the positive definiteness of the sample covariance matrix without imposing

further constraints. Since in the DCCT model Pc,Ψt−i, and Pt−1 are positive definite,

so is Pt and since in the DCCE model Qc, Yt−iY
′
t−i and Qt−i, so is Qt and Pt. If

we set α = β = αi = βi = 0 we observe that the DCCT and the DCCE reduce to

the CCC-GARCH model. It can be tested if α = β = 0 and αi = βj = 0 in order

to check whether imposing constant correlation is empirically relevant. Certainly, a

drawback of the DCC model is that α and β in the DCCT model and αi and βj in

the DCCE model are scalars instead of matrices. Hence, all entries of the conditional

correlation matrix are influenced by the same coefficients which might not be realistic

in empirical work. However, these conditions are necessary in order to maintain the

positivity of the conditional correlation matrix. In the literature there are extensions of

the DCC-GARCH model to overcome the scalar problem. For a further discussion see

Billio, Caporin, and Gobbo (2003), Engle (2002) and Pelletier (2003).

Patton (2000) and Jondeau, and Rockinger (2006) were the first to propose a

copula-factor model. These models are specified in such a way that the marginals

follow GARCH processes and their time varying dependence structure is modeled by

a copula. The following definition formalizes this class of processes.

Definition 26. The process (Xt)t∈Z is a copula-GARCH model iff it is a process sat-

isfying

(i) the marginals (Xt,k)t∈Z, k = 1, ..., d, follow a GARCH(pk, qk) process;

(ii) the dependence structure of the marginals is modeled by a copula

C(u1, ..., ud|Rt),

where R is the parameter set defining the copula C and Rt follows an updating

scheme Rt = f(Xt−1,Xt−2, ...);

(iii) the conditional distribution is given by

Xt|Ft−1 = C(F−1
Xt,1|Ft−1

(Xt,k), ..., F−1
Xt,d |Ft−1

(Xt,d)|Rt).
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Model Parameter count ≥ 10 2 5 10
VEC d(d+ 1)(1 + (p + q)d(d+ 1)/2)/2 No 21 465 6105

BEKK d(d+ 1)/2 +Kd2(p + q) No 11 65 255
DVEC d(d + 1)/2(1 + p+ q) No 9 45 165
CCC d(d + 1)/2 + d(p + q) Yes 7 25 77

DCCT d(d+ 1)/2 + 2 + d(p+ q) Yes 9 27 77
DCCE d(d+ 1)/2 + (p+ q)(d+ 1) Yes 9 27 77

PC d(d + 1)/2 + (p + q)d Yes 7 25 75
EWMA d(d + 1)/2 Yes 3 15 55

Table 3.1: Summary of numbers of parameters in various multivariate GARCH mod-
els: in the CCC, DCCT and DCCE it is assumed that the numbers of GARCH terms
are p and q; in the DCCT we assume that the conditional correlation matrix has 2 para-
meters and in the DCCE we suppose that the conditional correlation matrix has p + q
parameters. The second column gives the general formula. The final columns give the
numbers for models of dimensions 2, 5, and 10 when p = q = 1.

Note that Rt is measurable with respect to Ft−1 and time varying. Patton and Jon-

deau and Rockinger highlighted in both papers the need to allow for a time-variation in

the conditional copula function. The copula function is rendered time varying through

its parameters, which can be functions of past data. The copula-MGARCH model can

be viewed as an extension of the CCC and DCC-GARCH model.

In Table 3.15 we show an overview of the number of parameters used in the models

presented in this section. The VEC, BEKK and DVEC models are only applied in low

dimensions (d ≤ 10) and the VEC is purely of theoretical interest. The CCC-, DCC-

and PC-GARCH models are implemented in dimensions larger than 10 in the financial

industry.

3.3.3 Factor Modeling with MGARCH Models

The material presented in this section follows McNeil, Frey, and Embrechts (2005).

It is still not recommended to model all financial risk factors with general multivari-

ate GARCH models. Rather, these models have to be combined with factor-model

strategies to reduce the overall dimension of the time series modeling problem.

A fundamental consideration is whether factors are identified a priori and treated

as exogenous variables, or whether they are treated as endogenous variables and sta-

tistical factors manufactured from the observed data.

Suppose we adopt the former approach and identify a small number of common

factors Ft to explain the variation in many equity returns Xt. These common factors

can be modeled by multivariate GARCH models. The dependence of the individual

returns on the factor returns can then be modeled by calibrating a factor model of the

5Table 3.1 is adopted from McNeil, Frey, and Embrechts (2005).
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type

Xt = a+BFt + ε, t = 1, ..., n.

We assume then that, conditional on the factors Ft, the errors form a multivariate white

noise process with GARCH volatility structure.

The latter approach is based on a linear transformation of the equity returns Xt to

define factors

Ft = (Ft,1, ..., Ft,k)′ = Γ′1Xt,

where Γ1 ∈ Rd×k and k << d. The factors Ft can be modeled by a transformation

invariant multivariate GARCH model and should explain most of the variability of the

equity returns Xt. This approach leads to a factor model of the form

Xt = Γ1Ft + εt, t = 1, ..., n,

where the error term is usually ignored in practice.

3.4 Composed and Factor Composed MGARCH Models

For high dimensional multivariate GARCH modeling it is indispensable that the model

definition permits an efficient estimation procedure. In the previous section we have

seen that only those models that allow for a multi-step estimation procedure can be

applied in higher dimensions (d ≥ 10). For example, the specification of the CCC-,

DCC-, and copula-GARCH model admits a two-step estimation procedure to esti-

mate the dynamics of the marginals and the temporal dependence structure separately.

Similar, in the PC-GARCH model the temporal dependence structure is captured by

modeling the principal components of the unconditional covariance matrix through

univariate GARCH processes. In addition, since we are interested in statistical factor

modeling it is essential that the presented models are invariant under linear transforma-

tion. In this section we show that composed and factor composed MGARCH models

exhibit the invariance property and allow for two-step estimation procedures.

3.4.1 Definitions and Properties

The key idea behind the specification of the composed and factor composed MGARCH

model introduced in this section is to identify the temporal dependence structure of the

multivariate time series (Xt)t∈Z through linear combinations of this time series. These

linear combinations are modeled by univariate GARCH processes. In a second step the
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dependence structure is reconstructed by solving an optimization problem. But before

defining these two models, we have to introduce additional notions.

We assume in the following that all processes (Xt)t∈Z exhibit unconditional and

conditional second moments. Let (Xt)t∈Z be a d- dimensional process and we denote

by Ft(a) = σ({a′Xs : s ≤ t}) the sigma field generated by the past and present

values of the univariate time series (a′Xt)t∈Z. If (a′Xt)t∈Z follows a GARCH(p, q)

process, we write σ2
t (a) for the conditional variance Var(a′Xt|Ft−1(a)).

The sigma field Ft (defined in Section 3.3) includes more information than Ft(a).
It is important to note that mathematically

Var(a′Xt|Ft−1) = Var(a′Xt|Ft−1(a)) (3.4)

is not true since we are dealing with different sigma fields.

But we reasonable assume that equation (3.4) holds for many multivariate finan-

cial return series at least approximately. In the univariate case, we know that GARCH

models based on the filtration F(ei) have been successfully applied in volatility fore-

casting, implying immediately

Var(e′iXt|Ft−1) = e′iΣtei = σt,ii ≈ Var(e′iXt|Ft−1(ei))

= α0 +
p∑

i=1

X2
t−i +

q∑
j=1

βjσ
2
t−j,i. (3.5)

Hence, equation (3.5) justifies equation (3.4) for the marginals, i.e. a = ei, i = 1, ..., d,

from an empirical point of view. Another argument as to why equation (3.4) holds

is the efficient market hypothesis (see Fama (1991)) which asserts that all relevant

information of an asset is represented by the past and present values of the time series

(Xt,i)t∈Z. Hence, we obtain

Var(e′iXt|Ft−1) = Var(e′iXt|Ft−1(ei)).

Concerning non-trivial linear combinations of multivariate financial time series,

we observe that a very widespread and successfully applied technique in the risk man-

agement of large portfolios is to take the current weights wt ∈ Rd, where d denotes the

number of assets in the portfolio, and to generate a univariate time series (a′Xt)t∈Z
from the portfolio’s log-returns (Xt)t∈Z, where wt = a ∈ Rd. Then a univariate

GARCH process is fitted to the time series (a′Xt)t∈Z. The success of this technique
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is based on the empirical fact that we have at least approximately

Var(a′Xt|Ft−1) = a′Σta ≈ σ2
t (a) = Var(a′Xt|Ft−1(a))

= α0(a) +
p∑

i=1

αi(a′Xt−i)2 +
q∑

j=1

βjσ
2
t−j(a),

where a ∈ Rd. This consideration is evidence for equation (3.4).

In contrast to the marginals, it is at least not immediately clear how to justify

Var(a′Xt|Ft−1) = Var(a′Xt|Ft−1(a))

with the efficient market hypothesis, since (a′Xt)t∈Z is an artificial time series that is

not observable and traded in financial markets.

These semi-theoretical considerations are summed up in the following definitions.

Definition 27. A multivariate time series (Xt)t∈Z is projection-efficient if it satisfies

a′Xt|Ft−1
d= a′Xt|Ft−1(a), (3.6)

for all t ∈ Z and a ∈ Rd.

Note that the last definition implies

Var(a′Xt|Ft−1(a)) = Var(a′Xt|Ft−1) = a′Σta.

The next definition tells us how to model Var(a′Xt|Ft−1).

Definition 28. A multivariate time series (Xt)t∈Z is called GARCH-projection-efficient

if it is projection-efficient and satisfies

Var(a′Xt|Ft−1) = α0 +
p∑

i=1

αi(a′Xt−i)2 +
q∑

j=1

βjσ
2
t−j(a),

for all t ∈ Z and a ∈ Rd.

The notion of projection-efficient is derived from the efficient market hypothesis in

the sense that all information about the projective time series (a′Xt)t∈Z included in the

sigma algebra Ft−1 equals the information in the sigma algebra Ft−1(a). Furthermore,

the term GARCH-projection-efficient stresses that all information about the volatility

a′Xt is captured by Ft−1(a) and can be modeled by a univariate GARCH(p, q) process.

In particular, a GARCH-projection-efficient time series (Xt)t∈Z has the property that

the variance of a′Xt|Ft−1(a) can be modeled by a GARCH process. Due to the con-

sideration above there should be many multivariate financial time series which are at
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least approximately projection-efficient and GARCH-projection efficient. It is now

straightforward and consistent to define the following multivariate GARCH process.

Definition 29. The process (Xt)t∈Z follows a composed MGARCH (CMGARCH)

process if it is a process with the general structure given in Definition 17 and the

conditional matrix Σt = (σt,ij)satisfies

(i) (σ2
t,k)t∈Z follows a univariate GARCH(pk,qk) process for k = 1, ..., d.

(ii) For all i, j = 1, ..., d, i �= j we have

σt,ij =
1
4
(σ2

t (ei + ej) − σ2
t (ei − ej)),

where (σ2
t (ei + ej))t∈Z and σ2

t (ei − ej))t∈Z follow univariate GARCH(p+ij, q
+
ij )

and GARCH(p−ij, q
−
ij ) processes, respectively.

The composed MGARCH model does not impose any explicit functional form of

the conditional covariance matrix Σt such as the other models in Section 3.3. We

only have to assume that (Xt)t∈Z follows a multivariate GARCH process which is

GARCH-projection-efficient in order to be consistent. This idea is formalized in the

next theorem.

Theorem 13. Let (Xt)t∈Z be a GARCH-projection-efficient MGARCH process with

conditional covariance time series (Σt)t∈Z, then (Σt)t∈Z can be modeled by a com-

posed MGARCH process.

Proof. Let i, j = 1, ..., d, then we have

σt,ij = Cov(Xt,i,Xt,j |Ft−1)

= E((Xt,i − µt,i)(Xt,j − µt,j)|Ft−1)

= E

(
1
4
(Xt,i +Xt,j − (µt,i + µt,j)2))

−1
4
(Xt,i −Xt,j − (µt,i − µt,j))2)|Ft−1

)
=

1
4
E((Xt,i +Xt,j − (µt,i + µt,j))2|Ft−1)

−1
4
E((Xt,i −Xt,j − (µt,i − µt,j))2)|Ft−1)

=
1
4
(Var((ei + ej)′Xt|Ft−1) − Var((ei − ej)′Xt|Ft−1))

(∗)
=

1
4
(Var((ei + ej)′Xt|Ft−1(ei + ej)) − Var((ei − ej)′Xt|Ft−1(ei − ej)))

=
1
4
(σ2

t (ei + ej) − σ2
t (ei − ej))
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(*) holds in the last equation, since the process is projection-efficient. In particular,

(σ2
t (ei + ej))t∈Z and (σ2

t (ei − ej))t∈Z follow GARCH processes, since (Xt)t∈Z is

GARCH-projection-efficient. The same arguments hold also for diagonal entries σt,ii
of Σt.

The property GARCH-projection-efficient is essential for CMGARCH processes

since it determines the class of processes that can be modeled by them. In contrast

to many applied MGARCH models, we have a motivation for the CMGARCH mod-

els.6 The CMGARCH model resembles the PC-GARCH (see Definition 22) in the

sense that we use linear combinations of the multivariate time series (Xt)t∈Z to model

the conditional covariance matrix Σt and hence, the temporal dependence structure.

But in the CMGARCH approach we extend this idea to a new level, since the condi-

tional covariance matrix is determined solely by univariate processes, which is not the

case in the PC-GARCH model. In contrast to most of the other multivariate GARCH

models we reviewed in Section 3.3 we can easily derive sufficient conditions for the

covariance-stationarity of a CMGARCH model.

Theorem 14. Let the time series (Xt)t∈Z follow a composed MGARCH process. The

process is covariance stationary if all GARCH processes (σ2t,i)t∈Z, (σ2
t (ei + ej))t∈Z

and (σ2
t (ei − ej))t∈Z are covariance stationary, or equivalently, if the coefficients of

the GARCH processes (Xt,i)t∈Z, ((ei + ej)′Xt))t∈Z and ((ei − ej)′Xt)t∈Z satisfy

pi∑
k=1

α
(i)
k +

qi∑
k=1

β
(i)
k < 1,

p+
ij∑

k=1

α
(ij+)
k +

q+
ij∑

k=1

β
(ij+)
k < 1, and

p+
ij∑

k=1

α
(ij−)
k +

q−ij∑
k=1

β
(ij−)
k < 1,

for all i, j = 1, ..., d.

Proof. Since (σt,i)t∈Z is covariance stationary, we obtain

E(X2
t,i) = E(σ2

t,iZ
2
t ) = E(σ2

t,i) = σ2
i ,

6See the arguments leading to Definitions 27 and 28.
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for 1 = 1, ..., d. Furthermore, for the unconditional covariances we have

E(Xt,iXt,j) = E(Cov(Xt,i,Xt,j |Ft−1))

= E(σt,ij)

= E(
1
4
(σ2

t (ei + ej)) − σ2
t (ei − ej))

=
1
4
(E(σ2

t (ei + ej)) − E(σ2
t (ei − ej)))

=
1
4
(σ2(ei + ej) − σ2(ei − ej))

for all i, j = 1, ..., d. In particular, we have σij = E(Xt,iXt,j) for all t ∈ Z. Since

(Xt)t∈Z is a multivariate martingale difference with finite, non-time-dependent second

moments σij , i, j = 1, ..., d, it is covariance-stationary white noise.

One further important property of a multivariate GARCH model is the invariance

of the model with respect to linear combinations, that is, the times series (Yt)t∈Z =
(FXt)t∈Z belongs to the same model class, where F ∈ Rk×d. If (Xt)t∈Z is a time

series of asset returns, a linear transformation (FXt)t∈Z corresponds to new assets

(portfolios combining the original assets). It seems sensible that a model should be

invariant, otherwise the question arises as to which basic assets should be modeled.

This aspect becomes very important when we are interested in statistical factor mod-

eling in order to reduce the dimensionality of the portfolio. Statistical risk factors

are linear combinations of the underlying assets. Modeling the factors and the assets,

respectively, should lead to the same results.

Theorem 15. Let (Xt)t∈Z follow a GARCH-projection-efficient CMGARCH process.

Then the CMGARCH process is invariant under linear transformation, i.e., the process

(Yt)t∈Z = (FXt)t∈Z follows a CMGARCH process in terms of (Gt)t∈Z and

Var(Yt|Ft−1) = FΣtF
′ = Var(Yt|Gt−1), (3.7)

where F ∈ Rk×d, k ∈ N, and Gt is the sigma field generated by σ({Ys : s ≤ t}).

Proof. Note, that we have Gt ⊂ Ft for all t ∈ Z. First we show equation (3.7).

Cov(Yt,i, Yt,j |Gt−1) =
1
4
(Var((ei + ej)′Yt|Gt−1) − Var((ei − e′j)Yt|Gt−1))

=
1
4
(E(((ei + ej)′Yt)2|Gt−1)︸ ︷︷ ︸

(1)

−(E((ei + ej)′Yt|Gt−1)︸ ︷︷ ︸
(2)

)2

−E(((ei − ej)′Yt)2|Gt−1)︸ ︷︷ ︸
(3)

−(E((ei − ej)′Yt|Gt−1)︸ ︷︷ ︸
(4)

)2)

(3.8)
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Since we have Ft((ei + ej)′F ) ⊂ Gt ⊂ Ft we can derive from term (1) in equation

(3.8) that we have

E(((ei + ej)′Yt)2|Gt−1) = E(E(((ei + ej)′Yt)2|Ft−1)|Gt−1))

= E(E(((ei + ej)′Yt)2|Ft−1((ei + ej)′F ))|Gt−1))

= E(((ei + ej)′Yt)2|Ft−1((ei + ej)′F ))

= E(((ei + ej)′Yt)2|Ft−1). (3.9)

Analogously, equation (3.9) holds also for terms (2), (3), and (4) in equation (3.8).

Hence, we obtain

Cov(Yt,i, Yt,j |Gt−1) =
1
4
(E(((ei + ej)′Yt)2|Ft−1) − E((ei + ej)′Yt|Ft−1)2

−E(((ei − ej)′Yt)2|Ft−1) − E((ei − ej)′Yt|Ft−1)2)

=
1
4
(Var((ei + ej)′Yt|Ft−1) − Var((ei − e′j)Yt|Ft−1))

= Cov(Yt,i, Yt,j |Ft−1).

Furthermore, we observe that we have

Cov(Yt,i, Yt,j|Ft−1) = e′iFΣtF
′ej

and we have proved equation (3.7). We can derive from equations (3.8) and (3.9) that

we have

Cov(Yt,i, Yt,j|Gt−1) =
1
4
(Var((ei + ej)′Yt|Gt−1(ei + ej))

−Var((ei + ej)′Yt|Gt−1(ei − ej))),

where Gt(ei + ej) = Ft((ei + ej)′F ) and Gt(ei − ej) = Ft((ei − ej)′F ). Since the

process (Xt)t∈Z is GARCH-projection-efficient, Var((ei + ej)′Yt|Gt−1(ei + ej)) and

Var((ei − ej)′Yt|Gt−1(ei − ej)) follow a GARCH process. Hence, the time series

(Yt)t∈Z is a CMGARCH process.

Because of Theorem 17 we can consistently define an extension of the composed

multivariate GARCH model what we call the factor composed multivariate GARCH

(FCMGARCH) model.

Definition 30. The process (Xt)t∈Z follows a factor composed MGARCH (FCM-

GARCH) process, if there exists some orthogonal matrix Γ ∈ Rd×d satisfying ΓΓ′ =
Id such that (Γ′Xt)t∈Z follows a composed MGARCH process.

The definition of the factor composed MGARCH model resembles the definition
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of the PC-GARCH model. As with the PC-GARCH model we are interested in mod-

eling the principal components (Yt) = (Γ′Xt)t∈Z of the unconditional covariance

matrix Cov(Xt). If the multivariate time series (Xt)t∈Z is highly correlated, this ap-

proach has the advantage that we can model the system through d1 << d principal

components appropriately. But in contrast to the PC-GARCH model, the factor com-

posed GARCH model is more flexible because not only are the principal components

modeled by univariate GARCH processes but also the conditional covariance between

these factors. Furthermore, the FCMGARCH model offers the opportunity of reducing

the dimensionality of the estimation problem since the number of parameters needed

to be estimated is proportional to d2. This follows from the next proposition.

