20 research outputs found

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems

    LDS - Labelled Deductive Systems: Volume 1 - Foundations

    No full text
    Traditional logics manipulate formulas. The message of this book is to manipulate pairs; formulas and labels. The labels annotate the formulas. This sounds very simple but it turned out to be a big step, which makes a serious difference, like the difference between using one hand only or allowing for the coordinated use of two hands. Of course the idea has to be made precise, and its advantages and limitations clearly demonstrated. `Precise' means a good mathematical definition and `advantages demonstrated' means case studies and applications in pure logic and in AI. To achieve that we need to address the following: \begin{enumerate} \item Define the notion of {\em LDS}, its proof theory and semantics and relate it to traditional logics. \item Explain what form the traditional concepts of cut elimination, deduction theorem, negation, inconsistency, update, etc.\ take in {\em LDS}. \item Formulate major known logics in {\em LDS}. For example, modal and temporal logics, substructural logics, default, nonmonotonic logics, etc. \item Show new results and solve long-standing problems using {\em LDS}. \item Demonstrate practical applications. \end{enumerate} This is what I am trying to do in this book. Part I of the book is an intuitive presentation of {\em LDS} in the context of traditional current views of monotonic and nonmonotonic logics. It is less oriented towards the pure logician and more towards the practical consumer of logic. It has two tasks, addressed in two chapters. These are: \begin{itemlist}{Chapter 1:} \item [Chapter1:] Formally motivate {\em LDS} by starting from the traditional notion of `What is a logical system' and slowly adding features to it until it becomes essentially an {\em LDS}. \item [Chapter 2:] Intuitively motivate {\em LDS} by showing many examples where labels are used, as well as some case studies of familiar logics (e.g.\ modal logic) formulated as an {\em LDS}. \end{itemlist} The second part of the book presents the formal theory of {\em LDS} for the formal logician. I have tried to avoid the style of definition-lemma-theorem and put in some explanations. What is basically needed here is the formulation of the mathematical machinery capable of doing the following. \begin{itemize} \item Define {\em LDS} algebra, proof theory and semantics. \item Show how an arbitrary (or fairly general) logic, presented traditionally, say as a Hilbert system or as a Gentzen system, can be turned into an {\em LDS} formulation. \item Show how to obtain a traditional formulations (e.g.\ Hilbert) for an arbitrary {\em LDS} presented logic. \item Define and study major logical concepts intrinsic to {\em LDS} formalisms. \item Give detailed study of the {\em LDS} formulation of some major known logics (e.g.\ modal logics, resource logics) and demonstrate its advantages. \item Translate {\em LDS} into classical logic (reduce the `new' to the `old'), and explain {\em LDS} in the context of classical logic (two sorted logic, metalevel aspects, etc). \end{itemize} \begin{itemlist}{Chapter 1:} \item [Chapter 3:] Give fairly general definitions of some basic concepts of {\em LDS} theory, mainly to cater for the needs of the practical consumer of logic who may wish to apply it, with a detailed study of the metabox system. The presentation of Chapter 3 is a bit tricky. It may be too formal for the intuitive reader, but not sufficiently clear and elegant for the mathematical logician. I would be very grateful for comments from the readers for the next draft. \item [Chapter 4:] Presents the basic notions of algebraic {\em LDS}. The reader may wonder how come we introduce algebraic {\em LDS} in chapter 3 and then again in chapter 4. Our aim in chapter 3 is to give a general definition and formal machinery for the applied consumer of logic. Chapter 4 on the other hand studies {\em LDS} as formal logics. It turns out that to formulate an arbitrary logic as an {\em LDS} one needs some specific labelling algebras and these need to be studied in detail (chapter 4). For general applications it is more convenient to have general labelling algebras and possibly mathematically redundant formulations (chapter 3). In a sense chapter 4 continues the topic of the second section of chapter 3. \item [Chapter 5:] Present the full theory of {\em LDS} where labels can be databases from possibly another {\em LDS}. It also presents Fibred Semantics for {\em LDS}. \item [Chapter 6:] Presents a theory of quantifers for {\em LDS}. The material for this chapter is still under research. \item [Chapter 7:] Studies structured consequence relations. These are logical system swhere the structure is not described through labels but through some geometry like lists, multisets, trees, etc. Thus the label of a wff AA is implicit, given by the place of AA in the structure. \item [Chapter 8:] Deals with metalevel features of {\em LDS} and its translation into two sorted classical logic. \end{itemlist} Parts 3 and 4 of the book deals in detail with some specific families of logics. Chapters 9--11 essentailly deal with substructural logics and their variants. \begin{itemlist}{Chapter10:} \item [Chapter 9:] Studies resource and substructural logics in general. \item [Chapter 10:] Develops detailed proof theory for some systems as well as studying particular features such as negation. \item [Chapter 11:] Deals with many valued logics. \item [Chapter 12:] Studies the Curry Howard formula as type view and how it compres with labelling. \item [Chapter 13:] Deals with modal and temporal logics. \end{itemlist} Part 5 of the book deals with {\em LDS} metatheory. \begin{itemlist}{Chapter15:} \item [Chapter 14:] Deals with labelled tableaux. \item [Chapter 15:] Deals with combining logics. \item [Chapter 16:] Deals with abduction. \end{itemlist

