3,148 research outputs found

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Yield Potential of Ten Peanut Introgression Lines derived from Crosses between Arachis cardenassii and A. hypogaea

    Get PDF
    Diploid species of peanut (Arachis cardenasii) showed no symptoms of PStV infection when mechanically inoculated with PStV. Some introgression lines derived from A. cardenasii and A. hypogaea hybridization have been introduced to Indonesia. Evaluation of their adaptability and yield potential were necessary before pursuing further utilization of these introgression lines. The objectives of this research were to determine yield potential of the introgression lines of peanut in green house and field conditions and to evaluate incidence of PStV infection in the field. Peanut plants were grown in the green house and in the field according to standard procedures for raising peanut. Results of the experiments showed that growth and developmental characters of the tested lines were similar between field and green house grown plants. The introgression lines generally exhibited higher secondary branches and longer to flower and harvest as compared to peanut cv. Gajah and Kelinci. The NC-CS30 line was identfied as having higher yield and bigger seed size as compared to standard peanut cultivars (Gajah and Kelinci). Therefore, NC-CS30 germplasm may be further developed as commercial peanut cultivar or be used as donor for peanut breeding in Indonesia

    Evaluation of Oryza sativa x O. glaberrima derived progenies for resistance to rootknot nematode and identification of introgressed alien chromosome segments using SSR markers

    Get PDF
    The genus Oryza has two cultivated species, Asian rice (Oryza sativa L.) and African rice (Oryza glaberrima Steud.) and 22 wild species. O. glaberrima is low yielding but has useful genes for resistance to biotic and abiotic stresses. Introgression lines derived from backcrossing of O. sativa x O. glaberrima, using O. sativa as recurrent parent, were evaluated for tolerance to root-knot nematode (Meloidogyne graminicola). Testing in sick plots infested with nematodes showed reduction in plant height, shoot and root biomass and leaf area index compared to the control. Based on gall rating and the ratio of the final population to the initial population of nematodes (Pf/Pi ratio), three introgression lines were found to be resistant to nematodes (IR80311-9-B-B-1-2 and IR80311-2-B-B-1-2 under screenhouse and IR80311-48-BB- 1 under phytotron conditions). Gall rating and the Pf/Pi ratio showed positive correlation (r = 0.61). Analysis of 122 introgression lines using simple sequence repeat (SSR) markers detected introgression of O. glaberrima segments into O. sativa

    Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777

    Get PDF
    Late blight (Phytophthora infestans) can have devastating effects on tomato production over the whole world. Most of the commercial cultivars of tomato, Solanum lycopersicum, are susceptible. Qualitative and quantitative resistance has been described in wild relatives of tomato. In general qualitative resistance can more easily be overcome by newly evolved isolates. Screening of three S. habrochaites accessions (LA1033, LA2099 and LA1777) through a whole plant assay showed that accession LA1777 had a good level of resistance to several isolates of P. infestans. To explore the potential in this wild species, an introgression line (IL) population of S. habrochaites LA1777 was used to screen individual chromosome regions of the wild species by a detached leaf assay. Two major isolates (T1,2 and T1,2,4) were used and two parameters were measured: lesion size (LS), and disease incidence (DI). Substantial variation was observed between the individual lines. QTLs were identified for LS but not for DI. The presence of five QTLs derived from LA1777 (Rlbq4a, Rlbq4b, Rlbq7, Rlbq8 and Rlbq12) results in unambiguous higher levels of resistance. All QTLs co-localized with previously described QTLs from S. habrochaites LA2099 except QTL Rlbq4b, which is therefore a novel QT

    Seedling salt tolerance in tomato

    Get PDF
    Soils with higher concentrations of salt are becoming more and more a constraint for many crops to obtain high yields. Wild tomato species, adapted to adverse environments, are a potential reservoir for genes underlying quantitative trait loci (QTL) related to salt tolerance in tomato. In this study two introgression line (IL) libraries derived from two different wild species, Solanum pennellii LA716 and Solanum lycopersicoides LA2951, were used to identify QTLs for salt tolerance in the seedling stage. In the S. pennellii IL library, four major QTLs were identified on chromosomes 6, 7 and 11. In the S. lycopersicoides IL library, six major QTLs were discovered which are located on chromosomes 4, 6, 9 and 12. Co-localization of QTLs on chromosome 6 in the two IL libraries and previously reports hinted that this locus might be conserved in the tomato crop. Three S. pennellii ILs (IL6-2, IL7-1 and IL7-5) harboring QTLs on chromosome 6 and 7 were crossed. Semi-dominance and dominance were shown for these three QTLs, and non-additive and epistatic interactions between them were observe

    Peroxidase expression in a cereal cyst nematode (Heterodera avenae) resistant hexaploid wheat line.