Proposition 6. Let (Xt)t∈Z be a d-dimensional CMGARCH process and the time se-

ries (Xt,i)t∈Z, ((ei+ej)′Xt)t∈Z and ((ei−ej)′Xt)t∈Z follow GARCH(p, q) processes,

then we have to estimate (p + q + 1)d2 parameters.

Proof. Since the conditional volatility process (σt,ii)t∈Z of (Xt,i)t∈Z follows a

GARCH(p, q) process, we have to estimate 1 + p + q coefficients for one GARCH

process. Since there are d different marginal processes we have to estimate d(1+p+q)
parameters. For each conditional covariance process (σt,ij)t∈Z, i �= j, we estimate

2(1 + p+ q) parameters due to the formula

σt,ij =
1
4
(σ2

t (ei + ej) − σ2
t (ei − ej)),

for i, j = 1, ..., d. Since we have

σt,ij = σt,ji

we have d(d − 1)/2 different conditional covariance processes. Hence we have to

estimate d(d − 1)(1 + p + q) parameters for the conditional covariance processes

(σt,ij)t∈Z. In conclusion, we estimate (1 + p+ q)d2 parameters.

In many financial applications, it is sufficient to use a GARCH(1, 1) to model the

linear combinations. In the case of a d-dimensional CMGARCH process (Xt)t∈Z, we

have to estimate 3d2 coefficients. In the CMGARCH model, we have to estimate more

parameters than in the CCC-GARCH, DCC-GARCH or the PC-GARCH model as

can be seen from Table 3.1. But we stress, that the CMGARCH model is more flexible

than these models since we do not have a restrictive functional form which allows

only a very constrained evolution of the conditional covariance process (Σt)t∈Z. A

further advantage of this model is that we estimate Σt only through univariate GARCH

processes. This approach allows us to circumvent the problem of applying maximum
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likelihood estimation in high dimension. As stressed in Alexander (2001), this is the

fundamental problem of multivariate GARCH modeling.

Nevertheless, in multivariate GARCH modeling for large portfolios several re-

searchers such as Alexander (2001) and McNeil, Frey, and Embrechts (2005) recom-

mend a factor model approach in order to reduce the dimensionality of the portfolio.

According to Theorem 17, the FCMGARCH model is consistent with the CMGARCH

and, as mentioned before, is predestinated to model the principal components of the

unconditional covariance matrix Cov(Xt).7 In addition, in many financial time series

we observe the so-called ”80/20 rule” or ”Pareto principle” which says that 20% of

the largest eigenvalues account for 80% of the overall variability. Hence, if we model

20% of the ”largest” principal components we can decrease the parameters needed to

be estimated by 96%.

Certainly, a drawback of the CMGARCH model is that its definition does not en-

sure a positive definite conditional covariance matrix Σt, meaning that if the estimation

error of Σ̂t becomes too large the matrix is not necessarily positive definite. In the next

section we present a method to deal with this problem.

3.4.2 Estimation of the Models

In this section, we introduce two approaches to estimate the CMGARCH and FCM-

GARCH model. The two approaches have in common that in the first step the problem

of estimating the conditional covariance matrix Σt is decomposed into n ∈ N simpler

estimation problems. For these estimation problems, efficient solving algorithms are

available. In the following steps we apply these solutions of the n estimation prob-

lems to reconstruct the conditional covariance matrix Σt. A similar approach has been

successfully applied to estimate multivariate α-stable sub-Gaussian distributions (see

Nolan (2005) and Kring et al. (2007)).

Since the CMGARCH and FCMGARCH model specification does not guarantee

the positivity of the conditional covariance matrix Σt, fortunately, the second pre-

sented estimation procedure ensures a positive definite estimateΣ̂t of the conditional

covariance matrix by applying the Cholesky Decomposition Theorem.

The first estimation approach is immediately derived from the definition of the

CMGARCH process.

(1) Let X1, ...,Xt be a sequence of return data. Fit univariate GARCH processes

to the projective data sets X1,i, ...,Xt,i, where (ei + ej)′X1, ..., (ei + ej)′Xt

and (ei − ej)′X1, ..., (ei − ej)′Xt, 1 ≤ i < j ≤ d. Denote the corresponding

volatility estimates with σ̂2
t (ei), σ̂

2
t (ei + ej) and σ̂2

t (ei − ej).

7Due to Theorem 14, we can assume (Xt)t∈Z to be covariance stationary.
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(2) Reconstruct the conditional covariance matrixΣ̂t by

Σ̂t,ii = σ̂2
t (ei),

Σ̂t,ij =
1
4
(σ̂2

t (ei + ej) + σ̂2
t (ei − ej)),

or alternatively,

(2’) Reconstruct the conditional covariance matrixΣ̂t by

Σ̂t,ii = σ̂2
t (ei),

Σ̂t,ij =
1
2
(σ̂2

t (ei + ej) − σ̂2
t (ei) − σ̂2

t (ej)),

where 1 ≤ i < j ≤ d.

This approach has the advantage that it is computationally straightforward. In step

(1) we have to fit d2 GARCH processes in order to calculate Σ̂ in step (2) and for the

alternative approach we have to fit only d(d+1)/2 GARCH processes in step (1) since

we do not have to estimate σ̂2
t (ei − ej) in step (2’). This method has the drawback that

we cannot ensure the positivity of the conditional covariance matrix Σ̂. Hence, we

always have to check whether Σ̂t is positive definite. One way of doing this is to apply

the Spectral Decomposition Theorem.

If all eigenvalues are positive, then Σ̂t is positive definite.

The second estimation approach is called the regression approach since we recon-

struct the conditional covariance matrix Σt using a regression.

(1) Let X1, ...,Xt be a sequence of return data. Fit univariate GARCH processes

to the projective time series u′iX1, ..., u
′
iXt, where ui ∈ Rd and i = 1, ..., n.

Denote the volatility estimates with σ̂2
t (ui), i = 1, ..., n.

(2) Reconstruct the conditional covariance matrix by

Σ̂(2)
t = argminΣ∈Sd×d

n∑
i=1

(u′iΣui − σ2
t (ui))2,

where Sd×d = {Σ|Σ ∈ Rd×d,Σ′ = Σ}.

The regression approach may be more accurate than the former approach because it

uses multiple directions, whereas the first method only uses the directions ei, ej , ei+ej
and ei − ej . In addition, this approach allows for more flexibility since the directions

ui are not predefined and their number n is also variable. For example, it might be

better to model the principal components Yi, i = 1, ..., d of the sample covariance

matrix Σ and their linear combinations than the marginals in order to estimateΣ̂t. Or,
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one might increase the accuracy of the estimate for Σt by increasing the number of

directions. But still, so far we cannot ensure Σ̂(2)
t to be positive definite. We overcome

this drawback through an additional step (3).

(3) In case det(Σ̂(2)
t ) > 0, set

Σ̂t = Σ̂(2)
t .

Otherwise reconstruct the conditional covariance matrixΣ̂(3)
t by

∆̂t = argmin∆∈Dd

n∑
i=1

(u′i∆∆′ui − σ̂2
t (ui))2, and

Σ̂(3)
t = ∆̂t∆̂′t,

where Dd = {∆|∆ ∈ Rd×d,∆ regular upper triangular matrix}. Finally set

Σ̂t = Σ̂(3)
t .

Due to the Cholesky Decomposition Theorem, the optimization problem in step

(3) is equivalent to

Σ̂t = argminΣ∈D2
d

n∑
i=1

(u′iΣui − σ̂2
t (ui))2

where D2
d is the set of all positive definite d× d matrices. Hence, the conditional step

(3) guarantees Σ̂t to be positive definite. While the optimization problem in step (3)

is computationally much more involved than in the one in step (2)8, it is important to

note that if Σ̂(2)
t is positive definite then Σ̂(2)

t equals Σ̂(3)
t .

It is straightforward to show that Σ̂(3)
t = ∆̂t∆̂′t is positive definite, since we have

u′Σ̂tu = u′∆̂t∆̂′tu

= ||∆̂′tu||2

> 0,

for all u ∈ Rd \ {0} and ∆̂t ∈ Dd.

8The optimization problem in step (2) can be solved by OLS regression.
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3.5 α-Stable Composed and Factor Composed MGARCH

Models

3.5.1 α-Stable Power-GARCH Processes

It is often observed when fitting GARCH models to financial time series that univariate

GARCH residuals tend to be heavy tailed. To accommodate this, GARCH models

with heavier conditional innovation distributions than those of the normal have been

proposed, among them the Student’s t and the Generalized Hyperbolic Distribution.

To allow for heavy-tailed, conditional distributions, GARCH processes with α-stable

error distributions have been considered by McCulloch (1985), Panorska, Mittnik, and

Rachev (1995), Mittnik, Paolella, and Rachev (1998), Rachev, and Mittnik (2000),

among others.

An objection against the use of the α-stable distribution is that it has no second

moments. This seems to contradict empirical studies suggesting the existence of third

or fourth moments for various financial return data. But as Mittnik, Paolella, and

Rachev (2002) stressed, these findings had been almost exclusively obtained by the use

of the Hill (1975) or related tail estimators, which are known to be highly unreliable.

In this section, we present α-stable power-GARCH processes which were orig-

inally introduced by Rachev, and Mittnik (2000) and Mittnik, Paolella, and Rachev

(2002).

Definition 31. An univariate process (Xt)t∈Z is called an α-stable Paretian power-

GARCH process, in short, an Sα,β,δGARCH(r, s) process, if it is described by

Xt = µt + σtZt, where Zt ∼ Sα(1, β, 0), (3.10)

and

σδ
t = α0 +

p∑
i=1

αi|Xt−i − µt−i|δ +
q∑

j=1

βjσ
δ
t−j ,

where α0 > 0, αi ≥ 0, i = 1, ..., r, βj ≥ 0, j = 1, ..., q, 0 < δ < α and Sα(1, β, 0)
denotes the α-stable distribution with tail index α ∈ (1, 2], skewness parameter β ∈
[−1, 1], zero location parameter and unit scale parameter. The location parameter

process (µt)t∈Z in (3.10) follows an ARMA process.

Since for α < 2 Zt in Definition 31 does not possess moments of order α or higher,

we restrict α to be in the set (1, 2] in order to possess first moments.9 This restriction

is consistent with financial return data (see among others Höchstötter, Rachev, and

9See Samorodnitsky and Taqqu (1994) for the existence of moments of an α-stable random variable.
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Fabozzi (2005) and Rachev, and Mittnik (2000)), where we observe α to be in the same

range. Furthermore, it is important to note, that σt is just a time-varying scaling para-

meter, implying σtZt|Ft−1 ∼ Sα(σt, σtβ, 0). Hence, in an α-stable power-GARCH

process we forecast the scale parameter of the α-stable innovation distribution.

Mittnik, Paolella, and Rachev (2002) show the following proposition.

Proposition 7. The Sα,β,δGARCH process has unique, strictly stationary solution if

λα,β,δ

p∑
i=1

αi +
q∑

j=1

βj ≤ 1, (3.11)

where λα,β,δ = E(|Zt|δ) and Zt ∼ Sα(1, β, 0).

Proposition 7 allows us to guarantee a unique, strictly stationary solution of

Sα,β,δGARCH process by imposing equation (3.11) during estimation.

3.5.2 A Multivariate α-stable GARCH Model

In this section, we propose an α-stable version of the composed and factor composed

MGARCH models, allowing similar estimation procedures as in the ordinary versions

of these processes. In particular, we are dealing with processes with α-stable inno-

vation we believe, according to Rachev, and Mittnik (2000), that these are the funda-

mental ”building blocks” that drive asset return processes. But the main problem we

face in defining an α-stable MGARCH model with multivariate α-stable innovations

is that we do not possess second moments and the conditional covariance matrix or any

covariance matrix are not defined. 10 We overcome this problem by choosing the α-

stable sub-Gaussian distribution for the innovations. In this particular case, we obtain

a substitute for the covariance matrix, the so-called dispersion matrix. The dispersion

matrix has the same interpretation in terms of the scaling properties of the distribution

(see Samorodnitsky and Taqqu (1994) and Kring et al. (2007) for a discussion of this

issue). But before defining these processes, we have to introduce additional notions.

Definition 32. (Zt)t∈Z is multivariate α-stable strict white noise if it is a series of

independent and identically distributed α-stable sub-Gaussian random vectors with

dispersion matrix Σ.

An α-stable strict white noise process with mean µ and covariance matrix Σ will

be denoted by α-SWN(µ,Σ). It can be shown easily that a dispersion matrix of an

α-stable sub-Gaussian random vector has to be non-negative definite.

10See also Doganoglu, Hartz, and Mittnik (2006) for a multivariate model with conditionally varying
and heavy-tailed risk factors.
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Definition 33. Let (Zt)t∈Z be α-stable strict white noise α-SWN(0, Id). The process

(Xt)t∈Z is said to be an α-stable multivariate GARCH process if it is strictly stationary

and satisfies equations of the form

Xt = Σ1/2
t Zt, t ∈ Z,

where Σ1/2 is the Cholesky factor of a positive-definite matrix Σt which is measurable

with respect to Ft−1.

As in Section 3.4, we take no account of the conditional mean vector for notational

ease. It is usually specified as function of the past, through a vectorial autoregressive

moving average (VARMA) representation.

Due to Kring et al. (2007, pp. 12-13), it follows immediately that we have

Σ1/2
t Zt|Ft−1 ∼ Ed(0,Σt, ψsub(., α)) (3.12)

In order to shorten the notation we introduce the dispersion operator

Disp(X) = Σ,

where X is an α-stable sub-Gaussian random vector with dispersion matrix Σ. In

particular, we define by

Disp(Xt|Ft−1) = Σt

the conditional dispersion matrix ofXt given Ft−1. This notion is well defined because

of equation (3.12). Furthermore, we have

Disp(a′Xt|Ft−1) = a′Σta,

since we have a′Xt|Ft−1 ∼ E1(0, a′Σta, ψsub(., α)) (see Kring et al. (2007, p. 13) or

Samorodnitsky and Taqqu (1994, p. 77 et seq.)).

In Section 3.4 we argued that equation (3.4) holds at least approximately for many

financial return time series possessing second moments. We can now repeat those

arguments for processes with α-stable sub-Gaussian innovations. Hence, we obtain

Disp(a′Xt|Ft−1) = Disp(a′Xt|Ft−1(a))

holds at least approximately. We can now rephrase Definition 27.

Definition 34. Anα-stable multivariate GARCH process (Xt)t∈Z is α-stable projection-
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efficient if it satisfies for all t ∈ Z and a ∈ Rd

a′Xt|Ft−1
d= a′Xt|Ft−1(a) ∼ E1(0, a′Σta, ψsub(., α)),

where Σt is the conditional dispersion matrix.

According to Kring et al. (2007) Proposition 2 and Samorodnitsky and Taqqu

(1994, p. 77 et seq.) the following equation holds for the scaling and dispersion

parameter of a′X

σ(a) =
(

1
2
a′Σa

)1/2

= (Disp(a′X))1/2, (3.13)

where X ∼ Ed(0,Σ, ψsub(., α)). Note that in the classical case where second mo-

ments exist, we have

σ(a) = (aΣa)1/2, (3.14)

where σ(a) and (aΣa)1/2 can be considered as the standard deviation and variance of

a′X, respectively. In the α-stable case, we have to take the factor 1/2 in the relation

between scaling parameter and dispersion parameter of a′X due to equation (3.13). In

particular, we can write

E1(0, a′Σa, ψsub(., α)) or Sα

((
1
2
a′Σa

)1/2

, 0, 0

)

for the distribution of a′X. In addition, if a′Xt|Ft−1(a) is α-stable distributed, we

denote the scaling parameter with σt(a) and we can write

σt(a) =
(

1
2

Disp(a′Xt|Ft−1(a))
)1/2

. (3.15)

We restate Definition 28 in terms of α-stable power GARCH processes.

Definition 35. An α-stable multivariate GARCH process (Xt)t∈Z is called power-

GARCH-projection-efficient if it is α-stable projection efficient and satisfies

(σt(a))δ = α0 +
p∑

i=1

αi|a′Xt−i|δ +
q∑

j=1

βjσ
δ
t−j(a), (3.16)

for all t ∈ Z, α0 > 0, αi ≥ 0, i = 1, ..., r, βj ≥ 0, j = 1, ..., q, 0 < δ < α.

We have now all notions to define an α-stable version of the CMGARCH model.

Definition 36. The process (Xt)t∈Z follows an α-stable composed MGARCH process



90 3 COMPOSED AND FACTOR COMPOSED MULTIVARIATE GARCH MODELS

if it is a process with the general structure given in Definition 33 and the conditional

dispersion matrix Σt = (σt,ij) satisfies

(i) (σt(ei))t∈Z = ((1
2σt,ii)1/2)t∈Z follows a Sα,0,δGARCH(pi, qi) process for i =

1, ..., d.

(ii) For all i, j = 1, ..., d i �= j we have

σt,ij =
1
2
(σ2

t (ei + ej) − σ2
t (ei − ej)),

where (σt(ei + ej))t∈Z and (σt(ei − ej))t∈Z follow a Sα,0,δGARCH(p+
ij, q

+
ij)

and Sα,0,δGARCH(p−ij, q
−
ij) processes, respectively.

An α-stable CMGARCH model does not impose any explicit functional form

of the conditional dispersion matrix Σt. The next theorem shows which α-stable

MGARCH processes can be modeled by α-stable CMGARCH processes.

Theorem 16. Let (Xt)t∈Z be an α-stable multivariate GARCH process which is power-

GARCH-projection-efficient with conditional dispersion time series (Σt)t∈Z, then this

time series can be modeled by an α-stable composed MGARCH process.

Proof.

σt,ij =
1
4
((ei + ej)Σt(ei − ej) − (ei − ej)Σt(ei − ej))

=
1
4
(Disp((ei + ej)′Xt|Ft−1) − Disp((ei − ej)′Xt|Ft−1))

(∗)
=

1
4
(Disp((ei + ej)′Xt|Ft−1(ei + ej))

−Disp((ei − ej)′Xt|Ft−1(ei − ej)))
equation (3.15)

=
1
4
(2σ2

t (ei + ej) − 2σ2
t (ei − ej))

=
1
2
(σ2

t (ei + ej) − σ2
t (ei − ej))

equation (∗) holds because the process is α-stable-projection-efficient. σ2t (ei+ej) and

σ2
t (ei − ej) are modeled by power-GARCH-processes.

Unfortunately, we cannot rephrase Theorem 14 for an α-stable CMGARCH process.

This is because of the fact that we do not know the unconditional distribution of Xt,

t ∈ Z, so we cannot ensure if the dispersion operator is well defined. But it seems

reasonable to impose that the univariate Sα,β,δGARCH processes of an α-stable CM-

GARCH model should be strictly stationary, i.e., λα,β,δ
∑p

i=1 αi +
∑q

j=1 βj ≤ 1.

We show that an α-stable CMGARCH model is invariant under linear transforma-

tion. This is essential, since this result enables us to define consistently an α-stable

factor composed MGARCH model.
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Theorem 17. Let (Xt)t∈Z follow an α-stable GARCH-projection-efficient CMGARCH

process. Then the CMGARCH process is invariant under linear transformation, i.e. the

process (Yt)t∈Z = (FXt)t∈Z follows an α-stable CMGARCH process in terms of the

filtration (G)t∈Z, and we have

Disp(Yt|Ft−1) = FΣtF
′ = Disp(Yt|Gt−1) (3.17)

where F ∈ Rk×d, k ∈ N, and Gt is the sigma field generated by σ({Ys : s ≤ t}).

