3,182 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    Teaching FPGA Security

    No full text
    International audienceTeaching FPGA security to electrical engineering students is new at graduate level. It requires a wide field of knowledge and a lot of time. This paper describes a compact course on FPGA security that is available to electrical engineering master's students at the Saint-Etienne Institute of Telecom, University of Lyon, France. It is intended for instructors who wish to design a new course on this topic. The paper reviews the motivation for the course, the pedagogical issues involved, the curriculum, the lab materials and tools used, and the results. Details are provided on two original lab sessions, in particular, a compact lab that requires students to perform differential power analysis of FPGA implementation of the AES symmetric cipher. The paper gives numerous relevant references to allow the reader to prepare a similar curriculum
    • …
    corecore