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Abstract

Efficient new Bayesian inference technique is employed for studying critical properties of the Ising

linear perceptron and for signal detection in Code Division Multiple Access (CDMA). The approach

is based on a recently introduced message passing technique for densely connected systems. Here

we study both critical and non-critical regimes. Results obtained in the non-critical regime give

rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical

regime one observes a first order transition line that ends in a continuous phase transition point.

Finite size effects are also studied.

PACS numbers: 89.70.+c, 75.10.Nr, 64.60.Cn
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I. INTRODUCTION

Efficient inference in large complex systems is a major challenge with significant impli-

cations in science, engineering and computing. Exact inference is computationally hard in

complex systems and a range of approximation methods have been devised over the years,

many of which have been originated in the physics literature. A recent review [1] highlights

the links between the various approximation methods and their applications.

In the current paper, we extend a method that was introduced only recently [2] for

inference in dense graphs using message passing techniques. The method has been employed

previously only in the non-critical regime [3], and is used here for studying both critical and

non-critical regimes. We apply the method to two different but related problems: signal

detection in CDMA and learning in the Ising linear perceptron (ILP).

Multiple access communication refers to the transmission of multiple messages to a single

receiver. The scenario we study here is that of K users transmitting independent messages

over an additive white Gaussian noise channel of zero mean and variance σ2
0 . In the scenario

of a Code Division Multiple Access (CDMA) system [4], the signal from each user is modu-

lated by a randomly chosen spreading code of length N ; these signals are added up and sent

through a noisy channel to the receiving station, which extracts the original message from

the received signal using knowledge of the user’s spreading codes.

We consider the large-system limit, in which the number of users K tends to infinity

while the system load β ≡ K/N ∼ O(1). We focus on a CDMA system using binary phase

shift keying symbols and will assume the power is completely controlled to unit energy. The

received aggregated, modulated and corrupted signal is then of the form:

yµ =
1√
N

K∑

k=1

sµkbk + σ0nµ , (1)

where bk is the bit transmitted by user k, sµk the spreading chip value, nµ the Gaussian

noise variable drawn from N (0, 1), and yµ the received message. This process is reminiscent

of the learning task performed by a perceptron with binary weights and linear output.

The perceptron is a network which sums a single layer of inputs sµj , each weighed by

a corresponding synaptic weight bj ; the cumulative contribution is an argument of some
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transfer function g(·) that gives rise to the output yµ

yµ=g

(
1√
K

K∑

j=1

sµjbj

)
. (2)

A normalisation factor K−1/2 is included to make the argument of the transfer function

of O(1). If the entries of b are ±1 the perceptron is termed Ising perceptron. When the

transfer function is the identity, the perceptron is referred to as linear [5].

The similarity between the linear perceptron of Eq. (2) and the CDMA detection problem

of Eq. (1) allows for a direct relation between the two problems to be established. The

main difference between the problems is the regime of interest. While CDMA detection

applications are of interest mainly for non-critical low load values, ILP studies focused on

the critical regime. We consider both regimes in this paper, but to unify the treatment we

will use the notation and scaling conventions of the CDMA system.

II. MESSAGE PASSING

Graphical models (Bayes belief networks) provide a powerful framework for modelling

statistical dependencies between variables [6–8]. They play an essential role in devising a

principled probabilistic framework for inference in a broad range of applications.

Message passing techniques are guaranteed to converge to the globally correct estimate

in graphical models that can be represented by a sparse graph with a few (typically long)

loops. There are no such guarantees for systems with loops even in the case of large loops

and a local tree-like structure (although see [9]). A clear link has been established between

certain message passing algorithms and methods of statistical mechanics [1, 10, 11].

In a recent development, we presented a new approach [3], which was inspired by both,

the extension of Belief Propagation (BP) to tackle densely connected graphs [2] and that of

the replica-symmetric-equivalent BP to Survey Propagation (SP) [12].