Proof. We show Disp(FXt|Ft−1) = FΣtF
′ = Disp(FXt|Gt−1). We know

Disp(a′Xt|Ft−1) = Disp(a′FXt|Ft−1(a′F )) = a′FΣtF
′a. (3.18)

for all a ∈ Rd. Hence, by using the characteristic function ψsub of an α-stable sub-

Gaussian distribution, we conclude

ψsub(x2(a′FΣtF
′a), α) = E(eix(a′FXt)|Ft−1)

= E(eix(a′FXt)|Ft−1(a′F ))

for all a ∈ Rd and x ∈ R. Since we have Ft(a′F ) ⊂ Gt ⊂ Ft for all a ∈ Rd and

t ∈ Z, we obtain

ψsub(x2(a′FΣtF
′a), α) = E(eix(a′FXt)|Gt−1).

Since a ∈ Rd and x ∈ Rd are arbitrary, we follow

ψsub(s′FΣtF
′s, α) = E(eis

′(FXt)|Gt−1)

for all s ∈ Rd. Hence, we can conclude

FXt|Gt−1 ∼ Ek(0, FΣtF
′, ψsub(., α))

and we have Disp(FXt|Ft−1) = FΣtF
′ = Disp(FXt|Gt−1). We write for FΣtF

′

shortly ΣY
t . Since FXt|Gt−1 is sub-Gaussian, we can write

σY
t,ij =

1
4
(Disp((ei + ej)′FXt|Gt−1) − Disp((ei − ej)′FXt|Gt−1)

=
1
2
(σ2

t ((ei + ej)′F ) − σ2
t ((ei − ej)′F ),

where (σt((ei + ej)′F ))t∈Z and (σt((ei − ej)′F ))t∈Z follow Sα,0,δGARCH(p+
ij, q

+
ij)

and Sα,0,δGARCH(p−ij , q
−
ij). Hence, we have demonstrated that (Yt)t∈Z follows an

α-stable CMGARCH process.
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We can consistently define an extension of the α-stable composed multivariate

GARCH model, what we label the α-stable factor composed multivariate GARCH

model.

Definition 37. The process (Xt)t∈Z follows an α-stable factor composed MGARCH

(α-FCMGARCH) process, if there exists some orthogonal matrix Γ ∈ Rd×d satisfying

ΓΓ′ = Id such that (Γ′Xt)t∈Z follows an α-stable composed MGARCH process.

As with the FCMGARCH model, the α-stable version allows for statistical factor

modeling and dimensionality reduction. Again, we estimate the sample dispersion ma-

trix of the process (Xt)t∈Z and model its principal components (Yt)t∈Z by an α-stable

FCMGARCH model. In contrast to a α-stable version of the PC-GARCH model, we

have the advantage that we can capture the conditional dependence of the components.

As with Proposition 6 in Section 3.3, we have to estimate (p+q+1)d2 parameters

for a d-dimensional α-stable CMGARCH process whose projective time series follow

α-stable power-GARCH(p, q) processes.

3.5.3 Estimation of the Models

In principle, we can employ the same two estimation procedures as presented in Sec-

tion 3.4.2. In the first step, we have to use algorithms fitting α-stable power-GARCH

processes to data in both algorithms.

In the first algorithm we reconstruct the conditional dispersion matrix by

Σ̂t,ii = 2σ̂2
t (ei),

Σ̂t,ij =
1
2
(σ̂2

t (ei + ej) + σ̂2
t (ei − ej)).

In the second approach we apply the univariate α-stable process (σt(ui))t∈Z, ui ∈
Sd−1, i = 1, ..., n to reconstruct the conditional dispersion. This leads to the following

optimization problem.

Σ̂t = argminΣ∈Sd×d

d∑
i=1

(u′iΣui − 2σ̂2
t (ui))2

in step (2) and

Σ̂t = argmin∆∈Dd

n∑
i=1

(u′i∆∆′ui − 2σ̂2
t (ui))2

in step (3).
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When fitting α-stable power-GARCH processes to the projective time series

(u′iXt)t∈Z, i = 1, ..., n via the standard maximum likelihood method, we need a global

tail parameter α in order to be consistent with the model specification. The simplest

way to obtain such an α is to estimate the unconditional tail parameter α(ui) of the

projective time series (u′iXt)t∈Z, i = 1, ..., n. Then, the global tail parameter α is

defined by

α =
1
n

n∑
i=1

α(ui).

This is certainly a very heuristic method, since we do not estimate the global tail para-

meter of the innovations Zt but of the returns Xt. But since we estimate the parameter

α0(ui), ..., αr(ui) and β1(ui), ..., βs(ui) of the power-GARCH(r,s)-process (u′iXt)t∈Z
via the classical ML-method, these estimates are robust under misspecification of the

tail parameter α. For larger sample sizes, u′iX1, ..., u
′
iXt0 (t0 large) the estimates for

the scale parameters and the tail parameter are nearly independent (see DuMouchel

(1973) for further information). Thus the estimates of the power-GARCH parame-

ters are nearly independent of the tail parameter α and hence the time series of scale

parameters (σt(ui))t∈Z.

In addition, after having estimated the time series of conditional dispersion matri-

ces (Σ̂t)t∈Z we can use the residuals

Ẑt = Σ̂−1/2
t Xt

to estimate the tail parameter of the innovations where Σ̂1/2
t is the inverse of the

Cholesky factor of Σ̂t.

3.6 Applications

For the empirical analysis of the α-stable CMGARCH model, we investigated the daily

logarithmic return series for four German stocks included in the DAX index: Adidas,

Allianz, Altana, and BASF. The period analyzed is January 2, 2001 through March 31,

2006 (1,338 daily observations for each stock). For the estimation of our model, we

selected the first 1, 000 returns i.e. the period form January 2, 2001 until December 7,

2004. The balance of the observed returns are held out for an out-of-sample analysis

of the model.

The plots of the individual returns series in the estimation period for the four stocks

are shown in Figure 3.1. One can easily detect times of intense and less pronounced

volatility which is to be attributed to the well-known effect of volatility clustering. In

Table 3.2 the maximum likelihood estimates of the four return time series are listed.
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Figure 3.1: 1,000 daily returns during the period from January 2, 2001 until December
7, 2004.

The tail parameters α appear to be in a tight range around 1.69. Hence, assuming the

same parameter α is justifiable. The scale parameter is within in a range of roughly

0.1 and 0.15. The location parameters µ are close to zero.

We assume that the four univariate return series follow Sα,0,1GARCH(1, 1)
processes. More precisely,

σt(ei) = α0(ei) + α1(ei)|Xt−1 − µ(ei)| + β1(ei)σt−1(ei)

and

Xt,i = µ(ei) + σt(ei)Zt,

where Zt ∼ Sα(1, 0, 0) and µ(ei) is the unconditional mean of the ith time series,

i = 1, ..., 4 and α = 1.69.11 The estimated parameters based on the period from

January 2, 2007 until December 7, 2007 are reported in the right half of Table 3.2. As

11For daily log-returns it is not necessary to model the daily mean process (µt)t∈Z (see RiskMetrics
(1996)).
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Stock α σ µ α0 α1 β1 LL

Adidas 1.667 0.0109 0.0001 0.0002 0.0413 0.9316 2617.30
Allianz 1.6672 0.0155 -0.0011 0.0002 0.0841 0.8854 2356.2
Altana 1.7337 0.0138 -0.0003 0.0004 0.0706 0.8837 2423.4
BASF 1.6992 0.011 0.0001 0.0003 0.0661 0.8966 2650.6

Table 3.2: The left half of the table depicts the unconditional stable estimates of the
returns time series. The right half shows the estimated parameters of the univariate
stable GARCH(1,1) processes for the returns. The time period is January 2, 2001 to
December 7, 2004.

discussed in Section 3.5.3, a misspecification of the tail parameter α has only a minor

influence on the estimated power-GARCH parameters. The absolute mean λα,0 of a

centered unit scale variable Zt ∼ Sα(1, 0, 0) is given by

λα,0 =
2
π

Γ
(

1 − 1
α

)
= 1.38.

Due to Proposition 7, all processes are strict stationary since we have α0(ei), α1(ei),
β1(ei) > 0, and λα,0α1(ei) + β1(ei) < 1, i = 1, ..., 4. This purely univariate analy-

sis of the return data does not reveal any contradiction to an α-stable CMGARCH

modeling.

3.6.1 In-Sample Analysis of the α-stable CMGARCH Model

In the following we assume that the return data X1, ...,X1000 of the four stocks in our

study are power-GARCH-projection-efficient with δ = 1 and follow an α-stable CM-

GARCH model. In order to estimate the α-stable CMGARCH process we generate

random vectors ui ∈ S3, i = 1, ..., 100, that are uniformly distributed on S3. The

projective time series (u′iXt)t∈Z follow again an α-stable power-GARCH process.

According to the estimation procedure described in Sections 3.4.2 and 3.5.3, we have

to estimate the parameters α0(ui), α1(ui), and β1(ui) of the corresponding power-

GARCH(1, 1)-processes. Figure 3.2 (a), (b), and (c) illustrate the estimates. The para-

meter estimates β̂1(ui) are tightly scattered around 0.91; α̂1(ui) ranges from 0.038 to

0.082 and for α̂0(ui) from 0.7 · 10−4 to 3 · 10−4. All projective time series (u′iXt)t∈Z
have a low market reaction (α̂1(ui) small) but a high persistence (β̂1(ui) high).

In particular, we see that each projective time series is strict stationary. Figure

3.4 depicts the 100 corresponding time series (σt(ui)) of the conditional, time-varying

scale parameters. The effects of volatility clustering can be seen.

In order to obtain the time series of the conditional dispersion matrices Σt ∈ R4×4,

we have to apply steps (2) and (3) of the estimation algorithm given in Sections 3.4.2

and 3.5.3, respectively. Figure 3.2 (d) shows the number of not positive definite ma-
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Figure 3.2: (a),(b),(c) show the stable GARCH(1,1) estimates for the 100 projective
time series (u′iXt)t∈I .
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Figure 3.3: The figure shows the 100 different time series (σt(ui))t∈I , i = 1, ..., 100,
of the stable GARCH(1, 1)-Processes.

trices Σt, t = 1, ..., 1000, obtained after applying step (2) subject to the number of

projective time series (σt(ui))t∈Z used in the regression. By increasing the number

of projections in step (2), the number of these matrices that exhibit this characteristic

decreases fast. We notice the last not positive definite matrix when applying 35 pro-

jections. In the range from 36 until 100 projections, all matrices are positive definite.

Furthermore, we observed a fast stabilization of the entries of the time series (Σt)
subject to the number of projections used in step (2). This observation supports the as-

sumption that the considered multivariate time series is GARCH-projection efficient.

In order to obtain a very high accuracy of our estimates, we use 100 projections

for the reconstruction of the time series (Σt). In particular, we do not need to apply

the optional step (3) since all conditional dispersion matrices are positive definite.

Figure 3.5 shows the 2-dimensional scatterplots between the different returns pairs.

We find that Adidas and Altana as well as Altana and BASF exhibit a very low cross

dispersion due to the scatterplots, while the ones of BASF-Allianz and Adidas-BASF

illustrate stronger cross dispersion. Figure 3.6 depicts the time series of the conditional

dispersion matrices (Σt)t=1,...,1000 for the period January 2, 2001 to December 7, 2004.

In particular, the conditional dispersions (σt,13) and (σt,34) corresponding to Adidas-

Altana and Altana-BASF are low, consistent with the observation made about Figure

3.5. Definitely the highest conditional dispersion can be observed between Allianz
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Figure 3.4: The figure illustrates the number of not positive definite matrices subject
to the number of projection used in the regression.
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Figure 3.5: Two dimensional scatterplots of the returns in the period January 2, 2001
until December 7, 2004.
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Figure 3.6: The figure depicts the estimated conditional dispersion matrices Σt in the
period January 2, 2001 until December 7, 2004.
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and BASF, (σt,34), which is also the case in the unconditional graphical consideration

of Figure 3.5. For the time period investigated, the returns of Allianz are the most

volatile especially in the period July 2002 until July 2003. Besides Altana, we observe

an increase in the conditional dispersion and cross dispersion in all stocks because of

September 11, 2001.

For a quantitative analysis of the α-stable CMGARCH model we examine its resid-

uals given by

Ẑt = Σ̂−1/2
t (Xt − µ̂),

where t = 1, ..., 1000, µ̂ ∈ R4 the unconditional mean of the four individual return

time series, and Σ̂−1/2
t the inverse of the Cholesky factor of Σ̂t. To test whether the

generated innovations are strict white noise (SNW(0,Id)) (see Section 3.3 and Defin-

ition 32), we estimate their unconditional dispersion matrix Σ̂Z by using the spectral

estimator.12 The spectral estimator is a robust estimator of the dispersion and covari-

ance matrix up to a scaling constant. To have a unique dispersion matrix we demand

σ̂11 to be 1.

For comparison, we first list the normalized dispersion matrix of the original re-

turns given by

Σ̂0(X1, ...,X1000) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.5294 0.1929 0.3724
0.5294 1.8865 0.5637 0.8195
0.1929 0.5637 1.4942 0.3121
0.3724 0.8195 0.3121 0.9499

⎞
⎟⎟⎟⎟⎠ .

One can clearly detect the non-zero cross dispersion between the stock returns, because

σ̂ij(X1, ...,X1000), i, j = 1, ..., 4, i �= j, deviate significantly from zero. Moreover,

the diagonal entries reveal non-standardized quantities, since σ̂ii(X1, ...,X1000), i =
1, ..., 4, differ significantly from 1. However, the residuals Ẑ1, ...., Ẑ1000 of the α-

stable CMGARCH model yield the unconditional normalized dispersion matrix

Σ̂0(Ẑ1, ..., Ẑ1000) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.0381 −0.0223 0.0046
0.0381 1.0392 0.0305 0.0440
−0.0223 0.0305 1.1323 0.0146
0.0046 0.0440 0.0146 1.0991

⎞
⎟⎟⎟⎟⎠ ,

which indicates that the scales of the individual stocks are close to one and zero, re-

spectively. In addition, the cross dispersion between the returns are definitely mini-

mized if not removed.

12See Tyler (1987a) for further information about the spectral estimator.
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We compare these residuals with those of the EWMA model introduced by Risk-

Metrics.13 The EWMA model is still the industry standard for multivariate condi-

tional risk modeling (see the discussion in Section 3.3 and RiskMetrics (1996)). In the

EWMA updating scheme

Σt =
1 − λ

1 − λM+1

M∑
i=1

λiXt−iX
′
t−i

we chooseM to be 112, 50, and 20. For daily returns, RiskMetrics (1996) recommends

an optimal decay factor λ = 0.94. By using λ = 0.94, 99.9% of the information is

contained in the last 112 days and the classical RiskMetrics updating scheme

Σt = (1 − λ)Xt−1X
′
t−1 + λΣt−1,

is captured very well. In this case, the residuals are denoted by ẐE(112)
1 , ..., Ẑ

E(112)
1000

and their unconditional normalized dispersion matrix satisfies

Σ̂0(Ẑ
E(112)
1 , ..., Ẑ

E(112)
1000 ) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.1562 −0.2340 −0.2519
0.1562 1.1071 −0.1848 −0.2198
−0.2340 −0.1848 1.5471 0.6278
−0.2519 −0.2198 0.6278 1.8321

⎞
⎟⎟⎟⎟⎠ .

We see that the diagonal elements of this matrix deviate significantly from one and

cross-dispersion is definitely not zero. It is obvious that the results of the α-stable

CMGARCH are superior. Incorporating the last 112 might be too much.

In our statistical analysis we test different values of M (i.e., M = 10, 20, ..., 100).

We obtain the best results for M = 20. In this case, the dispersion matrix of the

residuals satisfies

Σ̂0(Ẑ
E(20)
1 , ..., Ẑ

E(20)
1000 ) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.0408 −0.0162 0.0335
0.0408 1.2124 −0.0036 −0.0287
−0.0162 −0.0036 1.2769 0.0647
0.0335 −0.0287 0.0647 1.5789

⎞
⎟⎟⎟⎟⎠ .

The cross dispersions are similar to those in the α-stable CMGARCH model but the

diagonal elements of the normalized dispersion matrix differ significantly from one.

This behavior is expected since we know from univariate GARCH- and EWMA-

modeling that volatility processes of univariate return series are captured much better

by a GARCH process. Moreover, we have one decay factor λ = 0.94 that should be

valid for all stocks simultaneously, which is not realistic. In the case of M = 50, we

13See Definition 23.
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Stock α Disp σ

Adidas 1.76 0.94 0.68
Allianz 1.92 1.12 0.75
Altana 1.8 1.11 0.74
BASF 1.9 1.18 0.77

Table 3.3: The table depicts the stable estimates of the α-stable CMGARCH residuals.

obtain

Σ̂0(Ẑ
E(50)
1 , ..., Ẑ

E(50)
1000 ) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.0680 −0.0406 −0.0480
0.0680 1.1271 0.0404 −0.0197
−0.0406 0.0404 1.1219 0.0771
−0.0480 −0.0197 0.0771 1.7043

⎞
⎟⎟⎟⎟⎠ ,

which does not significantly differ from the case M = 20.

The maximum likelihood estimates of the residuals Ẑ1, ..., Ẑ1000 are depicted in

Table 3.3. We see that the innovations have a larger tail parameter than the uncondi-

tional returns depicted in Table 3.2. This phenomenon is to be expected because the

leptokurtosis in the unconditional distribution of the process (Xt)t∈Z is attributed to

the GARCH structure of the process (see RiskMetrics (1996) and McNeil, Frey, and

Embrechts (2005) for further information). By removing the MGARCH effects from

the data, we decrease the leptokurtosis and thereby increase the tail parameter.

In particular, Ẑt,1, ...., Ẑt,1000 has a scale parameter of 0.9440, thus the residuals

have an estimated dispersion matrix satisfying

Σ̂(Ẑ1, ..., Ẑ1000) =

⎛
⎜⎜⎜⎜⎝

0.9440 0.0359 −0.0211 0.0044
0.0359 0.9810 0.0288 0.0416
−0.0211 0.0288 1.0689 0.0138
0.0044 0.0416 0.0138 1.0375

⎞
⎟⎟⎟⎟⎠ ,

that is close the identity. However, there is a difference between the estimates σ̂ii(Z) of

the spectral estimator and those of the univariate estimates depicted in Table 3.3. We

have greater confidence in the spectral estimates for two reasons. First, the spectral

estimator uses a four dimensional sample for its estimates whereas in the other case

we use only the univariate time series. Second, the spectral estimator estimates σ̂ii,

i = 1, ..., 4, immediately, whereas in the other method we estimate the scale parameter

σ̂(ei) and then we calculate the dispersion by the formula σ̂ii = 2σ̂(ei)2 increasing the

estimation error.

In order to complete our sample analysis, we analyze the autocorrelation of the

squared returns and squared residuals in the different models. While one might cor-
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rectly object that due to the model specification second moments of the residuals and

returns do not exist, nevertheless the estimators of the autocorrelation function (ACF)

have distributions that have lower and upper confidence bounds under the independent

and identically distributed (i.i.d.) assumption. The range of these bounds is larger than

the ones in the case where second moments exist. Hence, if the residuals are within

the normal bounds, they are also in model specific confidence bounds. The results

are reported in Table 3.4. The lower and upper 95% confidence bounds are −0.0632
and 0.0632, respectively. The squared returns significantely violate these bounds (29
violations) and the hypothesis of independence can be rejected. In the case of the α-

stable CMGARCH residuals we find three violations of these bounds. In the classical

EWMA model (M = 112) there are eight violations. The EWMA model using the 20
last observations only violates these bounds twice and for M = 50 we observe five

values out of these bounds. All the models work well and remove a lot of autocorrela-

tion in the squared return data. The α-stable CMGARCH model seems to be superior

to the classical EWMA model since the estimates are closer to zero in most cases and

there are less violations of the confidence bounds.

