15,616 research outputs found

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Undecidability of L(A)=L(B)L(\mathcal{A})=L(\mathcal{B}) recognized by measure many 1-way quantum automata

    Full text link
    Let L>λ(A)L_{>\lambda}(\mathcal{A}) and Lλ(A)L_{\geq\lambda}(\mathcal{A}) be the languages recognized by {\em measure many 1-way quantum finite automata (MMQFA)} (or,{\em enhanced 1-way quantum finite automata(EQFA)}) A\mathcal{A} with strict, resp. non-strict cut-point λ\lambda. We consider the languages equivalence problem, showing that \begin{itemize} \item {both strict and non-strict languages equivalence are undecidable;} \item {to do this, we provide an additional proof of the undecidability of non-strict and strict emptiness of MMQFA(EQFA), and then reducing the languages equivalence problem to emptiness problem;} \item{Finally, some other Propositions derived from the above results are collected.} \end{itemize}Comment: Readability improved, title change

    Automata-based Adaptive Behavior for Economical Modelling Using Game Theory

    Full text link
    In this chapter, we deal with some specific domains of applications to game theory. This is one of the major class of models in the new approaches of modelling in the economic domain. For that, we use genetic automata which allow to build adaptive strategies for the players. We explain how the automata-based formalism proposed - matrix representation of automata with multiplicities - allows to define semi-distance between the strategy behaviors. With that tools, we are able to generate an automatic processus to compute emergent systems of entities whose behaviors are represented by these genetic automata

    On equivalence, languages equivalence and minimization of multi-letter and multi-letter measure-many quantum automata

    Full text link
    We first show that given a k1k_1-letter quantum finite automata A1\mathcal{A}_1 and a k2k_2-letter quantum finite automata A2\mathcal{A}_2 over the same input alphabet Σ\Sigma, they are equivalent if and only if they are (n12+n221)Σk1+k(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k-equivalent where n1n_1, i=1,2i=1,2, are the numbers of state in Ai\mathcal{A}_i respectively, and k=max{k1,k2}k=\max\{k_1,k_2\}. By applying a method, due to the author, used to deal with the equivalence problem of {\it measure many one-way quantum finite automata}, we also show that a k1k_1-letter measure many quantum finite automaton A1\mathcal{A}_1 and a k2k_2-letter measure many quantum finite automaton A2\mathcal{A}_2 are equivalent if and only if they are (n12+n221)Σk1+k(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k-equivalent where nin_i, i=1,2i=1,2, are the numbers of state in Ai\mathcal{A}_i respectively, and k=max{k1,k2}k=\max\{k_1,k_2\}. Next, we study the language equivalence problem of those two kinds of quantum finite automata. We show that for kk-letter quantum finite automata, the non-strict cut-point language equivalence problem is undecidable, i.e., it is undecidable whether Lλ(A1)=Lλ(A2)L_{\geq\lambda}(\mathcal{A}_1)=L_{\geq\lambda}(\mathcal{A}_2) where 0<λ10<\lambda\leq 1 and Ai\mathcal{A}_i are kik_i-letter quantum finite automata. Further, we show that both strict and non-strict cut-point language equivalence problem for kk-letter measure many quantum finite automata are undecidable. The direct consequences of the above outcomes are summarized in the paper. Finally, we comment on existing proofs about the minimization problem of one way quantum finite automata not only because we have been showing great interest in this kind of problem, which is very important in classical automata theory, but also due to that the problem itself, personally, is a challenge. This problem actually remains open.Comment: 30 pages, conclusion section correcte

    Automata-based adaptive behavior for economic modeling using game theory

    Full text link
    In this paper, we deal with some specific domains of applications to game theory. This is one of the major class of models in the new approaches of modelling in the economic domain. For that, we use genetic automata which allow to buid adaptive strategies for the players. We explain how the automata-based formalism proposed - matrix representation of automata with multiplicities - allows to define a semi-distance between the strategy behaviors. With that tools, we are able to generate an automatic processus to compute emergent systems of entities whose behaviors are represented by these genetic automata

    Upper Bound on the Products of Particle Interactions in Cellular Automata

    Full text link
    Particle-like objects are observed to propagate and interact in many spatially extended dynamical systems. For one of the simplest classes of such systems, one-dimensional cellular automata, we establish a rigorous upper bound on the number of distinct products that these interactions can generate. The upper bound is controlled by the structural complexity of the interacting particles---a quantity which is defined here and which measures the amount of spatio-temporal information that a particle stores. Along the way we establish a number of properties of domains and particles that follow from the computational mechanics analysis of cellular automata; thereby elucidating why that approach is of general utility. The upper bound is tested against several relatively complex domain-particle cellular automata and found to be tight.Comment: 17 pages, 12 figures, 3 tables, http://www.santafe.edu/projects/CompMech/papers/ub.html V2: References and accompanying text modified, to comply with legal demands arising from on-going intellectual property litigation among third parties. V3: Accepted for publication in Physica D. References added and other small changes made per referee suggestion
    corecore