The systems we consider here are characterised by multiplicity of pure states and a pos-

sible fragmentation of the space of solutions. To address the inference problem in such cases

we consider an ensemble of replicated systems where averages are taken over the ensemble

of potential solutions. This amounts to the presentation of a new graph, where the observ-

ables yµ are linked to variables in all replicated systems, namely B=(b1,b2, . . . ,bn); where

ba =(ba
1, b

a
2, . . . , b

a
K)T. To estimate the parameters B given the data y=(y1, y2, . . . , yN)T, in
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a Bayesian framework, we have to maximise the posterior P (B|y)∝∏N
µ=1

P (yµ|B)P (B) ,

where we have considered independent data, and thus P (y|B)=
∏N

µ=1
P (yµ|B).

The likelihood so defined is of a general form; the explicit expression depends on the

particular problem studied. Here, we are interested in cases where b∈{±1}K is an unbiased

vector and P (B) = 2−Kn. The estimate we would like to obtain is the maximiser of the

posterior marginal (MPM) b̂k = argmaxbk∈{±}n Tr{bl6=k}P (B|y) , which is expected to be

a vector with equal entries for all replica b̂1
k = b̂2

k = · · · = b̂n
k . The number of operations

required to obtain the full MPM estimator is of O
(
2K
)

which is infeasible for large K values.

For calculating the posterior in the case of both CDMA and the ILP, we use the explicit

dependency of yµ on bk from Eqs. (1) and (2) yµ =
∑K

l=1
εµlbl + σnµ , where σ is a free

parameter of the model, to be optimised later in the process; it reflects our ignorance of

the true noise parameter σ0. The variable nµ is drawn from N (0, 1) and the εµl are small

enough to ensure that
∑K

l=1
εµlbl∼O(1). For facilitating the derivation that follows we also

define the variable ∆µ ≡
∑K

l=1
εµlbl =

∑
l 6=k εµlbl + εµkbk = ∆µk + εµkbk , representing the

uncorrupted signal. Subsequently, the likelihood can be expanded to take the form

P (yµ|B) ∝
n∏

a=1

exp

[
− 1

2σ2

(
yµ − ∆a

µ

)2
]

(3)

≃
∫ n∏

a=1

(
d∆a

µk exp

[
− 1

2σ2

(
yµ − ∆a

µk

)]
[
1 + εµk

(
yµ − ∆a

µk

)

σ2
ba

k

])
P (∆µk) .

Using Bayes rule one obtains the BP equations

P t+1 (yµ|bk, {yν 6=µ}) = Tr
{bl6=k}

P (yµ|B)
∏

l 6=k

P t (bl| {yν 6=µ}) (4)

P t (bl| {yν 6=µ}) ∝
∏

ν 6=µ

P t (yν |bl, {yσ 6=ν}) . (5)

An explicit expression for the inter-dependency between solutions is required for obtaining

a closed set of update equations. We assume a dependence of the form P t (bk| {yν 6=µ}) ∝
exp

{
htT

µk bk + 1

2
bT

k Qt
µk bk

}
, where ht

µk is a vector representing an external field and Qt
µk the

matrix of cross-replica interaction. We expect the free energy obtained from the well behaved

distribution P t to be self-averaging, thus we assume the following symmetry between replica
(
Qt

µk

)ab
=
(
1 − δab

)
gt

µk/n and
(
ht

µk

)a
= ht

µk, where both ht
µk and gt

µk are of O(1). An
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expression for P t immediately follows

P t (bk| {yν 6=µ}) =

∫ ∞

−∞

dx exp

{

−n

(
x − ht

µk

)2

2gt
µk

+ x

n∑

a=1

ba
k

}

∫ ∞

−∞

dx exp
{
−nΦ

(
x; ht

µk, g
t
µk

)} , (6)

where Φ
(
x; ht

µk, g
t
µk

)
=
(
x − ht

µk

)2
/2gt

µk − ln (2 cosh(x)) . We exploit the assumption that the

number of replica n is large and employ Laplace’s method to find dominant contributions to

the integral. The function Φ
(
x; ht

µk, g
t
µk

)
exhibits two minima if ht

µk → 0 and gt
µk > 1; these

will provide the only contributions in that limit. Other regimes will provide trivial solutions.