3.6.2 Out-Of-Sample Analysis of the α-stable CMGARCH Model

For the out-of-sample analysis we use the period from December 8, 2004 to March 31,

2006 (observations 1, 001 to 1, 338). The normalized dispersion matrix of the observed

returns satisfies

Σ̂0(X1001, ...,X1338) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.3756 0.0896 0.3487
0.3756 1.1663 0.2344 0.5109
0.0896 0.2344 0.7438 0.1429
0.3487 0.5109 0.1429 0.9180

⎞
⎟⎟⎟⎟⎠

and the α-stable CMGARCH residuals is given by

Σ̂0(Ẑ1001, ..., Ẑ1338) =

⎛
⎜⎜⎜⎜⎝

1.0000 −0.0419 0.0954 −0.0118
−0.0419 1.0558 −0.0354 0.0240
0.0954 −0.0354 0.9994 0.0025
−0.0118 0.0240 0.0025 1.1954

⎞
⎟⎟⎟⎟⎠ .

The normalized dispersion matrix of the returns once again exhibit a significant

cross dispersion. Furthermore, the diagonal entries of the normalized dispersion matrix

are not close to one, suggesting that the univariate return series exhibit different scale

properties. In contrast, the normalized dispersion matrix of the CMGARCH residuals

are much closer to the identity matrix. This means that the forecasted conditional
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Stock 1 2 3 4 5 6 7
ACF ((X2

t,1)) 0.2 0.305 0.119 0.188 0.159 0.116 0.083
ACF ((X2

t,2)) 0.236 0.232 0.23 0.23 0.353 0.19 0.233
ACF ((X2

t,3)) 0.046 0.016 0.082 0.012 0.028 0.004 0.021
ACF ((X2

t,4)) 0.176 0.246 0.263 0.355 0.133 0.2 0.13
ACF ((X2

t,1)) 0.2 0.305 0.119 0.188 0.159 0.116 0.083

ACF ((Ẑ2
t,1)) 0.028 0.054 0.004 0.046 0.041 0.04 -0.03

ACF ((Ẑ2
t,2)) 0.101 0.045 0.073 0.059 0.081 -0.006 -0.015

ACF ((Ẑ2
t,3)) 0.002 -0.009 0.033 -0.015 -0.009 -0.018 -0.021

ACF ((Ẑ2
t,4)) -0.009 0.01 0.042 -0.003 0.083 0.001 -0.018

ACF ((Ẑ2,E(112)
t,1 )) 0.043 0.058 0.012 0.066 0.059 0.098 -0.004

ACF ((Ẑ2,E(112)
t,2 )) 0.155 0.067 0.137 0.12 0.14 0.03 0.023

ACF ((Ẑ2,E(112)
t,3 )) 0.009 -0.016 0.062 0.01 0 0.004 -0.007

ACF ((Ẑ2,E(112)
t,4 )) 0.049 0.024 0.095 0.032 0.072 0.037 -0.008

ACF ((Ẑ2,E(20)
t,1 )) 0.011 0.003 -0.018 0.013 0.018 0.044 -0.037

ACF ((Ẑ2,E(20)
t,2 )) 0.097 0.007 0.026 0.028 0.051 -0.014 0.01

ACF ((Ẑ2,E(20)
t,3 )) -0.01 -0.012 0.005 -0.008 -0.01 -0.014 -0.015

ACF ((Ẑ2,E(20)
t,4 )) 0.038 -0.018 0.041 0.021 0.033 -0.016 -0.006

ACF ((Ẑ2,E(50)
t,1 )) 0.023 0.034 -0.001 0.05 0.038 0.082 -0.022

ACF ((Ẑ2,E(50)
t,2 )) 0.128 0.048 0.086 0.079 0.1 0.018 0.045

ACF ((Ẑ2,E(50)
t,3 )) 0.003 -0.024 0.054 0.006 -0.008 -0.003 -0.014

ACF ((Ẑ2,E(50)
t,4 )) 0.036 0.01 0.077 0.018 0.059 0.027 -0.014

Table 3.4: The table depicts the autocorrelation of the squared returns and the squared
residuals in the different models. The lower and upper 95% confidence bounds are
−0.0632 and 0.0632, respectively. The period covered is January 2, 2001 to December
7, 2004.
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dispersion matrix explains fairly well the common scaling properties of the returns.

Again, comparing the model with the classical EWMA model (M = 112) we see

that the cross dispersion is explained well by the model but exhibits weakness on the

diagonal entries

Σ̂0(Ẑ
E(112)
1001 , ..., Ẑ

E(112)
1338 ) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.0335 0.0576 0.0555
0.0335 1.3439 −0.0199 −0.0647
0.0576 −0.0199 0.8381 0.0503
0.0555 −0.0647 0.0503 1.4686

⎞
⎟⎟⎟⎟⎠ .

The two alternative EWMA-models (M = 20, 50) show similar behavior: The

off-diagonal entries are close to zero while the entries on the diagonal exhibit poor

behavior. In particular, the standardized dispersion matrices of these residuals satisfy

Σ̂0(Ẑ
E(20)
1001 , ..., Ẑ

E(20)
1338 ) =

⎛
⎜⎜⎜⎜⎝

1.0000 −0.0106 0.0980 0.0122
−0.0106 1.3794 −0.0501 −0.0509
0.0980 −0.0501 1.2486 0.0194
0.0122 −0.0509 0.0194 1.8280

⎞
⎟⎟⎟⎟⎠

and

Σ̂0(Ẑ
E(50)
1001 , ..., Ẑ

E(50)
1338 ) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.0260 0.0671 0.0495
0.0260 1.3679 −0.0200 −0.0717
0.0671 −0.0200 0.9335 0.0309
0.0495 −0.0717 0.0309 1.5179

⎞
⎟⎟⎟⎟⎠ .

As already mentioned, this is due to the well-known univariate phenomenon that the

volatility structure of univariate return series is captured better by GARCH processes

than EWMA processes.

Again, we consider the autocorrelation of the squared returns and squared residuals

in the period of December 8, 2004 until March 31, 2006. The results are depicted in

Table 3.5. The lower and upper 95% confidence bounds are −0.109 and 0.109. The

observed squared returns do not exhibit significant autocorrelation. This might be

explained by the low volatility in this period. We observe only three violations of

the 95% confidence bounds. The out-of-sample residuals of the α-stable CMGARCH

model violate the these bounds only once. In the classical EWMA model (M = 112),
we have three autcorrelation estimates out of this range. In the EWMA model using

only the last 20 observations, there are no the violation of these bounds and in the last

model we observe one violation.
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Stock 1 2 3 4 5 6 7
ACF ((X2

t,1)) -0.006 -0.018 -0.012 -0.025 -0.03 -0.048 -0.043
ACF ((X2

t,2)) 0.112 0.023 0.123 0.106 0.121 0.062 0.041
ACF ((X2

t,3)) -0.007 0.02 -0.003 -0.015 -0.012 -0.01 -0.01
ACF ((X2

t,4)) 0.028 0.043 0.098 -0.083 0.015 -0.092 0.011

ACF ((Ẑ2
t,1)) -0.025 -0.009 -0.025 -0.026 -0.021 -0.04 -0.04

ACF ((Ẑ2
t,2)) -0.013 -0.041 0.007 -0.015 0.012 0.055 -0.015

ACF ((Ẑ2
t,3)) -0.009 -0.005 -0.006 -0.011 -0.007 -0.01 -0.011

ACF ((Ẑ2
t,4)) 0.132 -0.077 -0.095 -0.061 -0.015 -0.043 -0.029

ACF ((Ẑ2,E(112)
t,1 )) 0.043 0.058 0.012 0.066 0.059 0.098 -0.004

ACF ((Ẑ2,E(112)
t,2 )) 0.155 0.067 0.137 0.12 0.14 0.03 0.023

ACF ((Ẑ2,E(112)
t,3 )) 0.009 -0.016 0.062 0.01 0 0.004 -0.007

ACF ((Ẑ2,E(112)
t,4 )) 0.049 0.024 0.095 0.032 0.072 0.037 -0.008

ACF ((Ẑ2,E(20)
t,1 )) 0.011 0.003 -0.018 0.013 0.018 0.044 -0.037

ACF ((Ẑ2,E(20)
t,2 )) 0.097 0.007 0.026 0.028 0.051 -0.014 0.01

ACF ((Ẑ2,E(20)
t,3 )) -0.01 -0.012 0.005 -0.008 -0.01 -0.014 -0.015

ACF ((Ẑ2,E(20)
t,4 )) 0.038 -0.018 0.041 0.021 0.033 -0.016 -0.006

ACF ((Ẑ2,E(50)
t,1 )) 0.023 0.034 -0.001 0.05 0.038 0.082 -0.022

ACF ((Ẑ2,E(50)
t,2 )) 0.128 0.048 0.086 0.079 0.1 0.018 0.045

ACF ((Ẑ2,E(50)
t,3 )) 0.003 -0.024 0.054 0.006 -0.008 -0.003 -0.014

ACF ((Ẑ2,E(50)
t,4 )) 0.036 0.01 0.077 0.018 0.059 0.027 -0.014

Table 3.5: The table depicts the autocorrelation of the squared returns and the squared
residuals for the different models. The lower and upper 95% confidence bounds are
−0.109 and 0.109, respectively. The period covered is December 8, 2004 to March
31, 2006.

3.6.3 Summary of the Results

Summing up, the α-stable CMGARCH model outperforms the EWMA models be-

cause the normalized dispersion matrix of its residuals is closer to strict white noise

than the ones in the other EWMA models. The EWMA models, in particular, reveal

its weakness in estimating the diagonal entries. Furthermore, the autocorrelation in

the squared return data is captured better by the α-stable CMGARCH model than by

the classical EWMA model (M = 112) because we observe in the former one less

violation of the confidence bounds and, in general, the estimates are closer to zero.

These observations hold for the in-sample as well as the out-of-sample analysis.

The good empirical performance of the α-stable CMGARCH model is clear evidence

for the GARCH-projection-efficiency of the return series (Xt)t∈Z investigated.



3.7 CONCLUSION 107

3.7 Conclusion

In this chapter we introduce a new class of multivariate GARCH models that is flex-

ible enough to model multivariate time series appropriately and allow for estimation

procedures that are applicable even in higher dimensions. We motivate these models

by introducing the notions of projection-efficient and GARCH-projection-efficient that

are fundamental for the working of these models.

Moreover, in this chapter we demonstrate that α-stable multivariate GARCH mod-

eling is feasible. To do so, we develop α-stable versions of the CMGARCH and FCM-

GARCH model. We demonstrate the applicability of the model and report empirical

evidence that indicates that it outperforms the classical EWMA model introduced by

RiskMetrics.
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Chapter 4

Multi-Tail Elliptical Distributions

4.1 Introduction

Since the seminal work of Mandelbrot (1963) there has been a great deal of empir-

ical evidence supporting the existence of heavy-tailed models in finance (see Fama

(1965), Jansen, and de Vries (1991), Loretan, and Phillips (1994), McCulloch (1996),

and Rachev, and Mittnik (2000)). In the finance literature different models have been

proposed to model multivariate heavy-tailed return data. Rachev, and Mittnik (2000)

have suggested multivariate α-stable distributions to model multivariate asset returns

since the α-stable distributions are the natural extension of the normal distribution in

terms of the generalized Central Limit Theorem (see Samorodnitsky and Taqqu (1994)

for further information) and they allow the modeling of the rich dependence structure

of asset returns. Eberlein, and Keller (1995) and Eberlein, Keller, and Prause (1998)

have popularized the generalized hyperbolic distribution as a model for financial re-

turns. Kotz, and Nadarajah (2004) have suggested the multivariate t distributions for

modeling asset returns. In their papers they provide an extensive overview of the ap-

plications of the multivariate t distribution in finance.

Another important phenomenon or stylized fact that has been observed in multi-

variate asset returns is that extreme returns in one component, i.e. asset, often coincide

with extreme returns in several other components (see McNeil, Frey, and Embrechts

(2005)). This phenomenon can be captured by choosing distributions in multivariate

models that allow so-called tail dependence. Heavy-tailed elliptical distributions ex-

hibit tail dependence and in the case of elliptical distributions this property has been

extensively studied by Schmidt (2002). Elliptical distributions (e.g., t distributions,

generalized hyperbolic distributions, and α-stable sub-Gaussian distributions) are ra-

dial symmetric (see Fang, Kotz and Ng (1987)). In empirical work we observe that

the lower tail dependence is often much stronger than upper tail dependence (see Mc-

Neil, Frey, and Embrechts (2005)). Thus, this property cannot be captured by elliptical

109
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distributions because of their radial symmetry.

Furthermore and not surprisingly, the research of Jansen, and de Vries (1991),

Mittnik, and Rachev (1993), Loretan, and Phillips (1994), and Rachev, and Mittnik

(2000) has found that the tail index α varies significantly between assets. Despite this

well known fact, most existing research on heavy-tailed portfolios and factor models

has assumed that the probability tails are the same in every direction.

Mittnik, and Rachev (1993), Rachev, and Mittnik (2000), and Meerschaert, and

Scheffler (2003) have suggested operator stable random vectors that are a generaliza-

tion of the multivariate α-stable distributions in order to overcome the limitations of

the established heavy-tailed distributions and to capture different tail thickness in as-

sets. This approach leads to a more realistic and flexible representation of financial

portfolios. Furthermore, they are capable of modeling complex dependence structures

but they are incredibly difficult to estimate even in dimension two since with the ex-

ception of a few cases their densities are not known in closed form.

We propose a new class of distributions that we label multi-tail elliptical distri-

butions. Multi-tail elliptical distributions allow for modeling varying tail thickness

leading to more realistic models and have the further advantage that a three-step es-

timation procedure is available; the estimation procedure is applicable even in higher

dimensions. The random mechanism underlying the multi-tail elliptical distributions

can be motivated by typical financial market behavior.

This chapter is organized as follows. In Section 4.3 we introduce the multi-tail

elliptical distributions, derive their basic properties, and give examples. In Section

4.4 we develop a three-step estimation procedure to estimate the multi-tail elliptical

distribution. In Section 4.5 we apply the multi-tail elliptical distributions to return data

and Section 4.6 summarizes our conclusions.

4.2 Operator Stable Distributions

4.2.1 Definitions and Basic Properties

As already noted, empirical studies suggest that tail behavior varies significantly be-

tween different assets or, more generally, different risk factors. If we assume the mul-

tivariate α-stable distributions or elliptical distributions as a model for asset returns,

then all marginals (i.e., all assets) have the same tail parameter α. This is certainly

a limitation in modeling asset returns. In order to overcome this limitation, Mittnik,

and Rachev (1993) suggested and applied the operator stable distributions in finance

for the first time. The operator stable distributions generalize the multivariate α-stable

distributions and follow from the generalized Central Limit Theorem by matrix scal-

ing.
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In this section we define the operator stable distributions and derive some of their

basic properties. The presentation of this section follows Meerschaert, and Scheffler

(2003) and Stoyanov (2005). For a detailed discussion of the operator stable distribu-

tions, see Meerschaert, and Scheffler (2001).

Definition 38. A random vector X is said to be an operator stable random vector in

Rd if there exists a matrix E ∈ Rd×d and a vector an such that

n−E(X1 +X2 + ...+Xn − an) d= X, (4.1)

where X1,X2, ...,Xn ∈ Rd are independent copies of X.

The notion n−E is defined as

nE = I +
∞∑

m=1

(n(−E))m

m!
.

For further information, see the appendix. The matrix E is called the exponent of the

operator stable random vector X.

Rewriting equation (4.1), we obtain

X1 +X2 + ...+Xn
d= nEX + an. (4.2)

The characteristic function of the right hand-side equals

ΦnEX+an
(t) = E(eit

′nEX+an)

= eit
′anE(eit

′nEx)

= eit
′anE(ei(tn

E )′X)

= eit
′anΦX((nE)′t)

= eit
′anΦX((nE′

)t).

The characteristic function of the left hand-side of equation (4.2) is the n-th power

of ΦX(t) because the sum consists of independent and identically-distributed random

vectors in this equation. Thus, equation (4.2) implies

(ΦX(t))n = eit
′anΦX(nE′

t).

The following definition is equivalent to Definition 4.2 and characterizes the oper-

ator stable random vectors in terms of their domain of attraction. In order to generalize

Gaussian-based financial theories, it is important that the distribution of a random vec-

tor X has a domain of attraction. This property implies that the random vector X
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can be interpreted as an aggregation of many shocks caused by new arriving financial

information.

Definition 39. A random variable X is said to have an operator stable distribution if

it has a domain of attraction, i.e., if there is a sequence of independent and identically-

distributed random vectors Y1, Y2, ... and a sequence of d× d matrices (An)n∈N and

vectors (bn)n∈N, such that

An(Y1 + Y2 + ...+ Yn − bn) d⇒ X. (4.3)

The limits in equation (4.3) are called operator stable (see Sharpe (1969) and Jurek,

and Mason (1993)). If E(||Y1||2) exists in Definition 39 then the classical Central

Limit Theorem shows that X is multivariate normal, a special case of operator stable.

In this case, we can take An = n−1/2 and bn = nE(X). But if 0 < α < 2 then

E(||X||2) = ∞ and the classical Central Limit Theorem does not apply. If, in this

case, the tails of Y1 fall off at the same rate α in every direction then equation (4.3)

holds with An = n−1/αI and the limit X is multivariate stable distributed due to

the generalized Central Limit Theorem (see Rachev, and Mittnik (2000) for a detailed

discussion).

In general, the tail behavior of the operator stable random vector is determined by

the eigenvalues of its exponent E. The Spectral Decomposition Theorem allows us to

write the exponent of an operator stable distribution in the form E = PBP−1, where

P is a change of coordinate matrix and B is a block-diagonal matrix satisfying

B =

⎛
⎜⎜⎜⎜⎝

B1 0 . . . 0
0 B2 . . . 0
...

. . .
...

0 0 . . . Bp

⎞
⎟⎟⎟⎟⎠ ,

where B ∈ Rdi×di , i = 1, ..., p and
∑p

i=1 di = d. One can show (see Meerschaert,

and Scheffler (2003)) that every eigenvalue of Bi has a real part equal to ai with a1 >

a2 > ... > ap ≥ 1/21. Furthermore, the Spectral Decomposition Theorem says that

we can decompose Rd in p E-invariant subspaces, i.e.,

Rd = V1 ⊕ V2 ⊕ ...⊕ Vp and EVi ⊂ Vi, (4.4)

where Vi = span{Pej : d1 + ...+ di−1 < j ≤ d1 + d2 + ...+ di}, i = 1, ..., p.

Given a non-zero vector v ∈ Rd, we can write its unique spectral decomposition

1This condition is necessary for the existence of a generalized domain of attraction (see Definition
39).
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v = v1 + ...+ vp according to equation (4.4). Let’s define

α(v) = min
i=1,...,p

{ 1
ai

: vi ∈ Vi \ {0}, i = 1, ..., p}

that is, the number α(v) is the smallest 1
ai

of those eigenvalues that correspond to non-

zero components in the spectral decomposition of the vector v. In Meerschaert, and

Scheffler (2001) it is shown that the following property holds

Proposition 8. Let X be an operator stable vector in Rd with exponent E and let

v ∈ Rd. Then for any small δ > 0 we have

λ−α(v)−δ < P (|v′X| > λ) < λ−α(b)+δ

for all λ > 0 sufficiently large.

Proposition 8 says that the tail behavior of the linear combination v′X is dominated

by the component with the heaviest tail. In particular, this means that E(|v′X|s) exists

for all 0 < s < α(v) and diverges for s > α(v).

If we decompose an operator stable random vector X with exponent E according

to equation (4.4) we obtain

X =
p∑

i=1

pVi(X)

where pVi(X) is the projection of X into the subspace Vi , i = 1, ..., p. One can

show (see Meerschaert, and Scheffler (2001)) that pVi(X) is operator stable with some

exponent Ei whose eigenvalues have the same real part ai. One says that pVi(X) is

spectrally simple with tail index αi = 1/ai (see Meerschaert, and Scheffler (2001)).

In the next example we present an interesting subclass of operator stable random

vectors that is important for financial applications.

Example 3. Take B = diag(a1, ..., ad) where a1 > a2 > ... > ad and P orthogonal.