    Full text link
    The incompatible interaction between plant and pathogen is often determined by the hypersensitive reaction (HR). This response is associated with accumulation of reactive oxygen species (ROS), which results in adverse growth conditions for pathogens. Two major mechanisms involving either NADPH oxidases or peroxidases have been proposed for generation of ROS. Peroxidases (PER, EC 1.11.1.7), present in all land plants, are members of a large multigenic family with high number of isoforms involved in a broad range of physiological processes. PER genes, which are expressed in nematode feeding sites, have been identified in several plant species (Zacheo et al. 1997). A strong correlation between HR and PER activities at four and seven days post nematode infection, was detected in roots of wheat lines carrying Cre2, Cre5 (from Ae. ventricosa) or Cre7 (from Ae. triuncialis) Heterodera avenae resistance genes (Andrés et al. 2001; Montes et al. 2003, 2004). We have studied changes in root of peroxidase mRNAs levels after infection by H. avenae of a wheat/Ae. ven¬tricosa introgression line (H-93-8) carrying Cre2 (Delibes et al. 1993). We also report and classify the predicted protein sequences derived from complete peroxidase transcripts

    Tomato ionomic approach for food fortification and safety.

    Get PDF
    Food fortification is an issue of paramount of importance for people living both in developed and in developing countries. Among substances listed as "nutriceuticals", essential minerals have been recognised for their involvement in several healthy issues, involving all ages. In this frame, food plants are playing a pivotal role since their capability to compartmentalise ions and proteinmetal complexes in edible organs. Conversely, the accumulation of high metal levels in those organs may lead to safety problems. In the recent years, thanks to the availability of new and improved analytical apparatus in both ionic and genomic/transcrittomics areas, it is became feasible to couple data coming from plant physiology and genetics. Ionomics is the discipline that studies the cross-analysis of both data sets. Our group, in the frame of GenoPom project granted by MiUR, is interested to study the ionomics of tomatoes cultivars derived by breeding programmes in which wild relatives have been used to transfer several useful traits, such as resistance to biotic or abiotic stresses, fruit composition and textiture, etc. The introgression of the wild genome into the cultivated one produces new gene combinations. They might lead to the expression of some traits, such as increased or reduced adsorption of some metals and their exclusion or loading into edible organs, thus strongly involving the nutritional food value. Our final goal is to put together data coming from ions homeostasis and gene expression analyses, thus obtaining an ionomic tomato map related to ions absorption, translocation and accumulation in various plant organs, fruits included. To follow our hypothesis, we are studying the ionome of Solanum lycopersicum cv. M82 along with 76 Introgression Lines (ILs) produced by interspecific crosses between this cultivar and the wild species S. pennellii. These ILs are homozygous for small portions of the wild species genome introgressed into the domesticated M82 one. They are used as a useful tool for mapping QTL associated with many traits of interest. It is worthy to note that, until now, little information is available on QTL for ions accumulation in tomato. Moreover, as our knowledge, effects of new gene combinations in introgressed lines on ions uptake related to food safety have not been extensively studied. In this presentation we show results coming from the ionome analysis, carried out on S . lycopersicum M82 and several ILs. Plants were grown in pots in a greenhouse and watered with deionised water Thirty day-old plants were left to grow for 15 days in the presence of non-toxic concentration of Cd, Pb, As, Cr and Zn given combined. Leaves of all plants were then harvested and stored at -80°C for ionome and gene expression analyses. Preliminary results of ionome analysis of S. lycopersicum M82 and several ILs, carried out using an ICP-MS, showed that traits correlated to toxic metals and micronutrients accumulation in apical leaves were significantly modified in response to specific genetic backgrounds. Those results are perhaps due to the introgression of traits linked to uptake, translocation and accumulation of useful and/or toxic metal into plant apical leaves and to interactions of the wild type introgressed genomic regions with the cultivated genome. Also, data are shown on the identification and isolation of Solanum gene sequences related to ions uptake, translocation and accumulation, useful for further real-time gene expression evaluation in both cultivated and ILs during the treatments with the above-mentioned metals

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping
    corecore