    Dialogues as a Dynamic Framework for Logic

    Get PDF
    Dialogical logic is a game-theoretical approach to logic. Logic is studied with the help of certain games, which can be thought of as idealized argumentations. Two players, the Proponent, who puts forward the initial thesis and tries to defend it, and the Opponent, who tries to attack the Proponent’s thesis, alternately utter argumentative moves according to certain rules. For a long time the dialogical approach had been worked out only for classical and intuitionistic logic. The seven papers of this dissertation show that this narrowness was uncalled for. The initial paper presents an overview and serves as an introduction to the other papers. Those papers are related by one central theme. As each of them presents dialogical formulations of a different non-classical logic, they show that dialogical logic constitutes a powerful and flexible general framework for the development and study of various logical formalisms and combinations thereof. As such it is especially attractive to logical pluralists that reject the idea of “the single correct logic”. The collection contains treatments of free logic, modal logic, relevance logic, connexive logic, linear logic, and multi-valued logic.LEI Universiteit LeidenPhilosoph

    Free Higher-Order Logic - Notion, Definition and Embedding in HOL

    Get PDF
    Free logics are a family of logics that are free of any existential assumptions. This family can roughly be divided into positive, negative, neutral and supervaluational free logic whose semantics differ in the way how nondenoting terms are treated. While there has been remarkable work done concerning the definition of free first-order logic, free higher-order logic has not been addressed thoroughly so far. The purpose of this thesis is, firstly, to give a notion and definition of free higher-order logic based on simple type theory and, secondly, to propose faithful shallow semantical embeddings of free higher-order logic into classical higher order logic found on this definition. Such embeddings can then effectively be utilized to enable the application of powerful state-of-the-art higher-order interactive and automated theorem provers for the formalization and verification and also the further development of increasingly important free logical theories

    Impossible Worlds

    Get PDF

    Logics of formal inconsistency

    Get PDF
    Orientadores: Walter Alexandre Carnielli, Carlos M. C. L. CaleiroTexto em ingles e portuguesTese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias HumanasTese (doutorado) - Universidade Tecnica de Lisboa, Instituto Superior TecnicoResumo: Segundo a pressuposição de consistência clássica, as contradições têm um cará[c]ter explosivo; uma vez que estejam presentes em uma teoria, tudo vale, e nenhum raciocínio sensato pode então ter lugar. Uma lógica é paraconsistente se ela rejeita uma tal pressuposição, e aceita ao invés que algumas teorias inconsistentes conquanto não-triviais façam perfeito sentido. A? Lógicas da Inconsistência Formal, LIFs, formam uma classe de lógicas paraconsistentes particularmente expressivas nas quais a noção meta-teónca de consistência pode ser internalizada ao nível da linguagem obje[c]to. Como consequência, as LIFs são capazes de recapturar o raciocínio consistente pelo acréscimo de assunções de consistência apropriadas. Assim, por exemplo, enquanto regras clássicas tais como o silogismo disjuntivo (de A e {não-,4)-ou-13, infira B) estão fadadas a falhar numa lógica paraconsistente (pois A e (nao-A) poderiam ambas ser verdadeiras para algum A, independentemente de B), elas podem ser recuperadas por uma LIF se o conjunto das premissas for ampliado pela presunção de que estamos raciocinando em um ambiente consistente (neste caso, pelo acréscimo de (consistente-.A) como uma hipótese adicional da regra). A presente monografia introduz as LIFs e apresenta diversas ilustrações destas lógicas e de suas propriedades, mostrando que tais lógicas constituem com efeito a maior parte dos sistemas paraconsistentes da literatura. Diversas formas de se efe[c]tuar a recaptura do raciocínio consistente dentro de tais sistemas inconsistentes são também ilustradas Em cada caso, interpretações em termos de semânticas polivalentes, de traduções possíveis ou modais são fornecidas, e os problemas relacionados à provisão de contrapartidas algébricas para tais lógicas são examinados. Uma abordagem formal abstra[cjta é proposta para todas as definições relacionadas e uma extensa investigação é feita sobre os princípios lógicos e as propriedades positivas e negativas da negação.Abstract: According to the classical consistency presupposition, contradictions have an explosive character: Whenever they are present in a theory, anything goes, and no sensible reasoning can thus take place. A logic is paraconsistent if it disallows such presupposition, and allows instead for some inconsistent yet non-trivial theories to make perfect sense. The Logics of Formal Inconsistency, LFIs, form a particularly expressive class of paraconsistent logics in which the metatheoretical notion of consistency can be internalized at the object-language level. As a consequence, the LFIs are able to recapture consistent reasoning by the addition of appropriate consistency assumptions. So, for instance, while classical rules such as disjunctive syllogism (from A and (not-A)-or-B, infer B) are bound to fail in a paraconsistent logic (because A and (not-.4) could both be true for some A, independently of B), they can be recovered by an LFI if the set of premises is enlarged by the presumption that we are reasoning in a consistent environment (in this case, by the addition of (consistent-/!) as an extra hypothesis of the rule). The present monograph introduces the LFIs and provides several illustrations of them and of their properties, showing that such logics constitute in fact the majority of interesting paraconsistent systems from the literature. Several ways of performing the recapture of consistent reasoning inside such inconsistent systems are also illustrated. In each case, interpretations in terms of many-valued, possible-translations, or modal semantics are provided, and the problems related to providing algebraic counterparts to such logics are surveyed. A formal abstract approach is proposed to all related definitions and an extended investigation is carried out into the logical principles and the positive and negative properties of negation.DoutoradoFilosofiaDoutor em Filosofia e Matemátic

    Modal Hybrid Logic

    Get PDF
    This is an extended version of the lectures given during the 12-th Conference on Applications of Logic in Philosophy and in the Foundations of Mathematics in Szklarska Poręba (7–11 May 2007). It contains a survey of modal hybrid logic, one of the branches of contemporary modal logic. In the first part a variety of hybrid languages and logics is presented with a discussion of expressivity matters. The second part is devoted to thorough exposition of proof methods for hybrid logics. The main point is to show that application of hybrid logics may remarkably improve the situation in modal proof theory
    corecore