If X = (X1, ...,Xd)′ is operator stable with exponent E = PBP′ then Bi = ai

and V1, ..., Vd are the coordinate axes in the new coordinate system defined by the

vectors pi = Pei, i = 1, ..., d. One can show that the ith component p′iX in the new

coordinate system is stable with index αi = 1
ai

(see Meerschaert, and Scheffler (2003)).

Whereas the original ith component Xi is not stable since it is a linear combination of

stable laws of different indices. Hence, the change of coordinate matrix P rotates the

coordinate axes to make the marginals stable. More mathematically, since nPBP−1
=
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PnBP−1 it follows from Definition 38 that

Pn−BP−1(X1 + ...+Xn − bn) d= X

n−B(P−1X1 + ...+ P−1Xn − P−1bn) d= P−1X,

so that Y = P−1X is operator stable with exponent B = diag(a1, ..., an).

4.2.2 Applications

Mittnik, and Rachev (1993) seem to have been the first to apply operator stable models

to problems in finance. Since empirical work suggests that the stable indices αi, i =
1, ..., d vary depending on the assets, they assume the univariate version of equation

(4.3) holds

Y1i + Y2i + ...+ Yni − bni

n1/αi
⇒ Xi,

for each i = 1, ..., d, so that Yi is stable with index αi. Assuming the joint convergence

one obtains

An(Y1 + Y2 + ...+ Yn − bn) ⇒ X

with a diagonal norming matrix

An =

⎛
⎜⎜⎜⎜⎝

n−1/α1 0 . . . 0
0 n−1/α1 0
...

. . .
...

0 0 . . . n−1/αd

⎞
⎟⎟⎟⎟⎠ .

The matrix scaling is natural since it allows a more realistic portfolio model. In this

model one can show that the ith marginal Xi of the operator stable limit vector X is

αi-stable distributed. This is consistent with the findings of empirical studies.

Meerschaert, and Scheffler (2003) apply the model presented in example 3 to ex-

change rate log-returns for the German Deutsche mark X1(t) and X2(t), t = 1, ..., n,

both taken against the U.S.-dollar. They argue that since the tail parameter α usually

depends on the coordinate, the wrong coordinate system can mask variations in α be-

cause of the domination of the heaviest tail (see Proposition 8). They suggest that the

coordinate system given by the principal components of the sample covariance matrix

is a judicious choice, since the principal components can be interpreted as the direc-

tions of the largest dispersion. They assume that the random vector Y (t) = P′X(t) is

operator stable with exponent diag(a1, a2), implying that Y (t) has stable marginals.
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Hence, X(t) is operator stable with exponent P diag(a1, a2)P ′. In particular, they

estimate α1 = 1/a1 ≈ 1.656 and α2 = 1/a2 ≈ 1.996. They conclude that Z1(t) is

α1-stable distributed and Z2(t) is normally distributed since a2 is very close to 1/2,

indicating normality.

4.3 Multi-Tail Elliptical Distributions

We have seen that distributions allowing modeling of different tail thickness of risk

factors or asset returns are desirable since they lead to more realistic portfolio models.

Operator stable random vectors possess the property to capture variations in the tail

parameter α, but they have the drawback that they are very difficult to estimate.

In this section we combine the elliptical distributions with the concept of varying

tail thickness. This leads to a new class of distributions that we call the multi-tail

elliptical distributions. But before offering a motivation and the definition of this new

class of distributions we have to define additional notions.

Let Σ ∈ Rd×d be a positive definite matrix. Then we denote the Cholesky fac-

tor of Σ with Σ1/2 and the inverse by Σ−1/2 (see Hamilton (1994) for the Cholesky

factorization). With the random vector S ∈ Rd we denote the uniform distribution

on the unit hypersphere Sd−1 = {x ∈ Rd : ||x|| = 1}. Let x ∈ Rd, then we call

s(x) = x/||x|| ∈ Sd−1 the spectral projection of x. Every elliptical random vector X

can be written in the form

X = µ+RAS,

where R is a non-negative random variable independent of S, A ∈ Rd×d a matrix, and

µ a location parameter. We denote a random variable R with tail parameter α > 0 by

Rα and the density of a random vector X by fX .

Let the elliptical random vector X = (X1,X2, ...,Xd)′ describe the log-returns of

a portfolio with d assets. AS determines the direction of the portfolio development,

while R independent of direction AS impacts the volatilities of all stocks. It is im-

portant to note that AS and s(AS) show in the same direction and if AS independent

of R so is s(AS). However, it seems questionable to model R independent of s(AS).
Rather R should depend on s(AS) in the sense that it determines the tail behavior of

R.

Let us assume that the daily log-returns of a portfolio modeled by the random vari-

able X follow an elliptical model X = RAS.2 Given the the partial information that

we observe negative signs in all components of X (hence, all components of AS and

2For daily returns one can assume µ = 0. See McNeil, Frey, and Embrechts (2005) for further
information.
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s(AS) are negative since R is positive) we may conclude that such an observation is

caused by an important macroeconomic event or financial crisis (i.e., where markets

are in a stress situation). The markets tend to be extreme and it is very likely to observe

large losses in many components of X. In such a market stress scenario one says that

the correlations approach unity (see McNeil, Frey, and Embrechts (2005)). However,

instead of assuming a higher correlation between assets, we suppose lower tail para-

meters of R in these directions (e.g, AS = (−1, ...,−1)). These lower tail parameters

incorporate a higher tail dependence in these directions and cause simultaneous high

losses.

In this section we define multi-tail elliptical distributions being predestinated to

capture the market behavior described above. We derive their basic properties, give

examples of multi-tail elliptical distribution families, and discuss how the tail parame-

ter α varies subject to the direction AS.

4.3.1 Definition and Basic Properties

Definition 40 (Multi-tail Elliptical Distributions). Let S ∈ Rd be the uniform dis-

tribution on the unit hypersphere Sd−1, I an interval of tail parameters and (Rα)α∈I

a family of positive random variables with tail parameter α. The random vector

X = (X1,X2, ...,Xd)′ ∈ Rd has a multi-tail elliptical distribution, if X satisfies

X
d= µ+Rα(s(AS))AS, (4.5)

where A ∈ Rd×d is a regular matrix, µ a location parameter and α : Sd−1 → I a

function.

In particular, we call the function

α : Sd−1 → I

the tail function of a multi-tail elliptical distribution. In Section 4.3.2 we discuss sev-

eral examples of the tail function and its impact on the distribution.

The multi-tail elliptical distributions are a generalization of the elliptical distribu-

tions (see Fang, Kotz and Ng (1987)) and a new subclass of the generalized elliptical

distributions (Frahm (2004)).

The trick in Definition 40 is to make the tail parameter α depend on AS and not

directly on S. In empirical work the random vector S is not observable and A is not

unique because of the rotational symmetry of S, implying

S
d= PS and AS

d= A(PS) (4.6)
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where P ∈ Rd×d is orthogonal.

Lemma 3. Let S ∈ Rd be a random vector with uniform distribution on the hyper-

sphere Sd−1. Then its density satisfies

fS(s) =
Γ(d/2)
2πd/2

1Sd−1(s),

where Γ(.) is the gamma function3.

Proof. Note, that the surface of Sd−1 equals 2πd/2/Γ(d/2). Since S is uniformly

distributed we obtain

fS(s) =
1

2πd/2/Γ(d/2)
1Sd−1(s) =

Γ(d/2)
2πd/2

1Sd−1(s).

An advantage of multi-tail elliptical distributions is that we have an analytic ex-

pression for their densities.

Theorem 18. Let X = Rα(s(AS))AS be a multi-tail elliptical distribution, where

A ∈ Rd×d is a regular matrix, I an interval of tail parameters, (Rα)α∈I a family of

positive random variables, (fRα)α∈I its family of densities, S the uniform distribution

on the hypersphere Sd−1 and α : Sd−1 → I a tail function. Then the density of X is

given by

fX(x) = |det(Σ)|−1/2gα(s(x−µ))((x− µ)′Σ−1(x− µ)) (4.7)

and

gα(u)(r
2) =

Γ(d/2)
2πd/2

r−d+1fRα(u)
(r),

where Σ = AA′ is the dispersion matrix and gα(.) is called the density generator of

the multi-tail elliptical distribution.

We note that the matrix A is not part of the density term in equation (4.7). This is

important for empirical work, since the matrix A is difficult to observe and not unique

due to equation (4.6).

Proof. Due to Definition 40 we have

Rα(s(AS))|S = s = Rα(s(As))

3See Definition 48 in the appendix for further information about Gamma function.
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and thus, the density of Rα(s(AS)) given S = s satisfies

fRα(s(AS))|S(r|s) = fRα(s(As))
(r).

Hence the joint density exists and corresponds to

f(R,S)(r, s) = fS(s)fR|S(r|s)
= fS(s)fRα(s(As))

(r)

=
Γ(d/2)
2πd/2

fRα(s(As))
(r) (4.8)

We define the transformation

g :

{
R× Sd−1 → Rd

(r, s) �→ µ+ rAs.

One can show that the inverse function g−1 is given by

g−1 :

{
Rd → R+ × Sd−1

x �→ (g−1
1 (x), g−1

2 (x)) = (
√

(x− µ)′Σ−1(x− µ), A−1(x−µ)
||A−1(x−µ)||)

,

where Σ = AA′.
Since we have for all A ∈ Bd

∫
A
fX(x)dx = P [X ∈ A]

= P [g(R,S) ∈ A]

= P [(R,S) ∈ g−1(A)]

=
∫

g−1(A)
f(R,S)(r, s)drds

(1)
=

∫
A
f(R,S)(g

−1(x))|det((Dg−1)(x))|dx, (4.9)

it follows

fX(x) = f(R,S)(g
−1(x))|det(Dg−1)(x)|.

Note that (1) holds in equation (4.9) because of Theorem 24 in the appendix. Further-

more, Corollary 8 in the appendix says that we have

det(D(g−1)(x)) =
((x− µ)′Σ−1(x− µ))(−d+1)/2

det(Σ)1/2
(4.10)
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and furthermore, we obtain by using equation (4.8)

f(R,S)(g
−1(x)) =

Γ(d/2)
2πd/2

fR
α(s(Ag−1

2 (x)))
(g−1

1 (x)). (4.11)

It is important to note that we have

s(Ag−1
2 (x)) = s

(
x− µ

||A−1(x− µ)||
)

=
x− µ

||A−1(x− µ)||
||A−1(x− µ)||

||x− µ||
=

x− µ

||x− µ|| = s(x− µ). (4.12)

Hence, we derive with equations (4.11) and (4.12)

f(R,S)(g
−1(x)) =

Γ(d/2)
2πd/2

fRα(s(x−µ))
(
√

(x− µ)′Σ−1(x− µ)). (4.13)

Finally, adding equations (4.10) and (4.13) leads to

fX(x) =
Γ(d/2)
2πd/2

det(Σ)−1/2
(√

(x− µ)′Σ−1(x− µ)
)−d+1

fRα(s(x−µ))
(
√

(x− µ)′Σ−1(x− µ))

Corollary 3. LetX = µ+Rα(s(AS))AS ∈ Rd be a multi-tail elliptical random vector.

Then we have

√
(X − µ)′Σ−1(X − µ)|(s(X − µ) = s) d= Rα(s)

or equivalently,

(X − µ)′Σ−1(X − µ)|(s(X − µ) = s) d= R2
α(s),

where Σ = AA′.

Proof. We have

√
(X − µ)′Σ−1(X − µ) = ||Σ−1/2(X − µ)||

= ||Σ−1/2(µ+Rα(s(AS)AS − µ)||
= ||Σ−1/2AS||Rα(s(AS))

d= ||S||Rα(s(AS))

= Rα(s(AS)) (4.14)

Note that in the third line of the last equation we have equality in distribution because
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(Σ−1/2)′A is orthogonal4. Σ−1/2A is orthogonal since we have

(Σ−1/2A)(Σ−1/2A)′ = Σ−1/2AA′(Σ−1/2)′

= Σ−1/2Σ(Σ−1/2)′

= Σ−1/2Σ1/2(Σ1/2)′(Σ−1/2)′.

= Id .

From equation (4.14) we conclude

√
(X − µ)′Σ−1(X − µ)|(s(X − µ) = s) = Rα(s).

Analogously, we can derive

(X − µ)′Σ−1(X − µ)|(s(X − µ) = s) d= R2
α(s).

In the following we discuss the connection between multi-tail elliptical random

vectors and elliptical random vectors.

Definition 41. Let (Rα)α∈I be a family of positive random variables with tail para-

meter α and Yα = RαAS, α ∈ I , a family of elliptical random vectors. We call the

random vector X a corresponding multi-tail elliptical random vector if it is given by

X = Rα(s(AS))AS, where α : Sd−1 → I is a tail function.

Theorem 19. Let X = RαAS be an elliptical random vector, where µ ∈ Rd is a

location vector, A ∈ Rd×d a regular matrix, Rα a positive random variable with tail

parameter α and the random vector S ∈ Rd uniformly distributed on Sd−1. Then X

possesses a density fX if and only if Rα has a density fRα . The relationship between

fX and fRα is as follows

fX(x) = |det(Σ)|−1/2g((x − µ)′Σ−1(x− µ))

and

g(r2) =
Γ(d/2)
2πd/2

rd−1fRα(r),

where Σ = AA′ is the dispersion matrix.

Proof. See Fang, Kotz and Ng (1987).

4See also equation (4.6).
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If follows from Theorems 18 and 19 that the density of a multi-tail elliptical ran-

dom vector can be obtained by substituting the constant tail parameter α through the

tail function α(.) in the density of the corresponding family of elliptical random vec-

tors. It is obvious that multi-tail elliptical distributions are a generalization of elliptical

distributions. Vice versa, if we choose the tail function to be constant, R and S are

independent and we obtain the classical case. Summing up, we obtain

Corollary 4. Densities of a family of elliptical random vectors differ from a density

of a corresponding multi-tail elliptical random vector by substituting the constant α

through a tail function α(.).

Normal variance mixtures are a particular subclass of elliptical distributions (see

Fang, Kotz and Ng (1987)). They are given by

Y = µ+W 1/2
α AZ, (4.15)

where µ ∈ Rd is a location parameter, Wα a positive random variable with tail para-

meter α/2,5 A ∈ Rd×d a regular matrix, and Z ∼ N(0, Id). We can rewrite equation

(4.15) in the form

Y =
√
Wα||Z||2A

(
Z

||Z||
)
. (4.16)

It is important to note that we have6

(i) Z/||Z|| is uniformly distributed on the d-dimensional hypersphere Sd−1.

(ii) ||Z||2 is chi-squared distributed with d degrees of freedom.

(iii) ||Z||2 and Z/||Z|| are independent.

Thus, identifying Rα =
√
Wα||Z||2 and Z/||Z|| = S, we see that normal variance

mixtures are elliptical random vectors according to equation (4.16).

Furthermore, multi-tail normal variance mixtures are well defined and we obtain

X = µ+Rα(s(AS))AS = µ+W
1/2
α(s(AZ/||Z||))||Z||A

Z

||Z||
= µ+W

1/2
α(s(AZ))AZ.

We introduce this ”mixture” notation because most well-known elliptical distribution

families such as α-stable sub-Gaussian distributions, t distributions, and generalized

5One can show that if Wα has tail parameter α/2 then W
1/2
α has tail parameter α (see Samorodnitsky

and Taqqu (1994)).
6A thorough discussion of items (i), (ii) and (iii) can be found in Fang, Kotz and Ng (1987).
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hyperbolic distributions are defined in the mixture notation. In the next section we

introduce their corresponding multi-tail versions.

4.3.2 Principal Component Tail Functions

In this section we take a closer look at the tail functions α : Sd−1 → I of multi-tail el-

liptical distributions. Just as the tail parameter α varies between assets7 it varies also

between linear combinations of asset returns (see Meerschaert, and Scheffler (2003)

and Rachev, and Mittnik (2000)). It is reasonable to explore the principal components

of asset returns8 since they determine the directions of the largest dispersions.9 In par-

ticular, Meerschaert, and Scheffler (2003) argue that the coordinate system given by

the principal components can reveal the tail behavior of random vectors with varying

tail thickness and an inappropriate coordinate system even masks the right tail behav-

ior.

In the following we introduce tail functions based on the principal components

of the dispersion matrix Σ = AA′ of a multi-tail elliptical random vector. We denote

eigenvector eigenvalue pairs of the dispersion matrix Σ = AA′ of a multi-tail elliptical

random vector 10 with (v1, λ1), (v2, λ2),...,(vd, λd), where λ1 ≥ λ2... > λd > 0 and

||v1|| = ... = ||vd|| = 1.

Definition 42. Let X be a multi-tail elliptical random vector with dispersion matrix

Σ. We call the tail function α : Sd−1 → I of X a principal component tail function

(pc-tail function) if it satisfies

α(s) =
d∑

i=1

w+
i (< s, vi >)α+

i + w−i (< s, vi >)α−i ,

where s ∈ Sd−1, w+
i , w

−
i : [−1, 1] → [0, 1], i = 1, ..., d, are weighting functions with

d∑
i=1

w+
i (< s, vi >) +w−i (< s, vi >) = 1

and

w+
i (0) = w−i (0) = 0.

Note that for all pc-tail functions α(.) we have α(s) ∈ I , s ∈ Sd−1 since I

7For references see Introduction.
8Note that principal components are just linear combinations of asset returns.
9See Kring et al. (2007), Johnson, and Wichern (1982) or McNeil, Frey, and Embrechts (2005)

10We will see in Section 4.4 that we can estimate Σ without knowing the tail function. This is of course
important for practical work.
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is an interval and α(s) can be interpreted as a convex combination of α−i , α
+
i ∈ I ,

i = 1, ..., d.

Because we assume that we cannot explain the different dispersion intensities only

by different scaling factors, we assign to every principal component a tail index α(+)
i

or α(−)
i , depending on the sign of < s, vi >, i = 1, ..., d. The principal compo-

nents (vi)i=1,...,d are an orthogonal decomposition of the main directions of dispersion,

hence we obtain

α(vi) = w+
i (1)α+

i + w−i (1)α−i

and

α(−vi) = w+
i (−1)α+

i + w−i (−1)α−i

for all i = 1, ..., d.

In the context of financial risk factor modeling, this means that if our portfolio

moves in the direction vi or −vi the size of this movement is determined by a ra-

dial random variable Rα(±vi) with tail parameters α(±vi). For an arbitrary direction

s,−s ∈ Sd−1 we weight every tail parameter α+
i and α−i according to w+

i (< s, vi >)
and w−i (< s, vi >), i = 1, ..., d.

Note that if the pc-tail function of a multi-tail elliptical random vector X satisfies

α(s) = α(−s), then X is radial symmetric with respect to the location parameter µ.

That is

X − µ
d= µ−X.

In the following we give four examples of the pc-tail functions. The first pc-tail

function α1(.) is given by

α1 :

{
Sd−1 → I

s �→ ∑d
i=1 < u, vi >

2 αi

with weighting functions w+
i (< s, vi >) = w−i (< s, vi >) = 1

2 < s, vi >
2 for all

i = 1, ..., d. This tail function assigns to every principal component a tail parameter

αi, i = 1, ..., d. In particular, we have α(vi) = α(−vi) = αi for i = 1, ..., d. In any

other direction s ∈ Sd−1 α(s) is a convex combination of the tail parameters αi. In
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fact, α1(.) is a pc-tail function since we have for all s ∈ Sd−1

d∑
i=1

1
2
< s, vi >

2 +
1
2
< s, vi >

2 =
d∑

i=1

< s, vi >
2

= < s,

d∑
i=1

< s, vi > vi >

= < s, s >

= 1.

A refinement of the pc-tail function α1(.) is the pc-tail function

α2 :

⎧⎪⎨
⎪⎩

Sd−1 → I

s �→ ∑d
i=1 < u, vi >

2 I(0,∞)(< u, vi >)α+
i

+
∑d

i=1 < u, vi >
2 I(−∞,0)(< u, vi >)α−i .

α2(.) allows for different tail parameters for each direction. This is also plausible

since movements of the portfolio in the direction smight have a tail parameter different

to that in the opposite direction, −s. The weighting functions of α2(.) are defined by

(i) w+
i (< s, vi >) =< s, vi >

2 I(0,∞)(< s, vi >)

(ii) w−i (< s, vi >) =< s, vi >
2 I(−∞,0)(< s, vi >).

