945 research outputs found

    Modelling risk-based inspections in EU organic certification: data requirements and analysis tools

    Get PDF
    A Risk Based Inspection (RBI) scheme is a planning tool used to develop the optimum plan for the execution of inspection activities. Organic certification system could benefit from the implementation of RBIs in terms of higher effectiveness, i.e. trustability, and lower transaction costs for organic operators. Data from certification bodies provide basic information about non-compliances and structural aspects of organic operators. Here we propose a methodological approach to risk analysis modelling, based on discrete choice models and Bayesian networks, both aiming at the identification of key risk factor in the organic certification process in the European Union

    The belief noisy-or model applied to network reliability analysis

    Get PDF
    One difficulty faced in knowledge engineering for Bayesian Network (BN) is the quan-tification step where the Conditional Probability Tables (CPTs) are determined. The number of parameters included in CPTs increases exponentially with the number of parent variables. The most common solution is the application of the so-called canonical gates. The Noisy-OR (NOR) gate, which takes advantage of the independence of causal interactions, provides a logarithmic reduction of the number of parameters required to specify a CPT. In this paper, an extension of NOR model based on the theory of belief functions, named Belief Noisy-OR (BNOR), is proposed. BNOR is capable of dealing with both aleatory and epistemic uncertainty of the network. Compared with NOR, more rich information which is of great value for making decisions can be got when the available knowledge is uncertain. Specially, when there is no epistemic uncertainty, BNOR degrades into NOR. Additionally, different structures of BNOR are presented in this paper in order to meet various needs of engineers. The application of BNOR model on the reliability evaluation problem of networked systems demonstrates its effectiveness

    Bayesian networks and decision trees in the diagnosis of female urinary incontinence

    Full text link
    This study compares the effectiveness of Bayesian networks versus Decision Trees in modeling the Integral Theory of Female Urinary Incontinence diagnostic algorithm. Bayesian networks and Decision Trees were developed and trained using data from 58 adult women presenting with urinary incontinence symptoms. A Bayesian Network was developed in collaboration with an expert specialist who regularly utilizes a non-automated diagnostic algorithm in clinical practice. The original Bayesian network was later refined using a more connected approach. Diagnoses determined from all automated approaches were compared with the diagnoses of a single human expert. In most cases, Bayesian networks were found to be at least as accurate as the Decision Tree approach. The refined Connected Bayesian Network was found to be more accurate than the Original Bayesian Network accurately discriminated between diagnoses despite the small sample size. In contrast, the Connected and Decision Tree approaches were less able to discriminate between diagnoses. The Original Bayesian Network was found to provide an excellent basis for graphically communicating the correlation between symptoms and laxity defects in a given anatomical zone. Performance measures in both networks indicate that Bayesian networks could provide a potentially useful tool in the management of female pelvic floor dysfunction. Before the technique can be utilized in practice, well-established learning algorithms should be applied to improve network structure. A larger training data set should also improve network accuracy, sensitivity, and specificity

    A probabilistic framework for tracking in wide-area environments

    Full text link
    Surveillance in wide-area spatial environments is characterised by complex spatial layouts, large state space, and the use of multiple cameras/sensors. To solve this problem, there is a need for representing the dynamic and noisy data in the tracking tasks, and dealing with them at different levels of detail. This requirement is particularly suited to the Layered Dynamic Probabilistic Network (LDPN), a special type of Dynamic Probabilistic Network (DPN). In this paper, we propose the use of LDPN as the integrated framework for tracking in wide-area environments. We illustrate, with the help of a synthetic tracking scenario, how the parameters of the LDPN can be estimated from training data, and then used to draw predictions and answer queries about unseen tracks at various levels of detail.<br /

    Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier

    Full text link
    We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol. This signature corresponds to geometry and topology of the symbol. We learn a Bayesian network to encode joint probability distribution of symbol signatures and use it in a supervised learning scenario for graphic symbol recognition. We have evaluated our method on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates.Comment: 5 pages, 8 figures, Tenth International Conference on Document Analysis and Recognition (ICDAR), IEEE Computer Society, 2009, volume 10, 1325-132

    Efficient Bayesian Inference for Learning in the Ising Linear Perceptron and Signal Detection in CDMA

    Get PDF
    Efficient new Bayesian inference technique is employed for studying critical properties of the Ising linear perceptron and for signal detection in Code Division Multiple Access (CDMA). The approach is based on a recently introduced message passing technique for densely connected systems. Here we study both critical and non-critical regimes. Results obtained in the non-critical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first order transition line that ends in a continuous phase transition point. Finite size effects are also studied.Comment: 11 pages, 3 figure
    • …
    corecore