If the field ht
µk goes to zero as mt

µkh
t
µk ∼ ln

(
4n
(
nt

µk

)−2
)

/2n , where mt
µk is the spontaneous

magnetisation and nt
µk a constant, the first two moments of ba

k are, up to O (n−1),

〈ba

k〉 = Tr
{bk}

P t (bk| {yν 6=µ}) ba

k ≃
[
1 −

(
nt

µk

)2

2n

]
mt

µk

〈
ba

kb
b

l

〉
− 〈ba

k〉
〈
bb

l

〉
≃ δkl

{
δab

[
1 −

(
mt

µk

)2]
+
(
1 − δab

)
(
nt

µkm
t
µk

)2

n

}
.

However, for calculating the posterior we need the distribution on the variable ∆a
µk,

which is a sum of a large number of unbiased and uncorrelated random variables εµk and

ba
k. Therefore, by virtue of the central limit theorem, the variable ∆a

µk =
∑

l 6=k εµlb
a
l obeys a

normal distribution, whose mean value and covariance matrix are given by

(
ut

µk

)a ≡
〈
∆a

µk

〉
= Tr

{bl6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k

εµlb
a
l =

∑

l 6=k

εµlm
t
µl (7)

(
Υt

µk

)ab ≡
〈
∆a

µk∆
b

µk

〉
− 〈∆a

k〉
〈
∆b

k

〉
= Tr

{bl6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k
j 6=k

εµlεµjb
a

l b
b

j −
(
∑

l 6=k

εµlm
t
µl

)2

=
∑

l 6=k

ε2
µl

{〈
ba
l b

b
j

〉
− 〈ba

l 〉
〈
bb
j

〉}
= δab

(
Xµk − Qt

µk

)
−
(
1 − δab

) 1

n
Rt

µk , (8)

where Xµk ≡ ∑
l 6=k ε2

µl, Qt
µk ≡ ∑

l 6=k

(
εµlm

t
µl

)2
and Rt

µk ≡ ∑
l 6=k

(
εµln

t
µlm

t
µl

)2
are macro-

scopic variables of O(1). In particular, Rt
µk is a free variable that can be used to opti-

mise with respect to a given performance measure. This corresponds to fine tuning of

the variational model considered. All three quantities Xµk, Qt
µk and Rt

µk are self averag-

ing so we can drop both indices µ and k. The probability of ∆µk can be expressed as

P (∆µk) ∝ exp
{
−1

2

(
∆µk − ut

µk

)T (
Υt

µk

)−1 (
∆µk − ut

µk

)}
.
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Having the probability distribution of ∆µk we can express the message from nodes yµ to

nodes ba
k at time t + 1 explicitly, using Eqs. (3), (4) and (5)

m̂t+1

µk =
Tr{bk}

bea
k P t+1 (yµ|bk, {yν 6=µ})

Tr{bk}
P t+1 (yµ|bk, {yν 6=µ})

=
εµk

σ2 + β − Qt + Rt

(
yµ − ut

µk

)
. (9)

It is then straightforward to prove the following equation and its approximation, the

latter due to the fact that m̂t
νk ∼ O (ενk)

mt
µk = tanh

(
∑

ν 6=µ

arctanh
(
m̂t

νk

)
)

≃ tanh

(
∑

ν 6=µ

m̂t
νk

)

. (10)

To study the quality of the inferred vectors one considers the gauged field with respect to

the true message bkh
t
µk where ht

µk ≡ artanh
(
mt

µk

)
=
∑

ν 6=µ artanh (m̂t
νk) ≃

∑
ν 6=µ m̂t

νk. The

distribution of this field is likely to be well approximated by a Gaussian, as a result of the

central limit theorem, whose mean and variance are Et and F t respectively

Et =
1

K

K∑

k=1

N∑

µ=1

bkm̂
t
µk , F t ≃ 1

K

K∑

k=1

N∑

µ=1

(
m̂t

µk

)2
; (11)

both are assumed to be independent of the index µ due to self-averaging. For the same

reason we expect the macroscopic variables, representing the overlap between the vectors

mµ and b at any time t and the squared length of mµ, defined as M t
µ ≡∑K

k=1
bkm

t
µk/K ≃

∑K
k=1

bkm
t
k/K = M t and N t

µ ≡ ∑K
k=1

(
mt

µk

)2
/K ≃ ∑K

k=1
(mt

k)
2
/K = N t, to be µ inde-

pendent. Using the distribution we obtained for the gauged field bkh
t
µk, both variables can