It is obvious that

d∑
i=1

< s, vi >
2 I(0,∞)(< s, vi >)+ < s, vi >

2 I(−∞,0)(< s, vi >) = 1. (4.17)

Thus, w+
i (< s, vi >) and w−i (< u, vi >) are weighting functions.

In high dimensional financial risk factor modeling it is certainly too complicated

to assign to each principal component vi tail parameters α+
i and α−i . It is suffi-

cient to match different tail indices α+
i and α−i to the first principal components

(vi)i=1,...,d1<<d and an overall tail index α0 to the additional principal components

(vi)i=d1+1,...,d. This simplification leads to functions α3(.) and α4(.) presented in the

following.

Definition 43. Let A ⊂ Rd be a linear subspace. A ε-cone Cε(A) is the set defined by

Cε(A) = {x ∈ Rd|∠(x,A) < ε}.

where ∠(x,A) is given by

∠(x,A) := ∠(x, pA(x)) :=
x

||x|| ·
pA(x)

||pA(x)|| .
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PA(x) is the orthogonal projection of x in the linear subspace A.

The pc-tail function α3(.) is given by

α3 :

{
Sd−1 → I

s �→ ∑d
i=1 < s, vi >

2 αi +
∑d

i=d1+1 < s, vi >
2 α0.

Only for the principal components with the larges eigenvalues do we use different

tail parameters αi, since in the ε-cone Cε(span{F1, ..., Fd1}) we observe most of the

volatility.

A natural refinement of the pc-tail function α3(.) is defined by

α4 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sd−1 → I

s �→ ∑d
i=1 < s, vi >

2 I(0,∞)(< s, vi >)α+
i

+
∑d

i=1 < s, vi >
2 I(−∞,0)(< s, vi >)α−i

+
∑d

i=d1+1 < s, vi >
2 α0.

It is easy to see that α3(.) and α4(.) are pc-tail functions.

4.3.3 Two Examples of Multi-Tail Elliptical Distributions

We introduce two examples of multi-tail elliptical distributions. The first one is de-

rived from α-stable sub-Gaussian distributions and the second one from multivariate t

distributions.

Definition 44 (Multi-tail α-stable sub-Gaussian random vectors). Let Z ∈ Rd be a

standard normal random vector and (Wα)α∈(0,2) a family of positive α-stable random

variables with tail parameter α/2 satisfying

Wα ∼ Sα/2(cos
(πα

4

)2/α
, 1, 0).

Then the random vector

X = µ+W
1/2
α(s(AZ))AZ

is a multi-tail α-stable sub-Gaussian random vector where α : Sd−1 → (0, 2) = I is

a tail function.

In particular, multi-tail α-stable sub-Gaussian random vectors allow us to combine

the concepts of α-stable distributions and varying tail thickness such as operator stable

random vectors. Figure 4.1 depicts scatterplots of 1000 samples of a multi-tail α-stable

sub-Gaussian distribution with dispersion matrix 10−4

(
2 1
1 2

)
. F1 = s((1, 1)′) is
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the first principal component of Σ and F2 = s((1,−1)′) the second one. In scatterplot

(a) in Figure 4.1 we have the pc-tail function

α(s) =< s,F1 >
2 ·1.5+ < s,F2 > ·1.9

and in scatterplot (b) the pc-tail function equals

α(s) =< s,F1 >
2 ·1.6+ < s,F2 > ·1.9.

We observe in Figure 4.1 that we have much more outliers in the cones around F1 and

−F1 than in the ones around F2 and −F2 because of the pc-tail function.

Figure 4.2 shows scatterplot of 1000 samples of a multi-tail sub-Gaussian distrib-

ution with the same dispersion matrix as in Figure 4.1 but with different tail function.

In scatterplot (a) in Figure 4.2 we have the pc-tail function

α(s) = < s,F1 >
2 I(0,∞)(< s,F1 >) · 1.9+ < s,F1 >

2 I(−∞,0)(< s,F1 >) · 1.5
+ < s,F2 >

2 ·1.9

and in scatterplot (b)

α(s) = < s,F1 >
2 I(0,∞)(< s,F1 >) · 1.9+ < s,F1 >

2 I(−∞,0)(< s,F1 >) · 1.6
+ < s,F2 >

2 ·1.9

In Figure 4.2 there are many more outliers in the cone around −F1 than in the one

around F1. This is because of the smaller tail parameters in the directions in the cone

around −F1.

A d-dimensional multivariate t distributed random vector Y with ν degrees of

freedom is given by

Y
d= µ+W 1/2

ν AZ,

where Wν ∼ Ig(1
2ν,

1
2ν)

11 and ν ∈ (0,∞). Furthermore, the density of a t distributed

random vector Y is given by

fY (x) =
Γ(1

2(ν + d))
Γ(1

2ν)(πν)
d/2 det(cΣ0)1/2

(
1 +

(x− µ)′(cΣ0)−1(x− µ)
ν

)−(ν+d)/2

,

where ν > 0 is the tail parameter, c > 0 a scaling parameter, and Σ0 the normalized

11Ig(α,β) is the inverse gamma distribution for further information (see Rachev, and Mittnik (2000) or
McNeil, Frey, and Embrechts (2005)).
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dispersion matrix.12 The corresponding multi-tail t distribution is defined as follows.

Definition 45 (Multi-tail t-distributed random vectors). Let Z ∈ Rd be a standard

normal random vector and (Wν)ν∈(0,∞) a family of inverse gamma distributed random

vectors with tail parameter ν/2, i.e. Wν ∼ Ig(1
2ν,

1
2ν). The random vector

X = W
1/2
ν(s(AZ))AZ

is a multi-tail t distributed random vector, where ν : Sd−1 → (0,∞) = I is a tail

function.

According to Corollary 4 and the knowledge about the density fY of a t distributed

random vector we can derive

Corollary 5. Let X ∈ Rd be a multi-tail t distributed random vector with tail para-

meter function ν : Sd−1 → (0,∞) and a normalized dispersion matrix Σ0, a scaling

parameter c > 0, and a location parameter µ ∈ Rd. The density fX satisfies

fX(x) =
Γ(1

2 (ν(s(x− µ)) + d))
Γ(1

2ν(s(x− µ)))(πν(s(x − µ)))d/2 det(cΣ0)1/2

·
(

1 +
(x− µ)′(cΣ0)−1(x− µ)

ν(s(x− µ))

)−(ν(s(x−µ))+d)/2

.

Figure 4.3 depicts the density contour lines of two multi-tail t distributions with

dispersion matrix

(
2 1
1 2

)
. In Figure 4.3 (a) we have the pc-tail function

ν(s) = < s,F1 >
2 I(0,∞)(< s,F1 >) · 5+ < s,F1 >

2 I(−∞,0)(< s,F1 >) · 2.5
+ < s,F2 >

2 ·5

and in Figure 4.3 (b)

ν(s) = < s,F1 >
2 I(0,∞)(< s,F1 >)5+ < s,F1 >

2 I(−∞,0)(< s,F1 >) · 3
+ < s,F2 >

2 ·5.

We observe in Figure 4.3 that the shape of the contour lines around the mean (0, 0)′

is determined by the dispersion matrix Σ. But in the tails (i.e., far away of (0, 0)′)
the influence of the tail function starts to dominate. In particular, outliers in a cone

around −F1 are much more likely than in any other direction. Figure 4.4 shows again

the densities contour lines of two multi-tail t distributions with the same dispersion

12We introduce normalization criteria for a dispersion matrix Σ in Section 4.4.
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Figure 4.1: Scatterplots of a multi-tail α-stable sub-Gaussian distributions with sym-
metric pc-tail functions

matrices as in Figure 4.3. In Figure 4.3 (a) the tail function is

ν(s) =< s,F1 >
2 ·3+ < s,F2 >

2 ·6

and in Figure 4.3 (b) we have

ν(s) = < s,F1 >
2 ·6+ < s,F2 >

2 I(0,∞)(< s,F2 >) · 6
+ < s,F2 >

2 I(−∞,0) · 6.

In Figure 4.3 (a) the tail function supports the scaling properties of the dispersion

matrix induced by Σ. In Figure 4.3 (b) we have the opposite effect in the cone around

−F2.

Summing up: The matrix Σ determines the shape of the distribution around the

mean while the influence of the tail functions increases in the tails of a multi-tail ellip-

tical distribution.

4.4 Estimation of Multi-Tail Elliptical Distributions

In this section we explain how to estimate the parameters of a multi-tail elliptical

random vector X. In Section 4.3 we explained how a multi-tail elliptical random

vector X = µ + Rα(s(AS))AS depends on the location parameter µ, the dispersion

matrix Σ = AA′, the tail function α(.), and the family of random variables (Rα)α∈I

that is a one parametric family in most applications. We present a three-step estimation

procedure to fit the multi-tail elliptical random vectors to data.

In the first step, we estimate the location vector µ ∈ Rd with some robust method.
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Figure 4.2: Scatterplots of a multi-tail α-stable sub-Gaussian distributions with asym-
metric pc-tail functions
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Figure 4.3: Contour lines of the densities of two asymmetric multi-tail t distributions
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Figure 4.4: (a) depicts the density contour lines of a symmetric multi-tail t distribution;
(b) the density contour lines of a asymmetric multi-tail t distribution

In the second step, we estimate the dispersion matrix Σ ∈ Rd×d up to a scaling con-

stant c > 0 using the spectral estimator that was developed by Tyler (1987a,1987b) and

also investigated by Frahm (2004); in the third step, we estimate the scaling constant

c and the tail function α(.) applying again the maximum likelihood method. Since

we have an analytic expression for the density of a multi-tail elliptical distribution,

we could in principle estimate all parameters in a single optimization step. But this

approach is not recommended, at least in higher dimensions, because it leads to an

extremely complex optimization problem.

As in the classical elliptical case (see McNeil, Frey, and Embrechts (2005)), a

dispersion matrix of a multi-tail elliptical random vector is only determined up to a

scaling constant because of

X = µ+ cRα(s(AS))
A

c
S,

for c > 0. Hence we have to normalize it. If second moments exist, one can normalize

the dispersion matrix by the the covariance matrix (see McNeil, Frey, and Embrechts

(2005)). In general, the following normalization schemes are always applicable

(i) Σ11 = 1 (ii) det(Σ) = 1 (iii) tr(Σ) = 1, (4.18)

even though second moments do not exist. For the remainder of this section we denote

a normalized dispersion matrix by Σ0.

In the third step we have to estimate the scale parameter c and the tail function

α(.). Since we assume a pc-tail function, we have to evaluate the tail parameters

(α1, ..., αk) ∈ Ik, k ∈ N, of the pc-tail function. In the last step we determine the
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parameters from the set Θ = R+ × Ik, where I is the interval of tail parameters.

4.4.1 Estimation of the Dispersion Matrix

We present a robust estimator of the dispersion matrix of multi-tail elliptical distri-

bution based on the work of Tyler (1987a,1987b) and Frahm (2004). The so-called

spectral estimator estimates the dispersion matrix up to a scaling constant. Further-

more, we assume the location parameter µ to be known.

Definition 46 (Unit random vector). Let A ∈ Rd×d be a regular matrix and S be

uniformly distributed on the hypersphere Sd−1. We call the random vector

SA :=
AS

||AS||

the ”unit random vector generated by A”.

Let X = µ + Rα(s(AS))AS be a multi-tail elliptical random vector where the

location vector is assumed to be known. Then we obtain

X − µ

||X − µ|| =
Rα(s(AS))AS

||Rα(s(AS))AS||
=

AS

||AS||
= SA (4.19)

The family of random variables (Rα)α∈I and the tail function α(.) have no influence

s(X − µ) = SA. This is important since it allows for a robust estimation of the

dispersion matrix Σ up to a scaling constant. In particular, it follows from equation

(4.19) immediately that we have ScA = SA for all c > 0.

Theorem 20. The spectral density function of the unit random vector generated by

A ∈ Rd×d satisfies

fSA
(s) =

Γ(d/2)
2πd/2

(s′Σ−1s)−d/2

det(Σ)1/2

for all s ∈ Sd−1, where Σ = AA′ is the dispersion matrix. The distribution fSA
is

called angular central Gaussian distribution (see Kent, and Tyler (1988)).

Proof. Because of the invariance property described in equation (4.19) we can assume

without loss of generality that X is normally distributed with location parameter 0 and

covariance matrix Σ, i.e. X ∼ N(0,Σ), and we have

X = RAS ∼ Nd(0,Σ)
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whereR2 ∼ χ2
d and S is uniformly distributed on the hypersphere Sd−1.13 The density

of X under the condition ||X|| = r > 0 is

fX|(||X||)(x|r) =
fX(x)
f||X||(r)

1Sd−1
r

(x), (4.20)

where fX is the Gaussian density with parameters (0,Σ), Sd−1
r = {x ∈ Rd : ||x|| =

r} and f||X||(r) =
∫
Sd

r
fX(x)dx. In order to obtain the spectral density of

SΣ1/2 =
X

||X|| , X ∼ Nd(0,Σ),

we define the transformation hr : Sd
r → Sd−1, x �→ x/||x|| = s. Further, we have that

h−1
r : Sd−1 → Sd

r , s �→ rs and Dh−1
r = rIdd−1. Hence we obtain |det(Dh−1

r )| =
rd−1. Let fr be defined by

fr(s) = fh−1
r (X)|(||X||)(s|r).

Due to Theorem 24 given in the appendix we have

fr(s) = fX|(||X||(h−1
r (s))|det(Dh−1

r )|

=
fX(rs)rd−1

f||X||(r)
.

Thus, the density of SΣ1/2 is given by

fS
Σ1/2

(s) =
∫ ∞

0
fr(s)f||X||(r)dr =

∫ ∞
0

fX(rs)rd−1dr

=
∫ ∞

0

det(Σ)−1/2

(2π)d/2
exp
(
−1

2
(rs)′Σ(rs)

)
rd−1dr.

Substituting r by
√

2t/s′Σ−1s leads to

fS
Σ1/2

(s) =
∫ ∞

0

det(Σ)−1/2

(2π)d/2
exp(−t)(s′Σ−1s)−d/2dt

=
det(Σ)−1/2

(2π)d/2
(s′Σ−1s)−d/2

∫ ∞
0

exp(−t)td/2−1dt

=
det(Σ)−1/2

2πd/2
(s′Σ−1s)−d/2Γ(d/2),

where s ∈ Sd−1 and Γ(.) is the gamma function (see Definition 48).

13χ2
d is the d-dimensional chi-square distribution (see Feller (1971)); see Fang, Kotz and Ng (1987)

for the representation of the normal distribution in terms of elliptical distributions.
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Corollary 6. LetX = µ+Rα(s(AS))AS ∈ Rd be a multi-tail elliptical random vector,

where Σ = AA′. Then the joint distribution of R =
√

(X − µ)Σ−1(X − µ) and SA

is given by

f(R,SA)(r, s) =
Γ(d/2)
(2π)d/2

(s′Σ−1s)−d/2

(det Σ)1/2
fRα(s)(r).

Proof. We observe

f(R,SA)(r, s) = fSA
(s)fR|SA

(r|s)

=
Γ(d/2)
2πd/2

(s′Σ−1s)−d/2

(detΣ)−1/2
fRα(s)

(r).

Since we know the density of the random vector SA we can apply the maximum

likelihood method to estimate the normalized dispersion matrix Σ0 of a multi-tail el-

liptical random vector.

Let X1, ...,Xn ∈ Rd be a sample of identically distributed multi-tail elliptical

data vectors. Thus, the data vectors Si = (Xi − µ), i = 1, ..., n, are angular central

Gaussian distributed. The log-likelihood function of the sample (S1, S2, ..., Sn) equals

log

(
n∏

i=1

fSA
(si)

)
=

n∑
i=1

log(fSA
(Si))

=
n∑

i=1

(
log(Γ(d/2)) − log(2πd/2)

+ log((S′iΣ
−1Si)−d/2) − log(det(Σ)1/2)

)
= n log(Γ(d/2)) − nd

2
log(2π) − n

2
log(det(Σ))

−d
2

n∑
i=1

log(S′iΣ
−1Si). (4.21)

Since in equation (4.21) n log(Γ(d/2)) and nd log(2π)/2 are constants subject to Σ
we can neglect them in the following maximum likelihood optimization problem

Σ̂ = argmaxΣ∈D2
d
−n log det(Σ) − d

n∑
i=1

log(S′iΣ
−1Si), (4.22)

where D2
d ⊂ Rd×d denotes the set of positive definite d × d matrices. Note that

equation (4.21) determines Σ̂ up to a scale parameter c > 0. If Σ̂ satisfies this equation,

it can be seen immediately that it holds for cΣ̂ as well.
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Definition 47. The maximum likelihood estimator Σ̂ defined by equation (4.21) is also

called the spectral estimator.

In Theorem 21 we interpret D2
d as an open subset of Rd(d+1)/2 vector space. Thus,

we interpret the matrix Σ as a vector in this space. Note that if Σ ∈ D2
d then also

Σ−1 ∈ D2
d. Let f : Rd(d+1)/2 → R be differentiable in the point Σ. Then, we denote

the Jacobian with Df(Σ).

Theorem 21. Let X ∈ Rd be a random vector with density

fX :

{
Rd → R

x �→ √
det(Σ−1)g((x − µ)′Σ−1(x− µ))

(4.23)

Then the function

hx :

{
D2

d ⊂ Rd(d+1)/2 → R

Σ �→ log
(√

det(Σ)g((x − µ)′Σ(x− µ))
) (4.24)

has the Jacobian

Dhx(Σ) =
1
2
(2Σ−1 − diag(Σ−1))

+
d(log(g(z)))

dz
(2(x − µ)′(x− µ) − diag((x− µ)′(x− µ)))(4.25)

where z = (x− µ)′Σ(x− µ).

Note Dhx(.) ∈ R1×d(d+1)/2.

Proof. The canonical basis of the vector space of all symmetric matrices in Rd×d,

denoted Sd×d, is

fij =

{
eii , i = j

eij + eji , i < j

where 1 ≤ i ≤ j ≤ d.

Our goal is to prove equation (4.25). If Σ is positive definite, then Σ−1 is positive

definite, too. Due to Theorem 25 in the appendix, the equation

D det(A) = det(A)A−1 (4.26)

holds of all symmetric and regular matrices. Note that we have according to equation

(4.24)

hx(Σ) =
1
2

log det(Σ) − log(g((x − µ)′Σ(x− µ))).
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We obtain the following partial derivatives with respect to (fij)1≤i≤j≤d.

∂hx(Σ)
∂fij

=
1
2

1
det(Σ)

∂ det(Σ)
∂fij

+
∂ log(g(z))

∂z

∂(x− µ)′Σ(x− µ)
∂fij

=
1
2

1
det(Σ)

D det(Σ)(eij + eji) + 2
∂ log(g(z))

∂z
(xi − µi)(xj − µj)

(4.26)
=

1
2

1
det(Σ)

det(Σ)Σ−1(eij + eji) + 2
∂ log(g(z))

∂z
(xi − µi)(xj − µj)

= Σ−1
ij + 2

∂ log(g(z))
∂z

(xi − µi)(xj − µj),

where 1 ≤ i < j ≤ d.

∂hx(Σ)
∂fii

=
1
2

1
det(Σ)

∂ det(Σ)
∂fii

+
∂ log(g(z))

∂z

∂(x− µ)′Σ(x− µ)
∂fii

(4.26)
=

1
2

1
det(Σ)

det(Σ)Σ−1eii +
∂ log(g(z))

∂z
(xi − µi)2

=
1
2
Σ−1

ii +
∂ log(g(z))

∂z
(xi − µi)2,

where i = 1, ..., d. Hence, equation (4.25) follows immediately.

Let X,X1, ...,Xn ∈ Rd be a sample of identically distributed data vectors with a

density of the form

fX(x) =
√

det(Σ−1)g((x− µ)′Σ−1(x− µ))

then the maximum likelihood estimator Σ̂ of the dispersion matrix Σ satisfies the fol-

lowing equation

n∑
i=1

DhXi(Σ
−1) != 0, (4.27)

since it is a necessary condition for the maximum.

