265 research outputs found

    How Do Practitioners Perceive Assurance Cases in Safety-Critical Software Systems?

    Full text link
    Safety-critical software systems are those whose failure or malfunction could result in casualty and/or serious financial loss. In such systems, safety assurance cases (SACs) are an emerging approach that adopts a proactive strategy to produce structuralized safety justifications and arguments. While SACs are recommended in many software-intensive safety-critical domains, the lack of knowledge regarding the practitioners' perspectives on using SACs hinders effective adoption of this approach. To gain such knowledge, we interviewed nine practitioners and safety experts who focused on safety-critical software systems. In general, our participants found the SAC approach beneficial for communication of safety arguments and management of safety issues in a multidisciplinary setting. The challenges they faced when using SACs were primarily associated with (1) a lack of tool support, (2) insufficient process integration, and (3) scarcity of experienced personnel. To overcome those challenges, our participants suggested tactics that focused on creating direct safety arguments. Process and organizational adjustments are also needed to streamline SAC analysis and creation. Finally, our participants emphasized the importance of knowledge sharing about SACs across software-intensive safety-critical domains

    An audit model for safety-critical software

    Get PDF
    Atualmente o uso de software considerados complexos e críticos está crescendo em diversos setores da indústria como a aeronáutica com seus diversos sistemas embarcados em aeronaves e a médica com seus dispositivos médicos cada vez mais avançados. Devido a isso, a quantidade de standards dedicados a esse tipo de desenvolvimento está crescendo nos últimos anos e autoridades regulamentadoras estão reconhecendo a sua aplicabilidade e, em alguns casos, tornando como parte dos requisitos obrigatórios de certificação ou aprovação. O intuito de uma auditoria de software é verificar que o software desenvolvido está de acordo com a norma aplicável, no entanto os modelos existentes não permitem o auditor ter a flexibilidade de adequar o modelo de auditoria às suas necessidades. Como parte dessa pesquisa, diferentes modelos de desenvolvimento software foram considerados, bem como standards da área aeronáutica (RTCA DO-178C) e área médica (IEC 62304) foram estudados quanto as suas recomendações e requisitos para desenvolvimento de software safety-crítico. Como objetivo dessa dissertação, um modelo de auditoria de software foi proposto com as atividades que são necessárias para a condução de auditoria de software safety-crítico, permitindo ao auditor aplicar o modelo de acordo com as atividades que precisam ser auditadas, dando a flexibilidade necessária para o escopo da auditoria, bem como um conjunto de perguntas para a auditoria de software desenvolvido utilizando RTCA DO-178C e IEC 62304 foi sugerido e avaliado por especialistas de software para garantir a maturidade e eficiência das perguntas propostas. Além da avaliação das perguntas, também foi conduzido um estudo de caso, em uma empresa aeroespacial, com duas instanciações para avaliar a maturidade do modelo de auditoria de software proposto.Nowadays, the use of software considered complex and critical is growing in several industry sectors, such as aeronautics with its various systems embedded in aircraft and the medical one with its increasingly advanced medical devices. Because of this, the number of standards dedicated to this type of development is growing in recent years, and regulatory authorities are recognizing its applicability and, in some cases, making it part of the mandatory certification requirements or approval. The software audit intent is to verify that the software developed complies with the applicable standard. However, the existing audit models do not allow the auditor to tailor the audit model to its audit necessities. As part of this research, the various software development models were considered, and standards in the aeronautical (RTCA DO-178C) and medical (IEC/ISO 62304) areas were studied regarding their guidelines and requirements for safety-critical software development. This thesis aims to propose a software audit model with the activities necessary for conducting a safety-critical software audit, giving the auditor the necessary flexibility in the audit execution without the need to achieve specific predetermined milestones. Additionally, a set of questions for software auditing developed using RTCA DO-178C and IEC 62304 has been suggested and evaluated by software experts to ensure the maturity and efficiency of the proposed questions. In addition to evaluating the questions, a case study was also conducted in an aerospace company, with two instances to evaluate the proposed software audit model’s maturity.Não recebi financiament

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Why We Cannot (Yet) Ensure the Cybersecurity of Safety-Critical Systems

    Get PDF
    There is a growing threat to the cyber-security of safety-critical systems. The introduction of Commercial Off The Shelf (COTS) software, including Linux, specialist VOIP applications and Satellite Based Augmentation Systems across the aviation, maritime, rail and power-generation infrastructures has created common, vulnerabilities. In consequence, more people now possess the technical skills required to identify and exploit vulnerabilities in safety-critical systems. Arguably for the first time there is the potential for cross-modal attacks leading to future ‘cyber storms’. This situation is compounded by the failure of public-private partnerships to establish the cyber-security of safety critical applications. The fiscal crisis has prevented governments from attracting and retaining competent regulators at the intersection of safety and cyber-security. In particular, we argue that superficial similarities between safety and security have led to security policies that cannot be implemented in safety-critical systems. Existing office-based security standards, such as the ISO27k series, cannot easily be integrated with standards such as IEC61508 or ISO26262. Hybrid standards such as IEC 62443 lack credible validation. There is an urgent need to move beyond high-level policies and address the more detailed engineering challenges that threaten the cyber-security of safety-critical systems. In particular, we consider the ways in which cyber-security concerns undermine traditional forms of safety engineering, for example by invalidating conventional forms of risk assessment. We also summarise the ways in which safety concerns frustrate the deployment of conventional mechanisms for cyber-security, including intrusion detection systems

    Validation of Ultrahigh Dependability for Software-Based Systems

    Get PDF
    Modern society depends on computers for a number of critical tasks in which failure can have very high costs. As a consequence, high levels of dependability (reliability, safety, etc.) are required from such computers, including their software. Whenever a quantitative approach to risk is adopted, these requirements must be stated in quantitative terms, and a rigorous demonstration of their being attained is necessary. For software used in the most critical roles, such demonstrations are not usually supplied. The fact is that the dependability requirements often lie near the limit of the current state of the art, or beyond, in terms not only of the ability to satisfy them, but also, and more often, of the ability to demonstrate that they are satisfied in the individual operational products (validation). We discuss reasons why such demonstrations cannot usually be provided with the means available: reliability growth models, testing with stable reliability, structural dependability modelling, as well as more informal arguments based on good engineering practice. We state some rigorous arguments about the limits of what can be validated with each of such means. Combining evidence from these different sources would seem to raise the levels that can be validated; yet this improvement is not such as to solve the problem. It appears that engineering practice must take into account the fact that no solution exists, at present, for the validation of ultra-high dependability in systems relying on complex software

    Model Transformation for a System of Systems Dependability Safety Case

    Get PDF
    Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions

    Visions of Automation and Realities of Certification

    Get PDF
    Quite a lot of people envision automation as the solution to many of the problems in aviation and air transportation today, across all sectors: commercial, private, and military. This paper explains why some recent experiences with complex, highly-integrated, automated systems suggest that this vision will not be realized unless significant progress is made over the current state-of-the-practice in software system development and certification

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research
    corecore