be evaluated by M t =
∫
Du tanh

(√
F tu + Et

)
, N t =

∫
Du tanh2

(√
F tu + Et

)
, where

Du = exp (−u2/2) /
√

2π. Applying a method equivalent to the EM algorithm [13] for the

independent parameter of the model σ2 we have that the optimal selection of the parameter

is given by the condition Et = F t, which also implies that N t = M t. Notice that this result

is not surprising as it maximises the normalised overlap between the vectors mµ and b.

It is important to notice at this point the different scaling factors used in the two

models we examine. For CDMA one uses εµk = sµk/
√

N while εµk = sµk/
√

K is used

for the (ILP). Imposing the condition Et = F t leads to a relation between the struc-

ture of the space of solutions, represented by Rt, and the free parameter of the model

σ2. From Eqs. (11) one obtains for the two models Et+1 = e−1

1 [σ2 + Rt + e2 (1 − N t)]
−1

,

F t+1 = e1 [σ2
0 + e2 (1 − N t)] (Et+1)

2
, where e1 = 1 (β) and e2 = β (1) for the CDMA (ILP)

system. This implies, after simplification, that for both cases Rt = σ2
0 − σ2.
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Despite the simplicity of this result, the process from which we obtained it provides a

mechanism for estimating the true noise variance. In deriving Et and F t we used the fact

that K, N → ∞with K/N = β. So that the true noise variance σ2
0 that appears in the

expression for F t has been obtained from a signal vector with an infinite number of entries

yµ. Thus limN→∞
1

N

∑N
µ=1

(yµ)
2 = e2 + σ2

0 . Using this we can express the message as

m̂t+1

µk ≃ εµk

[
1

N

N∑

µ=1

(yµ)2 − e2N
t

]−1

(
yµ − ut

µk

)
, (12)

where no prior belief of the noise level σ0 is required.

The steady state equation for the macroscopic variable Et is obtained in the limit t → ∞,

leading to the definition of E ≡ limt→∞ Et. In this regime the following relation holds

E
(
σ2

0, β
)

= e−1

1

{
σ2

0 + e2

[
1 −

∫
Du tanh2

(√
E (σ2

0, β)u + E
(
σ2

0 , β
))]}−1

. (13)

From these expressions one can calculate directly the error per bit rate

P b

(
σ2

0 , β
)

=
1

2



1 + erf





√
E (σ2

0 , β)

2







 . (14)

III. NUMERICAL RESULTS

The inference algorithm requires an iterative update of Eqs. (10) and (12) until they

converge to a reliable estimate of the signal. We emphasise again that there is no need for

prior information on the noise level. The computational complexity of the algorithm, as it

has been presented here, is of O(NK2) but can be reduced to be O(K2) in a similar way to

the approach taken in [2].

To test the performance of our algorithm we carried out a set of experiments of CDMA

signal detection under typical conditions. Error probability of the inferred signals has been

calculated for a system load of β = 0.25, where the true noise level is σ2
0 = 0.25 and the

estimated noise is σ2 =0.01, as shown in Figure 1(a). The solid line represents the expected

theoretical results (density evolution), knowing the exact values of σ2
0 and σ2, while circles

represent simulation results obtained via the suggested practical algorithm, where no such

knowledge is assumed. The results presented are based on 105 trials per point and a system

size N =2000, and are superior to those obtained using the original algorithm of Ref. [2].
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FIG. 1: (a) Error probability of the inferred solution as a function of time. The system load

β = 0.25, true and estimated noise levels σ2
0 = 0.25 and σ2 = 0.01, respectively. Squares represent

results obtained by the algorithm of [2], solid line the dynamics obtained from our equations; circles

represent results obtained from the suggested practical algorithm. Variances are smaller than the

symbol size. (b) The measure of convergence D of the obtained solutions, as a function of time;

symbols are as in (a).

Another performance measure to be consider is Dt≡K−1(mt − mt−1)·(mt − mt−1) , that

provides an indication to the stability of the solutions obtained. In Fig. 1(b) we compare

results obtained from our algorithm, that exhibit fast convergence to a reliable solution, in

stark contrast to the original algorithm [2] which does not converge.