Theorem 22. Let X,X1, ...,Xn ∈ Rd be a sample of identically distributed data

vectors with a density of the form

fX(x) =
√

det(Σ−1)g((x − µ)′Σ−1(x− µ)).

Then the solution to the optimization problem in equation (4.22) can be characterized

by the following fix point equation

Σ̂ = − 2
n

n∑
k=1

∂ log(g(zk))
∂zk

(Xk − µ)(Xk − µ)′, (4.28)
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where zk = (Xk − µ)′Σ̂−1(Xk − µ).

Equation (4.28) is only a necessary condition for the solution of the optimization

problem stated in equation (4.22).

Proof. We show that equation (4.28) is true for every entry Σ̂ij with 1 ≤ i ≤ j ≤ d.

We denote the ith component of the random vector Xk with Xki.

(i) In the case i = j we observe

0 !=
n∑

k=1

DhXk
(Σ̂−1)ii

=
n∑

k=1

1
2
(2Σ̂ii − Σ̂ii) − ∂ log(g(zk)))

∂zk
(2(Xki − µi)2 − (Xki − µi)2)

=
1
2

n∑
k=1

Σ̂ii −
n∑

k=1

∂ log(g(zk))
∂zk

(Xki − µi)2

⇔ Σ̂ii =
2
n

n∑
k=1

∂ log(g(zk))
∂zk

(Xki − µi)2.

where zk = (Xk − µ)′Σ̂−1(Xk − µ).

(ii) In the case i < j we obtain

0 !=
n∑

k=1

DXk
(Σ̂−1)ij

=
n∑

k=1

1
2
(2Σ̂ij − 0) − ∂ log(g(zk))

∂zk
(2(Xki − µi)(Xkj − µj) − 0)

=
n∑

k=1

Σ̂ij − 2
n∑

k=1

∂ log(g(zk))
∂zk

(Xki − µi)(Xkj − µj)

⇔ Σ̂ij =
2
n

n∑
k=1

∂ log(g(zk))
∂zk

(Xki − µi)(Xkj − µj),

where zk = (Xk − µ)′Σ̂−1(Xk − µ) and 1 ≤ i < j ≤ d. Hence, we obtain

Σ̂ = − 2
n

n∑
k=1

∂ log(g(zk))
∂zk

(Xk − µ)(Xk − µ).

Let SA be a unit random vector generated by A with density fSA
. The density fSA
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is of the form given in equation (4.23) and satisfies

g(z) =
Γ(d/2)
2πd/2

z−d/2. (4.29)

The derivative of log(g(.)) satisfies

log(g(z))′ =
(

log
(

Γ(d/2)
2πd/2

)
− d

2
log(z)

)′
= −d

2
z−1, (4.30)

where z > 0.

Let S1, S2, ..., Sn be a sample of identically distributed unit data vectors gener-

ated by A. According to Theorem 22 and equation (4.30), the maximum likelihood

estimator Σ̂ satisfies the following fix point equation

Σ̂ = − 2
n

n∑
i=1

(−1)
d

2
(S′iΣ̂

−1Si)−1SiS
′
i.

=
d

n

n∑
i=1

SiS
′
i

S′iΣ̂−1Si

.

Furthermore, let X1,X2, ...,Xn be a sample of identically distributed multi-tail

elliptical data vectors. Due to equation (4.19) the sample s(X1 − µ), ..., s(Xn − µ)
consists of unit data vectors generated by A. Hence, we obtain

Σ̂ =
d

n

n∑
i=1

s(Xi − µ)s(Xi − µ)′

s(Xi − µ)′Σ−1s(Xi − µ)

=
d

n

n∑
i=1

((Xi − µ)/||Xi − µ||)((Xi − µ)/||Xi − µ||)′
((Xi − µ)/||Xi − µ||)′Σ̂−1((Xi − µ)/||Xi − µ||)

=
d

n

n∑
i=1

(Xi − µ)(Xi − µ)′

(Xi − µ)′Σ̂−1(Xi − µ)
. (4.31)

Equation (4.31) is the fixed point representation of the maximum likelihood problem

given in equation (4.22) in terms of the original data X1, ...,Xn. It is important to

note that the family (Rα)α∈I of random variables has no influence on the fix point

representation.

It can be seen immediately that the fix point equation determines Σ̂ only up to a
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scale parameter since we have for all c > 0

cΣ̂ = c
d

n

n∑
i=1

(Xi − µ)(Xi − µ)′

(Xi − µ)′Σ̂−1(Xi − µ)

=
d

n

n∑
i=1

(Xi − µ)(Xi − µ)′

(Xi − µ)′ 1c Σ̂−1(Xi − µ)

=
d

n

n∑
i=1

(Xi − µ)(Xi − µ)′

(Xi − µ)′(cΣ̂)−1(Xi − µ)
.

In order to have uniqueness of the optimization problem, we apply one of the

optimization criteria given in equation (4.18).

The next theorem is very important since it says when a solution to the optimization

problem stated in equation (4.22) exists and when it is unique. Furthermore, it shows

an iterative algorithm to approximate the solution.

Theorem 23. LetX1, ...,Xn be a sample of identically distributed multi-tail elliptical

data vectors with n > d(d− 1). Then a fix point Σ̂ of the equation

Σ̂ =
d

n

n∑
i=1

(Xi − µ)(Xi − µ)′

(Xi − µ)′Σ̂−1(Xi − µ)

exists and it is unique up to a scale parameter. In particular, the normalized sequence

(Σ̃(i)
0 )i∈N defined by

Σ̃0 = Id

Σ̇(i+1) =
d

n

n∑
i=1

(Xi − µ)′(Xi − µ)

(Xi − µ)′(Σ̃(i)
0 )−1(Xi − µ)

Σ̃(i+1)
0 = Σ̇(i+1)

0 (4.32)

converges a.s. to Σ̂0, that is a normalized version of Σ̂.

Proof. Since a multi-tail elliptical distribution is absolute continuous to the Lebesque

measure λd, the probability that two vectors in the sample {Xi : i = 1, .., n} are linear

dependent is 0. So the Condition 2.1 in Tyler (1987a, p.236) holds and we can apply

corollary 2.2 in the same publication.

Theorem 23 says that the maximum likelihood optimization problem stated in

equation (4.22) has a solution that is unique up to a scale parameter. We can use

an iterative algorithm to find the solution Σ̂ if we have more than d(d − 1) observa-

tions. Fortunately, the algorithm works also quite well if we have only a sample size n

which is slightly larger than d.
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Finally, we remark that

Corollary 7. LetX1, ...,Xn be a d-dimensional multi-tail elliptical distributed sample

with known location parameter µ and n ≥ d. Then the sequence (Σ̃(i))i∈N is positive

definite for all i ∈ N.

Proof. Since the sample X1, ...,Xn is multi-tail elliptically distributed with n ≥ d the

matrix

n∑
j=1

(Xj − µ)(Xj − µ)′

is positive definite almost sure. Since Σ̃(i) is positive definite, the quantity wj =
d

(Xj−µ)Σ̂(i)(Xj−µ)′
is positive. We obtain

Σ̇(i+1) =
1
n

n∑
j=1

(
√
wj(Xj − µ))(

√
wj(Xj − µ))′.

From the last equation it is obvious that Σ̇(i+1) is positive definite. Hence,

Σ̃(i+1) = Σ̇(i+1)
0

is positive definite. Finally, Corollary 7 follows with induction.

Empricial Analysis of the Spectral Estimator

For the empirical analysis of the spectral estimator we generate samples from a multi-

tail α-stable sub-Gaussian distribution. In particular, we choose the location parameter

µ to be (0, 0)′ and the dispersion matrix Σ to be

(
1 0.5

0.5 1

)
. The tail function α(.)

satisfies

α(s) =< s,F1 >
2 ·1.7+ < s,F2 >

2 ·1.9

where F1 = s((1, 1)′) and F2 = s((1,−1)′) are the first two principal components

of Σ. We denote with Σ̂0(n) the estimate of the spectral estimator with n iterations.

Since the spectral estimator is unique up to a scaling constant, we normalize it by the

condition σ11 = 1.

Figures 4.5 to 4.8 depict boxplots of the spectral estimatorΣ̂0(ni), ni = 20, 50, 100
and i = 1, 2, 3. Each boxplot illustrated in these figures consists of 1000 estimates.

All figures have in common that increasing the amount of iterations has only a minor

influence on the accuracy of the estimator, while increasing the sample size improves
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size q0.05 q0.1 q0.25 q0.5 q0.75 q0.9 q0.95 e0.5
rel e0.9

rel

100 0.285 0.335 0.406 0.498 0.584 0.656 0.713 18% 43%
500 0.406 0.431 0.463 0.498 0.533 0.567 0.584 7% 18%

1000 0.436 0.450 0.473 0.498 0.526 0.551 0.562 5.4% 13%
2000 0.453 0.466 0.481 0.499 0.517 0.536 0.546 3.8% 10%

Table 4.1: The table depicts different quantiles of the spectral estimator σ̂12 and its
relative errors.

size q0.05 q0.1 q0.25 q0.5 q0.75 q0.9 q0.95 e0.5
rel e0.9

rel

100 0.664 0.719 0.844 0.989 1.177 1.367 1.498 17% 50%
500 0.826 0.866 0.924 1 1.074 1.151 1.198 7% 20%

1000 0.877 0.902 0.949 1 1.054 1.102 1.13 5.4% 13%
2000 0.904 0.926 0.960 0.996 1.034 1.068 1.09 4% 10%

Table 4.2: The table depicts different quantiles of the spectral estimator σ̂22 and its
relative errors.

its behavior. Furthermore, we observe that the median q0.5 is very close to the true

values for all sample sizes, see Tables 4.1 and 4.2 and Figures 4.5 to 4.8, respectively.

Tables 4.1 and 4.2 depicts several quantiles of the empirical distribution of the spectral

estimator for different samples sizes. The relative error is defined as

e1−2α
rel = max

{∣∣∣∣qα − c

c

∣∣∣∣ ,
∣∣∣∣q1−α − c

c

∣∣∣∣
}

(4.33)

while c denotes the true value and qα ∈ R the α-quantile. In particular, e1−2α
rel tells us

that the relative error of an estimate is smaller than e1−2α
rel with probability 1 − 2α.14

We observe that the relative errors in both tables are approximately equal. Hence,

estimators σ̂12 and σ̂22 have practically the same accuracy. Furthermore, the quantiles

are nearly symmetric around the true value for larger samples sizes, i.e. 1000 and

2000.

In Figure 4.5, we depict all estimate of spectral estimator lying in range between

−0.0439 and 1.45 for and 0.246 and 3.2942. In Figure 4.6 we do not depict one upper

outlier (value=2.645) in (a) and in (b) three upper outliers (values=7.1, 7.0, 3.8). In

Figure 4.7 (b) we do not show three upper outliers (values=1.8,2.69,2.3) and in Figure

4.8 we do not illustrate one upper outlier (value=1.14) and one lower (value=0.24) in

(a) and in (b) one upper outlier (value=2.76). We are a bit surprised to observe such

large outliers when the sample size is relatively large, i.e. 1000 and 2000. The reason

might be numerical instabilities of the spectral estimator.

14In order to be consistent, we require α to be in (0, 0.5).
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Figure 4.5: Boxplots of the spectral estimator with sample size 100 per estimate. (a)
depicts the estimates of σ12 and (b) of σ22.
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Figure 4.6: Boxplots of the spectral estimator with sample size 500 per estimate. (a)
depicts the estimates of σ12 and (b) of σ22.
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Figure 4.7: Boxplots of the spectral estimator with sample size 1000 per estimate. (a)
depicts the estimates of σ12 and (b) of σ22.
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Figure 4.8: Boxplots of the spectral estimator with sample size 2000 per estimate. (a)
depicts the estimates of σ12 and (b) of σ22.

4.4.2 Estimation of the Parameter Set Θ

At the beginning of this section we explained that a multi-tail elliptical random vector

can be estimated by a three-step procedure. In the following we deal with the third

step. We assume that we have already estimated the location parameter µ and the

normalized dispersion matrix Σ0. We can write the multi-tail elliptical random vector

X in the form

X = µ+ cR
α(s(Σ

1/2
0 S))

Σ1/2
0 S, (4.34)

where c > 0 is a thus far an unknown scale parameter15 and α(.) is the tail function.

Since we assume α(.) to be a pc-tail function (see Section 4.3.2) it can be determined

by the tail parameters (α1, ..., αk) ∈ Ik, k ∈ N. Hence, we have to estimate

(c, α1, α2, ..., αk) ∈ R+ × Ik = Θ.

In the following we present two equivalent methods to estimate the parameters

(c, α1, ..., αk) ∈ Θ

Radial Variate ML-Approach

In this approach it follows from Corollary 3 and equation (4.34) that we have√
(X − µ)′Σ−1

0 (X − µ)|(s(X − µ) = s) d= cRα(s).

15Note that we cannot estimate c in the second step because in that step the dispersion matrix Σ can
only be determined up to this scale parameter.
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Hence for the density of
√

(X − µ)′Σ−1
0 (X − µ) given s(X − µ) = s we obtain

f√
(X−µ)′Σ−1

0 (X−µ)|s(X−µ)
(r|s) = fcRα(s)(r). (4.35)

Proposition 9. Let X ∈ R be a random variable with density fX and Y = cX, c > 0.

Then we have

fY (y) =
1
c
fX(y/c),

where fY denotes the density of Y .

According to Proposition 9 we obtain

fcRα(s)
(r) =

1
c
fRα(s)

(r/c).

LetX1, ...,Xn ∈ Rd be a sample of identically distributed multi-tail elliptical data

vectors. We assume the location parameter µ and the normalized dispersion matrix Σ0

to be known. We define the samples

Ri =
√

(Xi − µ)′Σ−1
0 (Xi − µ), i = 1, ..., n

and

Si = s(Xi − µ), i = 1, ..., n.

Then the data vectors R1|S1, R2|S2..., Rn|Sn are independent since we assume µ and

Σ0 to be known. According to equation (4.35), the log-likelihood function of this

sample satisfies

log

(
n∏

i=1

fcR(Si)
(Ri)

)
=

n∑
i=1

log
(

1
c
fRα(Si)

(Ri/c)
)

= −n log(c) +
n∑

i=1

log(fRα(Si)
(Ri/c)).

Finally, this leads to the optimization problem

θ̂ = argmaxθ∈Θ −n log(c) +
n∑

i=1

log
(
fRα(Si)

(Ri/c)
)
.
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Summing up, we obtain

θ̂(X1, ...,Xn) = argmaxθ∈Θ −n log(c)

+
n∑

i=1

log
(
fRα(s(Xi−µ))

(√
(Xi − µ)′Σ−1

0 (Xi − µ)/c
))

.

The Density Generator ML-Approach

The second approach uses directly the density fX of a multi-tail elliptical random

vector. Due to Theorem 18, we know that the density satisfies

fX(x) = |det(cΣ0)|−1/2gα(s(x−µ))((x− µ)′(cΣ0)−1(x− µ)).

Since we assume Σ0 and µ to be known, we obtain the following log-likelihood func-

tion

log

(
n∏

i=1

fX(Xi)

)
=

n∑
i=1

log fX(Xi)

=
n∑

i=1

log
(
|cd det(Σ0)|−1/2

gα(s(Xi−µ))

(
||Σ−1/2(Xi − µ)||

c

))

=
n∑

i=1

−d
2

log(c) − 1
2

log(det(Σ0))

+
n∑

i=1

log
(
gα(s(Xi−µ))

(
(Xi − µ)Σ−1

0 (Xi − µ)
c

))

= −dn
2

log(c) − n

2
log(det(Σ0))

+
n∑

i=1

log
(
gα(s(Xi−µ))

(
(Xi − µ)′Σ−1

0 (Xi − µ)
c

))

Since the term −n
2 log(det(Σ0)) is a constant subject to Θ, we can neglect this term in

the optimization problem. Thus, we obtain the following log-likelihood optimization

problem

θ̂ = argmaxθ∈Θ −dn
2

log(c) +
n∑

i=1

log
(
gα(s(Xi−µ))

(
(Xi − µ)Σ−1

0 (Xi − µ)
c

))
.
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Equivalence of the Approaches

The Radial Variate ML-Approach and the Density Generator ML-Approach are equiv-

alent. This is the case because we have

log(fX(x)) = −1
2

log(det(cΣ0)) + log
(
gα(s(x−µ))

(√
(x− µ)′cΣ0(x− µ)

))
= −1

2
log(det(Σ0))

−d
2

log(c) + log
(
gα(s(x−µ))

(√
(x− µ)′cΣ0(x− µ)

))
(4.36)

= −1
2

log(det(Σ0)) − log
(

Γ(d/2)
2πd/2

)
+ log

(√
(x− µ)′cΣ0(x− µ)

)
−d

2
log(c) + log

(
fRα(s(x−µ)

(√
(x− µ)′cΣ0(x− µ)

))
. (4.37)

Since the terms −1
2 log(det(Σ0)),− log

(
Γ(d/2)

2πd/2

)
and log

(√
(x− µ)′cΣ0(x− µ)

)
are constants with subject to parameter set Θ, it is equivalent to optimize equation

(4.36) or (4.37) with respect to Θ. Of course, one should use the approach which leads

to a simpler term in the optimization process.

Statistical Analysis

For the empirical analysis of the spectral estimator we generate samples from a multi-

tail t distribution. In particular, we choose the location parameter µ to be (0, 0)′ and

the dispersion matrix Σ to be

(
2 1
1 2

)
. The tail function α(.) satisfies

α(s) =< s,F1 >
2 ·3+ < s,F2 >

2 ·6

where F1 = s((1, 1)′) and F2 = s((1,−1)′) are the first two principal components of

Σ. We assume knowledge of the location parameter and the dispersion matrix up to a

scaling constant, i.e.,

Σ0 =

(
1 0.5

0.5 1

)
.

Hence, we have to estimate the scaling parameter c = 2, the first tail parameter ν1 = 3,

and the second tail parameter ν2 = 6. Since we know the density of muti-tail t distri-

bution, we apply the Density Generator ML-Approach to estimate these parameters.

In Tables 4.3 to 4.5 and Figures 4.9 to 4.11 we observe that medians are close to

the corresponding true values. The empirical distributions of ĉ, ν̂1 and ν̂2 are skewed

to the left for small samples sizes and become more symmetric for large sample size

per estimate. The accuracy of the estimator ĉ is higher than the one of ν̂1 and the one
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sample size q0.05 q0.1 q0.25 q0.5 q0.75 q0.9 q0.95 e0.5
rel e0.9

rel

100 1.514 1.618 1.804 2.04 2.321 2.578 2.719 16% 36%
250 1.680 1.746 1.869 2.008 2.171 2.301 2.422 8.5% 21%
500 1.763 1.812 1.902 2.011 2.111 2.224 2.300 5.5% 15%
1000 1.838 1.871 1.933 2.004 2.076 2.146 2.194 3.8% 10%
3000 1.897 1.92 1.96 2.004 2.045 2.086 2.11 2.3% 5%
6000 1.927 1.942 1.970 2.002 2.032 2.057 2.073 1.6% 3.6%

Table 4.3: Quantiles of the estimator ĉ for different sample sizes per estimate and the
corresponding relative errors.

sample size q0.05 q0.1 q0.25 q0.5 q0.75 q0.9 q0.95 e0.5
rel e0.9

rel

100 1.679 1.871 2.326 2.978 4.046 5.733 7.263 34% 142%
250 2.112 2.267 2.576 3.034 3.638 4.406 5.002 21% 67%
500 2.321 2.48 2.714 3.004 3.378 3.827 4.165 13% 39%
1000 2.482 2.588 2.789 3.01 3.279 3.56 3.725 9% 24%
3000 2.681 2.761 2.878 3.015 3.169 3.299 3.394 6% 13%
6000 2.772 2.822 2.896 2.999 3.093 3.195 3.267 3% 9%

Table 4.4: Quantiles of the estimator ν̂1 for different sample sizes per estimate and the
corresponding relative errors.

of ν̂1 is higher than the one of ν̂2 (compare the relative errors of Tables 4.9 to 4.11).