For the ILP, the K > N regime is highly interesting as the system develops a critical

behaviour for a range of (σ2
0) values. We carried out a set of experiments for this system

(the CDMA scaling was kept for consistency) based on density evolution. In Fig. 2(a)

we present curves of P b, defined in Eq. (14), as a function of the inverse load β−1 for

different values of σ2
0 . Three different regimes have been observed: For σ2

0 < 0.15 the curves

exhibit a discontinuity at a value of β that varies with σ2
0 (first order phase transition-like

behaviour). At σ2
0 =0.15 the curve becomes continuous but its slope diverges (second order

phase transition-like behaviour). The P b curves show analytical behaviour for noise values

above 0.15. In Fig. 2b we present a phase diagram of the CDMA system. It shows the

dependency of the critical load β−1

C as a function of the noise parameter. The first order line

8



0 0.2 0.4 0.6 0.8 1

β−1

0

0.2

0.4

0.6

0.8

1

P
b

σ0
2 = 0

σ0
2 = 0.1

σ0
2 = 0.15

σ0
2 = 0.18

0.4 0.5 0.6 0.7

β
C

-1

0.05

0.1

0.15

σ
0

2

(a) (b)

FIG. 2: (a) P b at the steady state, Eq. (14), as a function of β−1 for different values of the noise

parameter. For values of σ2
0 below 0.15 the curves show discontinuity at certain β values, which

becomes continuous but non-analytic at σ2
0 = 0.15 around β−1 ≃ 0.68. For noise variance values

above σ2
0 = 0.15 the curves become analytical. (b) Position of the non analyticity of the error rate

curve β−1

C as a function of the noise parameter σ2
0 . This first order phase transition-like curve ends

in a second order phase transition-like point marked by ◦.

ends in a second order transition point marked by a circle.

Another indication for the critical behaviour is the number of steps required for the

recursive update of Eq. (13) to convergence. In Fig. 3(a) we present the number of iterations

needed to reach a steady state as a function of β−1 when the noise parameter is set to

σ2
0 = 0.10. The number of iterations diverge when the critical value of β is reached.

Finally, we wish to explore the efficiency of the algorithm as a function of the system size.

In Fig. 3(b) we present the result of iterating Eqs. (10) and (12) for system sizes of K =200,

400, 800, 1600 and 3200. The curves represent mean values over 1000 experiments. There

is a strong dependency of the error per bit rate on the size of the system, which is expected

to converge to the asymptotic limit (infinite system size) represented by the solid line.
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FIG. 3: (a) Number of iterations of Eq. (13) required for convergence as a function of β, for

σ2
0 = 0.10. the error rate curve exhibits a discontinuity. (b) Finite size effects observed in the error

rate curve when the Eqs. (10) and (12) are iterated over the number of steps needed to reach the

steady state. The noise level used is σ2
0 = 0.10 with K0 = 50. The curves are mean values over

1000 experiments. The curve obtained from the iteration of the steady state equations is presented

as a reference.

IV. CONCLUSIONS

In summary, we employed a new variational algorithm based on replicated variable sys-

tems to investigate two related problems: signal detection in CDMA and learning in the ILP.

The new algorithm facilitates the use of message passing techniques in densely connected

systems, even in systems that show a fragmented solution space and represents an extension

of existing algorithms similar to the extension of BP to SP.

Results on the CDMA signal detection problem are superior than other existing algo-

rithms [2, 16], without using any prior for the expected noise level.

Results have also been obtained for low and intermediate load levels under various noise

conditions, which are of higher relevance to ILP learning than to CDMA. These exhibit a

first-order like transition for critical load levels and below a certain noise level (σ2
0 < 0.15),

that become second order as the noise level increases (at σ2
0 = 0.15). No transition points

have been identified above this noise level. Finally, we also examined finite size effects in

the system, which are clearly present even at a system size of 3200 nodes.
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We are in the process of examining the suitability of the method for other applications [15].

While the approach seems promising, there is clearly a need for further research to fully

determine the potential of the new algorithm.
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