It is not surprising that ĉ performs better than ν̂1 and ν̂2 since the parameters ν1 and

ν2 determine the tail behavior of the distribution and naturally we do not have many

observations in the tails. In particular, the accuracy of ν̂1 and especially ν̂2 is very poor

for small sample sizes per estimate, i.e. sample size < 1000. For reliable estimates we

need at least a sample size of 3000 because of the relative error e0.9
rel of Tables 4.10 and

4.11.16

In Figure 4.9 all estimates of c are depicted and this highlights again that the scale

parameter can be estimated with high accuracy. In the case of ν1 and sample size

16e1−2α
rel means the the relative error of the estimator is smaller than e1−2α

rel with probability 1 − 2α
measured by the empirical distribution of the estimator. For a definition, see equation (4.33).

size q0.05 q0.1 q0.25 q0.5 q0.75 q0.9 q0.95 e0.5
rel e0.9

rel

100 2.955 3.423 4.571 6.634 11.365 19.314 29.931 89% 399%
250 3.669 4.06 4.935 6.148 7.954 11.04 13.463 36% 124%
500 4.216 4.585 5.21 6.183 7.361 8.878 9.897 23% 64%

1000 4.479 4.7617 5.376 6.049 6.867 7.802 8.492 14% 41%
3000 5.086 5.279 5.61 6.069 6.514 6.971 7.222 9% 20%
6000 5.356 5.482 5.735 6.062 6.363 6.672 6.868 6% 14%

Table 4.5: Quantiles of the estimator ν̂2 for different sample sizes per estimate and the
corresponding relative errors.
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Figure 4.9: Boxplots of the estimate of ĉ. Each boxplot consists of 1000 estimates.
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Figure 4.10: Boxplots of estimates of ν̂1. Each boxplot consists of 1000 estimates.

100, 23 estimates ranging from 10 to 127 are not shown in Figure 4.10 and for sample

size 250 only one estimate (value=16.09) is not depicted. Finally, in Figure 4.11 49
estimate are not illustrated ranging from 30.2 to 2794 for sample size 100 and for

sample size 250 three estimates (values=36.6, 33.7, 38.47) are not depicted.

4.5 Applications

For an empirical analysis of multi-tail elliptical distributions we investigated the daily

logarithmic return series for the 29 German stocks included in the DAX index on

March 31, 2006. The period covered is May 6, 2002 through March 31, 2006 (1,000

daily observations for each stock). In particular, the main focus of our analysis is to

empirically assess whether a multi-tail model is superior to a classical elliptical one in

the analysis of asset-return behavior.
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Figure 4.11: Boxplots of estimates of ν̂2. Each boxplot consists of 1000 estimates.

4.5.1 Two-Dimensional Analysis

Figure 4.12 (a) depicts the two-dimensional scatterplots of BMW versus Daimler-

Chrysler and (b) the scatterplots of Commerzbank versus Deutsche Bank. In both

figures we can see that there are more outliers in the directions around the first princi-

pal component F1 motivating a multi-tail model. Applying the spectral estimator for

both samples we obtain the normalized dispersion matrix (σ̂11 = 1)

Σ̂0(X1, ...,X1000) =

(
1.000 0.762
0.762 1.204

)

for BMW versus DaimlerChrysler, and

Σ̂0(Y1, ..., Y1000) =

(
1.000 0.568
0.568 0.745

)

for Commerzbank versus Deutsche Bank representing the first step of the estimation

procedure described in the previous section. Note that due to the properties of the

spectral estimator, these normalized dispersion matrices are valid for the elliptical as

well as for the multi-elliptical model.

For the second step we have to make a concrete distributional assumption for es-

timating the scale parameters and the tail parameters. In our analysis we choose the

t- and multi-tail t-distribution. Note that the t-distribution has a constant tail function

ν : S1 → I = R+, ν(s) = ν0, whereas for the multi-tail model we specify the tail

function satisfying

ν : S1 → R+, ν(s) =< s,F1 >
2 ν1+ < s,F2 >

2 ν2,
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Figure 4.12: Bivariate scatterplot of (a) BMW versus DaimlerChrysler and (b) Com-
merzbank versus Deutsche Bank. Depicted are daily log-returns from May 6, 2002
through March 31, 2006.

#par ĉ ν̂1 ν̂2 lnL AIC p-value
t 6 1.6 · 10−4 3.7 3.7 5595.6 −11, 176.2 -

multi-t 7 1.6 · 10−4 3.1 5.7 5598.3 -11,182.6 < 2.5%

Table 4.6: Depicted are the likelihood estimates of the scale parameter and tail pa-
rameters for the BMW-DC returns in both models. The table shows the number of
parameters (#par), the value of the log-likelihood at the maximum (lnL), the value
of the Akaike information criterion (AIC), and the p-value for a likelihood ratio test
against the elliptical model. The period investigated is May 6, 2002 through March
31, 2006.

where F1 and F2 are the first and second principal components of Σ̂0. Besides esti-

mating the scale parameter c and the tail parameters ν0, ν1, and ν2 in both models, we

apply the Akaike information criterion and likelihood ratio test to identify the superior

model.

Table 4.6 shows the estimates for the scale parameter and tail parameters in both

models. In both models the scale parameters are the same while the tail parameters

differ. This result is to be expected from our discussion in Section 4.4 because the

scaling properties expressed by Σ0 and c and the tail behavior captured by the tail

parameters and the specified tail function are fairly independent for larger sample sizes.

The Akaike information criterion17 prefers the multi-tail model since we observe the

17In Akaike’s approach we choose the model M1, ..., Mm minimizing

AIC(Mj) = −2 ln(Lj(θ̂j ; X) + 2kj ,

where θ̂j denotes the MLE of θj and kj the number of parameters in model Mj .
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#par ĉ ν̂1 ν̂2 lnL AIC p-value
t 6 2.41 · 10−4 3.4 3.4 5331.5 −10, 651 -

multi-t 7 2.39 · 10−4 2.6 6.1 5337.8 -10,662 0

Table 4.7: Depicted are the maximum likelihood estimates of the scale parameter and
tail parameters for the CB-DB returns in both models. The table shows the number of
parameters (#par), the value of the log-likelihood at the maximum (lnL), the value
of the Akaike information criterion (AIC), and the p-value for a likelihood ratio test
against the elliptical model.

smaller value in the multi-tail model. For the maximum likelihood ratio test,18 we

have Θ = {(ν1, ν2) ∈ R+ : 0 < ν1 ≤ ν2} and the null hypothesis H0 : θ ∈ Θ0 =
{(ν1, ν2) ∈ R+ : 0 < ν1 = ν2} against the alternative H0 : θ ∈ Θ0 = {(ν1, ν2) ∈
R+ : 0 < ν1 < ν2}. According to Table 4.6, the p-value in this test is less than 2.5%,

so it reasonable to reject the elliptical model.

Table 4.7 shows that we obtain basically the same results as in the previous case.

The returns for Commerzbank and Deutsche Bank demand even more of a multi-tail

model. The spread in the first and second tail parameters is larger than before. The

difference between the log-likelihood values and Akaike information criterion is also

greater and finally, the p-value of the maximum likelihood ratio test is practically equal

to zero. Again, the scaling parameters are close and the tail parameters differ, indicat-

ing that the maximum likelihood estimator ĉ for the scale parameter is fairly inde-

pendent of the maximum likelihood estimates for ν1 and ν2. In particular, the results

depicted in Tables 4.6 and 4.7 coincide with satterplots in Figure 4.12 (a) and (b) since

in (b) we observe more pronounced outliers along the first principal component than

in (a).

4.5.2 Multi-Tail Elliptical Model Check for the DAX index

The investigated return data X1,X2, ...,X1000 ∈ R29 are the 29 German stocks19

included in the DAX index. The period covered is May 6, 2002 to March 31, 2006. We

start our analysis by estimating the normalized dispersion matrix Σ̂0(X1, ...,X1000)
using the spectral estimator is depicted in Figure 4.13.

Figure 4.15 (a), (b), and (c) show the factor loadings (eigenvectors) g1, g2 and

g3 of the first three principal components. Figure 4.15 (d) depicts the eigenvalues

18The likelihood ratio test statistic satisfies

λ(X) =
supθ∈Θ0

L(θ, X)

supθ∈Θ L(θ, X)
.

Under the null hypothesis it can be shown that −2 ln λ(X) ∼ χ2
q , where q is the difference between the

free parameters in Θ and Θ0.
19We excluded HypoRealEstate Bank because we did not have sufficient return data for this stock for

the period covered.
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Figure 4.13: Heat map of the sample dispersion matrix estimated by the spectral esti-
mator.

of the normalized dispersion matrix obtained by the spectral estimator. We see that

the eigenvalue of the first principal component is significantly larger than the others.

The first vector of loadings is positively weighted for all stocks and can be thought

of as describing a kind of index portfolio. We obtain the corresponding time series of

principal components through

Fi,t = g′iXt, t = 1, 2, ..., 1000.

Figure 4.15 (a), (b), and (c) illustrate the pairwise scatterplots of these components.

We can see in Figure 4.15 (a) and (b) that the scatterplots are stretched along the first

principal component. This scaling behavior is caused by the large first eigenvalue of

F1. Moreover, it is important to note that we observe many outliers along F1. This

phenomenon may be attributed to smaller tail parameters in the directions around F1
and −F1. In Figure 4.15 (c) both principal components have fundamentally the same

scale and the outliers are not so pronounced as in the former ones, suggesting a similar

tail behavior.

Figure 4.16 depicts a three-dimensional scatterplot of the first three principal com-

ponents. This figure confirms the scaling properties and tail behavior observed in

Figure 4.15.

The visual analysis of Figures 4.15 and 4.16 motivates a multi-tail model for the
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Figure 4.14: Barplot summarizing the loadings vectors g1, g2, g3 and g4 defining the
first four principal components: (a) factor 1 loadings; (b) factor 2 loadings; (c) factor
3 loadings. (d) depicts the eigenvalues of the normalized dispersion matrix.
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Figure 4.15: Figure (a),(b), and (c) show the pairwise, two-dimensional scatterplots
of the first three principal components. The period covered is May 6, 2002 through
March 31, 2006.
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Figure 4.16: Figure depicts a three-dimensional scatterplot of the first three principal
components.

logarithmic returns investigated. Since the first principal component differ from the

others, we propose the tail function

ν : S28 → R+, s �→< s,F1 >
2 ν1 +

29∑
i=2

< s,Fi >
2 ν2.

As we did in Section 4.5.1, we compare this multi-tail model with an elliptical one

which, per definition, has a constant tail function (ν(s) = ν0, s ∈ S28). We conduct

the same statistical analysis as in the previous section. In particular, we fit a t and

multi-tail t distribution to the data. The results are reported in Table 4.8. The elliptical

model has 29 location parameters, 29 · 15 = 435 dispersion parameters, and one

tail parameter, while the multi-tail model has two tail parameters. Thus, we have 465
parameters in the elliptical and 466 in the multi-tail model. In the first step we estimate

the dispersion parameter with the spectral estimator up to a scaling constant. The scale

parameter ĉ and tail parameters ν̂1 and ν̂2 are estimated in a second step. Table 4.8

shows that in both models the scale parameter ĉ are almost the same, whereas the tail

parameters differ significantly. The Akaike criterion as well as the likelihood ratio test

do favor the multi-tail model. A p-value of less than 0.05% for this test indicates that

we can reject the null hypothesis of an elliptical model at a very high confidence level.
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#par c ν1 ν2 lnL AIC p-value
t 465 1.45 · 10−4 4 4 84,711.5 −168, 493 -

multi-t 466 1.44 · 10−4 2.7 4.7 84,716.3 −168, 500.6 << 0.05%

Table 4.8: Depicted are the maximum likelihood estimates of the scale parameter and
tail parameters for the DAX returns in both models. The table shows the number of
parameters (#par), the value of the log-likelihood at the maximum (lnL), the value
of the Akaike information criterion (AIC), and the p-value for a likelihood ratio test
against the elliptical model.

4.5.3 Summary of the Results

In the statistical analysis reported in Sections 4.5.1 and 4.5.2 we see that the sim-

plest genuine multi-tail elliptical model significantly outperforms the classical ellipti-

cal model. The hypothesis of homogeneous tail behavior can be rejected in any of the

data sets investigated. In particular, we see in the analysis of the stocks included in the

DAX index that the first principal component is heavier tailed than the others.

4.6 Conclusion

In this chapter we introduce a new class of multivariate distributions that is flexible

enough to capture a varying tail behavior of the underlying multivariate return data.

We motivate this new type of distributions from typical behavior of financial markets.

By introducing the notion of tail function we show how to capture varying tail behavior

and present examples for tail functions. By applying the Akaike information criterion

and likelihood ratio test, we find empirical evidence that a simple multi-tail elliptical

model significantly outperforms common elliptical models. Moreover, the hypothesis

of homogeneous tail behavior must be rejected.
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4.7 Appendix

Definition 48. The gamma function Γ is defined by

Γ(x) =
∫ ∞

0
rx−1e−rdr,

where x > 0.

Definition 49. Let A ∈ Rd×d be a matrix and t ∈ R. Then tA is defined by

tA = I +
∞∑

m=1

(log(t)A)m

m!
. (4.38)

It can be shown that the limit in equation (4.38) exists for all matrices A ∈ Rd×d.

The matrix A in tA is called the exponent of t. Furthermore, we have the following

properties.

Proposition 10. Let t ∈ R and A,B ∈ Rd×d. Then we have

(i) tAtB = tA+B;

(ii) tAt−A = Id;

(iii) (tA)′ = tA
′
.

The proof can be found in Rubin (1986).

Theorem 24 (Change-of-variables theorem). Suppose that

(i) X ⊂ V ⊂ Rd, V is open, T : V → Rd is continuous;

(ii) X is Lebesque measurable, T is one-to-one on X, and T is differentiable at

every point of X;

(iv) λ(T (V ∩Xc)) = 0.

Then, setting Y = T (X),∫
Y
f(y)dy =

∫
X
f(T (x))|det((DT )(x))|dx

for every measurable f : Rd → [0,∞].

For proof of this theorem we refer to Rubin (1986).
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Lemma 4. Let the functions g, g1 and g2 be defined by

g : R+ × Sd−1 → Rd, (r, s) �→ µ+ rAs,

g1 : R+ × Sd−1 → Rd, (r, s) �→ rs,

g2 : Rd → Rd, x �→ µ+Ax,

where A ∈ Rd×d is regular and µ ∈ Rd. Then we have

(i) g = g2 ◦ g1

(ii) det((Dg1)(r, s)) = rd−1

(iii) D(g2)(y) = A

(iv) |det(Dg2)(y)| = |det(A)| = |det(Σ)1/2|, where Σ = AA′.

Proof. (i) This is obvious.

(ii) Sketch of the proof: We have to parameterize g1 in terms of polar coordinates

leading to a function

g̃1 : R+ × I ⊂ Rd−1 → Rd, (r, φ1, ..., φd−1) �→ rψ(φ1, ..., φd−1)

Calculating det(Dg̃1(r, φ1, ..., φd)) leads to rd−1. For a detailed proof, see

Fang, Kotz and Ng (1987).

(iii) The Jacobian of a linear function g(x) = Ax+ µ is A. For example, see Rubin

(1986).

(iv) We have

|det(A)| = (det(A) det(A′))1/2

= det(AA′)1/2

= det(Σ)1/2.

Lemma 5. Let V,W ⊂ Rd be open and f : V → W differentiable with inverse f−1.

Then we have

det((Df)(x)) =
1

det((Df−1)(f(x)))
.
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Proof. For all x ∈ V we have

(D(f−1 ◦ f)(x)) = Df−1(f(x))D(f(x)).

The lemma follows now immediately because of

det(Df−1(f(x))D(f(x))) = det((D(f−1 ◦ f)(x)))

= det(Id)

= 1.

Corollary 8. Let g, g1 and g2 as in Lemma 4. Then we have

det(Dg−1(x)) =
((x− µ)′Σ−1(x− µ))(−d+1)/2

det(Σ)1/2
.

Proof. The inverse of g satisfies

g−1 : Rd → R>0 × Sd−1, x �→
(√

(x− µ)′Σ−1(x− µ),
A−1(x− µ)

||A−1(x− µ)||
)

(4.39)

We have

det(D(g1 ◦ g2)−1(x)) = det(D(g−1
1 ◦ g−1

2 )(x))

= det(Dg−1
1 (g−1

2 (x))Dg−1
2 (x))

= det(Dg−1
1 (g−1

2 (x))) det(Dg−1
2 (x))

Lemma 5=
1

det(Dg1(g−1
1 ◦ g−1

2 (x)))
1

det(Dg2(g−1
2 (x)))

=
1

det(Dg1(g−1(x)))
1

det(A)

(1)
=

(√
(x− µ)′Σ−1(x− µ)

d−1
)−1

det(Σ)1/2
. (4.40)

(1) holds in equation (4.40), since Dg1((r, s)) = rd−1 and equation (4.39).

Theorem 25. Let M ⊂ R1×d2
be the open subset of d-dimensional regular matrices.

Then the function h : M → R A �→ det(A) has the Jacobian

Dh(A) = det(A)A−1

(4.41)
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Proof. It can be shown for all i, j = 1, ..., n that

∂ det(A)
∂eij

= (−1)i+j det(Aij)

(4.42)

where Aij is the matrix one obtains if the ith row and jth column are canceled from

A. Hence we obtain by Cramer’s rule

Dh(A) = det(A)(A−1)′.
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Chapter 5

Conclusion

Chapter 1 gives an overview about different kinds of factor models.

Chapter 2 deals with the estimation of α-stable sub-Gaussian distributions for asset

returns. Fitting multivariate α-stable distributions to data is still not feasible in higher

dimensions since the (non-parametric) spectral measure of the characteristic function

is extremely difficult to estimate in dimensions higher than 2. This was shown by

Nolan, Panorska, and McCulloch (2001). α-stable sub-Gaussian distributions are a

particular (parametric) subclass of the multivariate α-stable distributions. We present

and extend a method based on Nolan (2005) to estimate the dispersion matrix of an

α-stable sub-Gaussian distribution and estimate the tail index α of the distribution. In

particular, we develop an estimator for the off-diagonal entries of the dispersion matrix

that has statistical properties superior to the normal off-diagonal estimator based on the

covariation. Furthermore, this approach allows estimation of the dispersion matrix of

any normal variance mixture distribution up to a scale parameter. We demonstrate the

behaviour of these estimators by fitting an α-stable sub-Gaussian distribution to the

DAX30 components. Finally, we conduct a stable principal component analysis and

calculate the coefficient of tail dependence of the prinipal components.

In chapter 3 we present a new type of multivariate GARCH model which we call

the composed MGARCH and factor composed MGARCH models. We show sufficient

conditions for the covariance stationarity of these processes and proof of the invariance

of the models under linear combinations, an important property for factor modeling.

Furthermore, we introduce an α-stable version of these models and fit a four dimen-

sional α-stable composed MGARCH process to the returns on four German stocks

included in the DAX index. We show in an in-sample analysis as well as in an out-

of-sample analysis that the model outperforms the classical exponentially weighted

moving average (EWMA) model introduced by RiskMetrics.

In chapter 4 we present a new type of multivariate distributions for asset returns

which we call the multi-tail elliptical distributions. Multi-tail elliptical distribution
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can be thought to be an extension of the elliptical distributions that allow for varying

tail parameters. We present a two-step random mechanism leading to this new type

of distributions. In particular, this mechanism is derived from typical behavior of

financial markets. We determine the densities of multi-tail elliptical distribution and

introduce a function which we label the tail function to describe the tail behavior of

these distributions. We apply multi-tail elliptical distributions to logarithmic returns

of German stocks included in the DAX index. Our empirical results indicate that the

multi-tail model significantly outperforms the classical elliptical model and the null

hypothesis of homogeneous tail behavior can be rejected.
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